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Abstract. Let M be an irreducible Riemannian symmetric space. The index

i(M) of M is the minimal codimension of a totally geodesic submanifold of M .
In [1] we proved that i(M) is bounded from below by the rank rk(M) of M ,

that is, rk(M) ≤ i(M). In this paper we classify all irreducible Riemannian

symmetric spaces M for which the equality holds, that is, rk(M) = i(M).
In this context we also obtain an explicit classification of all non-semisimple

maximal totally geodesic submanifolds in irreducible Riemannian symmetric

spaces of noncompact type and show that they are closely related to irreducible
symmetric R-spaces. We also determine the index of some symmetric spaces

and classify the irreducible Riemannian symmetric spaces of noncompact type

with i(M) ∈ {4, 5, 6}.

1. Introduction

Let M be a connected Riemannian manifold and denote by S the set of all
connected totally geodesic submanifolds Σ of M with dim(Σ) < dim(M). The
index i(M) of M is defined by

i(M) = min{dim(M)− dim(Σ) | Σ ∈ S} = min{codim(Σ) | Σ ∈ S}.
This notion was introduced by Onishchik in [13] who also classified the irreducible
simply connected Riemannian symmetric spaces M with i(M) ≤ 2.

In [1] we investigated i(M) for irreducible Riemannian symmetric spaces M .
We proved that the rank rk(M) of M is always less or equal than the index of M
and classified all irreducible Riemannian symmetric spaces M with i(M) ≤ 3. The
motivation for this paper was to understand better the equality case rk(M) = i(M).
The main result of this paper is the classification of all irreducible Riemannian
symmetric spaces M with rk(M) = i(M).

Theorem 1.1. Let M be an irreducible Riemannian symmetric space of noncom-
pact type. The equality rk(M) = i(M) holds if and only if M is isometric to one of
the following symmetric spaces:

(i) SLr+1(R)/SOr+1, r ≥ 1;
(ii) SOor,r+k/SOrSOr+k, r ≥ 1, k ≥ 0, (r, k) /∈ {(1, 0), (2, 0)}.

Duality between Riemannian symmetric spaces of noncompact type and of compact
type preserves totally geodesic submanifolds, and if M is an irreducible Riemannian
symmetric space of compact type and M̂ is its Riemannian universal covering space
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(which is also a Riemannian symmetric space of compact type), then i(M) = i(M̂).
Therefore Theorem 1.1 leads, via duality and covering maps, to the classification
of irreducible Riemannian symmetric spaces of compact type with rk(M) = i(M).

In order to compute the index explicitly we need to have a good understanding
of maximal totally geodesic submanifolds. Every maximal totally geodesic sub-
manifold Σ in an irreducible Riemannian symmetric space M of noncompact type
is either semisimple or non-semisimple. As part of our investigation we obtain an
explicit classification for the non-semisimple case and a conceptual characterization
of such submanifolds in terms of symmetric R-spaces. Denote by r the rank of M
and write M = G/K, where G is the connected identity component of the isometry
group I(M) of M and K = Gp is the isotropy group of G at p ∈ M . Consider
a set of simple roots Λ = {α1, . . . , αr} of a restricted root space decomposition
of the Lie algebra g of G and denote by δ = δ1α1 + . . . + δrαr the highest root.
Let qi be the parabolic subalgebra of g which is determined by the root subsystem
Φi = Λ \ {αi} and consider the Chevalley decomposition qi = li⊕ ni of qi into a re-
ductive subalgebra li and a nilpotent subalgebra ni. Let Li be the connected closed
subgroup of G with Lie algebra li and denote by Fi the orbit of Li containing p.
Then Fi is a non-semisimple totally geodesic submanifold of M which decomposes
into Fi = R × Bi, where Bi is a semisimple Riemannian symmetric space of non-
compact type. The classification and characterization of non-semisimple maximal
totally geodesic submanifolds in M is as follows:

Theorem 1.2. Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type and let Σ be a non-semisimple connected complete totally geodesic
submanifold of M . Then the following statements are equivalent:

(i) Σ is a maximal totally geodesic submanifold of M ;
(ii) Σ is isometrically congruent to Fi = R×Bi and δi = 1;

(iii) The normal space νpΣ of Σ at p is the tangent space of a symmetric R-space
in TpM ;

(iv) The pair (M,Σ) is as in Table 3.

An R-space is a real flag manifold and a symmetric R-space is a real flag manifold
which is also a symmetric space. R-spaces are projective varieties and symmetric
R-spaces were classified and investigated by Kobayashi and Nagano in [9]. They
arise as certain orbits of the isotropy representation of semisimple Riemannian
symmetric spaces.

This paper is organized as follows. In Section 2 we summarize basic material
about Riemannian symmetric spaces of noncompact type, their restricted root space
decompositions and Dynkin diagrams, parabolic subalgebras, and their boundary
components with respect to the maximal Satake compactification.

In Section 3 we obtain some sufficient criteria for totally geodesic submanifolds
in Riemannian symmetric spaces of noncompact type to be reflective. As is well-
known, totally geodesic submanifold are in one-to-one correspondence with Lie
triple system. If the orthogonal complement of a Lie triple system is also a Lie
triple system, then the Lie triple system and the corresponding totally geodesic
submanifold are said to be reflective. Geometrically, reflective submanifolds arise
as connected components of fixed point sets of isometric involutions. Reflective sub-
manifolds in irreducible simply connected Riemannian symmetric spaces of compact
type were classified by Leung in [10] and [11]. The concept of reflectivity turns out
to be very useful in our context. One of our main criteria is Proposition 3.4 which



MAXIMAL TOTALLY GEODESIC SUBMANIFOLDS AND INDEX OF SYMMETRIC SPACES 3

states that if the kernel of the slice representation of a semisimple totally geodesic
submanifold Σ in an irreducible Riemannian symmetric space of noncompact type
has positive dimension, then Σ is reflective. This criterion then provides a lower
bound for the codimension of Σ which we will use in index calculations.

