

Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Carrera de Ciencias Biológicas

"Estructura y funcionamiento de comunidades de artrópodos en techos verdes: una comparación con hábitats a nivel de suelo"

Tesinista: María Virginia Sánchez Domínguez. Firma:

Director: Dra. María Silvina Fenoglio. Firma:

Codirector: Dr. Ezequiel González. Firma:

g g

Centro de Investigaciones Entomológicas de Córdoba (UNC) Instituto Multidisciplinario de Biología Vegetal (UNC-CONICET)

"Estructura y funcionamiento de comunidades de artrópodos er techos verdes: una comparación con hábitats a nivel de suelo"				
Tribunal Examinador:				
Dra. Raquel Gleiser. Firma:				
Dra. Adriana Zapata. Firma:				
Dra. Sandra Díaz. Firma:				
Calificación:				
Fecha:				

Índice

Agradecimientos	3
Resumen	4
Introducción	5
Metodología	10
Resultados	16
Discusión	25
Bibliografía	,29
Δnevos	3.4

Agradecimientos

A mi directora, Ma. Silvina Fenoglio, y mi codirector, Ezequiel González, quienes con presencia, paciencia y docencia me acompañaron incondicionalmente en todas las etapas de este trabajo. A Diego Fabian, compañero de lupa y amigo, gracias a quién pude mantenerme firme y despierta durante largas horas de identificación. Gracias a lxs tres por la música, las charlas y las enseñanzas.

También a Adriana Salvo, Hernán Beccacece y Franco Chiarini que participaron en distintas etapas de la identificación de ejemplares recolectados. Al CIEC e IMBIV, y su gente, por compartir amablemente el espacio de trabajo. Estoy infinitamente agradecida por haber caído en sus manos y valoro muchísimo la sensibilidad con la que trabajan, desde la investigación, para aportar a ámbitos poco estudiados y claves en la conservación de la biodiversidad y el mejoramiento de la calidad ambiental

A las dueñas y dueños de las casas muestreadas, por abrir las puertas a que investiguemos en sus hogares, a quienes les debo la entrega de todo lo recabado en este estudio.

A mis amigas y amigos, compañerxs de la vida, por ser el espacio de contención cotidiano que me permitió llegar hasta acá. Particularmente con quienes vivo y comparto este amor por la naturaleza, que contuvieron mis altibajos y me dieron la perspectiva correcta para seguir.

A mi madre y padre por introducirme a la educación pública y apoyarme en todo el trayecto de mi carrera. Por la confianza y la fuerza que me transmiten cuando más la necesito.

Resumen

Los techos verdes representan una alternativa amigable con el medio ambiente con potencialidad para ofrecer hábitats a especies animales y vegetales dentro de las ciudades. Sin embargo, aún no es posible predecir si estos nuevos ecosistemas pueden albergar un número similar de especies que aquellos a nivel del suelo. A su vez, existe una creciente necesidad de cuantificar procesos ecológicos en techos verdes a fin de comprender acabadamente cómo se comportan en términos funcionales. En este estudio se evaluó la estructura de comunidades de artrópodos (abundancia, riqueza de especies total y por gremio trófico) y procesos ecológicos asociados (herbivoría y predación) en techos verdes y hábitats vecinos a nivel del suelo. En 15 casas del Valle de Paravachasca, se colocaron trampas de agua amarillas para la captura de artrópodos en dos ubicaciones, techos vivos y hábitats vecinos a nivel de suelo. Para cuantificar predación se utilizó la técnica del hospedador centinela artificial, en tanto que la herbivoría se determinó recolectando hojas al azar y analizando su proporción de daño. Por otra parte, en cada ubicación, se realizó un muestreo exhaustivo de vegetación a fin de estimar riqueza de plantas. Los resultados indican que la riqueza y abundancia de las especies de artrópodos, tanto total como de gremios tróficos, fueron significativamente mayores en hábitats a nivel de suelo que en techos verdes. Sin embargo, la riqueza y abundancia de las comunidades de artrópodos no fueron afectadas por la riqueza de plantas, aún cuando ésta fue mayor en suelos. Resulta interesante mencionar que los techos presentaron en promedio entre 25 y 30 especies de artrópodos, solo un 50% menos que los hábitats vecinos a nivel de suelo, y que grupos con variados hábitos alimenticios estuvieron bien representados. En cuanto a la composición taxonómica de las comunidades, estuvieron bien diferenciadas en ambas ubicaciones. Con respecto al funcionamiento de las comunidades, los resultados obtenidos indican tendencias dispares para los procesos ecológicos cuantificados. Mientras que la predación fue significativamente menor en techos que suelos, la herbivoría fue similar en ambas ubicaciones. Los resultados de este estudio representan una nueva evidencia en relación al rol de los techos verdes como proveedores de hábitats para numerosas especies de insectos y otros artrópodos, de gremios tróficos relevantes.

Palabras claves: biodiversidad, gremios tróficos, herbivoría, predación, techos vivos, urbanización.

"Soy de las que piensan que la ciencia tiene una gran belleza. Un sabio en su laboratorio no es solamente un teórico. Es también un niño colocado ante los fenómenos naturales que le impresionan como un cuento de hadas"

Marie Curie

Introducción

La urbanización es una de las principales amenazas a la biodiversidad a nivel global (Seto *et al.*, 2012) dado que conlleva la modificación, fragmentación y degradación de hábitats naturales (Pickett *et al.*, 2001). En este escenario, las áreas verdes urbanas, más allá del valor recreativo, cultural y social que poseen (Tarrant & Cordell, 2002), son ecosistemas valiosos para el estudio y la conservación de la vida silvestre en las ciudades (Aronson *et al.*, 2014; Ives *et al.*, 2016). Los techos verdes, o techos vivos, se encuentran entre las innovaciones sostenibles creadas por el hombre, construidas para transformar los techos de edificios y casas en espacios verdes, que contribuyan a una mejora ambiental.

Los techos verdes consisten en superficies cubiertas por vegetación, en un medio ligero, con drenajes, barreras para raíces y capas impermeabilizantes. El término hace referencia tanto a techos de tipo intensivos, ornamentales, con un sustrato profundo (> 50 cm) y mantenimiento regular, como a techos extensivos, con vegetación espontánea autosostenible, sustratos menos profundos (5 - 20 cm) y bajo mantenimiento (Nagase *et al.*, 2018). Los servicios ecosistémicos que proveen en las áreas urbanas incluyen la retención de aguas pluviales, el aumento de la eficiencia energética de los edificios, reducción del efecto de "isla de calor" que puede generarse en estas zonas, disminución de la contaminación del aire y un potencial incremento de la biodiversidad por nuevos hábitats disponibles (Oberndorfer *et al.*, 2007; Li *et al.*, 2010; Williams *et al.*, 2014).

En los últimos años, ha existido un creciente interés en cuantificar los beneficios de estos nuevos ambientes con relación a la biodiversidad de plantas, aves y artrópodos (Thuring & Grant, 2016). Sin embargo, aún son escasas las comparaciones entre techos verdes y otros hábitats, por lo que es prematuro predecir si estos nuevos ecosistemas pueden albergar un número similar de especies que aquellos a nivel del suelo (Williams *et al.*, 2014). A su vez, existe una mayor necesidad de cuantificar procesos ecológicos en techos verdes a fin de comprender acabadamente cómo se comportan en términos funcionales (Lundholm, 2015).

Los techos verdes difieren de los parches de hábitat a nivel del suelo de varias maneras. En general, son menos accesibles y, por lo tanto, experimentan menos actividad humana. Los techos son muy calurosos en días claros de verano, son secos gran parte del tiempo, ventosos, y con un sustrato impermeable debajo de una capa fina de tierra, con una estructura diferente a los suelos naturales (Holt, 2016). Por estas razones, las plantas que prosperan en techos verdes deben ser tolerantes tanto a la sequía como a las heladas. Un reciente estudio sugiere que las especies de plantas que muestran las mejores características de supervivencia y crecimiento son aquellas tolerantes a las perturbaciones y que pueden crecer rápidamente (Aloisio *et al.*, 2017). La vegetación dominante, está constituida principalmente por enredaderas, plantas herbáceas, gramíneas y suculentas (del género *Sedum*) (Köhler, 2006; Emilsson, 2008).

La fragmentación del hábitat en ambientes urbanos puede comprometer la conservación de la biodiversidad (Beninde *et al.*, 2015), inclusive la de artrópodos (Kotze *et al.*, 2011; New, 2015). A pesar de las diferencias mencionadas con hábitats a nivel del suelo, los techos vivos podrían actuar como corredores, con potencialidad de unir espacios verdes fragmentados en las ciudades, facilitando la dispersión de las especies (Kim, 2004) y aportando a la conservación de la biodiversidad. Lo ideal sería considerarlos como entidades no aisladas, interactuando entre sí e influenciados por otros tipos de ambientes urbanos y rurales (Handel, 2015).

Dentro de los artrópodos, el grupo de los insectos es considerado el más diverso del planeta y las especies que lo componen juegan un rol ecológico importante en el medio ambiente. Entre los principales servicios ecosistémicos que proporcionan los insectos se encuentran la polinización, el control de plagas, y la descomposición (Losey & Vaughan, 2006). Por lo tanto, evaluar el efecto de los techos verdes en comunidades de insectos, en términos de diversidad y función, es un desafío promisorio ya que aportará evidencias en relación al rol de los techos vivos como posibles conectores de hábitats.

Algunos estudios han cuantificado la abundancia y diversidad de artrópodos en techos verdes (MacIvor & Ksiazek, 2015). Se ha demostrado que estos ambientes son más habitados por invertebrados que los techos comunes sin cobertura vegetal, y que una serie de techos vivos interconectados incrementa aún más la supervivencia de estos organismos (Berthon *et al.*, 2015). Por otro lado, se ha visto que la riqueza y abundancia de insectos tienden a ser mayores a nivel del suelo que en los techos verdes (Colla *et al.*, 2009; Tonietto *et al.*, 2011; Ksiazek *et al.*, 2012; Braaker *et al.*, 2017), en tanto que la

composición de las comunidades difiere entre techos y hábitats a nivel del suelo (MacIvor & Lundholm, 2011; Tonietto *et al.*, 2011), encontrando inclusive especies raras en estos nuevos ecosistemas (Kadas, 2006). Sin embargo, las evidencias aún son escasas con relación a la efectividad de los techos verdes para soportar comunidades de artrópodos, y la medida en que facilitan la conectividad de estas comunidades en el medio urbano. El único estudio sobre este último aspecto ha revelado que la composición de comunidades de grupos con alta movilidad está mayormente influenciada por la conectividad de los hábitats, mientras que los de baja movilidad, por las condiciones locales (Braaker *et al.*, 2014). La altura de los edificios y la distancia horizontal a áreas verdes, así como el tamaño del techo, son factores limitantes para muchas especies (Blank *et al.*, 2017). También se observaron efectos de la composición de las comunidades vegetales en la riqueza y abundancia de insectos, encontrando que mayor riqueza florística fomenta la colonización por artrópodos (Madre *et al.*, 2013).

Otro punto para destacar es que la mayoría de los estudios realizados hasta el momento en techos verdes, evalúan comunidades de artrópodos en términos de composición y riqueza y, en general, ignoran aspectos funcionales. Recientemente Braaker et al. (2017) demostraron que los techos verdes contribuyen significativamente con el mantenimiento de la diversidad funcional de comunidades de artrópodos pertenecientes a diferentes grupos, a pesar de que la riqueza taxonómica de especies en techos fue menor que en sitios a nivel del suelo. Los autores comprobaron que las condiciones ambientales de los techos verdes actúan como un filtro, que conduce a un ensamble de especies de artrópodos con ciertos rasgos funcionales tales como mayor habilidad de dispersión, alta tolerancia al estrés y bajo requerimiento de recursos, con relación a comunidades que viven a nivel de suelo. La diversidad funcional ha sido propuesta como la clave para entender la relación entre la diversidad, la estructura de las comunidades y el funcionamiento de los ecosistemas (Chapin et al., 2000; Díaz & Cabido, 2001). Existe numerosa evidencia empírica acerca de que la diversidad funcional, y no la identidad taxonómica de las especies, es la que determina en mayor medida estas relaciones (Hooper et al., 2005; McGill et al., 2006).

En cuanto a procesos ecológicos, existen algunos pocos estudios en techos urbanos focalizados en la polinización (Ksiazek *et al.*, 2012) y el parasitismo (Quispe & Fenoglio, 2015), pero aún resta conocer los efectos de techos verdes en otro tipo de interacciones como herbivoría y predación (Cook-Patton & Bauerle, 2012). En relación a la polinización, Ksiazek *et al.* (2012) observaron que los insectos presentes en este tipo

de techos, a pesar de ser menos diversos que en los suelos, pudieron proveer este servicio ecosistémico a diferentes plantas nativas. En cambio, respecto al parasitismo se observó el patrón opuesto, con una significativa disminución de las tasas de parasitismo en techos en comparación con suelos (Quispe & Fenoglio, 2015).

El uso de techos vivos es activamente impulsado en el mundo por las políticas de adaptación al cambio climático y de mitigación de las aguas pluviales (Carter & Fowler, 2008). Sin embargo, su implementación en Argentina es aún incipiente. Una reciente revisión sobre investigaciones en techos verdes con multidisciplinarios, indica que la mayoría de los estudios pertenecen a Estados Unidos y Europa, citando sólo dos trabajos en Latinoamérica (Blank et al., 2013). En Argentina solo existe material de divulgación sobre técnicas para su fabricación (Minke et al., 2014), sobre las especies vegetales que mejor se adaptan a estos ambientes (Soto et al., 2014) y sobre el estado de situación de los techos verdes en la ciudad de Córdoba (Suárez et al., 2016).

El presente estudio plantea una caracterización de las comunidades de artrópodos en techos verdes y su respectivo entorno a nivel del suelo, en términos de abundancia, riqueza y composición de especies. Además, se identificaron gremios tróficos y se evaluaron dos procesos ecológicos claves, como lo son la herbivoría y la predación, a través de la cuantificación de estos. Este trabajo de investigación constituye la primera evidencia de artrópodos en techos verdes de Latinoamérica, y examina el potencial de estos ambientes de replicar ecosistemas naturales para esta fauna.

En base a lo expuesto anteriormente se plantean los siguientes objetivos, hipótesis y predicciones:

Objetivo general:

Estudiar la estructura de comunidades de insectos y otros artrópodos de importancia funcional, y los procesos ecológicos asociados, en techos verdes y hábitats vecinos a nivel del suelo.

Objetivos específicos:

- 1. Comparar la riqueza y abundancia de artrópodos, total y por gremios tróficos, en techos verdes y en hábitats vecinos a nivel de suelo.
- 2. Determinar el grado de similitud entre las comunidades de artrópodos localizadas en techos verdes y en hábitats vecinos a nivel del suelo.

3. Cuantificar y comparar procesos ecológicos (herbivoría y predación) entre techos verdes y hábitats vecinos a nivel del suelo.

Hipótesis:

- Los hábitats a nivel de suelo, al presentar condiciones físicas más favorables y ofrecer una mayor disponibilidad de recursos, albergan comunidades de artrópodos más diversas en comparación con los hábitats a nivel de techo.
- 2) Las comunidades de artrópodos que habitan los techos verdes tienen una composición diferente a las comunidades que habitan a nivel del suelo, dado que sólo las especies con alta tasa de dispersión, tolerantes al stress y de hábitos más generalistas son las capaces de colonizar estos nuevos ambientes.
- 3) Los hábitats a nivel del suelo, al presentar una mayor abundancia y riqueza de especies de artrópodos herbívoros y predadores, favorecen los procesos ecológicos de herbivoría y predación, respectivamente.

Predicciones:

- 1) Se espera que en hábitats a nivel de suelo exista una mayor abundancia y riqueza de artrópodos (número de especies), total y de gremios tróficos, en relación a hábitats a nivel de techo.
- Se espera que la disimilitud, evaluada a través del índice de Bray Curtis, en la composición de especies entre techos y suelos sea mayor que la esperada por azar.
- 3) Se predice que las tasas de predación y herbivoría serán mayores a nivel del suelo que en techos verdes.

