Thin-Walled Structures 95 (2015) 183-195

journal homepage: www.elsevier.com/locate/tws

Contents lists available at ScienceDirect

Thin-Walled Structures

A penalty approach to obtain lower bound buckling loads for im- @CmssMark
perfection-sensitive shells

Luis A. Godoy ab# Rossana C. Jaca®“, Eduardo M. Sosa 4 Fernando G. Flores

a,b

@ Institute for Advanced Studies in Engineering and Technology, CONICET-UNC, Argentina

b Departamento de Estructuras, FCEFyN, Universidad Nacional de Cérdoba, P.O. Box 916, Cérdoba, Argentina

€ Civil Engineering Department, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, Argentina
4 Civil and Environmental Engineering Department, West Virginia University, Morgantown, WV 26506-6103, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 12 June 2015
Received in revised form
3 July 2015

Accepted 5 July 2015

Keywords:

Buckling

Finite elements
Reduced energy method
Perturbation methods
Stability

Shells

The strategy of Reduced Stiffness (or Reduced Energy) Analysis, in which selected energy components are
eliminated to account for mode interaction and imperfection-sensitivity in a simplified way, was de-
veloped by Croll and co-workers since the early 1980s. This physical interpretation allows the for-
mulation as an eigenvalue problem, in which the eigenvalue (critical load) is a lower bound to experi-
ments and to nonlinear incremental analysis. This paper considers the computational implementation of
both reduced stiffness and reduced energy approaches to the buckling of shell structures by means of
perturbation techniques and penalty parameter methods. The structural configurations of interest in this
work are cylindrical shells with or without a roof. The reduced stiffness approach has been implemented
in a special purpose finite element code for shells of revolution, whereas the reduced energy metho-
dology was implemented in a general purpose finite element code. The present results are compared
with geometrically nonlinear analysis including geometric imperfections. Achievements and difficulties
in extending the methodologies to complex problems in engineering practice are highlighted.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Attempts have been made by researchers to develop simple
computational tools to provide approximate solutions to shell
buckling problems and avoid gross errors in solutions without the
need that the user has knowledge of the complete arsenal of shell
buckling theory. James G.A. Croll promoted the use of a simple
technique based on a reduced version of the energy (or the stiff-
ness) of the shell, in which only an eingen-value problem needs to
be solved. This paper discusses ways to implement such metho-
dology in more complex engineering problems using finite ele-
ment codes.

The European approach to the analysis of shell buckling pro-
blems [1] using finite element tools identifies several possible
types of analysis, including Geometrically and Material Nonlinear
Analysis with Imperfections (GMNIA) as the “best” estimate of
buckling capacity; Geometric Nonlinear Analysis with Imperfec-
tions (GNIA); Material Nonlinear Analysis (MNA); and Linear
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Bifurcation Analysis (LBA). An intermediate method is re-
commended as a “less onerous” approach, which is based on a
combination of LBA and MNA. The recommended approach re-
quires design curves that need to be established for each geo-
metric and load configuration, which take the form of elasto-
plastic interaction curves. The parameters of such curves should be
obtained from a number of full GMNIA, and once the curves are
constructed for a specific class they can be used by performing LBA
and MNA studies for a given case of interest. The non-specialist
engineer who does not have the curves for his/her own problem is
therefore lost since the start. A specialist engineer, on the other
hand, needs to spend time and effort to develop the tools before
using them.

In the American approach the loads are specified, such as in the
ASCE provisions [3], but the engineer is left to decide what type of
analysis is suited for each case. Of course, this is a job for the
specialist engineer, because a novice may mix concepts and ap-
proaches to yield incorrect solutions.

The question of what is “onerous” in computational mechanics,
as is the concern of the European Committee for shell buckling [1],
has considerably changed over the last decades. In 2015 the “on-
erous” part of the job consists in understanding the physics of the
problem and conceptually modeling the case in hand.
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We shall not refer here to shell buckling problems in general
terms, but attention will be restricted to very thin shells, with
radius to thickness slenderness between 1000 and 2000, such as
those employed in the fabrication of storage tanks for the oil in-
dustry, which tend to buckle in the elastic range and plasticity
develops only in advanced post-buckling states. There are also
functional requirements that need to be considered, as in any case
in industry: storage tanks usually have an internal floating roof
that floats on top of the oil or fuel, and large buckling deflections
may be sufficient to block the floating mechanism, with the con-
sequence that the structure has to be left out-of-service until it is
repaired.

Regarding the nature of imperfections, one may distinguish
between global imperfections (possibly due to errors in fabrication
or damage under previous loads) and local imperfections (such as
welding defects). Following Koiter’s asymptotic formulation [2], in
the vicinity of a critical state the most detrimental shape of im-
perfection is the eigenmode associated with the lowest eigenvalue
(this is called an eigenmode-affine imperfection). Because Koiter
employed an asymptotic approach centered on a bifurcation point,
the validity of his results is limited to small post-buckling dis-
placements and small imperfection amplitudes; this however al-
lows comparisons to be made between different shapes of im-
perfections. For a number of years, imperfections were almost
exclusively assumed in the form of an eigenmode-affine
imperfection.

The choice of this shape of imperfection has also been em-
phasized in the European Recommendations in statements like:
“The eigenmodes affine pattern is the critical buckling mode as-
sociated with the elastic critical buckling resistance based on an
LBA analysis of the perfect shell” ([1], pp. 125).

The research program known as lower bound buckling based
on Reduced Stiffness/Reduced Energy Analysis (abbreviated in this
paper as RSA and REA, respectively), developed in stages over a
period starting in the mid-seventies. A summary of the main
contributions is next presented, to highlight the research
achievements made during the past 45 years.

The first stage was establishing the physics of the problem and
the basis of the methodology. Croll discussed the first account of
the lower bound approach, largely based on physical observations
on the buckling of imperfection-sensitive shells, as follows: “It is
shown that the highly unstable forms of buckling involve essen-
tially a process in which the significant membrane contribution to
resistance against incremental displacement at the initial stages of
buckling is transferred in the advanced post-buckling states to a
situation in which bending energy tends to dominate in providing
the resistance to incremental displacements” [4]. This first ap-
proach involved some speculation concerning the nonlinear pro-
cess that occurs at the passage to post-buckling states in cylinders
under axial loads.