In Section 4 we will prove Theorem 1.2. The first step is to show that any
non-semisimple maximal totally geodesic submanifold in M is congruent to one of
the orbits Fi introduced above. The coefficient δi of αi in the highest root δ then
plays a crucial role for the next step. If δi ≥ 2, we construct explicitly a larger Lie
triple system containing the Lie triple system corresponding to Fi. The situation
for δ1 = 1 is much more involved. With delicate arguments using Killing fields,
Jacobi fields, reflections and transvections we can show that Fi is maximal when
δi = 1. As an application of Theorem 1.2 we obtain that every maximal totally
geodesic submanifold of an irreducible Riemannian symmetric space of noncompact
type whose root system is of type (BCr), (E8), (F4) or (G2) must be semisimple.
Another application states that every non-semisimple maximal totally geodesic sub-
manifold of an irreducible Riemannian symmetric space of noncompact type must
be reflective. As a third application we obtain that the index of SLr+1(R)/SOr+1

is equal to its rank r.
In Section 5 we prove that the two classes of symmetric spaces listed in Theorem

1.1 satisfy the equality rk(M) = i(M). For this we explicitly construct totally
geodesic submanifolds Σ of M with codim(Σ) = rk(M) using standard algebraic
theory of symmetric spaces.

In Section 6 we prove Theorem 1.1. A crucial step is Proposition 6.2 which states
that if M satisfies the equality rk(M) = i(M), then every irreducible boundary
component B of the maximal Satake compactification of M satisfies rk(B) = i(B).
As an application we obtain that with the possible exception of E6

6/Sp4, E7
7/SU8

and E8
8/SO16 there are no other irreducible Riemannian symmetric spaces M of

noncompact type with rk(M) = i(M) than those discussed in Section 5. The ex-
ceptional symmetric space E6

6/Sp4 has the interesting property that each of its
irreducible boundary components B satisfies rk(B) = i(B). In order to come to
a conclusion for this exceptional symmetric space we developed the criteria about
reflective submanifolds in Section 3. Using these criteria we can show that E6

6/Sp4

does not satisfy the equality rk(M) = i(M). Since E6
6/Sp4 arises as a bound-

ary component of E7
7/SU8 and of E8

8/SO16 we can then conclude that these two
symmetric spaces do not satisfy the equality rk(M) = i(M) either.

In Section 7 we apply some of the results in Sections 3 and 4 to calculate ex-
plicitly the index of some other symmetric spaces. We also classify the irreducible
Riemannian symmetric spaces of noncompact type with i(M) ∈ {4, 5, 6}.

2. Riemannian symmetric spaces of noncompact type

We assume that the reader is familiar with the general theory of Riemannian
symmetric spaces as in [4] and summarize below some basic facts and notations
which are used in this paper.

Let M = G/K be an irreducible Riemannian symmetric space of noncompact
type, where G = Io(M) is the connected component of the isometry group I(M) of
M containing the identity transformation, p ∈M and K = Gp is the isotropy group
of G at p. Then G is a noncompact real semisimple Lie group and K is a maximal
compact subgroup of G. Let g = k⊕ p be the corresponding Cartan decomposition
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of g and denote by θ the corresponding Cartan involution on g. Let B be the Killing
form of g. Then 〈X,Y 〉 = −B(X, θY ) is a positive definite inner product on g. The
vector space p can be identified canonically with the tangent space TpM of M a p.
Since the Riemannian metric on M is unique up to homothety, we can assume that
the Riemannian metric on M coincides with the G-invariant Riemannian metric
induced by 〈·, ·〉.

We denote by r = rk(M) the rank of M . Let a be a maximal abelian subspace
of p and denote by a∗ the dual space of a. Note that dim(a) = r. For each α ∈ a∗

we define gα = {X ∈ g | [H,X] = α(H)X for all H ∈ a}. If α 6= 0 and gα 6= {0},
then α is a restricted root and gα a restricted root space of g with respect to a. The
positive integer mα = dim(gα) is called the multiplicity of the root α. We denote
by Ψ the set of restricted roots with respect to a. The direct sum decomposition

g = g0 ⊕

(⊕
α∈Ψ

gα

)
is the restricted root space decomposition of g with respect to a. The eigenspace
g0 decomposes into g0 = k0 ⊕ a, where k0 = Zk(a) is the centralizer of a in k.

Let {α1, . . . , αr} = Λ ⊂ Ψ be a set of simple roots of Ψ. We denote by
H1, . . . ,Hr ∈ a the dual basis of α1, . . . , αr ∈ a∗ defined by αi(H

j) = δij for
all i, j ∈ {1, . . . , r}, where δij = 0 for i 6= j and δij = 1 for i = j. Riemannian sym-
metric spaces of noncompact type are uniquely determined by the Dynkin diagram
of their restricted root system together with the multiplicities of the simple roots.
In Table 1 we list the Dynkin diagrams and root multiplicities for all irreducible
Riemannian symmetric spaces of noncompact type.

Parabolic subalgebras (resp. subgroups) of real semisimple Lie algebras (resp. Lie
groups) play an important role for the geometry of Riemannian symmetric spaces
of noncompact type for which their is no analogue in the compact case. We will
now describe how to construct all parabolic subalgebras of g. We denote by Ψ+

the set of positive roots in Ψ with respect to the set Λ of simple roots. Let Φ be a
subset of Λ. We denote by ΨΦ the root subsystem of Ψ generated by Φ, that is, ΨΦ

is the intersection of Ψ and the linear span of Φ. We define a reductive subalgebra
lΦ and a nilpotent subalgebra nΦ of g by

lΦ = g0 ⊕

(⊕
α∈ΨΦ

gα

)
and nΦ =

⊕
α∈Ψ+\Ψ+

Φ

gα.

