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Abstract— Survivability of optical networks is
one of the most relevant planning problems due to
its impact on actual deployment cost. Indeed, sur-
vivability can only be achieved by deploying spare re-
sources that will only be used under failure scenarios.
In particular, the case of dual link failures on fiber op-
tic cables (i.e., fiber cuts) has recently received much
attention as repairing these cables typically takes too
much time, which increases the probability of a sec-
ond fiber cut. In this paper, we consider dual link
failure scenarios and analyse the spare capacity allo-
cation problem for restoration schemes, which have
the potential to achieve better survivability perfor-
mance than protection schemes in non-triconnected
networks. However, since the traditional global op-
timization approach is not practical for large net-
works, we propose an incremental optimization ap-
proach that can find sub-optimal solutions in practical
times even in large networks.
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1 Introduction

Survivability is the ability of a network to continue to
function during and after a natural or man-made dis-

turbance and is one of the most important aspects of op-
tical transport networks as it enables to withstand and re-
cover from failures which otherwise can disrupt telecom-
munications services. However, survivability can only be
obtained by allocating spare capacity on network links,
which is used to reroute connections interrupted due to
failures. Since spare capacity has a direct impact on the
actual cost of the network, operators make use of opti-
mization models to design their networks in order to min-
imize this capacity while maximizing network survivabil-
ity.

Research in optical transport networks survivability
has traditionally been focused on single failures [1], in
particular on the case of optical link failures (i.e. fiber
cuts). In the last years, several works have also consid-
ered dual link failures [2, 3, 4] as typical repair times for
fiber cuts are large, thus, increasing the probability of a
dual fiber cut scenario in large transport networks, em-
pirical observations can be found in [5]. Authors in [6]

studied the impact of dual failures in networks planned to
protect single failures. In [7] the dual failure restorabil-
ity of networks designed for single failure survivability
problem is addressed using shared backup paths. Dual-
failure restorability using p-cycle is studied in [8, 9]. An
hybrid protection/restoration approach is studied in [10]
for WDM networks reducing the spare capacity com-
pared with a full protection scheme. In [4, 11] the au-
thors studied the spare capacity allocation problem using
shared backup paths on triconnected networks and using
partially-disjoint backup paths on non-triconnected net-
works.

Survivability to all (100%) possible dual link failure
scenarios can result in huge costs as it requires tricon-
nected optical networks [4], where each connection can
be established through either one of three completely
disjoint paths. Triconnected networks tend to allocate
spare capacity by increasing the number of network links.
These links can require the deployment of new fiber optic
cables which is extremely expensive. Commercial optical
transport networks are not typically triconnected because
of this reason. Instead, network operators prefer increas-
ing the spare capacity on already available fibers as it is
much cheaper than deploying new fiber cables. Indeed,
network capacity is typically enlarged today by only up-
grading terminal equipment on the same fiber cable.

Even if protection schemes are widely used due to their
simplicity, they tend to reserve much spare capacity to
guarantee survivability on all possible failure scenarios.
Besides, the working capacity, which is allocated for the
original connection path, cannot be reused to re-establish
connections. Restoration schemes do not define a fixed
set of backup paths as protection does, instead a restora-
tion path is computed over each failed scenario.

Spare capacity allocation is known to be a very com-
plex problem and its global optimization is not practical
in large networks. Authors in [12] use a sub-optimal ap-
proach by successively routing demands backup paths.
This approach works fine for protection schemes but it is
not practical for restoration schemes.

In this paper, we model and analyse the problem of
allocating minimum spare capacity for survivability us-
ing restoration schemes. We present an Integer Linear
Programming (ILP) model for global optimization of this
problem and then propose a sub-optimal approach that
outperforms the former in computation time.
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2 Survivability Strategies

Survivability is the ability of the network to recover ser-
vices when some kind of disruptive event has occurred.
In optical networks, the most often disruptive events are
links failures due to fiber cuts. Survivability can be ad-
dressed by path protection schemes or path restoration
schemes, which re-route the lost connection flow over a
different (undisrupted) path. Spare capacity must be allo-
cated in both strategies for protection/restoration paths.

Protection schemes for dual link recovery need two
backup paths, in triconnected networks these backup
paths and the working path can be mutually disjoint. In
biconnected networks, three disjoint paths may not exist,
so partially disjoint paths must be used [13]. In protection
schemes, spare capacity can be shared between backup
paths if they are never used simultaneously, this scheme
is called 1:1:1 Protection [4, 13]. However, working ca-
pacity can never be shared in protection schemes.

