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I.  INTRODUCTION  
Electricity is one of the most important and used forms of 

energy and they are widely used for different kind of needs. 
Nowadays electricity is essential for economic development 
especially for the industrial sector. Decision makers around the 
world widely use energy demand forecasting as one of the most 
important policy tools. So this issue becomes a key energy 
source in each country and an important condition for 
economic development. Reliable forecast of energy 
consumption represents a starting point in policy development 
and improvement of production and distribution facilities in 
Argentina.  

Electricity demand forecasting is a central and integral 
process for planning periodical operations and facility 
expansion in the electricity sector [1]. Demand pattern is 
almost very complex due to the deregulation of energy 
markets. Therefore, finding an appropriate forecasting model 
[2] [3] for a specific electricity network is not an easy task. 

Although many forecasting methods were developed [4], none 
can be generalized for all demand patterns. Different models 
for electric energy demand forecasting have been proposed in 
recent decades [5] [6] [7] [8], which play an important role in 
economic planning and safe operation of modern power 
systems [9]. 

These models can be divided into two categories: the first 
includes the traditional algorithms of load forecasting, 
including time series analysis, regression and gray models. In 
the second category includes latest algorithms for load 
forecasting such as neural networks and intelligent expert 
systems [10] [11] [12] [13]. This paper proposes alternatives 
for improving prediction in electricity demand [14]. 

Time series forecasting recently has a preponderant 
significance in order to know which will be the best the 
behavioral of a system in study such as the availability of 
estimated scenarios for water predictability [15], the rainfall 
forecast problem [16] [17] in some geographical points of 
Argentina, the energy demand purposes [18] [19] [20], the 
guidance of seedling growth [21], [22]. For general feed-
forward neural networks [23] [24] [25] [26], the computational 
complexity [27] [28] [29] [30] of these solutions grows 
exponentially with the number of missing features [46]. In this 
paper we describe an approximation for the problem of short-
term prediction that is applicable to a large class of learning 
algorithms [10] [11] [12] and [26] including ANN’s. One 
major advantage of the proposed technique solution is that the 
complexity does not increase with an increasing number of 
inputs. The solutions can easily be generalized to the problem 
of uncertain (noisy) inputs, such as Bayesian inference [31] 
against other generalized approaches [17]. 

The problem of short time series forecasting [32] [33] [34] 
poses a difficulty to the analysis which depend on what 
methods of estimation and prediction fit better and efficient. 
Various techniques exist as a solution to this problem, 
employing statistical and artificial intelligence techniques [35] 
[36] [37] [38]. The techniques proposed here are non-linear 
stochastic auto-regressive moving average (NAR) models 
using the energy associated [23] to series and Bayesian 
approach [17], implemented by ANN. The power consumption 



forecasts obtained using the proposed methods are then 
compared with a well-known neural network based predictor 
for a case study of Argentina. The study analyses and compares 
the relative advantages and limitations of each time-series 
predictor technique [39] used for issuing short-term electrical 
consumption forecast. The structure of the filter is changed 
taking into account the energy of the short series calculated as 
the primitive of the original and Bayesian inference. The long-
short term stochastic dependence of the time series is measured 
by the Hurst parameter, in which they are considered as a path 
of the fractional Brownian motion. A 20 percentage of the 
dataset is considered to give the prediction horizon and the 
validation data. Moreover, the next 15 time series forecasted 
values are presented by cumulative monthly historical 
electricity consumption and solutions of the Mackey-Glass 
(MG) and one-dimensional Henon equation.  

The paper is organized as follows; Section 2 presents a will 
review two methods for evolving various parameters of ANNs 
to model the NN parameters and the optimum 
architecture/weights applied to electrical time series. Section 3 
provides an overview of dataset uses and the methodology 
proposed. In Section 4, prediction results are carried out and 
highlighted the application to electrical load forecasting. 
Finally, Section 5 provides some discussions and concluding 
remarks. 

II. REVIEW OF PROPOSED NEURAL NETWORKS ALGORITHMS 
The main issue when forecasting a time series is how to 
retrieve the maximum of information from the available data 
[52].  In this work the coefficients of the ANNs filter are 
adjusted on-line in the learning process, by considering the 
two methods proposed: energy associated to series and 
Bayesian approach as a new entrance to the neural networks. 
In both cases, the criterion followed modifies at each pass of 
the time series the number of patterns, the number of iterations 
and the length of the tapped-delay line according to the long-
short term stochastic behavior of the series, respectively. 