Metodología

Área de estudio:

El trabajo se realizó en 15 casas localizadas en el Valle de Paravachasca, departamento Santa María (Figura 1). Esta zona, según el censo de 2010, cuenta con una población de 98.188 habitantes y registra un crecimiento relativamente alto, siendo el departamento con mayor incremento poblacional en el período 2015-2017 (Open Data Córdoba, 2017). El clima de Paravachasca, al igual que el resto de la provincia, es templado, con un período de lluvias que se extiende de octubre a marzo, y otro seco entre abril y septiembre (Luti *et al.*, 1979).

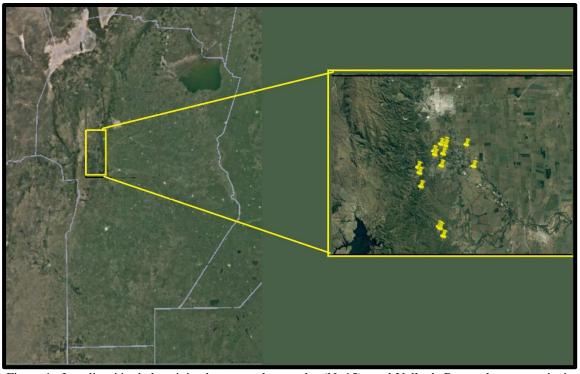


Figura 1. Localización de las viviendas con techos verdes (N=15) en el Valle de Paravachasca, provincia de Córdoba.

Las características estructurales de cada techo verde se establecieron mediante entrevistas con sus respectivos propietarios. La mayoría de los sitios corresponden a viviendas familiares realizadas mediante técnicas de bioconstrucción, caracterizándose en su totalidad como techos verdes de tipo extensivo (Figura 2). El sustrato más utilizado fue tierra negra (33,3% de los casos), presentando la mayoría de los techos vegetación espontánea como vegetación original (46,7%) y ausencia de riego (86,7%). La Tabla 1 muestra otras características relevadas de los techos verdes estudiados.

Como el objetivo de este trabajo fue la comparación entre ubicaciones no se profundizó sobre la variabilidad entre hábitats a nivel de suelo.

Tabla 1. Principales características de los techos verdes relevados en el Valle de Paravachasca.

Característica techos verdes	Valor promedio	Error Estándar
Antigüedad (meses)	35,33	5,43
Profundidad (cm)	10,6	1,01
Porcentaje de cobertura vegetación local	72,33	7,54
Altura (m)	3,75	0,35
Área (m²)	54,63	7,99
Porcentaje de cobertura verde/escala de paisaje (400 m	n) 98,53	0,28

Figura 2. Fotografía de algunos de los techos verdes muestreados durante el estudio.

Muestreos:

La toma de muestras se realizó durante los meses de febrero y marzo de 2017, período en el que aún se registra una actividad alta de artrópodos y los techos suelen tener la mayor cobertura vegetal por las precipitaciones acumuladas. En cada casa se trabajó en dos ubicaciones: techos verdes y hábitats vecinos a nivel del suelo (jardines de las casas). A fin de muestrear superficies similares en todas las casas, el hábitat a nivel del suelo se delimitó como un área de aproximadamente 60 m², a menos de 20 m del techo. Para reducir la variabilidad entre los jardines de las casas, se procuró que dicho sector sea abierto, sin cubierta arbórea, y vegetación espontánea con bajo mantenimiento. Por su parte, los techos vivos se muestrearon en toda su superficie.

En ambas ubicaciones se colocaron trampas de agua amarillas para la captura de artrópodos, principalmente aquellos con alta movilidad (voladores), para los que las trampas resultan muy atractivas visualmente (Gibb & Hochuli, 2002). Las mismas se dispusieron apoyadas sobre el suelo/techo y consistieron en recipientes plásticos de

color amarillo (34 cm de diámetro, 9,5 cm de profundidad y 7 L de volúmen), en los que se colocó medio litro de agua y tres gotas de detergente para facilitar la ruptura de la tensión superficial. Se instalaron un total de 6 trampas por casa (3 en el techo y 3 en suelo), localizadas al menos a 4 m una de otra para asegurar que la extensión del área de cada sitio fuese muestreada equilibradamente. Las mismas fueron retiradas luego de 48 hs. Al mismo tiempo, en ambas ubicaciones, se realizó un muestreo exhaustivo de la comunidad de especies vegetales, recolectando material para su posterior identificación a fin de determinar la riqueza de especies vegetales. La identificacion estuvo a cargo del Dr. Franco Chiarini, especialista en Taxonomía, Sistemática y Florística, quién siguió los criterios del Instituto de Botánica Darwinion (IBODA), Missouri Botanical Garden y Flora Argentina.

Para evaluar la herbivoría a la que se ve sometida la comunidad de plantas dicotiledóneas, en cada casa y ubicación, se colectaron al azar hojas de 15 individuos (5 hojas por individuo) de al menos 15 especies de plantas de este grupo vegetal. En los casos en que esto no fue posible de realizar, se obtuvieron hojas de varios individuos de las especies dominantes. Las hojas recolectadas fueron fotografiadas a fin de determinar el porcentaje de daño, utilizando el programa ImageJ (Schneider *et al.*, 2012).

Para cuantificar predación, se utilizó la técnica del hospedador centinela artificial, que consiste en moldear larvas artificiales con plastilina en las que se observa, a través de lupas, intentos de predación (Howe *et al.*, 2009). La técnica es simple, económica y no requiere equipos ni procedimientos sofisticados, además puede ser usada en condiciones de campo, y permite reconocer el tipo de predador potencial y comparar las presiones de predación en distintas situaciones. Se colocaron 10 larvas por ubicación en el sustrato (Ferrante *et al.*, 2017) y se las dejó en el sitio por dos días (Figura 3).

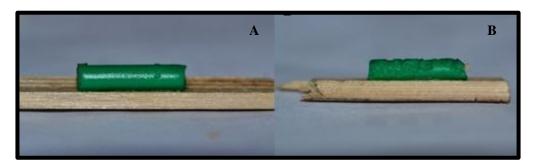


Figura 3. Orugas de plastilina utilizadas para cuantificar predación en los sitios estudiados. La figura A) muestra una oruga sin daño por predadores mientras que la B) muestra una con daño.

Procesamiento de las muestras:

Los artrópodos contenidos en cada muestra fueron separados, primeramente, en órdenes y luego en morfoespecies (de aquí en adelante, especies), en base a características morfológicas (color, forma, tamaño), utilizando una lupa estereoscópica Zeiss Lumi DV4. El uso de morfoespecies en estudios de biodiversidad está avalado en casos en los que se trabaja con gran cantidad de especies y en regiones en las que el conocimiento taxonómico es limitado (Obrist & Duelli, 2010). Posteriormente, en los casos en los que fue posible, se identificó la familia a la que pertenece cada especie, utilizando claves dicotómicas (Triplehorn & Johnson, 2005) (Anexo 3).

Asimismo, los ejemplares se asignaron a grupos funcionales según los hábitos predominantes de la familia o grupo taxonómico superior. Los grupos considerados fueron: fitófagos / predadores / omnívoros / micófagos / detritívoros / hematófagos / parasitoides / polinizadores (Triplehorn & Johnson, 2005). En los casos de especies pertenecientes a familias con distintos hábitos alimenticios a lo largo de su ciclo de vida, se las consideró para el cálculo de abundancia y riqueza de ambos grupos. Por ejemplo, himenópteros de la familia Pompilidae fueron considerados parasitoides por las larvas y polinizadores debido a que los adultos son visitantes florales. Con el material identificado se confeccionaron colecciones de referencia, depositadas en el Centro de Investigaciones Entomológicas de Córdoba.

Variables analizadas:

Las variables que se obtuvieron a partir de los datos colectados fueron:

- Riqueza y abundancia de especies de insectos y otros artrópodos de importancia funcional (total y por gremios tróficos).
- Riqueza de especies de plantas (en los casos en que no fue posible identificar la especie se utilizó su afiliación taxonómica a nivel de género).
- Tasa de herbivoría, calculada de tres formas: a) Proporción de hojas dañadas por individuo b) Proporción de lámina foliar consumida c) Proporción de hojas dañadas por trips por individuo. En todos los casos se utilizaron valores promedios por ubicación.
- Tasa de predación, calculada como proporción de centinelas predados. Se utilizaron los conteos de orugas de plastilina con daño, independiente de la magnitud del daño.

A su vez, en cada sitio, se cuantificó la superficie verde en un círculo de 400m de radio rodeando las casas (escala de paisaje) a través del uso de imágenes satelitales Landsat 8, utilizando como indicador el Índice de Vegetación de Diferencia Normalizada (NDVI) (Fenoglio *et al.*, 2009). Esta variable se consideró dado que la cobertura vegetal a esta escala también puede influir en las comunidades de artrópodos (Blank *et al.*, 2017).

Análisis de los datos:

Para responder el primer y tercer objetivo, se utilizaron Modelos Lineales Generalizados Mixtos, donde "ubicación" se incorporó como efecto fijo y "trampa" anidado dentro de "casa" como efecto aleatorio, a fin de contemplar la falta de independencia de los tratamientos y de las muestras dentro de cada ubicación. Para los modelos con datos de conteo como variable respuesta (abundancia y riqueza de especies), se asumió distribución Poisson de los errores o Binomial Negativa en los casos en que el supuesto de equidispersión del modelo de Poisson no se cumplió (Zuur et al., 2009). Para los datos de predación se asumió distribución binomial y para los promedios de herbivoría distribución normal de los errores, dado que son las adecuadas para datos de éxito/fracaso y promedios, respectivamente (Zuur et al., 2009). Para corroborar la distribución normal de los errores en los análisis de herbivoría, se realizó la prueba de normalidad de Shapiro Wilks.

La "riqueza de especies vegetales" se incluyó en los modelos como covariable, al mismo tiempo que la interacción "ubicación × riqueza de especies vegetales", a fin de evaluar posibles diferencias en el efecto de la riqueza vegetal entre suelos y techos. Se partió de la construcción de un modelo completo que contuvo todas las variables mencionadas, el cual se fue simplificando hasta que no hubo una reducción en la desviación residual (utilizando el Criterio de Información de Akaike, AIC) (Bolker *et al.*, 2009). Para determinar el grado de significancia de los efectos fijos se realizaron pruebas de verosimilitud ("likelihood ratio test", LRT) utilizando el estadístico χ^2 , entre los modelos con y sin la variable en cuestión (Bolker *et al.*, 2009), considerando un nivel de significancia α del 95%. Los estimadores calculados por los MLGMs (la media de cada ubicación para la variable categórica; la pendiente y la ordenada al origen para la variable continua, riqueza plantas) y sus intervalos de confianza del 95% fueron utilizados para las figuras presentadas en los resultados. La cobertura verde a nivel de

paisaje no fue considerada como covariable en los modelos mixtos debido a la escasa variabilidad encontrada para esta variable entre casas (Tabla 1).

Los datos de composición taxonómica, que responden al segundo objetivo, se analizaron a través de Análisis Multidimensional No Métrico (NMDS) y Permanova (Legendre & Anderson, 1999). Este último evalúa si la disimilitud entre comunidades, debida a cierto factor, es menor o mayor a lo esperado por azar (Anderson, 2001). Se utilizó el logaritmo de la abundancia de cada especie (log N+1) para quitarle peso a la abundancia de las especies dominantes y con estos valores se construyó una matriz de similitud utilizando el índice de Bray-Curtis. En todos los casos se utilizó el programa estadístico R (R Development Core Team, 2012) y sus paquetes: nlme (Fox, 2003), lme4 (Bates & Sarkar, 2007), MuMIn (Bartoń, 2009), vegan (Oksanen *et al.*, 2010) y effects (Pinheiro *et al.*, 2013).

Resultados

Comunidades vegetales:

En total se reconocieron 149 especies de plantas correspondientes a diversas familias (Anexo 2). Especies de familias tales como Asteraceae (ej.: Artemisa annua, Bidens pilosa, varias del género Conyza y Schkuhria pinnata), Convolvulaceae (Ipomea spp.), Poaceae (ej.: Digitaria sanguinalis y Eragrostis virescens), Verbenaceae (Aloysia gratissima) y Malvaceae (Sida spp. y Malvastrum coromandelianum) estuvieron presentes tanto en techos como en suelos de las casas visitadas. Otras especies como Nothoscordum arenarium, Oxalis sp., Janusia guaranitica, Cyperus rotundus (Cyperaceae), Eustachys retusa (Poaceae), Heterosperma ovatifolium (Asteraceae), y especies del género Verbena y Cynodon, entre otras, fueron encontradas sólo en techos (Anexo 1). En más del 90% de los techos se encontró Portulaca oleraceae, siendo muy abundante en estos sitios, así como Commelina erecta y otras suculentas, y varias especies de Crassulaceae (Figura 4).

Luego de identificar las especies vegetales recolectadas se detectó que, en comparación con los techos vivos, la riqueza de especies fue significativamente mayor en los hábitats a nivel del suelo ($\chi^2=105,78$; p<0,0001) y se componen en su mayoría de especies nativas de crecimiento espontáneo (Anexo 1).

Figura 4. Especies vegetales herbáceas (no gramíneas) de crecimiento espontáneo frecuentemente encontradas en los techos verdes estudiados A) campanita (*Ipomoea purpurea*) B) flor de Santa Lucía (*Commelina erecta*) C) verdolaga (*Portulaca oleracea*).

Comunidades de artrópodos:

a. <u>Aspectos generales</u>

Los resultados indican gran riqueza y abundancia de insectos, y otros artrópodos, en los sistemas estudiados (Figura 5). En total, se capturaron e identificaron 14988 individuos de 714 especies diferentes. Sobre los techos verdes se hallaron 5039

individuos correspondientes a 388 especies y, en los suelos de las casas, 9950 individuos de 614 especies.

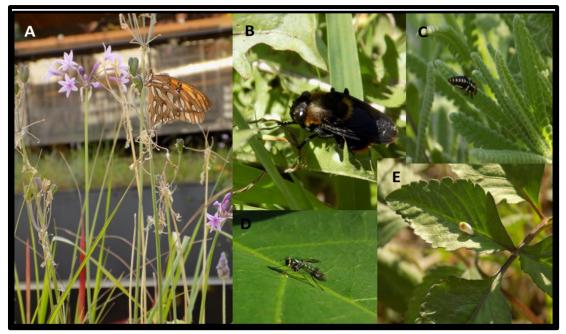


Figura 5. Insectos recolectados en los techos vivos y hábitats vecinos a nivel del suelo en las casas muestreadas en el Valle de Paravachasca. A) Lepidoptero, Nymphalidae B) Himenóptero, Apidae C) Larva Coleoptero, Coccinellidae D) Díptero, Dolichopodidae E) Pupa Díptero, Syrphidae.

Las especies de artrópodos que se encontraron pertenecen a 15 órdenes taxonómicos diferentes. El orden más diverso, tanto en suelos como en techos verdes, fue Hymenoptera (Figura 6). En cuanto a la abundancia, Diptera fue el orden mejor representado en los suelos, en tanto que en los techos verdes el grupo más abundante fue Hemiptera (Figura 7). Otros órdenes de insectos, así como de artrópodos no insectos, tales como ácaros, arañas, isópodos y colémbolos también estuvieron presentes, pero fueron menos diversos que otros órdenes, en ambas ubicaciones (Figura 6). De los órdenes Thysanoptera y Collembola también se encontraron cantidades importantes, tanto en los techos verdes como en los suelos (Figura 7).

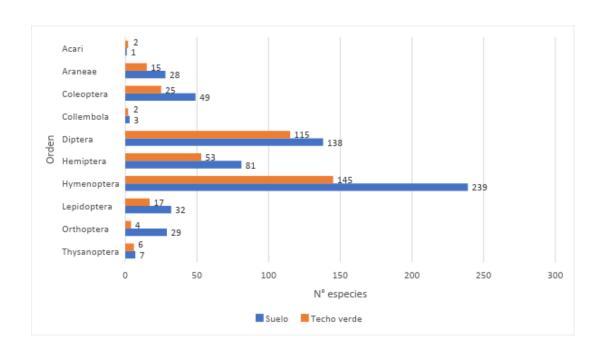


Figura 6. Riqueza de especies por orden de artrópodos en techos verdes (color naranja) y suelos (color azul) de casas del Valle de Paravachasca.