The first systematic approach for cylinders under lateral pres-
sure was based on analytical studies reported by Batista and Croll.
Based on physical reasoning, the authors argued that “the unstable
post-critical behavior is the result of the loss of this membrane
stiffness” [5]. A simplified methodology was presented in which
“appropriate terms in the membrane potential energy are ne-
glected”. The results were supported by experiments performed by
the authors and were shown to provide a lower bound to ex-
periments of other authors as well. The extension of this metho-
dology to axially loaded cylinders was published a few years later
[6].

A second stage was the extension of the methodology to other
cylindrical shell configurations, namely stiffened cylinders. Em-
phasis shifted from understanding the physics of the problem to
providing a design methodology, thus addressing more complex
shell configurations usually found in off-shore structures and

providing simple expressions which could be used in design. Thus,
the research program addressed elastic buckling of stringer [7,8]
and ring stiffened cylinders [9,10], and combination of ring and
stringer stiffeners [11].

Extensions of the lower bound approach to shell configurations
other than cylinders were pioneered by Zintillis and Croll in a
series of papers on cooling towers under wind or lateral pressure.
Following an analysis of the energy components, the reduced
stiffness critical spectrum was obtained by suppressing the
membrane strain energy U?™ from the classical analysis, leading to
a reduced critical load
A% = Uim)ﬂc

um 4y D
where U? is the bending energy contribution [12]. This com-
putational research was supported by experiments on toroidal and
hyperboloidal shells. This was the first analysis performed using a
finite element special purpose code to model the shell, and the
code was limited to axisymmetric loading. Analysis for combined
axial and lateral loading was reported in [13]. For wind-loaded
shells, the worst stressed meridian approach was employed thus
assuming the equivalence between the asymmetric wind pressure
and a symmetric pressure. Uniform thickness was employed in all
cases [14]. Pressure-loaded spherical caps were addressed by
Goncalves and Croll [15], whereas Kashani and Croll [16] in-
vestigated spherical space domes. Other researchers employed the
methodology for composite materials [17,18], and this interest has
recently been extended to aeronautical applications [19].

A third stage involved the extensions of the methodology to
account for elasto-plastic buckling of cylinders. This was done with
simple analytical expressions and was reported in Refs. [20-23].

A fourth stage was the computation of nonlinear analyses,
which were performed analytically by Yamada and Croll [24-26]
using a nonlinear Ritz analysis.

The best readings reviewing the lower bound approach were
presented by Croll as a design methodology [27,28] in which de-
tails of the motivations and achievements at each stage are dis-
cussed in an amenable way.

In summary, the RSA/REA studies by Croll and co-workers were
based on

® Analytical methods to obtain explicit expressions for lower
bound buckling loads which could be used in design. Use of
finite element models was the exception in the work of Zintillis,
because explicit expressions could not be found for the con-
figurations of interest.

® Shells with uniform thickness were addressed. Although this
may be seen as a trivial simplification in real cases, modeling
thickness changes brings some additional difficulties to the
application of RSA or REA.

® Shells considered were subjected to axi-symmetric loads (ei-
ther axial or lateral pressures). Cases of wind-loaded shells
were not treated as asymmetric loadings but some form of
simplification was used to model axi-symmetric pressures.

® Terms “Reduced Stiffness” and “Reduced Energy” were used
indistinctively in the literature. In some cases, although energy
expressions were employed, reference to RSA was made.

This paper is concerned with extensions of the methodology to
more complex engineering configurations in terms of loads and
shell thicknesses, for which finite element analysis is mandatory in
order to obtain results. Specifically, results are presented for can-
tilever cylindrical shells, both with and without a fixed roof.
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2. Perturbation analysis
2.1. Classical bifurcation analysis

In its classical form, a stability analysis is limited to the solution
of an eigenvalue problem, also known as LBA, and requires the
computation of a linear equilibrium path as

K%F + P =0 @)

in which the linear stiffness matrix K° of a shell has membrane
and bending components, i.e. K® = K™ + K".

Solution of the linear equilibrium problem at a load level (say
A=1) yields the displacements along the fundamental equilibrium
path a¥, from which the stress resultants N are obtained. This is an
ingredient of the initial stress (or load-geometry) matrix K¢ [29]

G _ [N\ F
K _—fﬁNﬂdA 3

where  is the rotation vector. In LBA, the following eigenvalue
problem is solved:

m b RGBS — KCaHC —
[(l( +K)—“(]q> =K% =0 @

where the lowest eigenvalue A€ is the classical critical load and
®°C is the associated eigenvector or critical mode, and K€ is a
singular matrix at the critical state.

To understand the main concepts involved in the Reduced
Energy/Stiffness Methods, it is instructive to consider first a per-
turbation expansion of the eigenvalue problem in LBA.

2.2. Perturbation via explicit substitution

Penalty parameters have been used in finite element analysis
for some time (see for example Ref. [30], pp. 88). Consider the
penalty parameter « as a scalar perturbation parameter, with va-
lues in the range 0 < o < 1, and we seek to obtain the solution to
this problem in terms of a. The reason to introduce a penalty
parameter in the formulation, rather than using a fixed value =1
to completely eliminate the membrane contribution is that the
passage from the classical bifurcation analysis (LBA) to gradually
decreasing the membrane contribution can be observed in more
detail. This also serves to calibrate element performance through
its evolution with a. The complete elimination of membrane ac-
tion at the critical state is thus a limiting case which may in-
troduce some computational difficulties.

If one assumes

K™a) = (1 - o)K™ )
Then the eigenvalue problem becomes

[(1 — K™ + K° - z*I(G]qu =0 ®)

Notice that A* does not coincide with A<, and @* is not the same
as @F. For =0, the classical eigenvalue problem is recovered,
whereas for a=1 the complete elimination of the membrane
contribution is achieved. The exact solution of Eq. (6) is the basis of
the RSA, in which the stiffness rather than the energy is affected by
a. The solution can also be obtained by the perturbation analysis
explored in this section up to quadratic perturbation terms.