It follows from properties of root spaces that [lΦ, nΦ] ⊂ nΦ and therefore

qΦ = lΦ ⊕ nΦ

is a subalgebra of g, the so-called parabolic subalgebra of g associated with the
subsystem Φ of Ψ. The decomposition qΦ = lΦ⊕nΦ is the Chevalley decomposition
of the parabolic subalgebra qΦ.

Every parabolic subalgebra of g is conjugate in g to qΦ for some subset Φ of
Λ. The set of conjugacy classes of parabolic subalgebras of g therefore has 2r

elements. Two parabolic subalgebras qΦ1 and qΦ2 of g are conjugate in the full
automorphism group Aut(g) of g if and only if there exists an automorphism F of
the Dynkin diagram associated to Λ with F (Φ1) = Φ2. If |Φ| = r − 1 then qΦ is
said to be a maximal parabolic subalgebra of g.
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Table 1. Dynkin diagrams and root multiplicities for irreducible
Riemannian symmetric spaces M of noncompact type

Dynkin diagram M Multiplicities Comments

��	�

�� ��	�

�� ��	�

�� ��	�

��
α1 α2 αr−1 αr

SOo1,1+k/SO1+k k k ≥ 1

SLr+1(R)/SOr+1 1, 1, . . . , 1, 1 r ≥ 2
SLr+1(C)/SUr+1 2, 2, . . . , 2, 2 r ≥ 2
SU∗

2r+2/Spr+1 4, 4, . . . , 4, 4 r ≥ 2

E−26
6 /F4 8, 8

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��
α1 α2 αr−2 αr−1 αr

+3 SOor,r+k/SOrSOr+k 1, 1, . . . , 1, 1, k r ≥ 2, k ≥ 1

SO2r+1(C)/SO2r+1 2, 2, . . . , 2, 2, 2 r ≥ 2

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��
α1 α2 αr−2 αr−1 αr

ks

Spr(R)/Ur 1, 1, . . . , 1, 1, 1 r ≥ 3

SUr,r/S(UrUr) 2, 2, . . . , 2, 2, 1 r ≥ 3
Spr(C)/Spr 2, 2, . . . , 2, 2, 2 r ≥ 3
SO∗

4r/U2r 4, 4, . . . , 4, 4, 1 r ≥ 3

Spr,r/SprSpr 4, 4, . . . , 4, 4, 3 r ≥ 2

E−25
7 /E6U1 8, 8, 1

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

����	�

��
α1 α2 αr−3 αr−2

αr−1

αr

hhhh VVVV
SOor,r/SOrSOr 1, 1, . . . , 1, 1, 1, 1 r ≥ 4

SO2r(C)/SO2r 2, 2, . . . , 2, 2, 2, 2 r ≥ 4

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

����������
α1 α2 αr−2 αr−1 (αr, 2αr)

ks +3

SUr,r+k/S(UrUr+k) 2, 2, . . . , 2, 2, (2k, 1) r ≥ 1, k ≥ 1
Spr,r+k/SprSpr+k 4, 4, . . . , 4, 4, (4k, 3) r ≥ 1, k ≥ 1

SO∗
4r+2/U2r+1 4, 4, . . . , 4, 4, (4, 1) r ≥ 2

E−14
6 /Spin10U1 6, (8, 1)

F−20
4 /Spin9 (8, 7)

��	�

��
��	�

��

��	�

�� ��	�

�� ��	�

�� ��	�

��α1

α2

α3 α4 α5 α6
E6

6/Sp4 1, 1, 1, 1, 1, 1

E6(C)/E6 2, 2, 2, 2, 2, 2

��	�

��
��	�

��

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��α1

α2

α3 α4 α5 α6 α7
E7

7/SU8 1, 1, 1, 1, 1, 1, 1
E7(C)/E7 2, 2, 2, 2, 2, 2, 2

��	�

��
��	�

��

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��α1

α2

α3 α4 α5 α6 α7 α8
E8

8/SO16 1, 1, 1, 1, 1, 1, 1, 1
E8(C)/E8 2, 2, 2, 2, 2, 2, 2, 2

��	�

�� ��	�

�� ��	�

�� ��	�

��
α1 α2 α3 α4

+3

F 4
4 /Sp3Sp1 1, 1, 1, 1

E2
6/SU6Sp1 1, 1, 2, 2

E−5
7 /SO12Sp1 1, 1, 4, 4

E−24
8 /E7Sp1 1, 1, 8, 8

F4(C)/F4 2, 2, 2, 2

��	�

�� ��	�

��
α1 α2

_jt G2
2/SO4 1, 1

G2(C)/G2 2, 2

Let

aΦ =
⋂
α∈Φ

ker(α) ⊂ a

be the split component of lΦ and denote by aΦ = a	aΦ the orthogonal complement
of aΦ in a. The reductive subalgebra lΦ is the centralizer (and the normalizer) of aΦ

in g. The orthogonal complement mΦ = lΦ	aΦ of aΦ in lΦ is a reductive subalgebra
of g. The decomposition

qΦ = mΦ ⊕ aΦ ⊕ nΦ
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is the Langlands decomposition of the parabolic subalgebra qΦ. We have [mΦ, aΦ] =
0 and [mΦ, nΦ] ⊂ nΦ. Moreover, gΦ = [mΦ,mΦ] = [lΦ, lΦ] is a semisimple subalgebra
of g. The center zΦ of mΦ is contained in k0 and induces the direct sum decompo-
sition mΦ = zΦ ⊕ gΦ and therefore, since zΦ ⊂ k0, we see that gΦ ∩ k0 = k0 	 zΦ.

For each α ∈ Ψ we define kα = k ∩ (g−α ⊕ gα) and pα = p ∩ (g−α ⊕ gα). Then
we have k−α = kα, p−α = pα and kα ⊕ pα = g−α ⊕ gα for all α ∈ Ψ. From general
root space properties it follows that

fΦ = lΦ ∩ p = a⊕

(⊕
α∈ΨΦ

pα

)
and bΦ = mΦ ∩ p = gΦ ∩ p = aΦ ⊕

(⊕
α∈ΨΦ

pα

)
are Lie triple systems in p. We define a subalgebra kΦ of k by

kΦ = qΦ ∩ k = lΦ ∩ k = mΦ ∩ k = k0 ⊕

(⊕
α∈ΨΦ

kα

)
.