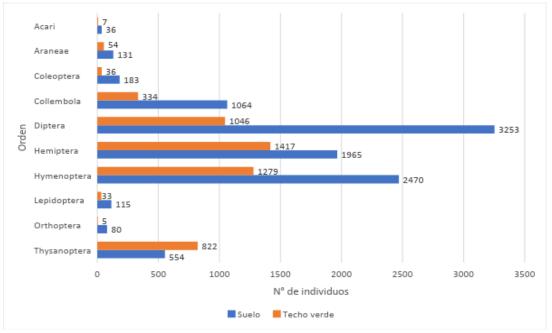


Figura 7. Abundancia de individuos por orden de artrópodos en techos verdes (color naranja) y suelos (color azul) de casas del Valle de Paravachasca.

En cuanto a la abundancia y riqueza de especies respecto a los grupos funcionales que se reconocieron, se puede observar que en los suelos el grupo más diverso fue el de los fitófagos (Figuras 8 y 9). En cambio, en los techos verdes, el grupo

con mayor número de especies estuvo representado por los parasitoides (Figura 8), en tanto que el más abundante fue, al igual que en suelos, el de los fitófagos (Figura 9).

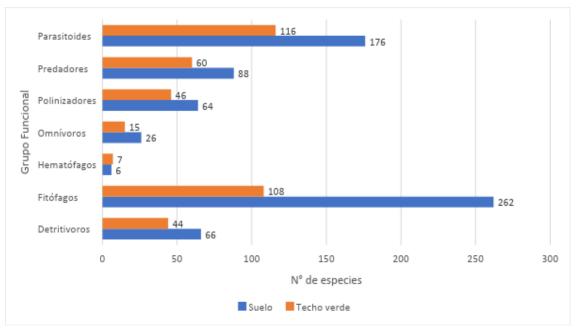


Figura 8. Riqueza de especies por grupo funcional en techos verdes (color naranja) y suelos (color azul) de casas del Valle de Paravachasca.

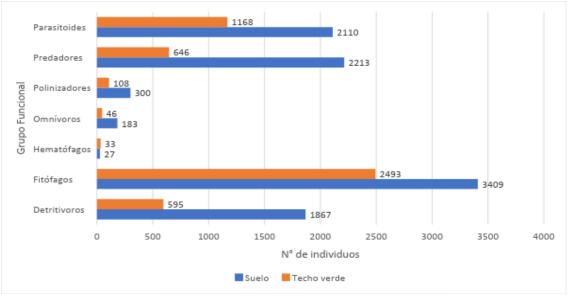


Figura 9. Abundancia de individuos por grupo funcional en techos verdes (color naranja) y suelos (color azul) de casas del Valle de Paravachasca.

De las especies encontradas, las más abundantes fueron de la familia de los Dolichopodidae (Diptera) en los suelos, y de la familia Encyrtidae (Hymenoptera), Cicadellidae y Aphididae (ambos Hemiptera) en los techos vivos.

b. <u>Efectos de la ubicación sobre la riqueza y abundancia total de especies de artrópodos</u>

Con relación a los efectos de la ubicación (techo verde vs. suelo) en las comunidades de artrópodos, se observó que, tanto la riqueza de especies como la abundancia, fueron significativamente mayores en suelos que en techos de las casas (χ^2 = 28,81; p<0,0001 y χ^2 = 14,36; p=0,0002, respectivamente). Los techos verdes presentaron aproximadamente un 50% menos de especies e individuos que los suelos (Figura 10). En ambos casos se observó que la riqueza vegetal no afectó significativamente las comunidades de artrópodos.

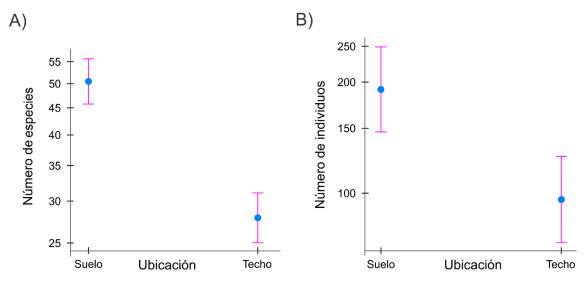


Figura 10. Efecto de la ubicación en A) Riqueza total de especies de artrópodos B) Abundancia total de artrópodos. Los puntos representan la media y, las barras, el intervalo de confianza del 95%, para cada nivel del factor. En ambos casos el eje "y" está representado en escala logarítmica.

c. <u>Efectos de la ubicación sobre la riqueza y abundancia de especies por grupo</u> funcional

Para todos los grupos funcionales en los que fue posible realizar el análisis se encontró un efecto significativo de la ubicación (Tabla 2) tanto en la riqueza de especies (Figura 11) como en la abundancia (Figura 12). Particularmente, los gremios de predadores, polinizadores y detritívoros mostraron una riqueza y abundancia superior o igual al doble en suelos que en techos verdes, en tanto que para los otros gremios las diferencias fueron menores a dicho valor (Figuras 11 y 12). Solamente la abundancia de parasitoides mostró, adicionalmente, una relación significativa y positiva con la riqueza vegetal (Tabla 2, Figura 13).

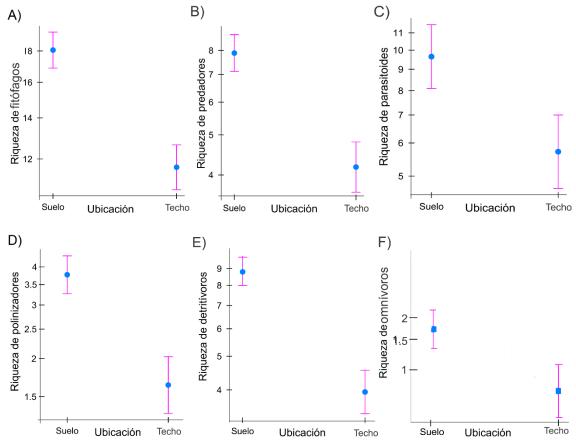


Figura 11. Efectos fijos de la ubicación en el número de especies de A) fitófagos B) predadores C) parasitoides D) polinizadores E) detritívoros F) omnívoros. Los puntos representan la media y, las barras, el intervalo de confianza del 95%, para cada nivel del factor. En todos los casos el eje "y" está representado en escala logarítmica.

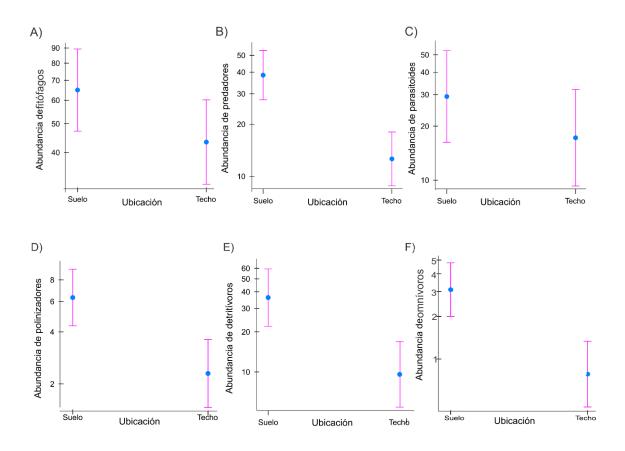


Figura 12. Efectos de la ubicación en la abundancia de A) fitófagos B) predadores C) parasitoides D) polinizadores E) detritívoros F) omnívoros. Los puntos representan la media y, las barras, el intervalo de confianza del 95%, para cada nivel del factor. En todos los casos el eje "y" está representado en escala logarítmica.

Tabla 2. Efectos de la ubicación (Suelo/Techo) y la riqueza vegetal sobre la riqueza de especies y la abundancia de artrópodos por grupo funcional en las viviendas estudiadas

Variable Respuesta	Efectos Fijos	$\chi^{_2}$	p
Riqueza de especies			
Fitófagos	Ubicación	19,34	<0,0001
Predadores	Ubicación	21,33	<0,0001
Parasitoides	Ubicación	9,56	0,002
Polinizadores	Ubicación	14,71	0,0001
Detritívoros	Ubicación	33,07	<0,0001
Omnívoros	Ubicación	17,91	<0,0001

Abundancia			
Fitófagos	Ubicación	4,07	0,04
Predadores	Ubicación	17,74	<0,0001
Parasitoides	Ubicación	6,87	0,009
	Riqueza vegetal	7,05	0,008
Polinizadores	Ubicación	15,002	0,0001
Detritívoros	Ubicación	21,97	<0,0001
Omnívoros	Ubicación	14,14	0,0002

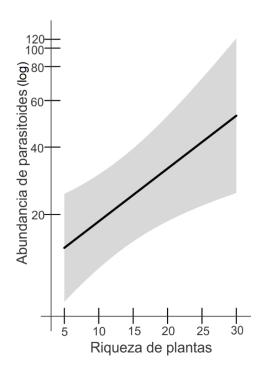


Figura 13. Relación entre la riqueza de plantas y la abundancia de parasitoides en suelos y techos vivos de las viviendas estudiadas. Se representan la pendiente y la ordenada al origen estimadas mediante MLGMs y su intervalo de confianza del 95%. El eje "y" está representado en escala logarítmica.

d. <u>Composición taxonómica de las comunidades de artrópodos en techos y suelos</u>

A partir de la ordenación de las muestras en el NMDS se observa una clara separación entre la composición de las comunidades de techos verdes y suelos, considerando el primer eje multidimensional. Las muestras tomadas en los techos toman valores positivos en el eje 1, y las muestras de suelo, valores negativos en el mismo eje (Figura 14). El análisis de Permanova indicó que las diferencias entre ubicaciones fueron significativas (F=3,52; p<0,0001), aunque este efecto sólo explicó un 11% de la variabilidad en la composición. Por otro lado, la riqueza de plantas y la interacción entre la riqueza de plantas y la ubicación no fueron importantes (p= 1 y 0,57 respectivamente).

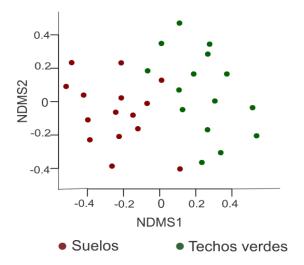


Figura 14. NMDS para las comunidades de artrópodos en suelos y techos verdes de las casas visitadas.

Del análisis de la composición de especies en techos y suelos se desprende que algunas sólo estuvieron presentes en los suelos, y otras sólo en los techos verdes (Tabla 3). De las especies encontradas solo en techos, el 28% fueron detectadas una vez durante los muestreos, con una abundancia de un único individuo. De las especies compartidas entre ambas ubicaciones, los órdenes considerados como muy móviles (Diptera y Lepidoptera), fueron los que más se repitieron en ambas ubicaciones. En cambio, órdenes considerados como menos móviles (Aranea y Coleoptera) fueron los que menos especies compartieron entre ambas ubicaciones.

Tabla 3: Número de especies por órdenes (más abundantes) encontradas exclusivamente en techos verdes, en suelos y compartidas entre ambas ubicaciones.

Orden	Especies suelo	Especies techo	Especies compartidas
Araneae	17	4	11
Coleoptera	35	11	13
Diptera	50	25	88
Hemiptera	42	15	38
Hymenoptera	135	40	104
Lepidoptera	15	0	16
Orthoptera	24	2	0

Herbivoría y predación:

El promedio de la proporción de hojas dañadas por individuo fue de 33,76% en techos verdes y 37,86% en suelos. La proporción de la lámina foliar consumida resultó, en promedio, 4,32% en techos vivos y 5,01% en los suelos de las casas. El promedio de

la proporción de hojas dañada por trips, fue de 40,9% en los techos y 42,1% en los suelos. No se encontraron diferencias significativas en ninguna de las tasas de herbivoría calculadas, respecto a la ubicación y a la riqueza vegetal (Tabla 4).

Respecto al análisis de predación usando el método del hospedador-centinela artificial, se encontró que la proporción de centinelas predados promedio en techos vivos fue del 14,66% y del 40,66% en los suelos, siendo esta diferencia estadísticamente significativa. (Tabla 4, Figura 15).

Tabla 4: Comparación de las tasas de herbivoría y predación en suelos y techos verdes de las viviendas estudiadas.

Variable Respuesta	Efecto Fijo	χ^2	p
Proporción de hojas dañadas por individuo	Ubicación (Suelo/Techo)	2,74	0,09
Proporción de lámina foliar consumida	Ubicación (Suelo/Techo)	0,69	0,4
Proporción de hojas dañada por trips	Ubicación (Suelo/Techo)	0,04	0,85
Proporción de centinelas predados	Ubicación (Suelo/Techo)	28,43	<0,0001

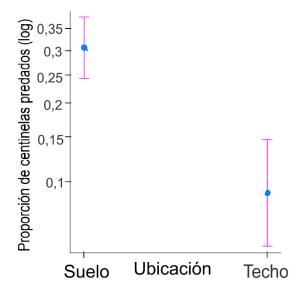


Figura 15. Efecto fijo de la ubicación en la proporción de centinelas predados (los puntos representan la media y, las barras, el intervalo de confianza del 95%, para cada nivel del factor).

Discusión

Actualmente los techos verdes son una alternativa arquitectónica sostenible que tiene, entre otros propósitos, contrarrestar la degradación de espacios verdes, su fragmentación y la consecuente pérdida de biodiversidad en ambientes urbanos

(Oberndorfer et al., 2007). En este estudio, se realizó una caracterización y comparación de las comunidades de artrópodos en techos verdes con los respectivos hábitats vecinos a nivel de suelo, a fin de aportar información sobre si estos nuevos ambientes pueden replicar ecosistemas a nivel del suelo, dominados por vegetación espontánea. Además de determinar variables relacionadas a la estructura de las comunidades, se realizó una aproximación funcional identificando gremios tróficos y cuantificando herbivoría y predación, dos procesos ecosistémicos en los que los insectos participan de forma activa. Los resultados concuerdan, en general, con lo predicho por las hipótesis planteadas, y con lo registrado por otros autores en el hemisferio norte (Kadas, 2006; Tonietto et al., 2011; Ksiazek et al., 2012; Braaker et al., 2017). Tanto la riqueza de especies de artrópodos como su abundancia, total y por gremios tróficos, fueron significativamente mayores en los suelos de las casas que en los techos verdes. Así mismo, de acuerdo con lo esperado, se detectaron cambios en la composición específica de las comunidades entre ubicaciones. En cambio, en cuanto a los procesos ecológicos estudiados, no se encontraron diferencias significativas en la herbivoría en tanto que la predación fue mayor en suelos que en techos vivos.

Resulta llamativa la importante diversidad hallada en los techos vivos aquí estudiados, ya que se registraron casi 400 especies en estos hábitats. A pesar de ser sistemas jóvenes, los techos estudiados, presentaron en promedio, un 50% menos de especies de artrópodos que los hábitats a nivel de suelo. Considerando que la mayoría de los techos vivos relevados estaban en estados sucesionales tempranos, es esperable que la riqueza y abundancia de artrópodos aumente con el tiempo (Kadas, 2006).

El análisis por gremios tróficos permitió vislumbrar un patrón similar al encontrado para la riqueza de especies y abundancia total. Hasta el momento sólo un estudio ha analizado la diversidad funcional de insectos que participan en diferentes procesos ecosistémicos en techos verdes de Europa (Braaker *et al.*, 2017), encontrando que ésta fue similar entre techos y hábitats a nivel de suelo. Si bien en el presente estudio no se analizó la diversidad funcional *per se*, la aproximación funcional, al considerar diferentes gremios tróficos, es valiosa ya que sugiere que grupos con variados hábitos alimenticios están representados en las comunidades de artrópodos que habitan los techos vivos. Esto es importante desde el punto de vista de la conservación de especies y de las interacciones bióticas que ellas establecen en ambientes urbanos, donde están usualmente amenzadas (Faeth *et al.*, 2005; McKinney, 2008; Beninde *et al.*, 2015). Además, estos datos indicarían que diferentes procesos ecosistémicos que se

observan en ambientes localizados a nivel de suelo, también se pueden desarrollar en los techos verdes. Sin embargo, sería necesario cuantificar el efecto de los techos en otros procesos que no fueron evaluados en este estudio, tales como parasitismo, descomposición de la materia orgánica y polinización, por ejemplo.