The solution of this problem (in terms of the eigenvalue A* and
eigenvector ®*) is expanded up to second order terms as

1
15@) = A9 + aa® + Eaz/l(Z) + o

1
o*(a) = ®? + a0V + —a?0? 4 ...
(@ 3 %

Using the notation commonly employed in the General Theory
of Elastic Stability [31,32], the unknowns in the expansion are
derivatives with respect to the perturbation parameter as follows:

d"e
dj(") —
da" ®

The discussion that follows attempts to illustrate what con-
tributions to Eq. (7) may be relevant in different cases. The term
A" is non-zero and it will be shown that there is a significant
change in the eigenvalue due to the change in the stiffness as
implied by a. But the contribution @ depends on the specific
load and shell configurations considered. Finally, the dependence
of A on @V will be shown, so that cases in which @"=0 do not
present higher order contributions in A.

At the critical state, the condition established in Eq. (4) is sa-
tisfied. To evaluate the unknowns and thus have the eigenvalue
and eigenvector of the problem defined in Eq. (7) in explicit form,
use is made of perturbation techniques. The variables in Eq. (7) are
substituted into the original eigenvalue problem,

d™
2™ = F:

[(1 - oK™+ K° - (/1<°> +aid® 4+ %MM)KG]

(45(0) + ad® + %azé(z))

=0 ©)

The above equation is expanded and all terms with equal ex-
ponents in « are collected

a[K o]
+ a1[l<c¢<l> - (K™ + /1(”](6)@(0)]
+%a2|:l(c<15(2) - 2(K™ + 2 VK)o D ,1<2>KG<1><°)]

2(
+%a3[l(cq§(3) — 3(K™ + 2VKC)o? — 31KV

+...]+...=0 (10)

According to the fundamental theorem of perturbations [33]
because the perturbation parameter is independent of the ex-
panded variables, Eq. (10) is zero only if each term multiplied by
the perturbation parameter is independently zero. Thus, the per-
turbation equations of order zero, one, and two, become:

K9 =0
Ko = (1(m + /1(1>KG)<1>(0)

Cp@ — MG\ @KGCp©®
K@ = 2(K™ + 2K )0V + 2PK o a1

The structure of all perturbation equations is similar. All lines
contain the term K*®™, but only for the zero-order perturbation
equation this represents an eigenvalue problem, whereas for the
higher order equations they are linear systems of equations. Fur-
ther, the structure of terms on the right hand side is similar.

Because K€ is a singular matrix, the perturbation equations of
order one and higher order contain fewer independent equations
than unknowns, and to achieve a solution it is necessary to add
another scalar condition. Solution of first order eigenvalue cor-
rection is achieved by use of the contraction mechanism [31], in
which each term of the perturbation equation is pre-multiplied by
the eigenvector @, and because of symmetry of the system, the
term on the left of Eq. (11) becomes zero. This allows computing
the derivatives of the load factor before computing the derivatives
of the critical mode. Using this procedure, the first and second
order contracted forms become:
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(D(O)T(Km + /1“)1(6)<D(O) =0
OT, MRS\ 2)pOTKGHO —
200T(K™ + 2VKC)oV + 2P0 K D@ = 0 12)

Notice that the contracted form of the perturbation equations
are values of energy, as employed in the REA.

2.3. First order perturbation terms

In Eq. (10), terms that multiply a® are the zero-order pertur-
bation equation, which is a classical eigenvalue problem and can
be solved to obtain the scalar A and the vector @, Also in Eq.
(10), the terms multiplied by ' form the first-order perturbation
equation and are the second line in Eq. (11). In this case, there are
more independent unknowns than conditions, so that use of the
contraction mechanism is required. The contracted form of this
equation is the first line in Eq. (12), from which

o OTKMp©®
~ @OTKSp® 13)
Clearly, AV is not zero and there is at least a first-order effect

on the eigenvalue. Notice that from the zero-order perturbation
equation, one can write

l(l) —

HOTKSHO — ﬁ(pmﬂ(l(m + K)o .
Thus, substituting Eq. (14) into (13) yields
20— 2@K"e”
P OT(K™ + K)o 15)

All terms in the above equation can be computed using ABA-
QUS [34], ANSYS [35] or other general purpose finite element
programs. The negative value of A!) is consistent with the re-
duction assumed in K™. This scalar can be computed from Eq. (15)
using the available results.

To continue with the evaluation of the eigenvector derivative

(p(”, we now return to the first order perturbation
equation (second line in Eq. (11))

Cp(l Dy G) 50

K@ = (K™ + A VK )o® 16)

K€ is a singular matrix, which brings some additional difficulties
into the solution.

There are two ways to obtain the first order derivative ¢'*: the
first one is to solve it directly from the Eq. (16). Because the
buckling mode which participates in the eigen-problem does not
have a specific norm, what is usually done is to assign a unit value
to one of the components and calculate the rest using this scaling
rule. Without loss of generality, we can assume that the largest
component in ¢ is the first one, and normalize it in the form
@1=1. This yields (p1(°)=1, and null values for the derivatives of
the first component, ¢;P'=¢,?=0. Under these conditions, Eq.
(16) can be solved. In practical terms, this can be performed by
elimination of the first column in Eq. (16) (because ¢,’=0) and
the first row to keep the symmetry in the system.

There is an alternative way to solve @), which is to impose the
condition that the derivatives of the buckling mode should be
orthogonal to the original eigenvector.

This completes the computation of variables in the first order
perturbation equation.

The value of first derivative of 4, i.e. A1), is non-zero, so that
there is an effect of & on the eigenvalue. However, not necessarily
there is an effect on the eigenvector: This is a very common si-
tuation, and we shall find examples of this in the forthcoming
sections.

2.4. Second order perturbation terms

To obtain the second order derivatives one must return to the
second order perturbation equation (third line in Eq. (11)). The

contracted form of the second order perturbation
equation (second line in Eq. (12)) becomes
2 oOT(K™ + 1K) ™ + 2P0 OTK @ = 0 a7

where the unknown A can be solved as
OT(K™ + 2K ™
o OTK @ (18)
or else, in terms of the stiffness matrix K°,
>VT(2OK™ + 1 VK%)0 @
HOTKOHO 19)

Notice that if @) was zero, then A‘®) would also be zero, and
the problem would only have first-order changes.