Then we have [kΦ,mΦ] ⊂ mΦ, [kΦ, aΦ] = {0} and [kΦ, nΦ] ⊂ nΦ. Moreover, gΦ =
(gΦ ∩ kΦ)⊕ bΦ is a Cartan decomposition of the semisimple subalgebra gΦ of g and
aΦ is a maximal abelian subspace of bΦ. If we define (gΦ)0 = (gΦ ∩ k0)⊕ aΦ, then
gΦ = (gΦ)0 ⊕

(⊕
α∈ΨΦ

gα
)

is the restricted root space decomposition of gΦ with

respect to aΦ and Φ is the corresponding set of simple roots.
Let FΦ and BΦ be the connected complete totally geodesic submanifold of M

corresponding to the Lie triple systems fΦ and bΦ, respectively. Then BΦ is a
Riemannian symmetric space of noncompact type with rk(BΦ) = |Φ|, also known
as a boundary component in the maximal Satake compactification of M (see [3]).
Note that BΦ is irreducible if and only if the Dynkin diagram corresponding to Φ
is connected. The totally geodesic submanifold FΦ is isometric to the Riemannian
product BΦ × Rr−|φ|, where Rr−|φ| is the totally geodesic Euclidean space in M
corresponding to the abelian Lie triple system aΦ. For i ∈ {1, . . . , r} we define
Φi = Λ \ {αi}, li = lΦi

, Fi = FΦi
, Bi = BΦi

, etcetera. Then we have Fi = R×Bi.

3. Reflective submanifolds

Let Σ′ be a connected totally geodesic submanifold of M . Since M is homoge-
neous we can assume that p ∈ Σ′. Moreover, since every connected totally geodesic
submanifold of a Riemannian symmetric space is contained in a connected complete
totally geodesic submanifold, we can also assume that Σ′ is complete. Since M is
of noncompact type, Σ′ is the Riemannian product of a (possibly 0-dimensional)
Euclidean space and a (possibly 0-dimensional) Riemannian symmetric space of
noncompact type. This implies in particular that Σ′ is simply connected.

The tangent space m′ = TpΣ
′ ⊂ TpM = p is a Lie triple system in p and thus

g′ = [m′,m′]⊕m′ ⊂ k⊕ p = g is a subalgebra of g. Let G′ be the connected closed
subgroup of G with Lie algebra g′. Then Σ′ is the orbit G′ ·p of the G′-action on M
containing p. Thus we can write Σ′ = G′/K ′, where K ′ = G′p is the isotropy group
of G′ at p. Since Σ′ is simply connected, the isotropy group K ′ is connected. The
Lie algebra k′ of K ′ is given by k′ = [m′,m′]. Note that G′ is a normal subgroup of

GΣ′ = {g ∈ G | g(Σ′) = Σ′} and K ′ is a normal subgroup of (GΣ′)p.
The following Slice Lemma was proved in [1] and will be used later. We formulate

it here for the noncompact case, but it is valid also for the compact case.
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Lemma 3.1. (Slice Lemma) Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type with rk(M) ≥ 2, where G = Io(M) and K = Gp
is the isotropy group of G at p ∈ M . Let g = k ⊕ p be the corresponding Cartan
decomposition. Let Σ′ be a nonflat totally geodesic submanifold of M such that
p ∈ Σ′. Let G′ be the connected closed subgroup of G with Lie algebra [m′,m′]⊕m′,
where TpΣ

′ = m′ ⊂ p = TpM , and K ′ = G′p. Then the slice representation of K ′

on νpΣ
′ is nontrivial.

In general, the orthogonal complement m′′ of a Lie triple system m′ in p is
not a Lie triple system. If m′′ is a Lie triple system, then m′ is said to be a
reflective Lie triple system and Σ′ is said to be a reflective submanifold of M .
The notion comes from the fact that the geodesic reflection of M in Σ′ is a well-
defined global isometry of M if and only if both m′ and m′′ are Lie triple systems.
Reflective submanifolds therefore always come in pairs Σ′ and Σ′′ corresponding
to the two reflective Lie triple systems m′ and m′′. In this situation we write
Σ′′ = G′′/K ′′, where G′′ is the connected closed subgroup of G with Lie algebra
g′′ = [m′′,m′′]⊕m′′ and K ′′ = G′′p is the connected closed subgroup of K with Lie
algebra k′′ = [m′′,m′′]. The reflective submanifolds of irreducible simply connected
Riemannian symmetric spaces of compact type were classified by Leung ([10],[11]).
Using duality one obtains the classification of reflective submanifolds in irreducible
Riemannian symmetric spaces of noncompact type.

Let R denote the Riemannian curvature tensor of M . As Σ′ is totally geodesic in
M , the restriction of R to Σ′ coincides with the Riemannian curvature tensor of Σ′.
We will regard, via the isotropy representation at p, K ′ ⊂ K ⊂ SO(TpM). Note
that k and k′ are generated by the curvature transformations Rx,y ∈ so(TpM) with

x, y ∈ TpM and x, y ∈ TpΣ′, respectively. The curvature operator R̃ : Λ2(TpM)→
Λ2(TpM) is negative semidefinite. This implies, as is well-known, that K ′ acts
almost effectively on TpΣ

′.
Let ρ : K ′ → SO(νpΣ

′), k 7→ dpk|νpΣ′ be the slice representation of K ′ on the
normal space νpΣ

′ of Σ′ at p and denote by ker(ρ) the kernel of ρ. Let χ : K ′′ →
SO(TpΣ

′′), k 7→ dpk|TpΣ′′ be the isotropy representation of K ′′ on the tangent space
TpΣ

′′.