Resulta interesante mencionar que la riqueza y abundancia de artrópodos, total y por gremios, no fueron afectadas por variaciones en la riqueza vegetal a excepción de la abundancia de parasitoides, a pesar de que hubo más especies de plantas en los suelos que en techos. Posiblemente, los cambios en la composición de especies vegetales podrían estar influenciando las comunidades de artrópodos en suelos y techos (Tonietto et al., 2011). Así mismo, variaciones en el tamaño y altura de los techos, que no fueron analizadas en este estudio, podrían representar factores limitantes para muchas especies (Blank et al., 2017). De hecho, el análisis de composición de especies de artrópodos aquí realizado sugiere que, en los techos verdes no habitan las mismas especies que en los suelos, sino más bien representan comunidades taxonómicas diferenciadas, aunque el efecto de ubicación explicó un porcentaje no muy alto de la variabilidad encontrada. Vale aclarar que, de las especies que sólo estuvieron presentes en los techos vivos, un 28% fueron especies que presentaron un único individuo, por lo que restaría dilucidar si este patrón es robusto al aumentar el esfuerzo de muestreo (Gotelli & Colwell, 2001). Así mismo, futuros análisis eliminando las especies que presentaron solo uno ó menos de cinco individuos, podrían ayudar a comprender si estos patrones se mantienen.

Ciertos rasgos de las especies de artrópodos podrían ser determinantes en el ensamble encontrado en los techos. Se ha sugerido que especies con alta movilidad, generalistas, y con alta tolerancia al stress son las que predominan en los techos (Braaker *et al.*, 2014; Braaker *et al.*, 2017). Si bien no se realizó un análisis particular sobre ésto, aquí encontramos que especies correspondientes a los órdenes taxonómicos Araneae y Coleoptera, considerados como grupos menos móviles frente a especies de Diptera, Hymenoptera y Lepidoptera, fueron los que menos especies compartieron entre ambas ubicaciones y además presentaron pocas especies en los techos, en total. Por lo tanto, esto apoyaría la idea de que los grupos más móviles tienen una mayor capacidad de alcanzar ambientes en altura.

Con respecto al funcionamiento de las comunidades, los resultados obtenidos indican tendencias dispares para los procesos ecológicos cuantificados. La herbivoría fue similar en techos vivos y hábitats a nivel de suelo, y los fitófagos fueron los más abundantes y diversos tanto en suelos como en techos. Este resultado podría tener una

explicación asociada por el hecho de que la herbivoría evaluada fue principalmente generada por insectos masticadores, en tanto que el grupo que más representó a los fitófagos fue el de los picadores-chupadores. En cuanto a la tasas de predación, se encontró que fueron significativamente menores en techos verdes que en suelos. Esto podría ser explicado por la menor abundancia y riqueza de predadores encontradas en techos, como predice la relación diversidad-funcionamiento (Snyder *et al.*, 2006; Bruno & Cardinale, 2008).

De acuerdo con la literatura, éste es el primer estudio realizado en Latinoamérica con estas características, utilizando un número de réplicas superior a las usadas en diseños similares (Kadas, 2006; McIvor & Lundoholm, 2011). Estos resultados representan nueva evidencia con relación al rol de los techos verdes como proveedores de hábitats para numerosas especies de artrópodos, así como también de una posible conexión entre comunidades a nivel de suelo y en altura. El creciente interés en las últimas décadas de aportar datos sobre estos nuevos ecosistemas hace que este estudio adquiera una importancia particular en el ámbito de estrategias para la conservación de la biodiversidad en ambientes urbanos (Williams *et al.*, 2014). Si bien este trabajo presentó algunas limitaciones, tales como el no identificar taxonómicamente a nivel de especies los ejemplares y que se muestreó sólo en una época del año utilizando un tipo particular de trampa, lo cual podría estar sesgando el espectro de especies de artrópodos capturadas, es valioso por su contribución al estudio de la biodiversidad de especies, y procesos ecológicos asociados en espacios verdes urbanos (Aronson *et al.*, 2017).

En conclusión, si bien los techos verdes estudiados presentaron menor riqueza y abundancia de especies de artrópodos, global y por gremios tróficos, es importante destacar que estos nuevos ambientes, que presentaron en su mayoría vegetación espontánea, están siendo colonizados y habitados por un importante número de especies que explotan diferentes recursos alimenticios. Así mismo, en cuanto a los procesos ecológicos estudiados, se encontró que la herbivoría en techos fue similar a la de los suelos, en tanto que la predación fue menor. Esto podría vincularse a una liberación del control biológico por parte de los enemigos naturales (Bianchi *et al.*, 2006). Así mismo, resulta interesante destacar que, el grupo más diverso en los techos fue el de los parasitoides y que otros predadores, como dolichopodidos, fueron muy abundantes en estos ambientes. Las especies de esta familia se alimentan de insectos pequeños como moscas blancas, pulgones y trips (Etienne *et al.*, 1990; Moreno, 2002; Ulrich 2004), por lo que los experimentos con hospedadores centinelas no registraron su actividad, y es

probable que las funciones que cumplen sean relevantes también, a pesar de que no fueron medidas en este estudio.

Frente al escenario crítico del calentamiento global y dada la influencia que las ciudades tienen en el mismo, la incorporación de los techos verdes en los edificios forma parte de una estrategia ambiental. Ésta permite aprovechar las cualidades de las cubiertas vegetales a fin de regular temperaturas, evitar pérdidas energéticas, captar agua de lluvia, recuperar espacios autóctonos y corredores biológicos para las especies animales, y capturar carbono de la atmósfera a través de la fotosíntesis y creciminto de las plantas, así como también espacios productivos y de disfrute humano (Oberndorfer et al., 2007; Li et al., 2010; Williams et al., 2014). La ciudad de Córdoba no está exenta de las problemáticas ambientales que usualmente sufren las grandes urbes. En el año 2017, el municipio ha implementado acciones que apuntan a estimular la instalación de una "Red de techos verdes" dentro de la ciudad, como parte inicial de un Programa Integral de Desarrollo Sostenible (Ordenanza N°12548, Consejo Deliberante de la Ciudad de Córdoba, 2016). Aunque los resultados de este estudio fueron obtenidos en techos de casas rodeadas por vegetación preponderantemente nativa, donde posiblemente los efectos de urbanización sean menos notorios, representan el puntapié inicial para futuros estudios en el tema y refuerzan el rol de los techos verdes como hábitat para diferentes especies de artrópodos.

Bibliografía (con formato de acuerdo con Ecological Entomology):

- Anderson, M. J. (2001) A new method for non-parametric multivariate analysis of variance. *Austral Ecology*, **26**, 32-46.
- Aloisio, J. M., Palmer, M. I., Giampieri, M. A., Tuininga, A. R. & Lewis, J. D. (2017) Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation. *Ecological Applications*, **27**, 297-308.
- Aronson, M. F., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A. & Dobbs, C. (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. *Proceedings of the Royal Society B*, **281**, 2013-3330.
- Aronson, M. F., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S. & Vargo, T. (2017) Biodiversity in the city: key challenges for urban green space management. *Frontiers in Ecology and the Environment*, **15**, 189-196.
- Bartoń, K. (2009) MuMIn: multi-model inference. R package, version 0.12.2. Disponible en: http://CRAN.R-project.org/.
- Bates, D. & Sarkar, D. (2007) lme4: Linear Mixed-Effects Models Using S4 Classes. R package, version 0.9975-12, Disponible en: http://CRAN.R-project.org/.
- Beninde, J., Veith, M. & Hochkirch, A. (2015) Biodiversity in cities needs space: a metaanalysis of factors determining intra-urban biodiversity variation. *Ecology Letters*, **18**, 581-592.

- Berthon, K., Nipperess, D., Davies, P. & Bulbert, M. (2015) Confirmed at last: green roofs add invertebrate diversity. *State of Australian Cities Conference 2015*. Disponible en: http://soacconference.com.au/wp-content/uploads/2016/02/Berthon.pdf.
- Bianchi, F., Booij, C., Tscharntke, T., (2006) Sustainable pest regulation in agricultural 431 landscapes: a review on landscape composition, biodiversity and natural pest control. *Proc.* 432 Proceedings of the Royal Society B, 273, 1715-1727.
- Blank, L., Vasl, A., Levy, S., Grant, G., Kadas, G., Dafni, A. & Blaustein, L. (2013) Directions in green roof research: A bibliometric study. *Building and Environment*, **66**, 23-28.
- Blank, L., Vasl, A., Schindler, B. Y., Kadas, G. J. & Blaustein, L. (2017) Horizontal and vertical island biogeography of arthropods on green roofs: a review. *Urban Ecosystems*, **20**, 1-7.
- Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in Ecology & Evolution*, **24**, 127-135.
- Braaker, S., Ghazoul, J., Obrist, M. & Moretti, M. (2014) Habitat connectivity shapes urban arthropod communities: the key role of green roofs. *Ecology*, **95**, 1010-1021.
- Braaker, S., Obrist, M. K., Ghazoul, J. & Moretti, M. (2017) Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. *Journal of Animal Ecology*, **86**, 521-531.
- Bruno, J. F., & Cardinale, B. J. (2008) Cascading effects of predator richness. *Frontiers in Ecology and the Environment*, **6**, 539-546.
- Carter, T. & Fowler, L. (2008) Establishing green roof infrastructure through environmental policy instruments. *Environmental Management*, **42**, 151-164.
- Chapin III, F. S., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Díaz, S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., & Mack, M. C. (2000) Consequences of changing biodiversity. *Nature*, **405**, 234-242.
- Colla, S. R., Willis, E., & Packer, L. (2009) Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? *Cities and the Environment*, **2**, 4.
- Cook-Patton, S. C. & Bauerle, T. L. (2012) Potential benefits of plant diversity on vegetated roofs: a literature review. *Journal of Environmental Management*, **106**, 85-92.
- Díaz, S., & Cabido, M. (2001) Vive la difference: plant functional diversity matters to ecosystem processes. *Trends in Ecology & Evolution*, **16**, 646-655.
- Emilsson, T. (2008) Vegetation development on extensive vegetated green roofs: influence of substrate composition, establishment method and species mix. *Ecological Engineering*, **33**, 265-277.
- Etienne, J., Guyot, J. & van Waetermeulen, X. (1990) Effect of insecticides, predation, and precipitation on populations of Thrips palmi on aubergine (eggplant) in Guadeloupe. *Florida Entomologist*, **73**, 339-342.
- Faeth, S. H., Warren, P. S., Shochat, E., & Marussich, W. A. (2005) Trophic dynamics in urban communities. *AIBS Bulletin*, **55**, 399-407.
- Fenoglio, M. S., Salvo, A. & Estallo, E. L. (2009) Effects of urbanisation on the parasitoid community of a leafminer. *Acta Oecologica*, **35**, 318-326.
- Ferrante, M., González, E. & Lövei, G. (2017) Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina. *Ecology and Evolution*, **7**, 7699-7707.
- Flora Argentina. Plantas vascualres de la República Argentina (2018). Disponible en: http://www.floraargentina.edu.ar/
- Fox, J. (2003) Effect displays in R for generalised linear models. *Journal of Statistical Software*, **15**, 1-27.

- Gibb, H., & Hochuli, D. F. (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. *Biological Conservation*, **106**, 91-100.
- Gotelli, N. J., & Colwell, R. K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. *Ecology Letters*, **4**, 379-391.
- Handel, S. N. (2015) Not so novel ecosystems. *Ecological Restoration*, **33**, 235-236.
- Holt, R. D. (2016) Green roofs may cast shadows. *Israel Journal of Ecology & Evolution*, **62**, 15-22.
- Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Setälä, H., Symstad, A. J., Vandermeer, J., Wardle, D.A. & Schmid, B. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological Monographs*, **75**, 3-35.
- Howe, A., Lövei, G. L. & Nachman, G. (2009) Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. *Entomologia Experimentalis et Applicata*, **131**, 325-329.
- Ives, C. D., Lentini, P. E., Threlfall, C. G., Ikin, K., Shanahan, D. F., Garrard, G. E. & Rowe, R. (2016) Cities are hotspots for threatened species. *Global Ecology and Biogeography*, **25**, 117-126.
- Kadas, G. (2006) Rare invertebrates colonizing green roofs in London. *Urban Habitats*, **4**, 66-86.
- Kim, K. G. (2004) The application of the biosphere reserve concept to urban areas: the case of green rooftops for habitat network in Seoul. *Annals of the New York Academy of Sciences*, **1023**, 187-214.
- Köhler, M. (2006) Long-term vegetation research on two extensive green roofs in Berlin. *Urban Habitats*, **4**, 3-26.
- Kotze, J., Venn, S., Niemelä, J. & Spence, J. (2011) Effects of urbanization on the ecology and evolution of arthropods. *Urban Ecology, patterns, processes and applications* (ed. por Niemelä, J). 159-166. Oxford University Press, New York.
- Ksiazek, K., Fant, J. & Skogen, K. (2012) An assessment of pollen limitation on Chicago green roofs. *Landscape and Urban Planning*, **107**, 401-408.
- Legendre, P., & Anderson, M. J. (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. *Ecological Monographs*, **69**, 1-24.
- Li, J. F., Wai, O. W. H., Li, Y. S., Zhan, J. M., Ho, Y. A., Li, J. Z., Lam, E. (2010) Effect of green roof on ambient CO₂ concentration. *Building and Environment*, **45**, 2644-2651.
- Losey, J. E., & Vaughan, M. (2006) The economic value of ecological services provided by insects. *BioScience*, **56**, 311-323.
- Lundholm, J. T. (2015) Green roof plant species diversity improves ecosystem multifunctionality. *Journal of Applied Ecology*, **52**, 726-734.
- Luti R., Bertrán M., Galera M., Muller N., Berzal M., Nores M., Herrera M. & Barrera J. C. (1979) Vegetación. *Geografía Física de la provincia de Córdoba*. (ed. por J.V. Vázquez; R.A. Miatello y M.E. Roque), 297-368. Boldt, Buenos Aires.
- MacIvor, J. S. & Ksiazek, K. (2015) Invertebrates on Green Roofs. *Green Roof Ecosystems* (ed. R. Sutton), 333–355. Springer International Publishing, New York.
- MacIvor, J. S. & Lundholm, J. (2011) Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. *Urban Ecosystems*, **14**, 225-241.
- Madre, F., Vergnes, A., Machon, N. & Clergeau, P. (2013) A comparison of 3 types of green roof as habitats for arthropods. *Ecological Engineering*, **57**, 109-117.
- McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. *Trends in Ecology & Evolution*, **21**, 178-185.

- McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. *Urban Ecosystems*, **11**, 161-176.
- Minke, G., Martí, J. M., Lopez Saez, J. A., Jose, M., Velasco Negueruela, A. & Grove, A. R. (2014) *Techos verdes: planificación, ejecución, consejos prácticos*. Fin de siglo, Montevideo.
- Moreno, L.L.V. (2002) Avances del control biológico de *Bemisia tabaci* en la región neotropical. *Manejo Integrado de Plagas y Agroecología*, **66**, 82-95.
- Nagase, A., Yamada, Y., Aoki, T., & Nomura, M. (2018) Developing biodiverse green roofs for Japan: Arthropod and colonizer plant diversity on harappa and biotope roofs. *Urban Naturalist*, **1**, 16-38.
- New, T. R. (2015) Insect conservation in urban environments. Springer.
- Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N. & Rowe, B. (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. *BioScience*, **57**, 823-833.
- Obrist, M. K., & Duelli, P. (2010) Rapid biodiversity assessment of arthropods for monitoring average local species richness and related ecosystem services. *Biodiversity and Conservation*, **19**, 2201-2220.
- Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R. & O'hara, R. B. (2010) vegan: Community ecology package. R package versión 1.17-2. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- Open Data Córdoba (2017) R: Demografía con Cartas Marinas. Open Data Córdoba, Córdoba, Argentina. Disponible en: http://blog.opendatacordoba.org/demografia-con-cartas-marinas/.
- Pickett, S. T., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C. & Costanza, R (2001) Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. *Annual Review of Ecology and Systematics*, **32**, 127-157.
- Pinheiro J., Bates, D., DebRoy, S., Sarkar, D. & the R Development Core Team (2013) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-109. Disponible en: http://CRAN.R-project.org/.
- Quispe, I. & Fenoglio, M. S. (2015) Host–parasitoid interactions on urban roofs: an experimental evaluation to determine plant patch colonisation and resource exploitation. *Insect Conservation and Diversity*, **8**, 474-483.
- R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Viena.
- Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis. *Nature Methods*, **9**, 671.
- Seto, K., Güneralp, B. & Hutyra, L. (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. *Proceedings of the National Academy of Sciences*, **109**, 16083-16088.
- Snyder, W. E., Snyder, G. B., Finke, D. L. & Straub, C. S. (2006) Predator biodiversity strengthens herbivore suppression. *Ecology Letters*, **9**, 789 796
- Soto, M. S., Barbaro, L. A., Coviella, M. A. & Stancanelli, S. (2014) *Catálogo de plantas para techos verdes*. Instituto de Floricultura (INTA), Castelar.
- Suárez, M., Cáceres, N., Imhof, L. Hick, E., Fenoglio, M. S., Ivancovich, G., Romero, S., Cortadi, M. & Wulff, E. (2016) *Relevamiento de techos verdes de la ciudad de Córdoba. Primer diagnóstico*. Ed. EDUCC (Editorial de la Universidad Católica de Córdoba), Córdoba.