The second derivative of the eigenmode can be computed from
the second order perturbation equation, third line in Eq. (11)

2@ =-2

i@ =-2

Ko@ = 2(1("1 + /1<1>KG)q><“ + APKCp®

in a way similar to the first order. Under the assumed nor-
malization, the first component @, should be zero, and this can
be implemented by deleting the first column and the first row.

The perturbation analysis presented above is not currently an
alternative way to carry out the computations, but it is mainly a
way to help explaining what is retained and what is missing in
RSA and REA. However, it cannot be easily solved using a general
purpose code, except for AV,

The above ideas will be next employed as a background to
discuss lower bound using RSA and REA strategies.

3. Reduced Stiffness Analysis (RSA)

The procedures for implementation of the Reduced Stiffness
Analysis (RSA) and Reduced Energy Analysis (REA) and have been
reviewed in [27] and [37], just to cite a couple of references. The
necessary background to the energy approach to investigate sta-
bility of elastic systems was originally developed by Koiter for
continuous systems [2], followed by developments for discrete
systems [31,32].

3.1. Methodology

The RSA (also the REA presented in the next section) starts by
exploring the energy components of the shell in the classical ei-
genmodes, including membrane and bending energy contributions
and load potential. Depending on the shell and load considered,
some of these energy contributions are positive and others are
negative. Positive energy components contribute to the stability of
the shell, whereas negative components tend to de-stabilize the
shell. The main assumption in the RSA is that positive stabilizing
components are lost in the buckling process due to coupling be-
tween geometric imperfections and nonlinear effects. Under lat-
eral pressure, it has been shown that membrane components are
eroded in cylindrical shells [27]. Thus, reducing the membrane
energy contribution is carried out in the RSA, and in the limit, as
the membrane contribution is eliminated, a lower bound is
reached. This approach has been extensively validated for simple
shells by comparison with experiments and with GNIA computa-
tions, at least for cases of uniform pressure.
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In the RSA membrane components in the linear stiffness matrix
K are selectively eliminated, but this may be more conveniently
written in terms of a penalty approach using a penalty parameter
a, as explained in the previous section, with values between zero
and one. The modified LBA becomes Eq. (6),

[(0 - K™+ K*) - 2KC |0 = 0

The solution of this modified eigenvalue problem is identified
as \*, @*, which depend on the adopted value of a. If @— 1, then
the formulation becomes the classical RSA. It has been shown that
a lower bound is obtained for a close to one, and not necessarily
one [38,39].

Notice that the equilibrium condition yielding NF is not affected
by a. The linear equilibrium path that serves to identify A is the
same path from which A* is calculated.

The knock-down factor 7 is usually employed to normalize
results in the form

A=At (20)

Because @* has not been limited to coincide with @€, the ei-
genmodes may change from the classical analysis to the RSA, thus
providing more flexibility to the analysis. Thus, higher order terms
in the perturbation expansion described in Eq. (7) are auto-
matically taken into account.

The drawback of RSA is that the procedure can only be im-
plemented in a special purpose code by modification of the for-
mulation [40,41], but it has not yet been possible to implement it
in general purpose code like ABAQUS or ANSYS.

3.2. Additional complexities faced in practical engineering situations

In many shell problems, the structural analysis requires taking
into account the step-wise variable thickness of the cylindrical
shell. In fluid storage tanks, this is a consequence of having vari-
able pressures in height, and the technological constraint to fab-
ricate the shell by means of courses each with uniform thickness.
This induces buckling modes that affect the top (thinner) courses
of the cylinder, whereas no significant displacements occur in the
lower (thicker) courses.

A second important feature arises under wind pressures:
buckling is dominated by positive pressures at windward and the
buckling mode is localized in that region, so that small displace-
ments occur around the circumference away from windward.

Those differences in regions for which large displacements are
expected at buckling versus regions unaffected by a buckling mode
poses new questions not envisaged under uniform pressure/uni-
form thickness configurations: On what part of the shell is the
membrane contribution being eroded at buckling as a con-
sequence of imperfection sensitivity? Should this stiffness erosion
be assumed on the complete surface of the shell (here identified as
Complete RSA) or should it be restricted to the region in which the
LBA buckling mode occurs? In the last case (which is here iden-
tified as Selective RSA), how do large stepwise changes in mem-
brane stiffness between regions with reduced membrane con-
tribution affect the evaluation of modes consistent with GNIA?
Some of these questions are next discussed with reference to
examples.

4. Reduced Energy Analysis (REA)

The Reduced Energy Analysis (REA) has been described by Croll
and co-workers [27,28], and a slightly different formulation was
given in Ref. [37]. An alternative brief presentation is given next, in
which it is shown that the method can be derived from the

perturbation equations of Section 2.
4.1. Methodology

Returning to the expansion of the eigenvalue defined in the
first line of Eq. (7), up to first order terms, the solution reads

POTKMpO®

4=1%1 ~a OT(yem . 1¢b) O
@ (K +K)¢> 21

After some algebraic manipulation, this can be written in the
form

A=[1=al - pp® 2)
where
o OTKPp©
n= T Km Kb (0)
DOT(K™ + K)o 23)

This value of # has been identified as the knock-down factor in
the REA [27]. Egs. (22) and (23) are the basis of the REA, in which
the energy is reduced by a factor . Because the classical eigen-
vector @© has been used up to this point, then the modified ei-
genvalue has been calculated based on the unmodified
eigenvector.

The extreme value a=1, for which complete annihilation of the
membrane contribution occurs, leads to

* = ) © A
¥ =ni® else n O 24)
which is the lower bound A* employed in Croll's work [27].

In the Theory of Elastic Stability, the following notation is
usually employed [32]

U™ = @OTK"@@ and U = @OTK @@ (25)

in which U?™ and U?" are energy components in the critical
mode. Substituting into Eq. (25), one can write

U2b
T (26)

This is the knock-down factor used in the REA if the membrane
energy is completely eliminated, and the results coincide with
those of Eq. (1).

