Batman-Adv Mesh network emulator

José Daniel Britos!, Silvia Arias', Nicolds Echaniz®, Guido Iribarren®, Lucas
Aimaretto!, Gisela Hirschfeld?

! Laboratorio de Redes y Comunicaciones (LaRyC) Facultad de Ciencias Exactas,
Fisicas y Naturales, Universidad Nacional de Cérdoba Av. Vélez Sarsfield 1611 -
Ciudad Universitaria - CP: X5016GCA Coérdoba.

2 Departamento Universitario de Informatica, Universidad Nacional de Cérdoba,
Valparaiso s/n - Ciudad Universitaria - CP: X5016GCA
3 Fundacién Altermundi, José de la Quintana, Cérdoba.

Resumen We introduce a new network emulator environment, deve-
loped by our research group, called BAMNE. Our emulator is designed
specifically to work with B.A.T.M.A.N. Adv. Mesh Protocols. This mesh
network emulator, allow to test B.A.T.M.A.N. Adv. protocol and eva-
luate and debug mesh network. The emulated wireless equipment run in
a virtual machine Virtualbox, and the wireless links are simulated with
Vde-switch. Vde-switch allow simulate impediments in the link transmis-
sion such as lost of bits lost of packets, delay. To construct the emulation
environment python language was used.

1. Introduction

The purpose of this network emulator is to test evaluate and debug B.A.T.M
.A.N. Adv mesh network protocols. This network emulator is a front end for
Openwrt machines running on Virtualbox connected through a Vde-switch and
Wirefilter, simulating a wireless link, this is able to emulate delays, noise factors,
channel bandwidth and packet loss on virtual wireless channel. The front end
is written in python with “pygtk” graphics user interface. The python program
don’t introduces delay in the emulation due that the only purpose of this python
software is to set up the emulation environment, parameters setup and moni-
tor the Openwrt machines with the SNMP protocol. The main window of the
program show transmitted packets for each interface, and originators tables for
B.A.T.M.A.N. Adv protocol.

The Vde-switches have tap interfaces connected with the host machine, this
allow to monitor the packet traffic with the Wire-shark program, the Openwrt
ethO interface are connected to the host via the Vboxnet interface of the host,
in this way is possible to access to the Openwrt console for management purpo-
se.This work is structured as follows: we start in Section 2 with the background
on the Batman Adv. protocols. Section 3 describe the architecture of the emula-
tion system. This is followed by Section 4 which describes the use of the emulator.
Finally conclusions are drawn in Section 5.

2. Batman Adv.

BATMAN-Adv [11] is a proactive routing protocol for Wireless Mesh Net-
works (WMNs). It uses a distance-vector approach and a routing metric which
incorporates the reliability of the radio links. Despite being developed and pu-
blicly available since 2006, BATMAN, especially its newer batman-adv variant,
has received sparse attention in the scientific community. Batman is a simple
and robust algorithm for establishing multi-hop routes in ad hoc networks. As
explained by Johnson, D., et al [14] Batman does not maintain tables with full
routes to the destination, each node along the route only maintains the informa-
tion about the next link through which the node can find the best route. The
objective is to maximize the probability of delivering a message. Batman does
not check the quality of each link, it checks its existence. The protocol does these
checks broadcasting periodically hello packets to its neighbours, these packets
are known as originator messages (OGM). Broadcasting is when a single source
sends messages to all available nodes in the broadcast domain/network. This is
in contrast to unicast where a node sends messages to one specific node in the
network. The structure of the OGM packet periodically sent is presented here:

= Originator address

= Sending node address: This is changed by receiving nodes and then the
packet is re-broadcasted

= Unique sequence number: The sequence number is used to check the concu-
rrency of the message

= Bidirectional link flag: Used when the OGM packet received is its own and
the sender is someone else

= Time to leave (TTL)