Lemma 3.2. Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type, Σ′ = G′/K ′ be a reflective submanifold of M and Σ′′ = G′′/K ′′

be the reflective submanifold of M with TpΣ
′′ = νpΣ

′. Then:

(i) ρ(K ′) is a normal subgroup of χ(K ′′).
(ii) The subspace (νpΣ

′)o = {ξ ∈ νpΣ′ | ρ(k′)ξ = ξ for all k′ ∈ K ′} of νpΣ
′ = TpΣ

′′

is χ(K ′′)-invariant and Σ′′ = Σ′′o × Σ′′1 (Riemannian product), where Σ′′o is
the totally geodesic submanifold of Σ′′ with TpΣ

′′
o = (νpΣ

′)o. Moreover, if
rk(M) ≥ 2, then Σ′′o is flat.

Proof. As previously observed, K ′ is a normal subgroup of (GΣ′)p. Observe also

that K ′′ ⊂ (GΣ′)p and that ρ(K ′) ⊂ χ(K ′′) (for the last inclusion see the paragraph
below Lemma 2.1 in [1]). Then ρ(K ′) = ρ(k′′K ′(k′′)−1) = χ(k′′)ρ(K ′)(χ(k′′))−1

for all k′′ ∈ K ′′ and thus ρ(K ′) is a normal subgroup of χ(K ′′). Thus the subspace
(νpΣ

′)o of TpΣ
′′ is χ(K ′′)-invariant and hence also invariant under the holonomy

group of Σ′′ at p. Since Σ′′ is simply connected, the de Rham decomposition
theorem for Riemannian manifolds implies that Σ′′ decomposes as a Riemannian
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product into Σ′′ = Σ′′o × Σ′′1 , where Σ′′o is the totally geodesic submanifold of Σ′′

with TpΣ
′′
o = (νpΣ

′)o.
We write Σ′′o = G′′o/K

′′
o , where G′′o is the connected closed subgroup of G with

Lie algebra g′′o = [TpΣ
′′
o , TpΣ

′′
o ] ⊕ TpΣ

′′
o and K ′′o is the isotropy group of G′′o at

p. Let x1, x2 ∈ TpΣ
′′
o = (νpΣ

′)o. For all y ∈ TpΣ
′′
1 we have Rx1,x2

y = 0 since
Σ′′ = Σ′′o × Σ′′1 is a Riemannian product and totally geodesic in M . Clearly,
TpΣ

′′
1 is K ′′o -invariant and hence TpΣ

′ is also K ′′o -invariant. If x′, y′ ∈ TpΣ′, then
〈Rx1,x2x

′, y′〉 = 〈Rx′,y′x1, x2〉 = 0, since x1, x2 ∈ (νpΣ
′)o are fixed under the slice

representation of K ′. Since νpΣ
′′
o = TpΣ

′′
1 ⊕ TpΣ′ and k′′o is linearly spanned by the

curvature endomorphisms of pairs of elements in TpΣ
′′
o , we conclude that the slice

representation of K ′′o on νpΣ
′′
o is trivial. It follows from the Slice Lemma 3.1 that

Σ′′o is flat if rk(M) ≥ 2. This finishes the proof of part (ii). �

Corollary 3.3. Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type with rk(M) ≥ 2 and let Σ be a totally geodesic submanifold of M
which decomposes into a Riemannian product Σ = Σ0×Σ1 with a Euclidean factor
Σ0 and a semisimple factor Σ1 with dim(Σ0) > 0 and dim(Σ1) > 0. Then Σ1 is
not a reflective submanifold of M .

Proof. Assume that Σ1 is a reflective submanifold of M . We will apply Lemma 3.2
with Σ′ = Σ1. In the notation of Lemma 3.2, we have TpΣ0 ⊂ (νpΣ

′)o and therefore
Σ0 is contained in the flat factor Σ′′o of Σ′′. This implies that Rx0,x′′ = 0 for all
x0 ∈ TpΣ0 and x′′ ∈ TpΣ′′. We obviously also have Rx0,x1 = 0 for all x0 ∈ TpΣ0

and x1 ∈ TpΣ1 = TpΣ
′. Since TpM = TpΣ

′ ⊕ TpΣ′′ this implies Rx0,· = 0 for all
x0 ∈ TpΣ0, which is a contradiction. �

The next result provides a useful sufficient criterion for a semisimple totally
geodesic submanifold of an irreducible Riemannian symmetric space to be reflective.

Proposition 3.4. Let M = G/K be an irreducible Riemannian symmetric space
of noncompact type with rk(M) ≥ 2 and let Σ = G′/K ′ be a semisimple totally
geodesic submanifold of M . Assume that the kernel ker(ρ) of the slice representation
ρ : K ′ → SO(νpΣ) has positive dimension. Then we have

νpΣ = {ξ ∈ TpM | ρ(k)ξ = ξ for all k ∈ ker(ρ)o}

and, in particular, Σ is a reflective submanifold of M .

Proof. The subspace V = {ξ ∈ TpΣ | dpk(ξ) = ξ for all k ∈ ker(ρ)o} of TpΣ is
K ′-invariant since ker(ρ)o is a normal subgroup of K ′.

We first assume that V = TpΣ. Since ker(ρ)o acts trivially on νpΣ we conclude
that ker(ρ)o and hence K ′ acts trivially on TpM , which is a contradiction.

Next, we assume that V is a nontrivial proper K ′-invariant subspace of TpΣ.
Then Σ decomposes as a Riemannian product Σ = Σ1×Σ2, where V = TpΣ1. If we
write, as usual, Σi = Gi/Ki, then K ′ = K1 ×K2 (almost direct product). Let hi
be the orthogonal projection of the Lie algebra of ker(ρ) into ki and let Hi be the
connected subgroup of Ki with Lie algebra hi. Then H1 acts trivially on V = TpΣ1

since both ker(ρ)o and H2 act trivially on V. Since K1 acts almost effectively on
TpΣ1 and H1 is connected, it follows that H1 is trivial. Thus we have shown that
ker(ρ)o ⊂ K2.