One of the limitations of implementing this REA in a general
purpose code like ABAQUS is that it does not allow for separate
computation of membrane and bending energy components,
which are merged in any finite element package.

4.2. Metal shells modeled as a composite material

Sosa et al. [37] showed a simple way to implement the REA by
modeling the isotropic metal shell as a composite material. Thus,
by assuming a more complex material model, one may employ a
constitutive matrix of a composite as in Classical Lamination
Theory [42] [43]

{m B [:T g]{’i} @7

where A is the membrane sub-matrix, whereas the bending
sub-matrix is D, given as

A]l A]2 0 Dll D12 0
A=|Ay Ap 0 | D=[Dy Dy 0
0 0 As 0 O Dg (28)
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where B is the bending-extension coupling matrix, which is a
null matrix for symmetric laminates. The REA is implemented by
adopting a reduction in all or selected membrane components of A
with a penalty parameter a. Notice that by affecting the mem-
brane energy of the shell, a different shell theory is being assumed.

The REA computations follow this sequence:

® The classical eigenvalue problem is solved, leading to AS, ®C.

® The mode shape ®¢ is imposed as a displacement field in a
linear static analysis of the shell as a composite with a=1. The
strain energy is computed, and this is the term (U>™+U?"),

® The mode shape @€ is imposed as a displacement field in a
linear static analysis of the shell as a composite with a#1. The
strain energy is computed. This is [(1-a) U?™ + U?"].

® The reduced load is calculated as the ratio between reduced
and full energy values at the critical state.

5. Numerical results for cylindrical shells with a fixed conical
roof

Benchmarks for vertical aboveground tanks have been devel-
oped by the authors in previous works and are employed here to
highlight features and shortcomings of the methodology under
discussion. These benchmarks have been extensively used in the
literature to investigate buckling of fluid storage tanks.

5.1. Geometry of the shells considered

A set of six tanks with conical roof having 0.24 < H/D < 0.95
and variable thickness was originally investigated by Virella et al.
[44] as a benchmark. Interest in these cases arises because the
buckling modes are localized at the top courses of the cylinder and
the static buckling behavior and imperfection sensitivity are al-
most the same. Essentially, this is a problem dominated by bi-
furcation behavior and as such the benchmark is representative of
a class of shell problems.

The specific geometries considered are shown in Fig. 1, where
each model is identified as MC1-MC6. In all cases reported in this
paper, American Petroleum Institute [45] regulations were used to
evaluate the shell thickness ( Table 1).

5.2. Shells under uniform pressure, for which the LBA eigenvector is a
good approximation (or @=0)

5.2.1. LBA and GNIA results under uniform pressure

For each configuration of this benchmark, LBA computations
were performed under uniform pressure using ABAQUS to find the
classical critical load A%; and some results are indicated in Fig. 2 for
MC2, MC4, and MC6. The buckling modes have a sinusoidal shape
with a number of circumferential waves j that depend on the H/D
configuration. For example, the eigenvector for MC2 has 23 full
waves in the circumferential direction.

Table 1
Tanks with conical roof. Thickness at each steel course for models MC1 to MC6.

Shell course ~ MC1 MC2 MC3 MC4 MC5 MC6
t [mm)] t [mm)] t [mm)] t [mm)] t [mm] t [mm)]

1 9.5 12.7 175 20.6 25.4 28.6
2 7.9 111 159 17.5 222 254
3 7.9 7.9 12.7 15.9 20.6 254
4 7.9 111 12.7 175 222
5 7.9 9.5 111 15.9 20.6
6 79 7.9 12.7 19.1
7 7.9 7.9 111 15.9
8 7.9 7.9 12.7
9 7.9 111

10 7.9 7.9

11 7.9

12 7.9

Fig. 2. Tanks with conical roof, LBA buckling modes for (a) Tank MC2: A€=2.159,
j=23; (b) Tank MC4: 21°=2.323, j=21; and (c) Tank MC6: 1“=2.314, j=21.

GNIA was also performed for the shells using eigenvector-affine
imperfections, i.e. imperfections with the same shape as the LBA
eigenvector associated with AC. Computational evaluation of the
nonlinear equilibrium path is a relatively simple task using com-
mercial software like ABAQUS or ANSYS. Results of equilibrium paths
are shown in Fig. 3 for four of the tanks (MC1, MC2, MC4, MC6) and
for different imperfection amplitudes expressed as fractions of the
minimum course thickness (ty,) corresponding to each model.

The knock-down factor 7 depends on £ and reduces from =1
at £=0 (perfect shell) to a value given by the maximum in the
path.

In MC1, &/tmin=0.5 is the imperfection amplitude for which a
maximum still exists in the equilibrium path and # becomes 0.72
for that case. For higher amplitudes £ the path does not show a
maximum and the problem ceases to be dominated by buckling.
All six cases have similar imperfection-sensitivity curves as illu-
strated in Fig. 4, with n=0.72.

Finally, the mode shape at buckling as computed from LBA is
the same as the mode identified via GNIA at the maximum in the
equilibrium path; this is an important result because it indicates
that one should not expect to have a mode change in the RSA or
the REA. In terms of the perturbation expansion presented in
Section 3, this means that the first-order eigenvector correction is
zero, i.e. PV =0.

An analysis of the energy contributions at the critical state (as
obtained from LBA) for different harmonics is shown in Fig. 5 for
MC4. Unlike the case of a cantilever cylinder, the shell with a fixed

MC
MC

e if ]

"H/D=024 H/D = H/D = 0.56

H/D=0.63 H/D=0.79 H/D =0.95

Fig. 1. Tanks with conical roof, MC1-MC6, with step-wise variable thickness.
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Fig. 4. Compilation of imperfection sensitivity curves for models MC2, MC4, MC6
under uniform pressure.

roof does not show a unique minimum but has two: one is asso-
ciated with the cylinder and the second one is due to the influence
of the roof.