In restoration schemes, spare capacity must be allo-
cated along the network to guarantee that for each dual-
failure scenario there is enough capacity left to establish
a restoration path. In triconnected networks, this leads
to 100% service recovery, while in non-triconnected
networks, 100% recovery is not feasible. Restoration
schemes allow full capacity sharing, where two paths,
namely working and restoration paths, can share their ca-
pacity if never used simultaneously.

Whenever a working path is interrupted, its capacity
can be released from the non-interrupted links. In pro-
tection schemes, this capacity is never shared because
working paths and backup paths must be disjoint. In
restoration schemes, this capacity can be fully shared
since every restoration path is independent from any other
path. As aresult, in non-triconnected networks, restora-
tion schemes can achieve better performance than pro-
tection schemes in terms of the number of double link
failure scenarios they can survive.
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Figure 1: Survivability in biconnected network

In Figure 1 we illustrate the case of a biconnected net-
work with only one flow, where (w + s) represents the
working w and the spare s capacity allocated per link in
a restoration scheme. For 1:1:1 protection, seven spare
capacity units are needed for the primary and secondary
backup paths. Since a double link failure that includes the
(4,7) link and any other link of the working path can not
be recovered only the 96% of the dual-link failure scenar-
ios are covered. If a shared restoration scheme is being
used, then eight spare capacity slots are needed but the
99% of the dual failure scenarios are covered.

3 Centralized versus Distributed Restoration

Restoration schemes can achieve better recovery perfor-
mance than protection ones. Restoration schemes select
a route for each disrupted flow after the disruption has
occurred. This re-routing can be made by a centralized
manager or in a distributed fashion. In the centralized
scheme, the decision is made taking into account all the
possible scenarios. In a distributed scheme, an equipment
may make a decision upon a disruptive event that affects
the availability of spare capacity to route other flows.
Blocking can happen and depends on which equipment
routes first, this is shown in Figure 2.

Figure 2: Blocking on distributed restoration scheme

In Figure 2 a five node graph is shown, with two
flows, one from node 0 to node 3 with its working path
< 0, 2, 3 > and the second flow from node 4 to node 0
with working path < 4, 1, 0 >. We will use the (vs, vd) to
represent a bidirectional link between vertices vs and vd
and we will represent paths as a vertex indexes sequences
< v0, v1, ...vi, ..., vr >. If at any time links (0, 2) and
(1, 4) fail, the two flows must be restored. In a distributed
scheme it can happen that flow from 0 to 3 restores first
through the shortest path from 0 to 3. However, if flow
from 4 to 0 restores first there are two different shortest
paths. Then, if node 4 chooses < 4, 2, 1, 0 > there is no
blocking but if node 4 chooses path < 4, 2, 3, 0 > for the
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restoration then the flow from node 0 to node 3 will be
blocked. Note that node 4 has no way to know if the path
selected is globally optimal. In a centralized scheme, the
central routing manager can choose both routes in an op-
timal way in order to avoid blocking.

4 The Spare Capacity Allocation Problem

The Spare Capacity Allocation (SCA) problem consists
in finding the minimal spare capacity needed to guarantee
network survivability. As discussed before, 100% surviv-
ability to dual link failures can only be achieved in tricon-
nected networks.

An optical network can be represented by an undi-
rected graph G = (V,E) of N nodes, M links and K
flows. Each flow k, 1 ≤ k ≤ K has its source/destination
node sk, dk and a capacity demand Ck. Each flow k has a
working path given by P k

ij , where P k
ij = 1 if the working

path of flow k uses link (i, j) ∈ E, and Pij = 0 other-
wise. As each dual link failure leads to a new topology,
each scenario can be modelled as a new graph based on
G where the links that failed are removed from E. This
leads to a multi-graph structure G = {Gg} = {(Vg, Eg)}
where each sub-graph Gg has a node set Vg = V , and
link set Eg and represent a particular dual link failure sce-
nario. This is illustrated in Figure 3.
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Figure 3: Multi-graph representation

In a given sub-graph Gg , each flow k can or cannot use
its working path. This is represented by the P k

g coeffi-
cients, where P k

g = 1 if the flow k can be routed over
its working path in sub-graph Gg . Moreover, a flow must
use the working path whenever it is available, so these
coefficients also indicate that the working path of flow k
must be used in sub-graph Gg .