Note that {ξ ∈ TpM | ρ(k)ξ = ξ for all k ∈ ker(ρ)o} = V ⊕ νpΣ = νpΣ2. This
shows that Σ2 is a reflective submanifold of M . Let Σ3 = G3/K3 be the reflective



MAXIMAL TOTALLY GEODESIC SUBMANIFOLDS AND INDEX OF SYMMETRIC SPACES 9

submanifold of M with TpΣ3 = νpΣ2. We denote by ρi : Ki → SO(νpΣi) the slice
representation of Ki on the normal space νpΣi and by χi : Ki → SO(TpΣi) the
isotropy representation of Ki, i ∈ {1, 2, 3}.

From Lemma 3.2(i) we see that ρ2(K2) is a normal subgroup of χ3(K3). Let W
be the set of fixed vectors of ρ2(K2) in νpΣ2 = TpΣ3 = V⊕νpΣ = TpΣ1⊕νpΣ. Since
K2 acts trivially on TpΣ1 one has that TpΣ1 ⊂ W. From Lemma 3.2(ii) we know
that W is the tangent space of a Euclidean factor of Σ3. This is a contradiction since
Σ1 is contained in this Euclidean factor, however, Σ1 is not flat as Σ is semisimple.
It follows that V = {0}, which proves the assertion. �

The following consequence of Proposition 3.4 states that totally geodesic sub-
manifolds of sufficiently small codimension in irreducible Riemannian symmetric
spaces are reflective.

Corollary 3.5. Let M be an n-dimensional irreducible Riemannian symmetric
space of noncompact type with r = rk(M) ≥ 2 and let Σ be a semisimple connected
complete totally geodesic submanifold of M with codim(Σ) = d. If

1

2
d(d+ 1) + rk(Σ) < n,

then Σ is a reflective submanifold of M . In particular, if

d(d+ 1) < 2(n− r),

then Σ is a reflective submanifold of M .

Proof. As usual, we write Σ = G′/K ′. If dim(K ′) > dim(SO(νpΣ)) = 1
2d(d − 1),

then the kernel of the slice representation ρ : K ′ → SO(νpΣ) must have positive
dimension and therefore Σ is a reflective submanifold of M by Proposition 3.4. A
principal K ′-orbit on Σ has dimension n− d− rk(Σ) and thus dim(K ′) ≥ n− d−
rk(Σ). Consequently, if 1

2d(d−1) < n−d−rk(Σ), then Σ is a reflective submanifold

of M . The inequality 1
2d(d−1) < n−d−rk(Σ) is equivalent to 1

2d(d+1)+rk(Σ) < n.
The last statement follows from the fact that rk(Σ) ≤ rk(M) = r. �

4. Non-semisimple maximal totally geodesic submanifolds

Let Σ be a connected totally geodesic submanifold of M . We may assume that
Σ is complete and p ∈ Σ. Every connected complete totally geodesic submanifold
of a Riemannian symmetric space is again a Riemannian symmetric space. In this
paper, when we consider a totally geodesic submanifold Σ of M , we always assume
that p ∈ Σ and that Σ is connected and complete. Since M is of noncompact
type, it follows that Σ is isometric to the Riemannian product Σ0 × Σ1, where Σ0

is a (possibly 0-dimensional) Euclidean space and Σ1 is a (possibly 0-dimensional)
Riemannian symmetric space of noncompact type.

The next result relates non-semisimple maximal totally geodesic submanifolds
of M to the reductive factors in the Chevalley decompositions of the maximal
parabolic subalgebras of g.

Proposition 4.1. Let M = G/K be an irreducible Riemannian symmetric space
of noncompact type and let Σ be a non-semisimple maximal totally geodesic sub-
manifold of M . Then Σ is congruent to Fi = R×Bi for some i ∈ {i, . . . , r}.
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Proof. Let a be a maximal abelian subspace of p with TpΣ0 ⊂ a and consider the
restricted root space decomposition of g induced by a. We define Υ = {αi ∈ Λ |
αi(TpΣ0) = 0} ⊂ Λ. Assume that Υ = Λ, which means that αi(TpΣ0) = 0 for all
αi ∈ Λ. This implies TpΣ0 = {0} and therefore Σ = Σ1 is semisimple, which is a
contradiction. Thus we have |Υ| < |Λ| = r and therefore there exists i ∈ {1, . . . , r}
such that Υ ⊂ Φi. Then we get

TpΣ ⊂ Zp(TpΣ0) = {X ∈ p | [X,Y ] = 0 for all Y ∈ TpΣ0}
⊂ Zg(TpΣ0) = {X ∈ g | [X,Y ] = 0 for all Y ∈ TpΣ0}

= g0 ⊕

 ⊕
α∈Ψ,α(TpΣ0)={0}

gα

 = lΥ ⊂ li,

which implies TpΣ ⊂ li ∩ p = fi and therefore Σ ⊂ Fi = R×Bi. If Σ is a maximal
totally geodesic submanifold of M we must have Σ = Fi, since Fi is a totally
geodesic submanifold of M which is strictly contained in M . �

The remaining problem is to clarify which of the totally geodesic submanifolds
Fi are maximal. The solution of this problem is related to symmetric R-spaces.
Let M = G/K be an irreducible Riemannian symmetric space of noncompact type
and consider the isotropy representation

χ : K → TpM = p, v 7→ dpk(v) = Ad(k)v.