For a low number of circumferential waves j=5 there is a
minimum due to the cylinder mode, whereas a second local
minimum occurs for j=18. Regarding energy components, the
membrane contribution dominates low j modes, which rapidly
decays with an increase in bending contribution. But there is a
new increase in membrane component prior to the second local
minimum and a decrease in bending contribution. Passing the
second minimum, the membrane energy decays and the bending
energy increases.

2.0
Model MC4 —— Umss

= 15 Umtt
;Zc ——Ubss
= -+ Ubtt
Y 1.0 —Umst
>
=) —+—Ubst
@
f= -=-Um
w

0.5 -+ Ub

U
> D T e
0.0 1 i =t

17 20 23 26 29 32 35 38 41 44
Mode

2 5 8 11 14

Fig. 5. Tanks with conical roof, energy contributions for model M4, as a function
of number of circumferential waves j.

For the first local minimum, 82% of U™ is contributed by the
meridional component Ug and 17% is due to the shear Ug. The
hoop contribution U is negligible in this case.

5.2.2. Application of RSA

A lesson learned from the perturbation analysis is that one
should consider the possibility of having changes in both eigen-
value and eigenvector. However, there are situations in which
D=0, so that ®P= P is the critical mode. This can be ob-
served by comparison of between the classical LBA and the GNIA
modes.
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Fig. 6. Tanks with conical roof, under uniform pressure. RSA results for Tanks MC2,
MC4, and MCB6.

Implementation of the RSA has been carried out in this case
using a special purpose semi-analytical finite element code ALREF
[40], which is capable of performing LBA as well as initial post-
critical behavior [36,41]. Because this is an in-house code, changes
in the computations can be easily introduced to reduce the
membrane contribution to the stiffness of the shell.

Plots of 7 versus penalty parameter a are shown in Fig. 6 for
stiffness reductions affecting the cylinder, whereas the stiffness of
the roof remains unchanged. Each curve shows a decrease in 7
with increasing «, but this change is severe for 0 < a < 0.4 and far
less pronounced for higher values of a.

Shell configuration MC2 (H/D=0.4) shows for a=1 in Fig. 6 a
lower bound equal to #7=0.67, which is 7% lower than the value
obtained with GNIA. The results for MC4 and MC6 for a=1 tend to
1n=0.6, which is 17% lower than that given by GNIA. Thus, the
knock-down factors calculated with RSA with a=1 represent a
lower bound with respect to nonlinear analysis and can be used
with confidence.

In this research we are also interested in the identification of
the buckling mode, so that results with RSA were obtained in all
cases and for all values of a. It was found that the quality of the
mode becomes poor as o« approaches 1, because the complete
elimination of membrane energy produces excessive flexibility.
The problem can be solved if ®=0.9 is adopted for the mode in all
cases instead of a=1. Notice that knock-down factors slightly in-
crease for a=0.9, being 4% lower than GNIA for H/D=0.4, and
12.5% lower than GNIA for 0.63 < H/D < 0.95.

5.2.3. Application of REA

The equivalent composite material has been employed to solve
the same benchmark. Eight different finite elements implemented
in ABAQUS were initially investigated to perform computations,
and it was found that element STRI3, a fully integrated triangular
element originally developed by Batoz et al. [46], showed the best
performance by converging to the analytical solution of REA [37].

The lower bounds results obtained with GNIA (Fig. 4) show that
the mode shape does not a change between the classical LBA and
the GNIA computations.

Fig. 7 shows the REA by means of the penalty approach for
MC1, MC2, M(C4, and MC6. Imperfection sensitivity in cases MC2,
MC4, and MC6 should be approximately the same because the
tanks buckle at the top of the cylinder in a local mode.

Under uniform pressure, the results are close to 7=0.72 ob-
tained with GNIA. One of the differences shown in Fig. 7 is that not
all three cases considered tend to the same value as the penalty
parameter « tends to 1: the shorter tank (MC2, H/D=0.40) tends
to #=0.77, a slightly higher value than #=0.74 obtained for the
other two cases (MC4 and MCB6, i.e. H/ D=0.63 and 0.95). Although
these results do not represent a true lower bound to GNIA, they
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Fig. 7. Tanks with conical roof, uniform pressure. REA results for Tanks MC2, M(C4,
and MC6.

are sufficiently close (7% and 3% higher) as to be used with
confidence.

Unlike what was observed in RSA, the present results using REA
tend to a constant value as @ — 1. Notice that there is a remarkable
similarity between the curves of knock-down factor # in terms of
perturbation parameter in Fig. 7 and those of imperfection-sensi-
tivity in Fig. 4.

Modes are not calculated using REA since the eigenvector as-
sociated with the lowest classical eigenvalue in LBA is assumed to
occur at the lower bound.

REA results under uniform pressure are encouraging and show
a possible way to implement the methodology in finite element
software like ABAQUS, without introducing any modification in
the code, simply by using its present capabilities.

5.3. Shells under wind pressure, for which the LBA eigenvector is not
a good approximation (or @1+0)

Wind buckling of thin-walled shells has been extensively illu-
strated in the literature for individual shells, as well as overall
reports of buckling of many tanks occurred during one wind storm
[47]. Shell problems under wind loading are typical cases in which
the classical bifurcation eigenmode does not coincide with that
obtained from GNIA. The only early work involving wind pressures
were reported by Zintillis and Croll [14] for hyperboloids of re-
volution (cooling tower shells); however, buckling using REA was
estimated for axisymmetric pressure and the results were ex-
tended to wind by adopting the “Worst Stress Meridian” and
“Worst Pressure Meridian” methods. Comparisons with wind
tunnel tests showed differences in the order of 30%, and a number
of reasons may serve to explain such differences.

5.3.1. LBA and GNIA studies under wind pressure

Wind pressures were modeled according to ASCE 7 [3]. Under
wind pressure, the buckling mode computed by LBA is localized in
the region at windward and on the top courses of the shell, where
the thickness is a minimum, as shown in Fig. 8. It can be seen from
the plots that the buckling region is almost identical in all cases
except for MC1, in which case the shell is so short that it cannot
develop the same mode as in the other cases. The lowest eigen-
value (A°=2.50 KPa) is computed for the tallest shell MC6, with H/
D=0.95 (Table 2).