Since this model must take into account non-
tricconected networks, it is possible that in a particular
sub-graph Gg no path for a flow k is available. In that
case, there is no way to route the flow in that sub-graph
and no capacity allocation is required. We consider Kg

as the set of all flows k that have path availability in sub-

graph Gg . If k is not present in Kg, then that flow does
not require spare capacity on sub-graph Gg .

The total capacity allocated on link (i, j) for sub-graph
Gg is referred as cgij , and it depends on all flows routed
through (i, j) for sub-graph Gg and their capacity de-
mands Ck. The resulting capacity allocated on link (i, j)
for the graph G is referred as cij , this capacity has to
take into account the link capacities required by all sub-
graphs. Note that two paths routed on the same sub-graph
cannot share capacity, but two paths routed on different
sub-graphs can fully share capacity, then cij ≥ cgij . In
this context, the working capacity allocated on link (i, j)

is wij =
∑K

k=1 C
kP k

ij , while the spare capacity allocated
in link (i, j) is sij = cij − wij .

The total spare capacity s allocated on the network is
the sum of all the spare capacities allocated on each link,
s =

∑(i,j)∈E
sij . The main goal of the SCA problem is

then to minimize the total spare capacity s surviving the
maximum possible number of dual link failure scenarios.

5 Spare Capacity Allocation Schemes

In this section, we first introduce an ILP formulation
for the SCA problem assuming a centralized restoration.
This model takes into account all possible dual link fail-
ure scenarios and finds a solution that minimize the total
spare capacity while satisfying each flow whenever pos-
sible (if at least one path exists). As this model grows
exponentially with the number of links in the network
and exponentially with the number of flows, then it is not
practical for computing large networks. We have called
this method Global optimization Spare Capacity Alloca-
tion (GOSCA). Next, we propose a sub-optimal approach
that approximates the global optimization case by solv-
ing the spare capacity allocation problem incrementally
for each dual link failure scenario. This approach still
makes use of an ILP formulation for each scenario but
the partial solution is saved and used as an initial solution
for the next scenario (sub-graph). The main advantage of
this approach is that it dramatically reduces the computa-
tion time as it will be shown in Section 6. We have named
this method as Incremental Optimization Spare Capacity
Allocation (IOSCA).

5.1 Preprocessing
Given the network topology represented as the graph
G = (V,E) with N nodes, M links and a working path
wpk and a capacity demand Ck for each flow k with
1 ≤ k ≤ K, we first generate all the required coeffi-
cients by the model. The working path represented by
wpk =< n1, n2, ..., np > must be mapped to the coeffi-
cients P k

ij . If the sequence ni, nj exists in the path wpk

then P k
ij = 1 and P k

ij = 0 otherwise. From each work-
ing path wpk =< n1, n2, ..., np > source node sk and
destination node dk must be mapped, sk = n1, dk = np.

As described earlier, G is the set of all dual link failure
scenarios of G, G = {Gg} where each Gg = (Vg, Eg) is
a graph with the same node set Vg = V and with a link
set Eg that is a copy of E but with two links subtracted
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from it. The number of sub-graphs Gg is
(
M
2

)
. Once the

G set is computed the P k
g coefficients can be generated.

For each sub-graph Gg the working paths of the K flows
must be evaluated, if working path wpk is available on
sub-graph Gg then P k

g = 1, and P k
g = 0 otherwise, with

1 ≤ k ≤ K. Finally, for each flow k path availability
must be tested for each sub-graph Gg . This is, if at least
one path from sk to dk exists in sub-graph Gg , then k ∈
Kg and if no path can be found then k 6∈ Kg .

Table 1: Data
N,M,K, |G| Number of nodes,links, flows, graphs

G = {Gg} Double failure graphs set

Ck Capacity demands

sk, dk Source/destination nodes of flow k

P k
ij Working paths link coefficients

P k
g Working paths availability coefficients

Kg Path availability for flow k in graph g

5.2 Global Optimization Model
5.2.1 ILP Model

Table 2: Variables
xk
gij Binary, is set iff edge (i, j) is used by flow k in

sub-graph Gg .
cgij Integer, allocated capacity in edge (i, j)

in sub-graph Gg .
cij Integer, total allocated capacity in edge (i, j).
sij Integer, total allocated spare capacity in

edge (i, j).
s Integer, total allocated spare capacity

Minimize:
s (1)

Subject to:

M∑
j=1

xk
gij−

M∑
j=1

xk
gji =

 1 if i = sk

−1 if i = dk

0 other
∀g, i, k ∈ Kg

(2)
xk
gij + xk

gji ≤ 1 ∀g, k, i, j (3)

xk
gij ≥ P k

ijP
k
g ∀g, i, j, k (4)

xk
gij = 0 ∀(i, j)|(i, j) 6∈ Eg (5)

cgij =

K∑
k=1

Ck(xk
gij + xk

gji) ∀g, i, j (6)

cij ≥ cgij ∀g, i, j (7)

sij = cij −
K∑

k=1

CkP k
ij ∀i, j (8)

s =

(i,j)∈E∑
sij (9)

The objective is given by Eq. 10 of the model, which
aims at minimizing the total spare capacity s along all the
network. This value takes into account all the spare ca-
pacity allocated on each link to guarantee the best achiev-
able recovery performance. Constraints can be split into:
1) flow constraints Eq.2, Eq.3, Eq.4, Eq.5, and 2) capac-
ity constraints Eq.6, Eq.7, Eq.8, Eq.9.

5.2.2 Flow constraints:

The flow variables xk
gij represent the route of flow k in

sub-graph Gg , where xk
gij = 1 implies that the flow k

goes through link (i, j) in sub-graph Gg . Constraint Eq. 2
ensures that the flow continuity for each flow k ∈ Kg

from sk to dk in sub-graph Gg . This continuity constraint
is only present if k is in Kg, so the flow must be routed
only if at least one path exists from sk to dk. Constraint
Eq. 3 avoids loops in the flows, which means that a link
can never be used twice for one flow.

The working paths must be used whenever available.
Constraint Eq. 4 forces flow variables to xk

gij = 1 if the
working path of flow k is available in Gg and link (i, j)
is part of that path. P k

g = 1 is one only when working
path of flow k is available on sub-graph Gg and P k

ij is
one if link (i, j) is part of the working path of flow k. If a
link (i, j) is not present (i.e., fiber cut) in sub-graph Gg , it
means that (i, j) 6∈ Eg and no flow can be routed through
it. Constraint Eq. 5 force flow variables that cant be used
to zero.

5.2.3 Capacity constraints:

The total capacity needed on link (i, j) in sub-graph Gg

is given by cgij , which accounts for both the working
and spare capacity. This variable is undirected, so all the
capacities allocated in both directions (i, j), (j, i) of all
flows must be added. Constraint Eq. 6 computes total ca-
pacity allocated per link on each subgraph Gg .

Since the restoration scheme allows capacity sharing
between paths that are in different sub-graphs, then the
total capacity allocation per link is the largest allocation
along all the sub-graphs, Eq. 7. This total capacity per
link cij includes working capacity and spare capacity,
constraint Eq. 8 represents this relation. The total spare
capacity is the sum of all the spare capacities allocated
per link, Eq.9.

5.3 Incremental Optimization Model
This approach finds a suboptimal solution by splitting the
problem into simpler ones, the model used here solves the
SCA problem for one sub-graph each time. The whole
problem can be solved by solving successively each sub-
graph, each solution has its impact on the final solution.
To model this, we introduce the Sij variables, these vari-
ables are modified after each iteration to reflect the ex-
pend of spare capacity of each particular solution. These
variables are used as an initial solution for the next sce-
nario. In this way, when the last scenario on the list is
solved the whole problem is solved. However, note that
this approach strongly depends on the order that the sub-
graphs are solved.



XVI Reunión de Trabajo en Procesamiento de la Información y Control, 5 al 9 de octubre de 2015

Figure 4: Incrtemental optimization algorithm flow chart

5.3.1 ILP model

Table 3: Variables
xk
ij Binary, is set iff edge (i, j) is used by flow k

cij Integer, total allocated capacity in edge (i, j).
sij Integer, total allocated spare capacity in

edge (i, j).
s Integer, total allocated spare capacity

Minimize:
s (10)

Subject to:

M∑
j=1

xk
ij −

M∑
j=1

xk
ji =

 1 if i = sk

−1 if i = dk

0 other
∀i, k ∈ Kg

(11)
xk
ij + xk

ji ≤ 1 ∀k, i, j (12)

xk
ij ≥ P k

ijP
k
g ∀i, j, k (13)

xk
ij = 0 ∀(i, j)|(i, j) 6∈ Eg (14)

cij =

K∑
k=1

Ck(xk
ij + xk

ji) ∀i, j (15)

cij ≤ sij +

k∈Kg∑
CkP k

ij ∀i, j (16)

sij ≥ Sij ∀i, j (17)

s =

(i,j)∈E∑
sij (18)

5.3.2 Flow constraints:

This ILP model solves the SCA problem for one graph,
then the g index can be removed from the constraints.
Eq. 11, 12, 13 and 14 are the simplified versions of the
flow constraints of the Global Optimization Model.