When a node receives an OGM packet there are two possibilities, either the
originator is or is not already in its routing table. If the originator is not in
the routing table then a new entry is made for it and the sender node is added
as a one hop neighbour to it and its count incremented. If the originator is in
the routing table and the sender is a new, the sender is added as a one hop
neighbour to the originator and count incremented. If the originator is in the
routing table and the sender is not new, the senders count is incremented. The
count is the amount of received OGMs packets of an originator through a specific
one hop neighbour. The links are compared in terms of the number of originator
messages that have been received within the current sliding window this value is
called the transmission quality (TQ) and is the routing metric used by Batman.
The sliding window is a fixed value that defines a range of the unique sequence
numbers afforded to each OGM packet sent by a node [10]. Batman advanced
(Batman-adv) [2] only uses the MAC address for addressing it neighbours. The
result of working in layer two is that Batman-adv is able to emulate an Ethernet
bridge, so that all nodes appear to be connected by a direct link. As cause all
protocols above layer two are not aware of multi hop links. Batman’s routing
technique causes low processing and traffic cost. This makes it an attractive
option for use on devices Batman’s routing technique causes low processing and

traffic cost. In this work we focus on Batman-adv.That run in small processors
such as the ARM MP.

3. Architecture

The emulator architecture is basically composed of two elements Nodes(OpenWrt)

and Links (Wirefilter) [?] as shown in the figure 1. The nodes are shown in figure
2 this are more complex and have the following elements:

= OpenWrt, kamikaze trunk version for x86 with minimal modifications (see
below)

» VirtualBox (unmodified) the version must support vde-switch [4].

= Vde_switch must run two instance for node to support 2.4 GHz and 5.0 GHz
networks interface. The vde-switch have a patch colourful see below [13].

Node Node Node
)
Wire Filter Wire Filter
O O O
Wire Filter Wire Filter Wire Filter
Node Node Node
C) ()
_JWire Filter __/ Wire Filter .
Wire Filter Wire Filter Wire Filter
Nod Nod Nod
ode O ode ~N ode O
Wire Filter _/ Wire Filter

Figura 1. Network architecture

3.1. OpenWrt

A standard OpenWrt can be downloaded and configured for X86 [1]. Once
that the virtual machine is running some packages must be download (ip, snmpd,
tepdump, netcat, kmod-batman-adv, batctl). For an automatic configuration of
the network interfaces devices a setup script must be used on boot and stores it
in /files/etc/rc.local in your local OpenWrt build directory:

OPENWRT

ETH1 ETH2

Color =1
Color=2

VDE SWITCH == Color=0

WIRE FILTER WIRE FILTER WIRE FILTER
Color=0
Color=0 Color=0
WIRE FILTER WIRE FILTER WIRE FILTER

WIRE FILTER WIRE FILTER

WIRE FILTER
Color=0
Color=0

WIRE FILTER

Figura 2. Node Diagram

#!/bin/sh

pass ip config trough ethernet mac address

RED=$(ifconfig ethl | sed ’1,1!d’ | sed ’s/.*HWaddr //’| sed
’s/ \{11\}://’| sed ’s/.\{B\}$//’)

NUM=$(ifconfig ethl | sed ’1,1!d’ | sed ’s/.*HWaddr //’| sed
’s/.*://’| sed ’s/[\n\ 1.%//7)

ip link delete ethO

ip addr add 192.168.100.$NUM/24 dev ethO

ip link set dev ethl mtu 1532 up

ip link set dev eth2 mtu 1532 up

batctl -m batO interface add ethl

batctl -m batO interface add eth2

ip addr add 192.168.$RED.$NUM/24 dev batO

ip link set dev batO address 90:$NUM:$NUM: $NUM: $NUM: $NUM

ip link set dev batO up

batctl -m batO originators

In VirtualBox is difficult to send the IP address for the interfaces of the virtual
machines, this is accomplished setting the mac address in VirtualBox and in the
re.local” script read the mac address and set up the IP address in the interfaces.

3.2. SNMPD

When the “SNMP” is installed in the Openwrt machine we need to proceed
to set up the MIB for batman-adv. To add custom records to the batman-adv
MIB shell script was conducted running and returning to stdout what it takes
from SNMP [5]. To request originators table, the next script was made: Script

name batctl_o.sh (for originator list)

#!/bin/sh
BAT=$(batctl o | sed -n ’s/"\(..:..:..:.. .00 \)ox/\1/p?)
echo $BAT

Then to add entries in the configuration file SNMPD /etc/snmp/snmpd.conf
using the following uci command in a terminal.

uci add snmpd exec

uci set snmpd.@exec[-1] .name=.1.3.6.1.4.1.32.1.1
uci set snmpd.Qexec[-1].prog=batctlo

uci set snmpd.Qexec[-1].args=/batctl_o.sh

uci commit snmpd

/etc/init.d/snmpd restart

This append the following line to the files /etc/snmp/snmp.conf.

exec .1.3.6.1.4.1.32.1.1 batctl_o /batctl_o.sh

From the host the snmp request, can be tested with the followings command.