- Tarrant, M. A. & Cordell, H. K. (2002) Amenity values of public and private forests: examining the value–attitude relationship. *Environmental Management*, **30**, 692-703.
- Thuring, C. & Grant, G. (2016) The biodiversity of temperate extensive green roofs—a review of research and practice. *Israel Journal of Ecology & Evolution*, **62**, 44-57.
- Tonietto, R., Fant, J., Ascher, J., Ellis, K., & Larkin, D. (2011) A comparison of bee communities of Chicago green roofs, parks and prairies. *Landscape and Urban Planning*, **103**, 102-108.
- Triplehorn, C. A., & Johnson, N. F. (2005) *Introduction to the Study of Insects*. Thomson Brooks/Cole, Belmont, California.
- Missouri Botanical Garden (2018) Disponible en: http://www.tropicos.org
- Ulrich, H. (2004) Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list. *Studia dipterologica*, **11**, 369-403.
- Williams, N. S., Lundholm, J. & MacIvor, J. (2014) Do green roofs help urban biodiversity conservation? *Journal of Applied Ecology*, **51**, 1643-1649.
- Zuloaga, F., & Morrone, O. (2009) Flora del Cono Sur. Catálogo de las Plantas Vasculares. Instituto de Botánica "Darwinion", Buenos Aires. Disponible en: http://www2.darwin.edu.ar/Proyectos/FloraArgentina/BuscarEspecies.asp
- Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. (2009) *Mixed Effects Models and Extensions in Ecology with. R.* Springer, New York.

Anexo 1. Lista de especies vegetales presentes en techos verdes y hábitats a nivel de suelo de las viviendas estudiadas.

Familia	Especie	Techo	Suelo
Acanthaceae	Dicliptera squarrosa		Х
Acanthaceae	Dicliptera tweediana	X	X
Alliaceae	Nothoscordum arenarium	X	
Amaranthaceae	Amaranthus hybridus		X
Amaranthaceae	Amaranthus quitensis		X
Amaranthaceae	Amaranthus sp.		X
Amaranthaceae	Dysphania carinata		X
Amaranthaceae	Chenopodium carinata	X	X
Amaranthaceae	Gomphrena pulchella		X
Amaranthaceae	Iresine diffusa		X
Anacardiaceae	Lithraea molleoides		X
Anacardiaceae	Schinus fasciculata		X
Anemiaceae	Anemia tomentosa		X
Apocynaceae	Mandevilla sp.		X
Apocynaceae	Maurandya antirrhiniflora		X
Apocynaceae	Morrenia sp.		X
Araceae	Zantedeschia aethiopica		X
Asteracea	Zinnia peruviana	X	X
Asteraceae Asteraceae	Achyrocline sp. Artemisa annua	v	X
Asteraceae	Artemisia absinthium	X	X
Asteraceae			X
	Austroeupatorium inulifolium Baccharis articulata		X
Asteraceae			X
Asteraceae Asteraceae	Baccharis coridifolia		X
	Bidens pilosa	X	X
Asteraceae	Bidens sp.	X	X
Asteraceae	Bidens subalternans	X	X
Asteraceae	Cirsium vulgare		X
Asteraceae	Chrysanthemum indicum	X	
Asteraceae	Conyza blakei		X
Asteraceae	Conyza primulifolia		X
Asteraceae	Conyza sumatrensis		X
Asteraceae	Cosmos sulphureus		X
Asteraceae	Dimerostemma aspiloides		X
Asteraceae	Eupatorium artemisiifolium		X
Asteraceae	Eupatorium sp.		X
Asteraceae	Flourencia sp.		X
Asteraceae	Heterosperma ovatifolium	X	X
Asteraceae	Heterosperma sp.	X	X

Asteraceae	Hysterionica jasionoides	X	
Asteraceae	Laennecia sophiifolia	X	
Asteraceae	Ophryosporus axilliflorus		X
Asteraceae	Parthenium hysterophorus		X
Asteraceae	Schkuhria pinnata	X	X
Asteraceae	Simsia dombeyana		X
Asteraceae	Solidago chilensis		X
Asteraceae Asteraceae	Sonchus sp. Stevia satureiifolia		X
Asteraceae	Sievia saturenjona Tagetes sp.	X	X X
Bignoniaceae	Dolichandra cynanchoides	Λ	X
Bignoniaceae	Pithecoctenium echinatum		X
Boraginaceae	Cynoglossum sp.		X
Brassicaceae	Brassica rapa		X
Cannabaceae	Celtis ehrenbergiana		х
Cannácea	Canna indica	X	
Commelinaceae	Commelina erecta	X	X
Commelinaceae	Tradescantia pallida		X
Convolvulaceae	Ipomea nil	X	
Convolvulaceae	Ipomoea purpurea	X	X
Crassulaceae	sp. <i>1</i>		x
Crassulaceae	sp. 2	X	
Crassulaceae	sp. <i>3</i>	X	
Crassulaceae	sp. 4	X	
Crassulaceae	sp. 5	X	
Crassulaceae	sp. 6	X	
Crassulaceae	sp. 7	X	X
Crassulaceae	sp. 8	X	
Crassulaceae	Kalanchoe sp.	X	
Cucurbitaceae	Cucurbita pepo		X
Cyperaceae	Cyperus aggregatus	X	X
Cyperaceae	Cyperus rotundus	X	X
Cyperaceae	Cyperus sp.	X	
Euphorbiaceae	Acalypha communis		X
Euphorbiaceae	Acalypha poiretii		X
Euphorbiaceae	Croton lachnostachyus		X
Euphorbiaceae	Euphorbia acerensis	X	X
Euphorbiaceae	Euphorbia hirta	X	
Euphorbiaceae	Euphorpia sciadophylla	X	
Fabaceae Fabaceae	Acacia caven Caesalpinia gilliesii		X X
Fabaceae	Centrosema virginianum		X
Fabaceae	Cologania euphorbia		X
Fabaceae	Geoffroea decorticans		X
Fabaceae	Gleditsia triacanthos	X	X
Lamiaceae	Hyptis mutabilis		X

Lamiaceae	Lavandula dentata		X
Lamiaceae	Leonurus japonicus	X	X
Lamiaceae	Minthostachys verticillata		X
Lythraceae	Heimia salicifolia		X
Lythraceae	sp. I		X
•	•		
Malpighiaceae	Janusia guaranitica		X
Malvaceae	Anoda cristata	X	
Malvaceae	Krapovickasia flavescens		X
Malvaceae	Malvastrum coromandelianum	X	X
Malvaceae	Melochia argentina		X
Malvaceae	Modiolastrum malvifolium		X
Malvaceae	Sida rhombifolia	X	X
Malvaceae	Sida dictyocarpa		X
Malvaceae	Sida spinossa	X	X
Malvaceae	Sida sp.	X	X
Malvaceae	Sida variegata		X
Malvaceae Meliaceae	Sphaeralcea sp. Melia azedarach		X
	·		X
Oleaceae	Jasminum mesnyi		X
Oxalidaceae	Oxalis sp.	X	
Passifloraceae	Passiflora suberosa		X
Phytolaccaceae Poaceae	Rivina humilis Bothriochloa barbinodis		X
			X
Poaceae	Bouteloua curtipendula		X
Poaceae	Chloris halophila	X	
Poaceae	Cynodon dactylon	X	
Poaceae	Digitaria sanguinalis	X	
Poaceae	Eragrostis retineus	X	
Poaceae	Eragrostis virescens	X	
Poaceae	Eragrostis cilianensis	X	
Poaceae	Eustachys retusa	X	X
Poaceae	Melinis repens		X
Poaceae	Panicum bergii		X
Poaceae	Paspalum sp.		X
Poaceae	Paspalum dilatatum	X	X
Poaceae	Setaria parviflora	X	X
Poaceae	Setaria verticillata	X	X
Poaceae	<i>Setaria</i> sp.	X	X
Poaceae	Stipa neesiana	X	
Poaceae	Trichloris crinita	X	
Poaceae Polygonaceae	Trichloris sp. Ruprechtia apetala	X	17
Portulacaceae	Ruprecnna apetata Portulaca oleraceae	X	X
Portulacaceae	Portulaca sp.	X X	X
Portulacaceae	Talinum paniculatum	X	X
Pteridaceae	Cheilanthes sp.	X	**
Ranunculaceae	Clematis sp.		X
Ranunculaceae	Clematis sp. Clematis campestris		X
Ranunculaceae	Cientaits campesiris		Λ

Rhamnaceae	Condalia microphylla		X
Rubiaceae	Borreria sp.		X
Solanaceae	Solanum palinacanthum		X
Turneraceae	Turnera sidoides		X
Ulmaceae	Ulmus sp		X
Urticaceae	Parietaria debilis		X
Verbenaceae	Aloysia citrodora		X
Verbenaceae	Aloysia gratissima		X
Verbenaceae	Lantana grisebachii		X
Verbenaceae	Lantana sp		X
Verbenaceae	Lippia junelliana		X
Verbenaceae	Verbena gracilescens		X
Verbenaceae	Verbena sp	X	X
Xanthorrhoeaceae	Bulbine frutescens	X	X

Anexo 2. Lista de especies de artrópodos presentes en techos verdes y hábitats vecinos a nivel de suelo de las viviendas estudiadas. Se indica el grupo funcional al cual pertenecen y su abundancia (número de individuos) en las respectivas ubicaciones.

Clase	Orden	Familia	Especie	Grupo Funcional	∑Techos	∑Suelos
Acari	-	-	1	-	6	36
Acari	-	-	2	_	1	0
Arachnida	Araneae	-	1	Predadores	28	75
Arachnida	Araneae	-	2	Predadores	0	5
Arachnida	Araneae	-	3	Predadores	1	5
Arachnida	Araneae	-	4	Predadores	0	1
Arachnida	Araneae	-	5	Predadores	0	5
Arachnida	Araneae	-	6	Predadores	1	0
Arachnida	Araneae	-	7	Predadores	3	4
Arachnida	Araneae	-	8	Predadores	0	2
Arachnida	Araneae	-	9	Predadores	1	1
Arachnida	Araneae	-	10	Predadores	2	5
Arachnida	Araneae	-	11	Predadores	4	0
Arachnida	Araneae	-	12	Predadores	3	3
Arachnida	Araneae	-	12b	Predadores	1	2
Arachnida	Araneae	-	13	Predadores	0	1
Arachnida	Araneae	-	14	Predadores	0	2
Arachnida	Araneae	-	15	Predadores	2	0
Arachnida	Araneae	-	16	Predadores	3	2
Arachnida	Araneae	-	17	Predadores	1	1
Arachnida	Araneae	-	18	Predadores	1	1
Arachnida	Araneae	-	19	Predadores	1	1
Arachnida	Araneae	-	20	Predadores	0	1
Arachnida	Araneae	-	22	Predadores	0	1
Arachnida	Araneae	-	23	Predadores	0	4
Arachnida	Araneae	-	24	Predadores	2	0
Arachnida	Araneae	-	25	Predadores	0	1
Arachnida	Araneae	-	26	Predadores	0	1
Arachnida	Araneae	-	27	Predadores	0	1
Arachnida	Araneae	-	28	Predadores	0	1
Arachnida	Araneae	-	29	Predadores	0	1
Arachnida	Araneae	-	30	Predadores	0	2
Arachnida	Araneae	-	40	Predadores	0	1
Arachnida	Araneae	-	41	Predadores	0	1
Insecta	Coleoptera	Melyridae	1	Omnívoros	1	7
Insecta	Coleoptera	Chrysomelidae	2	Fitófagos	4	4
Insecta	Coleoptera	Coccinellidae	3	Predadores	1	8
Insecta	Coleoptera	Coccinellidae	4	Predadores	0	13
Insecta	Coleoptera	Mycetophagidae	5	Micófagos	0	1

Insecta	Coleoptera	Carabidae	6	Predadores	0	1
Insecta	Coleoptera	Curculionidae	7	Fitófagos	0	1
Insecta	Coleoptera	Coccinellidae	8	Predadores	0	2
Insecta	Coleoptera	Nitidulidae	9	Detritívoros	0	3
Insecta	Coleoptera	Curculionidae	10	Fitófagos	0	8
Insecta	Coleoptera	Ptillidae	11	Micófagos	1	0
Insecta	Coleoptera	Lathrididae	12	Omnívoros	0	3
Insecta	Coleoptera	Lampyridae	13	Predadores	0	3
Insecta	Coleoptera	Chrysomelidae	14	Fitófagos	0	4
Insecta	Coleoptera	Curculionidae	15	Fitófagos	1	2
Insecta	Coleoptera	Staphylinidae	16	Predadores	0	1
Insecta	Coleoptera	Chrysomelidae	17	Fitófagos	0	2
Insecta	Coleoptera	Curculionidae	18	Fitófagos	1	0
Insecta	Coleoptera	Staphylinidae	19	Predadores	1	6
Insecta	Coleoptera	-	20	-	0	1
Insecta	Coleoptera	Anthicidae	21	Omnívoros	0	19
Insecta	Coleoptera	Chrysomelidae	22	Fitófagos	0	7
Insecta	Coleoptera	Chrysomelidae	23	Fitófagos	0	2
Insecta	Coleoptera	Cantharidae	25	Predadores/		
Hisecta	Coleoptera	Cantilaridae	23	Polinizadores	0	2
Insecta	Coleoptera	Buprestidae	26	Fitófagos	0	1
Insecta	Coleoptera	Chrysomelidae	27	Fitófagos	1	4
Insecta	Coleoptera	Nitidulidae	28	Detritívoros	4	2
Insecta	Coleoptera	Chrysomelidae	29	Fitófagos	1	2
Insecta	Coleoptera	Hydrophilidae	30	Detritívoros	1	1
Insecta	Coleoptera	Scolytidae	31	Xilófago	1	0
Insecta	Coleoptera	Lathrididae	32	Omnívoros	3	6
Insecta	Coleoptera	Coccinellidae	33	Predadores	3	0
Insecta	Coleoptera	Curculionidae	34	Fitófagos	1	0
Insecta	Coleoptera	Carabidae	35	Predadores	1	0
Insecta	Coleoptera	Elateridae	36	Omnívoros	0	2
Insecta	Coleoptera	Staphylinidae	37	Predadores	2	0
Insecta	Coleoptera	Elateridae	38	Omnívoros	1	0
Insecta	Coleoptera	-	39	-	1	34
Insecta	Coleoptera	Staphylinidae	40	Predadores	2	0
Insecta	Coleoptera	Ptilodactylidae	41	Omnívoros	1	0
Insecta	Coleoptera	Chrysomelidae	42	Fitófagos	1	1
Insecta	Coleoptera	-	43	-	0	1
Insecta	Coleoptera	Chrysomelidae	44	Fitófagos	0	1
Insecta	Coleoptera	Curculionidae	45	Fitófagos	0	1
Insecta	Coleoptera	Curculionidae	47	Fitófagos	1	1
Insecta	Coleoptera	Scarabaeidae	49	Omnívoros	0	1
Insecta	Coleoptera	Cleridae	50	Omnívoros	0	2
Insecta	Coleoptera	Chrysomelidae	51	Fitófagos	0	1
Insecta	Coleoptera	Mordellidae	52	Polinizadores/ Detritívoros	0	1
Insecta	Coleoptera	Tenebrionidae	53	Detritívoros	0	2
	-					