GNIA studies for the same shells under wind were computed
with ABAQUS, and plots for MC1, MC2, MC4 and MC6 are shown in
Fig. 9. For imperfections up to £=1.0 tyy, the equilibrium paths
show a maximum before the path drops.

The imperfection-sensitivity curve (Fig. 10) indicates a knock-
down factor of #7=0.66 for H/ =0.24, and #=0.58 for the other
three cases; these are lower values than those obtained under
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Fig. 8. Tanks with conical roof, under wind pressure. Lowest eigenvectors A€ obtained by LBA.

Table 2
Tanks with conical roof, under wind pressure. Lowest eigenvalue obtained with LBA
(ALREF).

Model MC1 MC2 MC3 MC4 MC5 MC6
H/D 0.24 0.40 0.56 0.63 0.79 0.95
1€ [KPa] 3.89 2.55 2.92 2.51 2.54 2.50

uniform pressure, and are target values which should be estimated
by lower bound methods as RSA and REA.

Some of the key differences between wind loaded and uniform
pressure loaded shells are first, mode localization, and second,
mode differences between LBA and GNIA.

5.3.2. Application of RSA: complete reduction in membrane
contribution

The in-house code ALREF [40] was used to perform the RSA
computations, with changes in the code to account for reductions
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in the membrane contribution. Implementation of RSA in this case
involves reducing Ug; and Us: + Ugt by using a penalty parameter
a.
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As a first approach, the RSA was applied to the complete cy-
lindrical shell, so that reductions in membrane stiffness were
adopted on the complete cylindrical shell. This is a questionable
approach, since there are regions of the shell which are not af-
fected by the buckling mode, and their stiffness would anyway be
reduced, thus modeling a very flexible shell. Results for a=1 are
summarized in Table 3, and show reductions more severe than
those obtained with GNIA.

In this case, there are differences in mode shape between LBA
and GNIA solutions. Correct buckling modes predicted by GNIA
present large deflections only in the windward region, with an
effect known as “mode attenuation” around the circumference,
thus becoming a localized mode. For the leeward region of the
shell there are small deflections as obtained from classical buck-
ling studies. The mode localization affects not just the meridional
but also the circumferential direction.

5.3.3. Application of RSA: selective reduction in membrane
contribution

An improved solution is obtained by using a selective stiffness
reduction, in which only the regions in which a buckling mode
develops are affected by a reduction. This region affects the top
courses (with thinner shell, where buckling occurs). Numerical
results are shown in the last column of Table 3 for a=1, and in
Fig. 11 for all values of a. Differences in # with respect to GNIA are
of 23% for H/D=0.24, 12% for H/D=0.40, and 3% for 0.63 <H/
D < 0.95.

The results in a plot # versus a in Fig. 11 are lower than GNIA as
a— 1, but the complete elimination of membrane stiffness (a¢=1)
contribution around the circumference under wind yields a spur-
ious mode. To get the correct eigenmode, some membrane energy
must be retained in the analysis, and this can be done by adopting
a value of o in the order of 0.80 instead of 1.

Thus, improving the solution in this case requires that the
method should be applied on the part of the shell in which a
buckling mode develops. Using semi-analytical finite element
codes like ALREF [40] or BOSOR [49], this can be done in the
vertical direction to account for thickness variations, but estab-
lishing zones around the circumference with variations in mem-
brane stiffness is not possible. Assigning different stiffnesses in the
circumferential direction requires the use of fully two-dimensional
shell elements. A more detailed discussion of implementing RSA in
cases under wind may be found in [50].

5.3.4. Application of REA

Wind loaded shells display such behavior that one cannot as-
sume that the classical eigenmode is also the same deflection
pattern associated with GNIA or the penalty formulation.

As said before, the lower bound using GNIA is 7=0.6. REA, on
the other hand, provided higher values in the range 7=0.76-0.79,
and with small variations among them, as seen in Fig. 12. This
convergence of REA to higher knock-down factors than GNIA re-
mains as a challenge to the REA, and, as reported by [48], the

Table 3
Tanks with conical roof, under wind pressure. Results of RSA for wind loaded shells
MC1-MC6, with penalty parameter a=1.

Case H/D n

U™-U&-UQ (reduction in the
complete cylinder)

U™M-Ug&-Ug (reduction in the
top courses)

MC1 0.24 0.51 -

MC2 0.40 0.51 0.51
MC4 0.63 0.54 0.56
MC6 0.95 0.56 0.56
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Fig. 11. Tanks with conical roof, wind pressure. RSA results using selective stiffness
reduction.
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Fig. 12. Tanks with conical roof, wind pressure. REA. As reference, the lower bound
using GNIA is n=0.6.

problem has not been solved at present.

6. Numerical results for cantilever cylindrical shells

The simplest form of storage tank is a cantilever cylinder which
is opened at the top. However, this shell form behaves in a very
different way from shells with a roof, and their buckling modes
under wind occur in a limit point type of behavior. Because of
space constraints, only problems under wind will be discussed in
this section.

6.1. Geometry of the shells considered

To illustrate the use of RSA and REA methodologies, cantilever
cylindrical shells with differences in geometric characteristics are
considered, as shown in Fig. 13. The benchmark was originally
discussed by Godoy and Flores [51]. In Fig. 13 and Table 4, the
Batdorf parameter Z is given by

M1
H H/D=0.17
Z=212
3
- D
M2
H/D =0.25
Z=417

3 3
L1 L1

Fig. 13. Four cantilever cylinders considered as benchmark.
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Table 4
Geometric properties of cantilever cylinders considered.

Model Diameter Height Thickness Non-dimensional parameters
D [m] H[m] t[mm] H/D R/t z
M1 24.0 4.0 6 0.17 2000 212
M2 14.0 35 6 0.25 1750 417
M3 9.0 45 5 0.50 1500 1431
M4 5.0 5.0 2 1.00 1250 4770
H 2
z=—/(1-v
Rt ( ) (29)

where H is the tank height, R is the tank radius, t the course
thickness (assumed constant for this set of models) and v is
Poisson's ratio.