$ snmpget -v 1 -c public 192.168.100.11 is0.3.6.1.4.1.32.1.1.101
.1is0.3.6.1.4.1.32.1.1.101.1 = STRING: "80:03:00:00:07:41 80:03:
00:00:07:31 80:02:00:00:07:31 80:02:00:00:07:21 80:03:00:00:07:21"

We repeat the same for the next SNMP commands.

In the Git Hub (https://github.com/dbritos/Network-mesh-emulator/blob/ mas-
ter/openwrt.ova) repository there is a fully configured virtual machine. Down-
load openwrt.ova in VirtualBox go to:

File menu -> Import Appliance

3.3. Ip assignations in openwrt

To assign the IP address to the VM, first the MAC address is assigned to the
VM. Each VM have three interfaces nicl, nic2 and nic8 this interfaces in the
openwrt is shown as eth0, ethl and eth2.

nicl (eth0) mac 80:01:00:00:07 + nodenumber (nn)
nic2 (ethl) mac 80:02:00:00:07 + nodenumber (nn) the 2 for 2.4GHz)
nic3 (eth2) mac 80:05:00:00:07 + nodenumber (nn) the 5 for 5.0GHz)

To configure the VM with this mac address the following commands are used:

VBoxManage modifyvm openwrtnn --nicl generic --nicgenericdrvl VDE
—--nicpropertyl network=/tmp/c24GHznn[2] --macaddressl 8001000007nn
VBoxManage modifyvm openwrtnn --nic2 generic --nicgenericdrv2 VDE
—--nicproperty2 network=/tmp/c24GHznn[2] --macaddress2 8001000007nn
VBoxManage modifyvm openwrtnn --nic3 generic --nicgenericdrv3d VDE
--nicproperty3 network=/tmp/c24GHznn[2] --macaddress3 8001000007nn

Where: nn is the Node number.
The script in the openwrt in /etc/rclocal read the mac address of the interface
eth1 and configure the IP of the interfaces:

192.168.100.nn
192.168.7.nn
90:nn:nn:nn:nn:nn

ip address ethO
ip address batO
mac address batO

With this convention of IP Address and MAC address is easy to follow the
packets trough the nodes. With the IP address of eth0 interface is possible to
access to the nodes via ssh command to the IP address 192.168.100.nn. (where
nn is de node number). The host has the vboxnet0 interface with the IP address
192.168.100.1. Each vde-switch have a tap interface through the network protocol
analyzer “Wireshark” [12] can sniff the packets that traverse the vde-switch.

3.4. VirtualBox

The VirtualBox version must be 4.3 or higher [3]. To verify VDE-Switch
support in the network windows select in Attached to: “Generic Driver” in the
Name box, verify that exist VDE. In VirtualBox is difficult to set up the IP
address for the interfaces of the virtual machines before starting the VM, this
is accomplished setting the mac address in VirtualBox and in the rc.local script
read the mac address and set the IP address in the interfaces.

3.5. Vde switch

The main advantage of vde-switch [7,13] over uml switch is that any clients
can be attached to this virtual switch: VirtualBox, UML, tap interfaces, virtual
interconnections, and not just UML instances. If the vde-switches were just
connected with wirefilter [9] “patch cables” without modification, we would end
up creating a broadcast domain and switch loops which we don’t want: The
goal is to allow the packets to travel only from one host to it neighborhood, not
farther. To accomplish this, the vde-switch needs to be modified to have coloured
ports. The idea is that each port has a colour (an integer number), packets are
only passed from ports to others with different colours. Packets are dropped on
outgoing ports if this have the samecolour (same number) as the incoming port.
In this concept, the host port can have colour 1 the TAP port colour 2, while
the interconnection ports have colour 0. In this way, packets can only travel from
the host to (all of) the interconnection ports, or from one interconnection port
to the host port. However packets can not travel between the interconnection
ports, thus only allowing “one hop” connections and avoiding switch loops and
shared broadcast domains. The concept is illustrated in figure 2.