Insecta	Coleoptera	Curculionidae	54	Fitófagos	0	2
Insecta	Coleoptera	Elateridae	55	Omnívoros	0	1
Insecta	Coleoptera	Elateridae	56	Omnívoros	0	2
Insecta	Coleoptera	Carabidae	57	Predadores	0	1
Insecta	Coleoptera	Chrysomelidae	58	Fitófagos	0	6
Insecta	Coleoptera	Coccinellidae	59	Predadores	0	1
Insecta	Coleoptera	Elateridae	60	Omnívoros	0	3
Insecta	Coleoptera	Chrysomelidae	61	Fitófagos	0	2
Insecta	Coleoptera	Coccinelidae	Larva 1	Predadores	1	0
Insecta	Coleoptera	Chrysomelidae	Larva 2	Fitófagos	0	1
Entognatha	Collembola	Sminthuridae	1	Detritívoros	311	780
Entognatha	Collembola	Entomobryidae	2	Detritívoros	23	212
Entognatha	Collembola	Onychiuridae	3	Detritívoros	0	72
Insecta	Diptera	Dolichopodidae	1	Predadores	415	1324
Insecta	Diptera	Dolichopodidae	2	Predadores	34	234
Insecta	Diptera	Tachinidae	3	Parasitoides	2	5
Insecta	Diptera	Tachinidae	4	Parasitoides	6	2
Insecta	Diptera	Therevidae	5	Fitófagos	1	0
Insecta	Diptera	Sarcophagidae	6	Detritívoros	5	31
Insecta	Diptera	Syrphidae	7	Predadores/ Polinizadores	5	11
Insecta	Diptera	Tephritidae	8	Fitófagos	0	1
Insecta	Diptera	Cecidomyiidae	10	Fitófagos/ Predadores	26	111
Insecta	Diptera	Ephydridae	11	Fitófagos	4	0
Insecta	Diptera	Cecidomyiidae	12	Fitófagos/ Predadores	3	0
Insecta	Diptera	Chironomidae	13	Detritívoros	9	1
Insecta	Diptera	Chloropidae	14	Fitófagos	15	2
Insecta	Diptera	Ephydridae	15	Fitófagos	30	130
Insecta	Diptera	-	16	-	4	0
Insecta	Diptera	Sarcophagidae	17	Detritívoros	15	49
Insecta	Diptera	-	18	-	7	24
Insecta	Diptera	-	19	-	1	0
Insecta	Diptera	Chironomidae	20	Detritívoros	38	2
Insecta	Diptera	Cecidomyiidae	21	Fitófagos/ Predadores	14	140
Insecta	Diptera	Cecidomyiidae	22	Fitófagos/ Predadores	13	55
Insecta	Diptera	Chironomidae	23	Detritívoros	5	43
Insecta	Diptera	-	24	-	2	0
Insecta	Diptera	Chironomidae	25	Detritívoros	7	24
Insecta	Diptera	Chironomidae	26	Detritívoros	3	15
Insecta	Diptera	Chironomidae	27	Detritívoros	2	32
Insecta	Diptera	-	28	-	1	0
Insecta	Diptera	Pipunculidae	29	Parasitoides	0	5
Insecta	Diptera	-	30	-	2	17
Insecta	Diptera	Phoridae	31	Detritívoros	2	15

Insecta	Diptera	Phoridae	32	Detritívoros	4	20
Insecta	Diptera	Chironomidae	33	Detritívoros	14	63
Insecta	Diptera	Chironomidae	34	Detritívoros	13	42
Insecta	Diptera	Chironomidae	35	Detritívoros	5	38
Insecta	Diptera	-	36	-	0	1
Insecta	Diptera	-	37	-	4	12
Insecta	Diptera	Sciáridae	38	Detritívoros	3	4
Insecta	Diptera	Chironomidae	39	Detritívoros	2	15
Insecta	Diptera	Dolichopodidae	40	Predadores	4	2
Insecta	Diptera	Dolichopodidae	41	Predadores	3	2
Insecta	Diptera	Stratiomyidae	42	Detritívoros	5	12
Insecta	Diptera	Empididae	43	Predadores	4	1
Insecta	Diptera	Ceratopogonidae	44	Hematófagos	1	0
Insecta	Diptera	Pipunculidae	45	Parasitoides	1	7
Insecta	Diptera	Mycetophilidae	46	Micófagos	0	1
Insecta	Diptera	Psílidae	47	Fitófagos	0	2
Insecta	Diptera	Psílidae	48	Fitófagos	1	1
Insecta	Diptera	Micropezidae	49	Fitófagos/ Detritívoros	0	1
Insecta	Diptera	Ceratopogonidae	50	Hematófagos	26	11
Insecta	Diptera	Chironomidae	51	Detritívoros	11	11
Insecta	Diptera	Tachinidae	52	Parasitoides	3	3
Insecta	Diptera	Sarcophagidae	53	Detritívoros	9	30
Insecta	Diptera	Sciáridae	54	Detritívoros	8	51
Insecta	Diptera	Heleomyzidae	55	Detritívoros	6	0
Insecta	Diptera	Stratiomyidae	56	Detritívoros	1	7
Insecta	Diptera	Chironomidae	57	Detritívoros	36	21
Insecta	Diptera	Sarcophagidae	58	Detritívoros	5	34
Insecta	Diptera	Ephydridae	59	Fitófagos	8	6
Insecta	Diptera	Ephydridae	60	Fitófagos	7	4
Insecta	Diptera	Conopidae	61	Parasitoides/ Polinizadores	1	0
Insecta	Diptera	Cecidomyiidae	62	Fitófagos/ Predadores	5	7
Insecta	Diptera	Phoridae	63	Detritívoros	5	5
Insecta	Diptera	Phoridae	64	Detritívoros	5	22
Insecta	Diptera	Ceratopogonidae	65	Hematofagos	1	7
Insecta	Diptera	Ephydridae	66	Fitófagos	9	6
Insecta	Diptera	Chloropidae	67	Fitófagos	11	6
Insecta	Diptera	Chloropidae	68	Fitófagos	0	4
Insecta	Diptera	Chloropidae	69	Fitófagos	14	73
Insecta	Diptera	Tachinidae	70	Parasitoides	0	5
Insecta	Diptera	Lonchaeidae	71	Fitófagos	4	3
Insecta	Diptera	-	72	-	2	0
Insecta	Diptera	-	73	-	6	3
Insecta	Diptera	Ephydridae	74	Fitófagos	2	6
Insecta	Diptera	Chironomidae	75	Detritívoros	7	9

Insecta	Diptera	heleomyzidae	76	Detritívoros	0	3
Insecta	Diptera	Chloropidae	77	Fitófagos	5	3
Insecta	Diptera	-	78	-	0	6
Insecta	Diptera	Pipunculidae	79	Parasitoides	3	17
Insecta	Diptera	Tachinidae	80	Parasitoides	3	6
Insecta	Diptera	Syrphidae	81	Predadores/	1	1
11150000	2 17 101 11	Sjipmaac	01	Productions /	-	-
Insecta	Diptera	Syrphidae	82	Predadores/ Polinizadores	0	1
Insecta	Diptera	Sarcophagidae	83	Detritívoros	1	1
Insecta	Diptera	Empididae	84	Predadores	0	6
Insecta	Diptera	Stratiomyidae	85	Detritívoros	1	11
Insecta	Diptera	Syrphidae	86	Predadores/ Polinizadores	0	4
Insecta	Diptera	Dolichopodidae	87	Predadores	1	4
Insecta	Diptera	Dolichopodidae	88	Predadores	2	3
Insecta	Diptera	Sarcophagidae	89	Detritívoros	5	5
Insecta	Diptera	Muscidae	90	Detritívoros	2	3
Insecta	Diptera	Phoridae	91	Detritívoros	1	5
Insecta	Diptera	Chamaemyiidae	92	Predadores	5	2
Insecta	Diptera	Ephydridae	93	Fitófagos	6	0
Insecta	Diptera	Tachinidae	94	Parasitoides	8	10
Insecta	Diptera	Psychodidae	95	Detritívoros	3	1
Insecta	Diptera	Dolichopodidae	96	Predadores	1	0
Insecta	Diptera	Mycetophilidae	97	Micófagos	1	2
Insecta	Diptera	Tachinidae	98	Parasitoides	3	8
Insecta	Diptera	Cecidomyiidae	99	Fitófagos/ Predadores	1	6
Insecta	Diptera	Stratiomyidae	100	Detritívoros	1	0
Insecta	Diptera	Tachinidae	101	Parasitoides	6	7
Insecta	Diptera	Tachinidae	102	Parasitoides	1	4
Insecta	Diptera	Psychodidae	103	Detritívoros	4	6
Insecta	Diptera	Dolichopodidae	104	Predadores	1	1
Insecta	Diptera	Sarcophagidae	105	Detritívoros	0	6
Insecta	Diptera	Tachinidae	106	Parasitoides	1	49
Insecta	Diptera	Culicidae	107	Hematófagos	2	0
Insecta	Diptera	Sciáridae	108	Detritívoros	1	4
Insecta	Diptera	Thaumaleidae	109	Detritívoros	4	7
Insecta	Diptera	Calliphoridae	110	Polinizadores/ Detritívoros	1	0
Insecta	Diptera	Empididae	111	Predadores	2	0
Insecta	Diptera	-	112	-	2	9
Insecta	Diptera	Ceratopogonidae	114	Hematófagos	1	4
Insecta	Diptera	Tachinidae	115	Parasitoides	8	27
Insecta	Diptera	Tachinidae	117	Parasitoides	2	10
Insecta	Diptera	Psychodidae	118	Detritívoros	0	2
Insecta	Diptera	Heleomyzidae	119	Detritívoros	0	8
Insecta	Diptera	Sepsidae	120	Detritívoros	2	0
	_	_				

Insecta	Diptera	Scatopsidae	121	Detritívoros	2	0
Insecta	Diptera	-	122	-	2	0
Insecta	Diptera	Ceratopogonidae	123	Hematófagos	1	0
Insecta	Diptera	Chironomidae	124	Detritívoros	1	3
Insecta	Diptera	Stratiomyidae	125	Detritívoros	0	2
Insecta	Diptera	Stratiomyidae	126	Detritívoros	0	1
Insecta	Diptera	Chloropidae	127	Fitófagos	1	1
Insecta	Diptera	Culicidae	128	Hematófagos	2	2
Insecta	Diptera	Phoridae	129	Detritívoros	0	3
Insecta	Diptera	Sphaeroceridae	130	Detritívoros	0	2
Insecta	Diptera	Ceratopogonidae	131	Hematófagos	1	2
Insecta	Diptera	Mycetophilidae	132	Micófagos	0	1
Insecta	Diptera	Dolichopodidae	133	Predadores	1	0
Insecta	Diptera	Dolichopodidae	134	Predadores	1	0
Insecta	Diptera	Heleomyzidae	135	Detritívoros	1	0
Insecta	Diptera	Chironomidae	136	Detritívoros	0	1
Insecta	Diptera	Trichoceridae	137	Detritívoros	0	5
Insecta	Diptera	Pipunculidae	138	Parasitoides	0	1
Insecta	Diptera	Tephritidae	139	Fitófagos	0	1
Insecta	Diptera	Sphaeroceridae	140	Detritívoros	0	2
Insecta	Diptera	-	141	-	0	1
Insecta	Diptera	Cecidomyiidae	142	Fitófagos/ Predadores	0	1
Insecta	Diptera	Tachinidae	143	Parasitoides	0	4
Insecta	Diptera	Tachinidae	144	Parasitoides	0	3
Insecta	Diptera	Anthomyiidae	145	Omnívoros	0	3
Insecta	Diptera	Empididae	146	Predadores	0	2
Insecta	Diptera	Sarcophagidae	147	Detritívoros	0	3
Insecta	Diptera	Chironomidae	148	Detritívoros	0	1
Insecta	Diptera	Sciáridae	149	Detritívoros	0	5
Insecta	Diptera	Chloropidae	152	Fitófagos	0	1
Insecta	Diptera	Mycetophilidae	156	Micófagos	0	1
Insecta	Diptera	Ceratopogonidae	157	Hematófagos	0	1
Insecta	Diptera	Chironomidae	158	Detritívoros	0	3
Insecta	Diptera	Chironomidae	159	Detritívoros	0	1
Insecta	Diptera	Tephritidae	160	Fitófagos	0	1
Insecta	Diptera	Chloropidae	161	Fitófagos	0	1
Insecta	Diptera	Mycetophilidae	162	Micófagos	0	2
Insecta	Diptera	Sciáridae	163	Detritívoros	0	2
Insecta	Diptera	Calliphoridae	165	Polinizadores/ Detritívoros	0	6
Insecta	Diptera	Cecidomyiidae	10	Fitófagos/ Predadores	6	18
Insecta	Diptera	Ephydridae	15b	Fitófagos	3	11
Insecta	Diptera	Heleomyzidae	52b	Detritívoros	0	5
Insecta	Diptera	Ephydridae	53b	Fitófagos	4	63
Insecta	Diptera	Chloropidae	59b	Fitófagos	0	3

Insecta	Diptera	Chloropidae	74b	Fitófagos	1	0
Insecta	Diptera	Tephritidae	88b	Fitófagos	0	1
Insecta	Hemiptera	Lygaeidae	1	Fitófagos	170	9
Insecta	Hemiptera	Aphididea	2	Fitófagos	61	12
Insecta	Hemiptera	Aphididea	3	Fitófagos	41	0
Insecta	Hemiptera	Aphididea	4	Fitófagos	24	0
Insecta	Hemiptera	Psyllidae	5	Fitófagos	67	124
Insecta	Hemiptera	Cicadellidae	6	Fitófagos	2	0
Insecta	Hemiptera	Psyllidae	7	Fitófagos	9	12
Insecta	Hemiptera	Cicadellidae	8	Fitófagos	101	711
Insecta	Hemiptera	Anthocoridae	10	Predadores	2	0
Insecta	Hemiptera	Cicadellidae	11	Fitófagos	6	8
Insecta	Hemiptera	Cicadellidae	12	Fitófagos	15	12
Insecta	Hemiptera	Cicadellidae	13	Fitófagos	7	9
Insecta	Hemiptera	Cicadellidae	14	Fitófagos	0	8
Insecta	Hemiptera	Cicadellidae	15	Fitófagos	0	5
Insecta	Hemiptera	Lygaeidae	16	Fitófagos	0	1
Insecta	Hemiptera	Fulgoridae	17	Fitófagos	1	2
Insecta	Hemiptera	Cicadellidae	18	Fitófagos	3	155
Insecta	Hemiptera	Psyllidae	19	Fitófagos	0	8
Insecta	Hemiptera	Psyllidae	20	Fitófagos	1	5
Insecta	Hemiptera	Delphacidae	21	Fitófagos	0	1
Insecta	Hemiptera	Psyllidae	22	Fitófagos	0	1
Insecta	Hemiptera	Cicadellidae	23	Fitófagos	0	2
Insecta	Hemiptera	Cicadellidae	24	Fitófagos	0	1
Insecta	Hemiptera	Miridae	25	Fitófagos	0	4
Insecta	Hemiptera	Cicadellidae	26	Fitófagos	2	1
Insecta	Hemiptera	Delphacidae	27	Fitófagos	1	3
Insecta	Hemiptera	Reduviidae	28	Predadores	0	1
Insecta	Hemiptera	Tingidae	29	Fitófagos	0	5
Insecta	Hemiptera	Delphacidae	30	Fitófagos	4	2
Insecta	Hemiptera	Cicadellidae	31	Fitófagos	259	62
Insecta	Hemiptera	Cicadellidae	32	Fitófagos	10	11
Insecta	Hemiptera	Cercopidae	33	Fitófagos	2	23
Insecta	Hemiptera	Miridae	34	Fitófagos	0	1
Insecta	Hemiptera	Cicadellidae	35	Fitófagos	0	5
Insecta	Hemiptera	Cicadellidae	36	Fitófagos	0	5
Insecta	Hemiptera	Psyllidae	37	Fitófagos	1	3
Insecta	Hemiptera	Delphacidae	38	Fitófagos	1	1
Insecta	Hemiptera	Thyreochoridae	39	Fitófagos	1	3
Insecta	Hemiptera	Delphacidae	40	Fitófagos	7	2
Insecta	Hemiptera	Psyllidae	41	Fitófagos	0	2
Insecta	Hemiptera	Membracidae	42	Fitófagos	0	3
Insecta	Hemiptera	Cicadellidae	43	Fitófagos	0	10
Insecta	Hemiptera	Cicadellidae	44	Fitófagos	6	33
Insecta	Hemiptera	Cicadellidae	45	Fitófagos	0	5