For every 0 6= v ∈ p the orbit

K · v = {Ad(k)v | k ∈ K} ⊂ p

is called an R-space (or real flag manifold). One can show that the normal space
νv(K · v) of K · v at v is equal to

νv(K · v) = Zp(v) = {w ∈ p | [v, w] = 0},

where Zp(v) is the centralizer of v in p. It follows from the Jacobi identity that
Zp(v) is a Lie triple system. Thus, for every 0 6= v ∈ p, there exists a connected
complete totally geodesic submanifold Σv of M with TpΣ

v = νv(K · v). Since
every v ∈ p is contained in a maximal abelian subspace of p we can assume that
v ∈ a. Then we have lΦ = Zg(v) with Φ = {αi ∈ Λ | αi(v) = 0}, which implies
fΦ = Zp(v) = νv(K · v) and therefore FΦ = Σv.

Table 2. Highest roots δ of root systems (R)

(R) Highest root δ = δ1α1 + . . .+ δrαr Comments

(Ar) α1 + . . .+ αr r ≥ 1

(Br) α1 + 2α2 + . . .+ 2αr r ≥ 2

(Cr) 2α1 + . . .+ 2αr−1 + αr r ≥ 3
(Dr) α1 + 2α2 + . . .+ 2αr−2 + αr−1 + αr r ≥ 4

(BCr) 2α1 + . . .+ 2αr r ≥ 1
(E6) α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

(E7) 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

(E8) 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8

(F4) 2α1 + 3α2 + 4α3 + 2α4

(G2) 3α1 + 2α2
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A special situation occurs when the orbit K · v is a symmetric space. In this sit-
uation the orbit K ·v is called an irreducible symmetric R-space. The irreducibility
here refers to the irreducibility of the symmetric space G/K and not to the orbit.
An irreducible symmetric R-space can be reducible as a Riemannian manifold. The
irreducible symmetric R-spaces were classified by Kobayashi and Nagano in [9].
Their classification can be read off from the Dynkin diagram and highest root of
the symmetric spaces G/K. In Table 1 we already listed the Dynkin diagrams. In
Table 2 we list the corresponding highest roots δ = δ1α1 + . . .+ δrαr.

Kobayashi and Nagano proved that an R-space K · v is symmetric if and only
if v = Hi and δi = 1. From Tables 1 and 2 one can easily get the classification of
irreducible symmetric R-spaces. We can now state the main result of this section:

Theorem 4.2. Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type and let Σ be a non-semisimple connected complete totally geodesic
submanifold of M . Then the following statements are equivalent:

(i) Σ is a maximal totally geodesic submanifold of M ;
(ii) Σ is isometrically congruent to Fi = R×Bi and δi = 1;

(iii) νpΣ is the tangent space of a symmetric R-space in TpM ;
(iv) The pair (M,Σ) is as in Table 3.

Table 3. Non-semisimple maximal totally geodesic submanifolds
Σ = R × B of irreducible Riemannian symmetric spaces M of
noncompact type

M B codim(Σ) Comments

SLr+1(R)/SOr+1 SLi(R)/SOi×SLr+1−i(R)/SOr+1−i i(r+ 1− i) r ≥ 2, 1 ≤ i ≤ [r/2]

SLr+1(C)/SUr+1 SLi(C)/SUi × SUr+1−i(C)/SUr+1−i 2i(r+1−i) r ≥ 2, 1 ≤ i ≤ [r/2]

SU∗
2r+2/Spr+1 SU∗

2i/Spi × SU∗
2(r+1−i)/Spr+1−i 4i(r+1−i) r ≥ 2, 1 ≤ i ≤ [r/2]

E−26
6 /F4 RH9 16

SOor,r+k/SOrSOr+k SOor−1,r−1+k/SOr−1SOr−1+k 2r − 2 + k r ≥ 2, k ≥ 1

SO2r+1(C)/SO2r+1 SO2r−1(C)/SO2r−1 4r − 2 r ≥ 2

Spr(R)/Ur SLr(R)/SOr
1
2
r(r + 1) r ≥ 3

SUr,r/S(UrUr) SLr(C)/SUr r2 r ≥ 3

Spr(C)/Spr SLr(C)/SUr r(r + 1) r ≥ 3
SO∗

4r/U2r SU∗
2r/Spr r(2r − 1) r ≥ 3

Spr,r/SprSpr SU∗
2r/Spr r(2r + 1) r ≥ 2

E−25
7 /E6U1 E−26

6 /F4 27

SOor,r/SOrSOr SOor−1,r−1/SOr−1SOr−1 2(r − 1) r ≥ 4

SLr(R)/SOr
1
2
r(r − 1) r ≥ 4

SO2r(C)/SO2r SO2(r−1)(C)/SO2(r−1) 4(r − 1) r ≥ 4

SLr(C)/SUr r(r − 1) r ≥ 4

E6
6/Sp4 SOo5,5/SO5SO5 16

E7
7/SU8 E6

6/Sp4 27

E6(C)/E6 SO10(C)/SO10 32

E7(C)/E7 E6(C)/E6 54
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Proof. The equivalence of (ii) and (iv) is a straightforward computation using Ta-
bles 1 and 2. Kobayashi and Nagano proved that an R-space K · v is symmetric if
and only if v = Hi and δi = 1. In this situation we have νHi(K ·Hi) = Zp(Hi) =
fi = TpFi and hence νpFi = THi(K · Hi). This gives the equivalence of (ii) and
(iii). We shall now prove the equivalence of (i) and (ii).

We first assume that Σ is a maximal totally geodesic submanifold of M . From
Proposition 4.1 we know that, up to conjugacy, Σ = Fi for some i ∈ {1, . . . , r}.
Assume that δi ≥ 2 and let t be a prime number with t ≤ δi. Then define the
semisimple subalgebra hi,t of g by

hi,t = g0 ⊕

 ⊕
α∈Ψ,α(Hi)≡0(mod t)

gα

 .

Since

li = g0 ⊕

 ⊕
α∈Ψ,α(Hi)=0

gα


and δi ≥ t we see that li is strictly contained in hi,t. It follows that the Lie triple
system li ∩ p = fi is strictly contained in the Lie triple system hi,t ∩ p. This is
a contradiction since, by assumption, TpΣ = fi is a maximal Lie triple system.
Consequently we must have δi = 1. This finishes the proof for “(i) ⇒ (ii)”.