The patch against vde2-2.3.2 (current latest stable version) to add this colour
patch can be find here:

(http://www.open-mesh.org/attachments/download/152/vde2-2.3.2_
colour.patch).

The vde-switch patched can be download from here:

(https://github.com/dbritos/Network-mesh-emulator/blob/master/
vde2-2.3.2-patch.tar).

3.6. Wirefilter

The wirefilter program [6] is a tool where it is possible to simulate various
link defects and limits as example: packet loss, burst loss, delay, duplicates,
bandwidth, Interface speed, Channel capacity, Noise (damage to packets), mtu.
However as the links are only set up bidirectional, interferences can unfortunately
not be simulated with this system. For advanced testing it might be necessary
to apply the aforementioned link defects to some packets only whereas other
packets are able to traverse the emulated environment unharmed. Once you
applied the “ethertype” patch you can specify an ethertype which wirefilter will
simply forward. To apply a packet loss of 50 % to all packets except batman-adv
packets, run:

wirefilter --ether 0x4305 -1 50

This patch also allows to filter batman-adv packet types. To apply a packet loss
of 50 % to all packets except batman-adv ICMP packets, run:

wirefilter —--ether 0x4305:02 -1 50

You can specify up to 10 packet types (separated by colon). The patch against
vde2-2.3.1 (current latest stable version) can be found here:

http://www.open-mesh.org/attachments/download/106

4. Using BAMNE

In this section, we present a simple example using BAMNE to create a to-
pology of five groups of nine nodes each. This example of BAMNE emulation is
shown in the figure 7?7, and discussed in detail. In this emulation, there are 45
nodes running Batman Adv. protocol in a computer with an Intel i7 CPU and
16GB of RAM.

The software have two modes of operation, when we run the program it begins
in edition mode in this mode we can build the network topology to change to
emulation mode, in the main menu we can choose “RUN” mode and the emula-
tion begin until we choose “STOP” from main menu to finish the emulation.
In Execution mode we can’t create nodes but we can destroy nodes or link and
modify links to see how the Batman Protocol reacts to the case of nodes or links
failures.

The information shown in main windows is the following: In the first line of the
screen we can see the transmitted and received packets of each interfaces of the
highlighted node lo, eth0, ethi, eth2 and bat0 Interface. In the second and third

©® O Mesh network emulator

Figura 3. Emulator screen

line is shown the properties of the links wire filter, packets loss, channel capacity,
damage packets, delay, bandwidth of the channel, duplicate packets and channel
frequency for each frequency 2,4 and 5GH z respectively. Above each node the-
re are the number of transmitted and received packets. Inside the green circle
of each nodes is shown the node number. The links between nodes in red are
2,4GH z links and the links in green are the 5G H z links.
In the top right of the screen there are the originators and next hop list for the
highlighted node number, in this example node 66 is shown.
When the virtual machine of the OpenWrt is created a console of this machine
appears in the main windows from we can manage an run test, for example in
the figure 4 is shown the console of VM node 66 making a ping to VM node
number 71, with five hops, the delay is good and bellow 150ms, the jitter are
bellow 30ms showing that the network can support VoIP due to the values of
delay fall well within the boundaries recommended by the ITU-Recommendation
G. 114 [8].

In the figure 5 it is shown the CPU and memory usage for 45 nodes running
all together, in this chart it is possible to see that the CPU usage is less than
35 % and the memory usage is less than a 35 % of 16GB of RAM.

5. Conclusions

In this paper we propose an emulator for Batman-adv protocol, with the
capacity to evaluate the performance and the convergence of the protocol buil-

num59 [Running] - Oracle VM VirtualBox
* 1 1/2 oz Gin
= 1,4 oz Triple Sec
= 3r4 oz Lime Juice
% 1 1,2 oz Orange Juice
= 1 tsp. Grewadine Syrup

Shake with a glassful
of broken ice and pour
unstrained into a goblet.

jroot@0pentrt: #t ping 192.168.7.71
.168.7.71 (192.168
from 19Z2.168.
from 192.168.
from 192.168.
from 19Z2.168.
from 192.168.
from 192.168.
from 19Z2.168.
from 192.168.
from 192.168.
from 19Z2.168.
192.168.