5.3.3 Capacity constraints:

Constraint Eq. 15 computes the total capacity allocated
per link. The spare capacity per link can be calculated
as the subtraction of the working capacity from the total
capacity allocated. Since there is pre-installed spare ca-
pacity Sij this relationship is modified, the spare capacity
per link must be grater or equal than the total installed ca-
pacity minus the working capacity of that link. Eq. 16 re-
flects this relationship. Moreover, the spare capacity per
link must be grater or equal than the pre-installed spare
capacity, Eq. 17. Finally, the total spare capacity is the
sum of all the spare capacities allocated per link, Eq.18.

6 Main Results

Analysis were performed on five mesh-type non-
triconnected networks topologies shown in Figure 5.
Each network has a traffic demand consisting in one flow
between every two nodes requiring one unit of capacity.
The working paths are determined using the shortest path
algorithm.
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Figure 5: Network topologies used for results

The IOSCA method needs to order the graphs set G,
we use two ordering criteria Worst Scenario First (WCF)
and Best Scenario First (BSF). Each scenario disrupts a
number of flows if we use this as metric, the scenarios can
be ordered in a descendent manner (WCF) or in an ascen-
dant manner (BSF). Additionally, random orders where
generated as random permutations of the original set.

For each network we show results of the required spare
capacity for centralized restoration scheme using the
Global Optimization model, the WSF-IOSCA, the BSF-
IOSCA method and a solution obtained using the best of
50 random ordered graphs sets. We compare this solu-
tions with a shortest path spare capacity allocation (SP-
SCA) that uses the shortest path algorithm to reserve spare
capacity for the shortest path of interrupted demands in
each sub-graphs. This method can survive the same num-
ber of dual link failure scenarios.

The models where implemented using routines in
Python that generate the different instances of the mod-
els for each network topology. All the instances where
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solved using CPLEX with in a personal computer with
Intel i5 processor and 4GB of RAM.

Table 4: Results
Net0 Net1 Net2 Net3 Net4

s Comp. s Comp. s Comp. s Comp. s Comp.
Scheme time [s] time [s] time [s] time [s] time [s]
GOSCA 23 0,18 135 4,11 130 21,93 334 500,30 545 2144,12

WSF-IOSCA 26 0,01 150 2,20 134 6,13 370 20,19 652 86,8

BSF-IOSCA 27 0,01 139 2,00 147 6,34 353 20,04 611 87,1

50xRandom-IOSCA 25 - 138 - 132 - 353 - 597 -

SPSCA 27 0,20 163 0,80 161 1,01 423 1,27 787 7,3

Table 4 reports main results, where the first column (s)
shows the total spare capacity, the second column (Com-
putation time), the total computation time needed to get
the solution.

Figure 6: Normalized spare capacity allocated

In Figure 6 we show the total spare capacity allocated
by each method for the five networks topologies. The to-
tal spare capacity is normalized to the capacity allocated
by the GOSCA. The global optimization always allocates
less capacity than the others methods due to its global op-
timization nature. The SPSCA has the worst performance
in terms of total capacity allocated because this method
doesn’t take into account the pre-installed spare capacity
in each routing. Between this two methods is the IOSCA
that can get better results than the SPSCA.

7 Conclusions and Future Work

A global optimization approach for the SCA problem has
shown impractical for its application on large networks,
instead an incremental optimization approach can be used
to reduce the computation time. In Table 4 we shown how
this sub-optimal approach can outperform the global op-
timization in terms of computation time. Besides, Figure
6 showed how IOSCA can achieve good solutions com-
pared with a SPSCA algorithm. Nevertheless, it can be
seen that the solution in the IOSCA approach strongly de-
pends on the ordering. Moreover, WSF and BSF are not
good ordering criteria since better solutions can be found
by random ordering. In this paper, we have shown that an
incremental optimization approach can be used to achieve
practical optimization of the SCA problem for the case of
restoration schemes. In future works we will try to find
a good ordering criterion plus a heuristic to avoid local
optimum.
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