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Abstract: In this paper we present an estimator of the parameters of an AR-2D model that is an extension of an
estimator presented for autoregressive models in time series. It uses an auxiliary model (BIP-AR) that limits the
propagation of noise in an AR process. In addition, we present an analysis of the behavior of these new estimator
(BMM-2D) and others estimators for the case of AR-2D processes contaminated by Gaussian noise. We also show
an application to the image processing obtaining favorable results for our estimator. Computational implementation is
carried out by R statistical software.
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1 INTRODUCTION

During the last decade, the representation and recovery of images have been one of the topics of greater
interest in the treatment of images in general. The spatial autoregressive model (AR-2D) has been exten-
sively used because of its ability to represent a variety of real scenarios without the need of using a large
number of parameters. Different robust estimators for the parameters of this model have been studied.
Kashyap and Eom [4] proposed the class of M-estimators, Allende et al. [1] introduced the GM-2D es-
timators and Ojeda [6] the RA-2D estimators. The high expressiveness of the AR-2D model justifies the
development of new robust estimators of its parameters. In this sense, this work proposes a new class of
robust estimators for the AR-2D model: the BMM-2D estimators; these are a two-dimensional version of
the BMM estimators, defined for time series ARMA models in 2009 by Muler et al. [5].
In this paper we intend to show the performance of the BMM-2D estimator in comparison with other esti-
mators (LS, M, GM and RA) and exhibit its capacity for image restoration and segmentation. The proposal
is of interest in the field of Statistical Image Processing, understanding an image as the realization of a
two-dimensional autoregressive random process.

2 METHODOLOGY

2.1 AR-2D MODELS

Consider a spatial process with an associated random variable Yi,j defined in each place (i, j) of the
rectangular grid in two dimensions. One of models studied in spacial data analysis has been autoregressive
two-dimensional model (AR-2D) (Whittle, [9]) which is defined as

Φ(B1, B2)Yi,j = εi,j

where Φ(B1, B2) =
�

k

�
l φk,lB

k
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l
2 with B1Yi,j = Yi−1,j and B2Yi,j = Yi,j−1, and εi,j’s are i.i.d.

random variables with symmetric distribution, E(εi,j) = 0 and V ar(εi,j) = σ2. A particular case is AR
unilateral model of first order given by:

Yi,j = φ1Yi−1,j + φ2Yi,j−1 + φ3Yi−1,j−1 + εi,j (1)

with Φ(B1, B2) = 1− (φ1B1 + φ2B2 + φ3B1B2).
In this paper we will work with the stationary version of (1).

2.2 BIP-AR 2D MODELS

A new class of bounded nonlinear AR-2D models is presented in this work, the bounded innovation
propagation AR-2D model (BIP-AR 2D). The model is a generalization in two dimensions of the model
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presented for time series by Muler et al. [5].
Given a unilateral two-dimensional autoregressive process of first order like in (1) stationary and invertible,
it supports an moving average representation as follows:

Yi,j =
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λklrεi−k−r,j−l−r = Λ(B1, B2)εi,j
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1 Yi,j = Yi−k−r,j and Bl+r
2 Yi,j = Yi,j−l−r.

Since the goal is to estimate the best possible parameters of a autoregressive central model when a contam-
inated process is observed, it appealed to BIP-AR 2D auxiliary model defined by:

Yi,j =
�

(k,l,r)∈D
λklrση

�εi−k−r,j−l−r

σ

�
+ εi,j

with D = {k ≥ 0, l ≥ 0, r ≥ 0} \ {k = 0 = l = r}, εi,j’s are i.i.d. random variables with symmetric dis-
tribution, λi,j are coefficients of Φ−1(B1, B2), η(x) is a odd and limited function and σ is a robust M-scale
of εi,j .

2.3 BMM-ESTIMATOR

Similarly to how the BMM estimator for the time series was defined, the estimator BMM-2D is defined
in Z2. The idea is to compute in a first stage a highly robust estimator of the error scale, and in a second
stage this estimated scale is used to calculate an M-estimator of the parameters.