6.2. LBA and GNIA studies under wind pressure

This problem was originally solved in Ref. [51] and results of
Ref. [48] are reported next. LBA studies using element STRI3 in
ABAQUS yield eigenvalues A€=2.23 KPa for M1; A=2.14 KPa for
M2; A€=1.69 KPa for M3; and A = 1.52 KPa for M4. As shown in
Fig. 14, for the shortest shell with H/D=0.17 (identified as M1),
GNIA results yield 7=0.60. On the other hand, the tallest shell M4
with H/D=1, leads to #=0.95. Thus, significant variations in im-
perfection-sensitivity are to be reproduced by numerical studies
using RSA and REA ( Fig. 15)

Further, the results show significant differences in buckling
mode as predicted by LBA and GNIA studies, and the two shapes
are shown in Fig. 16 using the same normalized maximum am-
plitude of deflection.

6.3. Application of RSA

Based on experience using the methodology, results using RSA
are shown next (Fig. 17) for two of the cases, M1 and M2. For M1,
complete elimination of U™ leads to #=0.52 (13% lower than
GNIA) which is a true lower bound; whereas if only Ugs or Ugs +
U were eliminated, then an unacceptable value #=0.71 would be
obtained. A similar situation is obtained for the other models M2
to M4 investigated.

As mentioned before, problems with RSA arise not in terms of
buckling loads but in the context of the deflected shape at buck-
ling. Take model M1 again, with full elimination of U™, there are
spurious modes with large amplitude displacements at €=80°,
which do not exist in GNIA. As said before, the application of RSA
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Fig. 16. Cantilever cylindrical shells under wind pressure. Differences in mode
between LBA and GNIA studies for model M1.

affecting just U™ at windward requires of a full two-dimensional
element and is not possible to be done with semi-analytical for-
mulations like ALREF or BOSOR.

This problem has been solved in the penalty formulation by
adopting a value o less than 1, say 0.90, in which case the correct
buckling mode is recovered without the presence of spurious
modes. In conclusion, for wind loaded cantilever cylinders, the
penalty approach allows computation of correct lower bounds
with a=1, but if both eigenvectors and eigenmodes are needed,
they should be computed a=0.9.
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Fig. 14. Cantilever cylindrical shells under wind pressure, eigenmodes affine imperfection: first mode, GNIA results. Equilibrium paths (a) M1 (H/D=0.17); and (b) M4 (H/

D=1.00).
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Fig. 17. Cantilever cylindrical shells under wind pressure, RSA results.
6.4. Application of REA

Use of REA as explained before in which mode preservation is
assumed between LBA and GNIA, leads to conflicting results, as
shown in Fig. 18. All imperfection sensitivity curves became almost
identical, which is contrary to the GNIA results in which wild
variations are obtained between M1 and M4.

The significant differences in # that should be expected from
these quite different geometries (as reflected by GNIA) are not
seen in the REA, in which all cases seem to be very close to each
other. Because the modified eigenmode is not solved in REA, the
classical mode is assumed to be valid in the lower bound analysis,
which is not an adequate assumption in this case. Attention has
been given to this point in Ref. [48], but the problem has not been
solved yet.

7. Conclusions

New computational methodologies to implement lower bound
buckling estimates for imperfection-sensitive shells using finite
element analysis have been discussed in this paper. The meth-
odologies reduce the membrane contribution in the classical ei-
genvalue problem by means of a penalty parameter and have been
implemented in a special purpose finite element code via Reduced
Stiffness, and in a general purpose finite element code via Reduced
Energy Analysis. In all cases, the aim is to estimate lower bounds
while at the same time adequately representing the buckling
mode. Attention to this last point has not been given in previous
research, and it emerges here because of the need to compute the
correct mode shapes under wind pressures.

Some conclusions may be drawn as follows:

® REA and RSA are both based on the same philosophy, but em-
ploy different assumptions. In RSA the mode shape at the lower
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Fig. 18. REA results for tanks with open top and subjected to wind pressure.

bound is not assumed, and it should be calculated by solving a
modified eigenvalue problem. REA assumes that the lower
bound mode is the same as in the classical eigenproblem. As
employed in the literature, REA is a first-order analysis in a
perturbation expansion, in which corrections to the classical
eigenvector are not pursued.

® Both REA and RSA yield good lower bound estimates for
buckling load under uniform pressure, for which the mode in
the classical LBA is the same as in the reduced methodology.

® The use of RSA requires modification of a finite element code,
and this can be achieved in special purpose codes, not in gen-
eral purpose ones. This may become an obstacle to the adop-
tion of this methodology in engineering practice.

® Modeling an isotropic metal shell as an orthotropic composite
is a simple way to implement REA using a general purpose
code.

® |t has been shown that extension of RSA and REA to cases in
which the mode changes between classical and lower bound
solutions is not a simple task. Our results indicate that a REA
implementation was not able to identify differences in im-
perfection-sensitivity benchmarks (cantilever cylinders under
wind), for which there should be significant differences.

® The problems are less severe in RSA, with good estimates in
lower bound buckling loads, but difficulties arise in the iden-
tification of the correct eigenvectors. Even with this limitation,
the RSA can be implemented in special purpose finite element
codes to estimate reasonably accurate know-down factors that
could be acceptable in most applications.

® The region where the membrane stiffness should be degraded
in the RSA is given by the first eigenmode computed in LBA.
Under uniform pressure, the first eigenmode has periodic dis-
placements on the entire shell, so that the stiffness degradation
should affect the complete shell. Under wind the first eigen-
vector is dominated by displacements at windward, with the
consequence that membrane degradation should be restricted
to that region. Reducing the membrane contribution on the
entire shell for wind load leads to a poor estimate of the RSA
mode.

® A value of perturbation parameter @=1 in RSA provides a true
lower bound buckling load in all cases. Values of alpha smaller
than 1 are to be employed only if one needs to obtain the
correct eigenvector, i.e. the buckling mode associated with the
lower bound.

Finally, a bias of the present lower bound approach is that it
deals with deterministic imperfections. Other authors have in-
vestigated the influence of imperfections from a probabilistic
perspective, notably Roorda [52] and Elishakoff [53,54], and the
field has been brilliantly presented in book form in Ref. [55], but
this is outside the scope of this paper.
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