A. Energy associated to series approach
The assumption of the method is the following [23]:  the 

area resulting of integrating the time series data is obtained by 
considering each value of time series its derivate; 
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where yt is the original time series value. The approximation 
area is assumed to be its periodical primitive:                                              
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During the learning process, those primitives are calculated 
as a new input to the ANN. The predictor filter attempts to 
make the area of the forecasted times series equal to the 
primitive real area predicted. The real area is used in two 
instances; the first one from the real time series an area is 
obtained. The H parameter associated of this series is called 
HA. On the second one, the time series data is forecasted by 

algorithm, so the H parameter from this time series is called 
HS. After the training process is completed, both sequences -
{{In}, {Ie}} and { {yn, ye}}, in accordance with the hypothesis 
that they should have the same H parameter.                               

B. Bayesian approach for tuning the neural networks
A model is most often recognized as Bayesian when a 

probability distribution is used to describe uncertainty 
regarding the unknown parameters and when Bayes Theorem 
is applied [40]. A full Bayesian analysis can lead to the optimal 
choice among a set of alternative inferences, taking into 
account all sources of uncertainty in the problem and the 
consequences of every possible selection. When a rainfall 
series is being analyzed, it is important to make use of the 
simplest possible models. Specifically, the number of unknown 
parameters must be kept at a minimum. For forecasting 
problems, Bayesian analysis generates point and interval 
forecasts by combining all the information and sources of 
uncertainty into a predictive distribution for the future values 
[53]. It does so with a function that measures the loss to the 
forecaster that will result from a particular choice of forecasts. 

The gamma distribution is chosen for this purpose [31]. 
When a Bayesian analysis is conducted, inferences about the 
unknown parameters are derived from the posterior 
distribution. This is a probability model which describes the 
knowledge gained after observing a set of data. The application 
of the regression problem [54] involving the correspond neural 
network function y(x,w) and the data set consisting of N pairs, 
input vector lx and targets tn (n=1,….,N). 

Assuming Gaussian noise on the target, the likelihood 
function takes the form:  
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assuming that the expected scale of the weights is given by w 
set by hand. This was carried out considering that the network 
function f(xn+1,w) is approximately linear with respect to w in 
the vicinity of this mode, in fact, the predictive distribution for 
yn+1 will be another multivariate Gaussian. 

III. DATA AND METHODOLOGY  
The performance of the proposed approaches is given for 

predicting the long-short term chaotic time series that have 
appeared in the literature. The normalized symmetric mean-
absolute percentage square error (SMAPE) is used as a 
performance index for measuring the quality of prediction of 
the time series. 
A time series can be actually regarded as an integration of 
stochastic (or random) and deterministic components [40] [41] 
[42] [43]. Once the stochastic (noise) component is 
appropriately eliminated, the deterministic component can 
then be easily modeled. Rainfall is an end product of a number 
of complex atmospheric processes which vary both in space 
and time. 



The standard non-parametric approaches presented in this 
work are based on stochastic techniques that assume non-
linear relationship among data that reproduce the power 
consumption demand series only in statistical sense. 

A. Power Comsunption demand series
The case study considered herein is referred to the evolution 
of total power monthly consumption demand series [44] from 
the National Interconnected System over the period January 
1980 - September 2013 of Argentina shown in Fig.1.   
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  Fig. 1. Total power monthly consumption demand series from the National 
Interconnected System of Argentina.  

B. Chaotic time series
The benchmark chosen are called MG17 with τ=17 and 

MG30 τ=30 in the forecasting. Here one of the proposed 
algorithms to predict values of time series are taken from the 
solution of the MG equation [46], which is explained by the 
time delay differential equation defined as: 
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Equation (1) is solved by a standard fourth order Runge-Kutta 
integration step, and the series to forecast is formed by 
sampling values with a given time interval. 

The algorithm uses wavelet method to estimate the H 
parameter in the time series to have an idea of roughness of a 
signal [48] [49]. Such series are considered as a trace of an 
fBm depending on the so-called Hurst parameter 0<H<1. 

Furthermore, by setting the parameter β between 0.1 and 
1.9 the stochastic dependence of the deterministic time series 
obtained varies according to its roughness. [47].  

In order to compare the results of the proposed technique 
with the results published in the literature, the second set of 
times series is chosen from the Henon equation [50] according 
to [51], where the constants are taken to be A = 1.3, B = 0.22, 
x(0) = 0 and x(1) = 0. The benchmark is called HEN. The first 
65 data points are used for training and the remaining 15 points 
are kept for validation data. 