_						
Insecta	Hemiptera	Cicadellidae	46	Fitófagos	4	22
Insecta	Hemiptera	Reduviidae	47	Predadores	1	8
Insecta	Hemiptera	Membracidae	48	Fitófagos	0	3
Insecta	Hemiptera	Cicadellidae	49	Fitófagos	0	2
Insecta	Hemiptera	Issidae	50	Fitófagos	1	2
Insecta	Hemiptera	Cydnidae	51	Fitófagos	2	1
Insecta	Hemiptera	Aradidae	52	Micófagos	1	0
Insecta	Hemiptera	Psyllidae	54	Fitófagos	1	2
Insecta	Hemiptera	Coreidae	55	Fitófagos	1	0
Insecta	Hemiptera	Cicadellidae	56	Fitófagos	1	2
Insecta	Hemiptera	Cercopidae	57	Fitófagos	1	1
Insecta	Hemiptera	Lygaidae	58	Fitófagos	8	2
Insecta	Hemiptera	Cicadellidae	59	Fitófagos	1	5
Insecta	Hemiptera	Cicadellidae	60	Fitófagos	1	0
Insecta	Hemiptera	Cicadellidae	62	Fitófagos	0	12
Insecta	Hemiptera	Cicadellidae	63	Fitófagos	0	22
Insecta	Hemiptera	Cicadellidae	64	Fitófagos	0	1
Insecta	Hemiptera	Cicadellidae	65	Fitófagos	0	9
Insecta	Hemiptera	Cicadellidae	66	Fitófagos	0	1
Insecta	Hemiptera	Rhopalidae	67	Fitófagos	0	2
Insecta	Hemiptera	Rhopalidae	68	Fitófagos	0	3
Insecta	Hemiptera	Cocoidae	69	Fitófagos	1	0
Insecta	Hemiptera	Psyllidae	70	Fitófagos	3	1
Insecta	Hemiptera	Cicadellidae	71	Fitófagos	2	0
Insecta	Hemiptera	Psyllidae	72	Fitófagos	1	0
Insecta	Hemiptera	Cicadellidae	73	Fitófagos	0	2
Insecta	Hemiptera	Cicadellidae	74	Fitófagos	0	4
Insecta	Hemiptera	Psyllidae	76	Fitófagos	0	2
Insecta	Hemiptera	Cicadellidae	70 77	Fitófagos	1	0
Insecta	Hemiptera Hemiptera	Geocoridae	78	Predadores	1	0
Insecta	Hemiptera Hemiptera	Cicadellidae	80	Fitófagos	0	1
Insecta	Hemiptera Hemiptera	Lygaeidae	81	Fitófagos	0	1
Insecta	Hemiptera Hemiptera	Psyllidae	82	Fitófagos	0	2
	-	<u>*</u>		•		
Insecta	Hemiptera	Cicadellidae	83	Fitófagos	0	1
Insecta	Hemiptera	Psyllidae	84	Fitófagos	0	4
Insecta	Hemiptera	Flatidae	85	Fitófagos	0	1
Insecta	Hemiptera	Cercopidae	88	Fitófagos	0	1
Insecta	Hemiptera	Cicadellidae	89	Fitófagos	0	2
Insecta	Hemiptera	Psyllidae	93	Fitófagos	0	1
Insecta	Hemiptera	Lygaeidae	102	Fitófagos	0	1
Insecta	Hemiptera	Delphacidae	53b	Fitófagos	3	1
Insecta	Hemiptera	Membracidae	63b	Fitófagos	0	2
Insecta	Hemiptero	Cicadellidae	Ninfa 1	Fitófagos	0	18
Insecta	Hemiptera	Psyllidae	9b	Fitófagos	1	0
Insecta	Hemiptera	Cercopidae	Ninfa 2	Fitófagos	2	1
Insecta	Hemiptera	Lygaeidae	Ninfa 3	Fitófagos	59	0

Insecta	Hemiptera	Cicadellidae	Ninfa 4	Fitófagos	1	0
Insecta	Hemiptera	Cicadellidae	Ninfa 5	Fitófagos	134	253
Insecta	Hemiptera	Coreidae	Ninfa 6	Fitófagos	0	1
Insecta	Hemiptera	-	Ninfa 7	Fitófagos	1	1
Insecta	Hemiptera	Pentatomidae	Ninfa 8	Fitófagos	5	1
Insecta	Hemiptera	Aphididae	Pulgón	Fitófagos	375	292
Insecta	Hymenoptera	Brachonidae	1	Parasitoides	8	20
Insecta	Hymenoptera	Encyrtidae	2	Parasitoides	1413	720
Insecta	Hymenoptera	Eulóphidae	3	Parasitoides	7	28
Insecta	Hymenoptera	Agaónidae	4	Polinizadores	0	4
Insecta	Hymenoptera	Mymáridae	5	Parasitoides	3	4
Insecta	Hymenoptera	Trichogramátidae	6	Parasitoides	9	2
Insecta	Hymenoptera	Ceraphronidae	7	Parasitoides	5	3
Insecta	Hymenoptera	Formicidae	8	Omnívoros	12	4
Insecta	Hymenoptera	Formicidae	9	Omnívoros	9	2
Insecta	Hymenoptera	Platygástridae	10	Parasitoides	3	5
Insecta	Hymenoptera	Mymáridae	11	Parasitoides	41	24
Insecta	Hymenoptera	Elásmidae	12	Parasitoides	0	4
Insecta	Hymenoptera	Platygástridae	13	Parasitoides	1	19
Insecta	Hymenoptera	Trichogramátidae	14	Parasitoides	1	1
Insecta	Hymenoptera	Eulóphidae	15	Parasitoides	2	1
Insecta	Hymenoptera	Halíctidae	16	Polinizadores	2	6
Insecta	Hymenoptera	Pompílidae	17	Parasitoides	1	2
Insecta	Hymenoptera	Mymáridae	18	Parasitoides	28	3
Insecta	Hymenoptera	Eulóphidae	19	Parasitoides	1	1
Insecta	Hymenoptera	Ichneumonidae	20	Parasitoides	11	2
Insecta	Hymenoptera	Pompílidae	21	Parasitoides	1	2
Insecta	Hymenoptera	Mymáridae	22	Parasitoides	5	1
Insecta	Hymenoptera	-	23	-	31	16
Insecta	Hymenoptera	Eulóphidae	24	Parasitoides	1	0
Insecta	Hymenoptera	Scelionidae	25	Parasitoides	8	2
Insecta	Hymenoptera	-	26	_	1	0
Insecta	Hymenoptera	Vespidae	27	Predadores/ Polinizadores	30	1
Insecta	Hymenoptera	-	28	-	1	0
Insecta	Hymenoptera	-	29	-	5	0
Insecta	Hymenoptera	Ichneumónidae	30	Parasitoides	1	0
Insecta	Hymenoptera	Ichneumónidae	31	Parasitoides	1	0
Insecta	Hymenoptera	Mutilidae	32	Parasitoides	2	0
Insecta	Hymenoptera	Scólidae	33	Parasitoides/ Polinizadores	1	0
Insecta	Hymenoptera	Ichneumónidae	34	Parasitoides	1	0
Insecta	Hymenoptera	Tiphiidae	35	Predadores/ Polinizadores	0	8
Insecta	Hymenoptera	Halictidae	36	Polinizadores	13	4
Insecta	Hymenoptera	Formicidae	37	Omnívoros	44	9
Insecta	Hymenoptera	Figítidae	38	Parasitoides	1	0

Insecta	Hymenoptera	Eulópidae	39	Parasitoides	1	0
Insecta	Hymenoptera	Encyrtidae	40	Parasitoides	1	0
Insecta	Hymenoptera	Encyrtidae	41	Parasitoides	4	2
Insecta	Hymenoptera	Platigástridae	42	Parasitoides	9	4
Insecta	Hymenoptera	Pteromálidae	43	Parasitoides	1	1
Insecta	Hymenoptera	Scólidae	44	Parasitoides/	6	0
				Polinizadores		2
Insecta	Hymenoptera	Anthophóridae	45	Polinizadores	20	2 9
Insecta	Hymenoptera	Anthophóridae	46	Polinizadores Predadores/	27	9
Insecta	Hymenoptera	Sphécidae	47	Polinizadores	7	1
Insecta	Hymenoptera	Figítidae	48	Parasitoides	1	1
Insecta	Hymenoptera	Ichneumónidae	49	Parasitoides	1	0
Insecta	Hymenoptera	Pompilidae	50	Parasitoides	3	2
Insecta	Hymenoptera	Tiphiidae	51	Predadores/ Polinizadores	10	4
Insecta	Hymenoptera	Formicidae	52	Omnívoros	4	2
Insecta	Hymenoptera	Encyrtidae	53	Parasitoides	0	2
Insecta	Hymenoptera	Encyrtidae	54	Parasitoides	0	3
Insecta	Hymenoptera	Sceliónidae	55	Parasitoides	1	2
Insecta	Hymenoptera	Eurytomidae	56	Parasitoides/ Fitófagos	0	1
Insecta	Hymenoptera	Pteromálidae	57	Parasitoides	2	0
Insecta	Hymenoptera	Eulópidae	58	Parasitoides	4	0
Insecta	Hymenoptera	Mymaridae	59	Parasitoides	1	0
Insecta	Hymenoptera	Eulópidae	60	Parasitoides	2	1
Insecta	Hymenoptera	Ceraphrónidae	61	Parasitoides	8	1
Insecta	Hymenoptera	Platigástridae	62	Parasitoides	7	0
Insecta	Hymenoptera	Sphécidae	63	Predadores/ Polinizadores	1	0
Insecta	Hymenoptera	Evániidae	64	Parasitoides	1	0
Insecta	Hymenoptera	-	65	-	13	0
Insecta	Hymenoptera	Halíctidae	66	Polinizadores	14	8
Insecta	Hymenoptera	Formícidae	67	Omnívoros	11	2
Insecta	Hymenoptera	-	68	-	59	0
Insecta	Hymenoptera	Ceraphrónidae	69	Parasitoides	2	2
Insecta	Hymenoptera	Encyrtidae	70	Parasitoides	0	1
Insecta	Hymenoptera	Sceliónidae	71	Parasitoides	6	4
Insecta	Hymenoptera	Platygastridae	72	Parasitoides	7	3
Insecta	Hymenoptera	-	73	-	2	0
Insecta	Hymenoptera	Ceraphronidae	74	Parasitoides	4	1
Insecta	Hymenoptera	Mymaridae	75	Parasitoides	3	1
Insecta	Hymenoptera	Mymaridae	76	Parasitoides	11	0
Insecta	Hymenoptera	Mymaridae	77	Parasitoides	1	0
Insecta	Hymenoptera	Ceraphronidae	78	Parasitoides	1	0
Insecta	Hymenoptera	Mymaridae	79	Parasitoides	4	1
Insecta	Hymenoptera	Mymaridae	80	Parasitoides	2	0
Insecta	Hymenoptera	Mymaridae	81	Parasitoides	1	0

Insecta	Hymenoptera	-	82	-	3	0
Insecta	Hymenoptera	Pompilidae	83	Parasitoides	1	0
Insecta	Hymenoptera	Figítidae	84	Parasitoides	0	1
Insecta	Hymenoptera	Véspidae	85	Predadores/	•	
		F		Polinizadores	2	0
Insecta	Hymenoptera	-	86	-	1	0
Insecta	Hymenoptera	Chalcididae	87	Parasitoides Predadores/	2	3
Insecta	Hymenoptera	Sphecidae	88	Polinizadores	1	0
Insecta	Hymenoptera	Agaónidae	89	Predadores/	_	, and the second
Hisecta	Пушепорита	Agaomuae	09	Polinizadores	0	1
Insecta	Hymenoptera	Encyrtidae	90	Parasitoides	1	1
Insecta	Hymenoptera	Encyrtidae	91	Parasitoides	0	1
Insecta	Hymenoptera	Sceliónidae	92	Parasitoides	3	1
Insecta	Hymenoptera	Sceliónidae	93	Parasitoides	7	2
Insecta	Hymenoptera	Mymaridae	94	Parasitoides	1	2
Insecta	Hymenoptera	Eulópidae	95	Parasitoides	1	1
Insecta	Hymenoptera	Pelecínidae	96	Parasitoides	1	1
Insecta	Hymenoptera	Pompilidae	97	Parasitoides	0	1
Insecta	Hymenoptera	Mymaridae	98	Parasitoides	0	1
Insecta	Hymenoptera	Ceraphronidae	99	Parasitoides	2	2
Insecta	Hymenoptera	Pteromálidae	100	Parasitoides	0	2
Insecta	Hymenoptera	Mymaridae	101	Parasitoides	0	2
Insecta	Hymenoptera	-	102	_	2	2
Insecta	Hymenoptera	Pompilidae	103	Parasitoides	10	0
Insecta	Hymenoptera	Ichneumónidae	104	Parasitoides	1	0
Insecta	Hymenoptera	Tiphiidae	105	Predadores/	5	2
		Tipimaac		Polinizadores		
Insecta	Hymenoptera	-	106	-	28	6
Insecta	Hymenoptera	Platygástridae	107	Parasitoides	3	0
Insecta	Hymenoptera	Véspidae	108	Predadores/ Polinizadores	10	2
Incasts	Urmanantara	Vásnidas	100	Predadores/	1	0
Insecta	Hymenoptera	Véspidae	109	Polinizadores	1	0
Insecta	Hymenoptera	Platygástridae	110	Parasitoides	2	0
Insecta	Hymenoptera	-	111	-	1	0
Insecta	Hymenoptera	Pompilidae	112	Parasitoides	7	0
Insecta	Hymenoptera	-	113	-	1	0
Insecta	Hymenoptera	-	114	-	2	0
Insecta	Hymenoptera	Halictidae	115	Polinizadores	1	0
Insecta	Hymenoptera	Sphecidae	116	Predadores/ Polinizadores	1	0
Insecta	Hymenoptera	Halíctidae	117	Polinizadores	8	1
Insecta	Hymenoptera	Formicidae	118	Omnívoros	21	17
Insecta	Hymenoptera	Pompilidae	119	Parasitoides	4	0
Insecta	Hymenoptera	Ichneumónidae	120	Parasitoides	4	0
Insecta	Hymenoptera	Sceliónidae	121	Parasitoides	2	2
Insecta	Hymenoptera	Véspidae	122	Predadores/	3	2
moceu	Пушенорина	Copidae	122	Polinizadores	5	_

Insecta	Hymenoptera	Véspidae	123	Predadores/ Polinizadores	0	1
Insecta	Hymenoptera	Sphecidae	124	Predadores/ Polinizadores	0	1
Insecta	Hymenoptera	Halíctidae	125	Polinizadores	0	2
Insecta	Hymenoptera	-	126	-	3	1
Insecta	Hymenoptera	Véspidae	127	Predadores/ Polinizadores	0	2
Insecta	Hymenoptera	Pompilidae	128	Parasitoides	1	2
Insecta	Hymenoptera	Sphecidae	129	Predadores/ Polinizadores	3	3
Insecta	Hymenoptera	Apidae	130	Polinizadores	0	1
Insecta	Hymenoptera	Véspidae	131	Predadores/ Polinizadores	1	1
Insecta	Hymenoptera	Ichneumónidae	132	Parasitoides	16	2
Insecta	Hymenoptera	Formicidae	133	Omnívoros	4	1
Insecta	Hymenoptera	Apidae	134	Polinizadores	0	2
Insecta	Hymenoptera	Véspidae	135	Predadores/	2	1
Insecta	Hymenoptera	Véspidae	136	Polinizadores Predadores/ Polinizadores	0	1
Insecta	Hymenoptera	Pompilidae	137	Parasitoides	2	1
Insecta	Hymenoptera	-	138	-	3	1
Insecta	Hymenoptera	-	139	-	3	2
Insecta	Hymenoptera	-	140	-	9	1
Insecta	Hymenoptera	Pompilidae	141	Parasitoides	2	0
Insecta	Hymenoptera	-	142	-	3	2
Insecta	Hymenoptera	-	143	-	4	0
Insecta	Hymenoptera	-	144	-	25	2
Insecta	Hymenoptera	Ichneumónidae	145	Parasitoides	4	0
Insecta	Hymenoptera	Véspidae	146	Predadores/ Polinizadores	3	0
Insecta	Hymenoptera	Pompilidae	147	Parasitoides	1	0
Insecta	Hymenoptera	Formicidae	149	Omnívoros	7	0
Insecta	Hymenoptera	Halíctidae	150	Polinizadores	1	1
Insecta	Hymenoptera	Sphecidae	151	Predadores/ Polinizadores	5	0
Insecta	Hymenoptera	Apidae	152	Polinizadores	1	0
Insecta	Hymenoptera	-	153	-	1	0
Insecta	Hymenoptera	Mutilidae	154	Parasitoides	1	0
Insecta	Hymenoptera	Pompilidae	155	Parasitoides	4	0
Insecta	Hymenoptera	-	156	-	1	0
Insecta	Hymenoptera	Apidae	157	Polinizadores	3	1
Insecta	Hymenoptera	Braconidae	158	Parasitoides	1	0
Insecta	Hymenoptera	-	159	-	1	0
Insecta	Hymenoptera	-	160	-	1	0
Insecta	Hymenoptera	-	161	-	2	0
Insecta	Hymenoptera	Ichneumónidae	163	Parasitoides	1	0
Insecta	Hymenoptera	Formicidae	164	Omnívoros	5	0
Insecta	Hymenoptera	Ichneumónidae	165	Parasitoides	1	0