First Step: At this stage we obtain an estimator of σ. For this purpose we consider two estimators of σ,
one using an AR-2D model and one using a BIP-AR 2D model, and choosing the smaller of them.
Then, our σ estimator is

s∗nm = min(snm, sbnm)

Second Step: With the scale estimator obtained in the first step (s∗nm) two M-estimators of the param-
eters are calculated, one using the residues of one AR-2D model and the other using the residues of a BIP-
AR 2D model. The final estimator is the one that minimizes its corresponding objective function.

3 RESULTS AND DISCUSSION

The performances of the LS, M, GM, RA and BMM estimators were assessed in contaminated AR-2D
processes. For this, Monte Carlo studies were performed simulating two-dimensional autoregressive pro-
cesses as in (1) with parameters φ1 = 0.15, φ2 = 0.17 and φ3 = 0.2. For each observation window size
(8× 8, 16× 16, 32× 32, 57× 57) were obtained 500 process simulations which were contaminated at 10%
with a Gaussian process of µ = 0 and σ2 = 50. Then, the parameters of the model were estimated by LS,
M, GM, RA and BMM. The Figures (1)-((a), (b), (c)) show the boxplots of the estimates. We can observe
that in the size 32× 32, the BMM estimates better than the others estimators in the sense that it is closer to
the true value and has a small variance. For the others window size, the BMM-estimator remained close to
the true value and maintained a small variance. It should be noted that the study without contamination was
also carried out obtaining better results with the LS estimator, which was an expected result.
The computational routines were developed in the programming language R and carried out on a personal
computer with a Pentium(R) Dual-Core 2.70GHz*2 processor. Figure (1)-(d) shows the logarithm of the
time in seconds that it took to perform a single of these simulations with each one of the estimators and
according to the window size used. It is observed that although the RA estimator is one of the major com-
petitors of the BMM estimator due to the accuracy of its estimation and its asymptotic properties, it has a
very high computational cost which makes it unattractive when applied to large image processing.
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Figure 1: Assume a AR-2D model of 3 parameters with additive contamination of σ2 = 50. According to window
size: (a) boxplot of φ1 = 0.15 estimate, (b) boxplot of φ2 = 0.17 estimate, (c) boxplot of φ3 = 0.2 estimate; (d)
Logarithm of the estimation time (in seconds).

The analysis of contaminated images is of great interest in several areas of research. For example,
the reconstruction of contaminated images is relevant in modeling of images ([2], [8]), and in general the
reduction of the noise produced by interferences plays an important role in the literature ([3]). In Ojeda
et al. ([7]) two algorithms were presented, the first produces an images local approximation by the use of
unilateral AR-2D processes and the second is a segmentation algorithm. In the present work we will obtain
reconstructions and segmentations of an image from a modification of the first algorithm that will consist of
representing an image by block-fitting a unilateral AR-2D process with three parameters.
Figure 2 shows the image reconstruction ability by adjusting an AR-2D process in different window sizes
and estimating the parameters with the BMM estimator. In the images from (b) to (e) the reconstructions
obtained with windows of sizes 8 × 8, 16 × 16, 32 × 32 and 57 × 57 are observed. At first glance the
reconstructions are good with any window size although if we analyze the similarity SSIM, CQ(1,1) and
CQmax as can be observed in Table 1, as the window size increases, the similarity decreases which would
indicate that the best fit is obtained with small size windows. This fact reflects the assumption that a two-
dimensional autoregressive model is a local adjustment model. On the other hand, if we look at the images
difference (second algorithm (f) to (i)), it is observed that (i) image highlights the edges more than the others
which shows that when doing the reconstruction with window size 57× 57 (e) a lot of information was left
aside.
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Figure 2: (a) Original image of Lena. From (b)-(e), the reconstructions based in BMM for windows 8 × 8, 16 × 16,
32× 32 and 57× 57 respectively. From (f)-(i), the differences of (a) with the reconstructions of (b) to (e) respectively.

Window size SSIM CQ(1,1) CQmax

8× 8 0.9948914 0.8582201 0.9706984
16× 16 0.9827996 0.8309626 0.9544317
32× 32 0.9779204 0.8151581 0.9462133
57× 57 0.9762065 0.8073910 0.9423786

Table 1: Similarity between the original image and the reconstructions in Figure 2.
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