time=28,
L1097
.163
.BO5
L279
.506
.28Z
.315
.131
.073 ms

i seq=0 2 ms
: seq=1
i oseq=Z
ioseq=3
: seq=4
i seq=5
i oseq=6
: seq=7
i seq=8

2.18
84

¢ oseq=9 tt 4 time

: seq=10 tt1=64 tim
.?1 ping statistics ——-

11 packets transmitted, 11 packets received, ©x packet loss

fround-trip minsavg/max 2.282,29.038,282.182 ms

root@0penkrt: ~# _

B ogd e @ @ &Right Cul

Figura 4. Delay with ping

[-] System Monitor

Processes | Resources | File Systems

CPU History

I cru2 25,7% [CPU3 30,5%

I crus 25,3% [CPUT 33,7%

I cPu4 22,0%

B crus 26,9%

[crPut 34,7%
I crus 34,0%

Memory and Swap History

Memory
5,3 GiB (34,0%) of 15,6 GiB

Swap
0 bytes (0,0%) of 15,9 GiB

Network History

190 bytes/s

@ Receiving 323,5KiB/s @ Sent
Total Received 225,8MiB Total Sent 21,3 MiB
Figura 5. CPU usage

ding the next hop table for many topologies of the network. This program has
a graphical interface to build the network and send commands to virtualbox,
vde-switch and to show graphically the originators, next hop tables, interface
properties and show the amount of transmitted and received packets for each
one. The program fulfilled the expectations proposals, it can simulate various
impediments on the transmissions links as lost packets, delay, bandwidth , sho-
wing a good performance up to 90 nodes in Intel i7 processors with 16 GBs.
of RAM. The principals goal to add to this program is to show graphically the
trace route at level two of the OSI model.

Referencias

10.

11.

12.
13.

14.

. Batman-adv-openwrt-config - batman-adv - Open Mesh, http://www.open-mesh.

org/projects/batman-adv/wiki/Batman-adv-openwrt-config
Doc-overview - batman-adv - Open Mesh, http://www.open-mesh.org/projects/
batman-adv/wiki/Doc-overview

. OpenWrt in VirtualBox [OpenWrt Wiki], http://wiki.openwrt.org/doc/howto/

virtualbox

Oracle VM VirtualBox, https://www.virtualbox.org/

SNMPD [OpenWrt Wiki], http://wiki.openwrt.org/doc/howto/snmp.server
Ubuntu Manpage: wirefilter - Wire packet filter for Virtual Distributed Ethernet,
http://manpages.ubuntu.com/manpages/natty/manl/wirefilter.1.html

VDE - Virtualsquare, http://wiki.virtualsquare.org/wiki/index.php/VDE
ITU T.: One-way transmission time. recommendation G.114 (Feb 1996)

Caini, C., Firrincieli, R., Davoli, R., Lacamera, D.: Virtual Integrated TCP Testbed
(VITT). In: Proceedings of the 4th International Conference on Testbeds and Re-
search Infrastructures for the Development of Networks & Communities. pp. 36:1—
36:6. TridentCom 08, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2008),
http://dl.acm.org/citation.cfm?id=1390576.1390620

Cerda-Alabern, L., Neumann, A., Escrich, P.: Experimental Evaluation of a Wi-
reless Community Mesh Network. In: Proceedings of the 16th ACM Interna-
tional Conference on Modeling, Analysis & Simulation of Wireless and Mobi-
le Systems. pp. 23-30. MSWiM ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2507924.2507960

Chissungo, E., Blake, E., Le, H.: Investigation into Batman-adv Protocol Perfor-
mance in an Indoor Mesh Potato Testbed. In: 2011 Third International Conference
on Intelligent Networking and Collaborative Systems (INCoS). pp. 8-13 (Nov 2011)
Combs, G., et al.: Wireshark-network protocol analyzer. Version 0.99 5 (2008)
Davoli, R.: VDE: Virtual distributed Ethernet. In: First International Conference
on Testbeds and Research Infrastructures for the Development of Networks and
Communities, 2005. Tridentcom 2005. pp. 213-220 (Feb 2005)

Johnson, D., Ntlatlapa, N., Aichele, C.: Simple pragmatic approach to mesh rou-
ting using BATMAN (Oct 2008), http://researchspace.csir.co.za/dspace/
handle/10204/3035