Insecta	Hymenoptera	-	166	-	1	0
Insecta	Hymenoptera	-	167	-	1	0
Insecta	Hymenoptera	Formicidae	168	Omnívoros	1	0
Insecta	Hymenoptera	Pompilidae	170	Parasitoides	4	0
Insecta	Hymenoptera	-	171	-	1	0
Insecta	Hymenoptera	Formicidae	172	Omnívoros	4	1
Insecta	Hymenoptera	-	173	-	1	0
Insecta	Hymenoptera	Ichneumónidae	174	Parasitoides	2	0
Insecta	Hymenoptera	-	176	-	1	0
Insecta	Hymenoptera	Pompilidae	177	Parasitoides/ Polinizadores	3	0
Insecta	Hymenoptera	Formicidae	178	Omnívoros	1	0
Insecta	Hymenoptera	-	179	-	1	0
Insecta	Hymenoptera	Véspidae	180	Predadores/ Polinizadores	1	0
Insecta	Hymenoptera	Formicidae	182	Omnívoros	9	0
Insecta	Hymenoptera	-	183	-	3	0
Insecta	Hymenoptera	-	184	-	1	0
Insecta	Hymenoptera	-	185	-	1	0
Insecta	Hymenoptera	Formicidae	186	Omnívoros	1	0
Insecta	Hymenoptera	-	187	-	1	0
Insecta	Hymenoptera	-	189	-	2	0
Insecta	Hymenoptera	Ichneumónidae	192	Parasitoides	1	0
Insecta	Hymenoptera	-	193	-	1	0
Insecta	Hymenoptera	-	194	-	1	0
Insecta	Hymenoptera	Cimbicidae	195	Fitófagos	2	0
Insecta	Hymenoptera	Tricogramatidae	210	Parasitoides	13	18
Insecta	Hymenoptera	Mymaridae	211	Parasitoides	1	0
Insecta	Hymenoptera	Platygástridae	212	Parasitoides	1	0
Insecta	Hymenoptera	Braconidae	213	Parasitoides	2	0
Insecta	Hymenoptera	Sceliónidae	214	Parasitoides	3	0
Insecta	Hymenoptera	Eulópidae	215	Parasitoides	1	0
Insecta	Hymenoptera	Sceliónidae	216	Parasitoides	1	0
Insecta	Hymenoptera	Encyrtidae	217	Parasitoides	1	0
Insecta	Hymenoptera	Braconidae	218	Parasitoides	2	0
Insecta	Hymenoptera	Braconidae	219	Parasitoides	0	2
Insecta	Hymenoptera	Platygástridae	220	Parasitoides	0	9
Insecta	Hymenoptera	Encyrtidae	221	Parasitoides	0	1
Insecta	Hymenoptera	Figítidae	222	Parasitoides	0	1
Insecta	Hymenoptera	Eupelmidae	223	Parasitoides	0	1
Insecta	Hymenoptera	Platygástridae	224	Parasitoides	0	1
Insecta	Hymenoptera	Mymaridae	225	Parasitoides	0	7
Insecta	Hymenoptera	Ceraphronidae	226	Parasitoides	7	0
Insecta	Hymenoptera	Eulópidae	227	Parasitoides	2	0
Insecta	Hymenoptera	Braconidae	228	Parasitoides	2	0
Insecta	Hymenoptera	Bethylidae	229	Parasitoides	1	0
Insecta	Hymenoptera	Sceliónidae	230	Parasitoides	2	0
	,				_	~

Insecta	Hymenoptera	Platygástridae	231	Parasitoides	1	0
Insecta	Hymenoptera	Mymaridae	232	Parasitoides	1	0
Insecta	Hymenoptera	Encyrtidae	233	Parasitoides	2	0
Insecta	Hymenoptera	Platygástridae	234	Parasitoides	3	0
Insecta	Hymenoptera	Platygástridae	235	Parasitoides	2	0
Insecta	Hymenoptera	Platygástridae	236	Parasitoides	1	0
Insecta	Hymenoptera	Bethylidae	237	Parasitoides	1	0
Insecta	Hymenoptera	Tricogramatidae	238	Parasitoides	1	0
Insecta	Hymenoptera	Platygástridae	239	Parasitoides	2	0
Insecta	Hymenoptera	Platygástridae	240	Parasitoides	2	1
Insecta	Hymenoptera	Eulópidae	241	Parasitoides	1	1
Insecta	Hymenoptera	Encyrtidae	242	Parasitoides	1	0
Insecta	Hymenoptera	Braconidae	243	Parasitoides	1	0
Insecta	Hymenoptera	Tricogramatidae	244	Parasitoides	1	1
Insecta	Hymenoptera	Braconidae	245	Parasitoides	1	0
Insecta	Hymenoptera	Encyrtidae	246	Parasitoides	4	16
Insecta	Hymenoptera	Encyrtidae	247	Parasitoides	5	1
Insecta	Hymenoptera	Eurytomidae	248	Parasitoides	1	0
Insecta	Hymenoptera	Eupelmidae	249	Parasitoides	3	0
Insecta	Hymenoptera	Formicidae	251	Parasitoides	2	0
Insecta	Hymenoptera	Sceliónidae	252	Parasitoides	2	0
Insecta	Hymenoptera	Fryitidae	253	Parasitoides	3	1
Insecta	Hymenoptera	Mymaridae	254	Parasitoides	2	0
Insecta	Hymenoptera	Mymaridae	255	Parasitoides	4	0
Insecta	Hymenoptera	Mutillidae	256	Parasitoides	1	0
Insecta	Hymenoptera	Encyrtidae	257	Parasitoides	1	0
Insecta	Hymenoptera	Platygastridae	258	Parasitoides	2	1
Insecta	Hymenoptera	Sceliónidae	259	Parasitoides	0	1
Insecta	Hymenoptera	-	260	Parasitoides	1	1
Insecta	Hymenoptera	Encyrtidae	261	Parasitoides	0	1
Insecta	Hymenoptera	-	262	Parasitoides	0	1
Insecta	Hymenoptera	-	263	Parasitoides	0	1
Insecta	Hymenoptera	-	264	Parasitoides	0	1
Insecta	Hymenoptera	-	265	Parasitoides	1	0
Insecta	Hymenoptera	-	266	Parasitoides	1	0
Insecta	Hymenoptera	-	268	Parasitoides	2	0
Insecta	Hymenoptera	-	269	Parasitoides	1	0
Insecta	Hymenoptera	-	270	Parasitoides	4	0
Insecta	Hymenoptera	-	272	Parasitoides	0	1
Insecta	Hymenoptera	-	273	Parasitoides	0	1
Insecta	Hymenoptera	Braconidae	274	Parasitoides	0	1
Insecta	Hymenoptera	Braconidae	275	Parasitoides	1	11
Insecta	Hymenoptera	Diapriidae	276	Parasitoides	1	0
Insecta	Hymenoptera	Diapriidae	277	Parasitoides	6	0
Insecta	Hymenoptera	Bethylidae	278	Parasitoides	0	2
Insecta	Hymenoptera	Figitidae	279	Parasitoides	5	1
	J 1	٥				

Insecta	Hymenoptera	Mymaridae	280	Parasitoides	1	0
Insecta	Hymenoptera	Braconidae	281	Parasitoides	5	12
Insecta	Hymenoptera	Braconidae	282	Parasitoides	2	1
Insecta	Hymenoptera	Diapriidae	283	Parasitoides	0	1
Insecta	Hymenoptera	Mymaridae	284	Parasitoides	1	0
Insecta	Hymenoptera	-	285	Parasitoides	11	3
Insecta	Hymenoptera	Mymaridae	286	Parasitoides	1	0
Insecta	Hymenoptera	Eulophidae	287	Parasitoides	1	1
Insecta	Hymenoptera	Trichogrammatidae	288	Parasitoides	1	5
Insecta	Hymenoptera	Elasmidae	289	Parasitoides	2	58
Insecta	Hymenoptera	Scelionidae	290	Parasitoides	1	5
Insecta	Hymenoptera	Ichneumonidae	291	Parasitoides	1	2
Insecta	Hymenoptera	Ceraphronidae	292	Parasitoides	7	1
Insecta	Hymenoptera	Diapriidae	293	Parasitoides	9	5
Insecta	Hymenoptera	-	294	Parasitoides	4	3
Insecta	Hymenoptera	Encyrtidae	295	Parasitoides	1	2
Insecta	Hymenoptera	Platygastridae	296	Parasitoides	1	8
Insecta	Hymenoptera	Pompilidae	297	Parasitoides	3	25
Insecta	Hymenoptera	Aphelinidae	298	Parasitoides	0	2
Insecta	Hymenoptera	Pteromalidae	299	Parasitoides	2	0
Insecta	Hymenoptera	Tanaostigmatidae	300	Parasitoides	1	0
Insecta	Hymenoptera	Eupelmidae	301	Parasitoides	2	0
Insecta	Hymenoptera	Formicidae	302	Omnívoros	0	2
Insecta	Hymenoptera	Scelionidae	303	Parasitoides	5	6
Insecta	Hymenoptera	Encyrtidae	304	Parasitoides	15	4
Malacostraca	Isopoda	-	1	Detritívoros	0	82
Insecta	Lepidoptera	-	1	Fitófagos/	6	4
				Polinizadores Fitófagos/		
Insecta	Lepidoptera	-	2	Polinizadores	2	3
Insecta	Lepidoptera	_	3	Fitófagos/	1	1
msecta	Lepidoptera		3	Polinizadores	1	1
Insecta	Lepidoptera	Noctuidae	4	Fitófagos/ Polinizadores	2	6
T .	T 11.	NT	7	Fitófagos/	2	2
Insecta	Lepidoptera	Noctuidae	7	Polinizadores	3	3
Insecta	Lepidoptera	Noctuidae	8	Fitófagos/	4	14
				Polinizadores Fitófagos/		
Insecta	Lepidoptera	Noctuidae	9	Polinizadores	2	13
Insecta	Lepidoptera	Noctuidae	10	Fitófagos/	0	1
Hisecta	Lepidopicia	Noctulac	10	Polinizadores	U	1
Insecta						
	Lepidoptera	-	11	Fitófagos/	1	1
τ .		-		Polinizadores		
Insecta	Lepidoptera Lepidoptera	- Pyralidae	11 12	Polinizadores Fitófagos/ Polinizadores	1 2	1 4
	Lepidoptera	·	12	Polinizadores Fitófagos/ Polinizadores Fitófagos/	2	4
Insecta Insecta		- Pyralidae Noctuidae		Polinizadores Fitófagos/ Polinizadores Fitófagos/ Polinizadores		4
	Lepidoptera	·	12	Polinizadores Fitófagos/ Polinizadores Fitófagos/ Polinizadores Fitófagos/	2	4
Insecta	Lepidoptera Lepidoptera	·	12 13	Polinizadores Fitófagos/ Polinizadores Fitófagos/ Polinizadores	2	4

				Polinizadores		
Insecta	Lepidoptera	-	16	Fitófagos/ Polinizadores	1	1
Insecta	Lepidoptera	-	17	Fitófagos/ Polinizadores	0	3
Insecta	Lepidoptera	Erebidae	19	Fitófagos/ Polinizadores	1	1
Insecta	Lepidoptera	Nymphalidae	20	Fitófagos/ Polinizadores	0	1
Insecta	Lepidoptera	Pyralidae	21	Fitófagos/ Polinizadores	1	5
Insecta	Lepidoptera	-	23	Fitófagos/ Polinizadores	0	1
Insecta	Lepidoptera	-	24	Fitófagos/ Polinizadores	0	2
Insecta	Lepidoptera	Sessidae	25	Fitófagos/ Polinizadores	0	1
Insecta	Lepidoptera	Hesperiidae	26	Fitófagos/ Polinizadores	0	1
Insecta	Lepidoptera	-	27	Fitófagos/ Polinizadores	0	10
Insecta	Lepidoptera	-	28	Fitófagos/ Polinizadores Fitófagos/	0	1
Insecta	Lepidoptera	Noctuidae	29	Polinizadores Fitófagos/	0	2
Insecta	Lepidoptera	-	30	Polinizadores Fitófagos/	0	4
Insecta	Lepidoptera	-	31	Polinizadores	0	1
Insecta	Lepidoptera	Noctuidae	32	Fitófagos/ Polinizadores	0	1
Insecta	Lepidoptera	-	33	Fitófagos/ Polinizadores	0	1
Insecta	Lepidoptera	Noctuidae	21 b	Fitófagos/ Polinizadores	0	2
Insecta	Lepidoptera	-	8 b	Fitófagos/ Polinizadores	3	5
Insecta	Lepidoptera	-	Larva 1	Fitófagos	1	17
Insecta	Neuroptera	Chrysopidae	Larva 1	Predadores	1	1
Insecta	Neuroptera	Mantyspidae	2	Parasitoides	1	0
Insecta	Neuroptera	Ascalaphidae	1	Predadores	1	0
Insecta	Neuroptera	Chrysopidae	3	Predadores	0	2
Insecta	Odonata	-	1	Predadores	0	1
Insecta	Orthoptera	Tettigonidae	1	Predadores	0	1
Insecta	Orthoptera	Acrididae	2	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	3	Fitófagos	0	20
Insecta	Orthoptera	Acrididae	4	Fitófagos	0	3
Insecta	Orthoptera	Acrididae	5	Fitófagos	0	2
Insecta	Orthoptera	Gryllidae	6	Omnívoros	0	1
Insecta	Orthoptera	Acrididae	7	Fitófagos	0	2
Insecta	Orthoptera	Acrididae	8	Fitófagos	0	1
Insecta	Orthoptera	Gryllidae	9	Omnívoros	0	3
Insecta	Orthoptera	Acrididae	10	Fitófagos	0	2

Insecta	Orthoptera	Acrididae	11	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	12	Fitófagos	1	0
Insecta	Orthoptera	Acrididae	13	Fitófagos	1	0
Insecta	Orthoptera	Tettigonidae	15	Predadores	0	1
Insecta	Orthoptera	Acrididae	16	Fitófagos	0	2
Insecta	Orthoptera	Acrididae	17	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	18	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	19	Fitófagos	0	3
Insecta	Orthoptera	Acrididae	20	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	21	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	22	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	23	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	24	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	25	Fitófagos	0	1
Insecta	Orthoptera	Acrididae	27	Fitófagos	0	3
Insecta	Orthoptera	Tettigonidae	28	Predadores	0	2
Insecta	Orthoptera	Acrididae	Ninfa 1	Fitófagos	0	3
Insecta	Orthoptera	Acrididae	Ninfa 2	Fitófagos	0	5
Insecta	Orthoptero	Acrididae	Ninfa 3	Fitófagos	2	13
Insecta	Orthoptero	Gryllidae	Ninfa 4	Omnívoros	1	2
Insecta	Orthoptero	Tettigonidae	Ninfa 5	Predadores	0	1
Insecta	Psocoptera	-	1	Detritívoros	0	8
Insecta	Psocoptera	-	2	Detritívoros	0	1
Insecta	Siphonaptera	-	1	Ectoparásitos	0	4
Insecta	Thysanoptera	-	1	Fitófagos	352	240
Insecta	Thysanoptera	-	2	Fitófagos	249	191
Insecta	Thysanoptera	-	3	Fitófagos	165	97
Insecta	Thysanoptera	-	4	Fitófagos	24	11
Insecta	Thysanoptera	-	5	Fitófagos	30	9
Insecta	Thysanoptera	-	6	Fitófagos	2	4
Insecta	Thysanoptera		7	Fitófagos	0	2