                

IV. PREDICTION RESULTS  
The simulation results in different order approximations 

and time periods are presented in the following Table 1. The 
performance of the comparison is measured by the Symmetric 
Mean Absolute Percent Error (SMAPE) proposed in the most 
of metric evaluation, defined by, 
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where t is the observation time, n is the size of the test set,  
is each time series, Xt and Ft are the actual and the forecasted 
time series values at time t respectively. The SMAPE of each 
series s calculates the symmetric absolute error in percent 
between the actual Xt and its corresponding forecast value Ft, 
across all observations t of the test set of size n for each time 
series . where t is the observation time, n is the size of the test 
set, s is each time series, Xt and Ft are the actual and the 
forecasted time series values at time t respectively. The 
SMAPE of each series s calculates the symmetric absolute 
error in percent between the actual Xt and its corresponding 
forecast value Ft, across all observations t of the test set of size 
n for each time series s. 

In each figure are detailed the testing and computing data, 
where the testing are labeled “Validation data” and had not 
been used in the computation of the predictor filter. 

The assessments of the obtained results by comparing the 
performance of the predictor filter shows a significance 
improvement measured by SMAPE index toward Bayesian 
approach over the energy associated and NAR neural networks 
approach, all based on ANN.  

Although the difference between filters resides only in the 
model, the coefficients that each filter has, each ones performs 
different behaviors. It can be noted that even the training points 
are too short for the learning process [44], the behavior of the 
proposed filter reach the expectation for short-term time series 
prediction [26]. The POWER series presents more roughness 
than MG and HEN solutions, so the Bayesian approach applied 
to the parameter of the ANN demonstrate a level improvement, 
in which the adequate prior distribution model chosen 
demonstrate it can be used for tuning the parameters and 
outputs of the predictor filter [36]. 

TABLE I.  RESULTS OBTAINED BY THE PROPOSED APPROACHES  

POWER Energy 1.68 20.42 0.689 
POWER Bayesian 0.71 20.42 0.026 
POWER Neural 0.71 20.42 0.689 
MG17 Energy 2.92 2.80 184.56 
MG17 Bayesian 1.78 1.72 7e-06 
MG17 Neural 1.78 1.76 1.20 
HEN Energy 0.346 0.349 0.19 
HEN Bayesian 0.469 0.474 6.5e-15 
HEN Neural 0.469 0.559 13.41      

 
The Monte Carlo method was used to forecast the next 15 

values from each MG, HEN, and 18 values for POWER time 
series. Such outcomes are shown from Fig. 2 to Fig. 4.   
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                                (c)                                                          (d) 
Fig. 2. Non-linear Autoregressive (NAR) Neural network predictor filter; a) 
POWER series, b) Horizon of POWER Series, c) MG17 series with τ =17, d) 
HEN one-dimensional series with a=1.3 and b=0.22.  
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Fig. 3. Energy associated approach-based neural network predictor filter; a) 
POWER series, b) Horizon of POWER Series, c) MG17 series with τ =17, d) 
HEN one-dimensional series with a=1.3 and b=0.22. 
 

DISCUSION & CONCLUSIONS 
This paper reports the results of two different techniques, 

namely, energy associated to series and Bayesian inference 
approach for forecasting power consumption demand forecast. 
The main contribution resides only considering the associated 
Bayesian model of the ANN output to forecasts the next 18 
months taking into account the power series provided as single 
input to the ANN. The discussion of this work is to extend this 
approach with correlation variable as new entries to the ANN 
obtained between those algorithms are compared with the well-
known NAR ANN predictor for a case study of total monthly 
power consumption demand of the National Interconnected 
System of Argentina [44]. The study analyzed and compared 
the relative advantages and limitations of each time-series 

predictor filter technique, used for issuing long-short-term time 
series forecast. The structure of the filter is changed according 
the long-short term stochastic dependence method taking into 
account the energy of the short series calculated as the 
primitive of the original and Bayesian inference. 
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Fig. 4. Bayesian approach-based neural network predictor filter; POWER 
series, b) Horizon of POWER Series, c) MG17 series with τ =17, d) HEN one-
dimensional series with a=1.3 and b=0.22. 
 

Although the comparison was only performed on ANN-
based filters, the experimental results shows that the Bayesian 
method can predict electrical load time series more effectively 
in terms of SMAPE indices when compared with other existing 
forecasting methods in the literature.. 
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