Conversely, let us assume that Σ = Fi for some i ∈ {1, . . . , r} and that δi = 1.
We denote by Si the symmetric R-space K · Hi ⊂ p = TpM . Then we have
α(Hi) ∈ {−1, 0,+1} for all α ∈ Ψ and therefore ad(Hi)2 induces a vector space
decomposition g = g0 ⊕ g1 of g, where

g0 = li = g0 ⊕

 ⊕
α∈Ψ,α(Hi)=0

gα

 and g1 =
⊕

α∈Ψ,α(Hi)=±1

gα.

The map X0 +X1 → X0 −X1 defines an involutive automorphism of g = g0 ⊕ g1.
We denote by si : p→ p the induced isomorphism on p. Then we have si(X) = −X
for all X ∈ THiSi = g1 ∩ p = ⊕α∈Ψ,α(Hi)=1pα and si(X) = X for all X ∈ νHiSi =

g0 ∩ p = fi = R× bi = Zp(Hi). The isomorphism si is the orthogonal reflection of
p in the normal space νHiSi and its restriction to Si leaves Si invariant and hence
induces an involutive isometry on Si for which Hi is an isolated fixed point. This
shows that Si is a symmetric R-space and that Si is an extrinsically symmetric
submanifold of the Euclidean space TpM = p with si as the extrinsic symmetry.

Since [gν , gµ] ⊂ g(ν+µ)(mod 2), we see that νHiSi = g0 ∩ p and THiSi = g1 ∩ p are
Lie triple systems. It follows that both the tangent space and the normal space of
the symmetric R-space Si at Hi are reflective Lie triple systems.

Let V 6= p be a Lie triple system in p with fi ⊂ V and let Σ′ be the connected
complete totally geodesic submanifold of M with TpΣ

′ = V. Then we have Σ′ =
G′/K ′, where G′ and K ′ is the connected closed subgroup of G with Lie algebra
g′ = [V,V]⊕ V and k′ = [V,V], respectively.

Since rk(M) ≥ 2, the semisimple factor bi of fi is non-trivial and therefore V
is a non-abelian subspace of p. Since THiSi is a Lie triple system, V ∩ THiSi is
a Lie triple system as well. Let N be the connected component containing Hi

of the intersection Σ′ ∩ Si. It is clear from the construction that N is a smooth
submanifold of Si in an open neighborhood of Hi.
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We identify X ∈ g with the Killing field q 7→ X.q = d
dt |t=0

(t 7→ Exp(tX)(q)) on

M . The orthogonal projection X̄ of X|Σ′ to TΣ′ is a Killing field on the totally geo-
desic submanifold Σ′ which lies in the transvection algebra of Σ′ (see the paragraph
below Lemma 2.1 in [1]). Note that X̄.p = 0 if X ∈ k. Then, if X ∈ k, there exists
X ′ ∈ k′ such that Z|Σ′ is always perpendicular to Σ′, where Z = X − X ′. This

implies that Z.V ⊂ V⊥. In fact, let γu be the geodesic in M with initial condition
γ′u(0) = u ∈ V. The Jacobi field Z.γu(t) is perpendicular to Tγu(t)Σ

′ and therefore

its covariant derivative (Z.γu)′(t) must be so. Hence (Z.γu)′(0) = Z.u ∈ V⊥. So,
if X ∈ k, we have X.u = X ′.u + Z.u and thus Tu(K · u) ⊂ Tu(K ′ · u) ⊕ V⊥ for
all u ∈ V. This implies Tu(K · u) = Tu(K ′ · u) ⊕ V⊥ (orthogonal direct sum) and
νu(K ′ · u) = νu(K · u) for all u ∈ Si, since νHiSi ⊂ V.

As we have previously observed, N is a submanifold of Si in an open neighbor-
hood of Hi. Since K ′ ·Hi ⊂ V and K ′ ⊂ K we obtain K ′ ·Hi ⊂ N and K ′ ·N = N .
From the previous paragraph we conclude that N coincides with K ′ · Hi around
Hi, since both submanifolds of Si have the same dimension. Moreover, since V is
K ′-invariant, V contains the normal space νwSi = νw(K · w) for all w ∈ K ′ · Hi.
This implies in particular that N is totally geodesic in Si at all points w ∈ K ′ ·Hi.
Thus N is a submanifold around any w ∈ K ′ ·Hi and N coincides, around w, with
this orbit. Therefore K ′ ·Hi is an open subset of N . Since K ′ ·Hi is compact and
N is Hausdorff, the orbit K ′ ·Hi is a closed subset of N . Since N is connected this
implies that N = K ′ ·Hi is a totally geodesic submanifold of Si.

Let us consider the extrinsic symmetry si at Hi of the extrinsically symmetric
submanifold Si of TpM . Since si leaves Si, V and {Hi} invariant, it also leaves
N = K ′ ·Hi, the connected component of Si ∩ V containing Hi, invariant. Hence
si restricted to V is an extrinsic symmetry of N ⊂ V at Hi. This proves that N is
an extrinsically symmetric submanifold of V.

Note that the extrinsic symmetry si has the property si(V) = V and therefore
siK

′s−1
i = K ′.

We want to prove that N = {Hi}, or equivalently, that V = νHiSi. Assume
that this is not true. Let W ⊂ V be the linear span of N = K ′ ·Hi. Then W is the
tangent space to a (symmetric) Riemannian factor of Σ′, since it is K ′-invariant.
The subspace W cannot have an abelian part since N = K ′ ·Hi is full in W. Also,
since K acts irreducibly on TpM , K must act effectively on the symmetric orbit
Si. The group K is generated by the so-called geometric transvections {sx ◦ sy},
where x, y ∈ Si and sx denotes the extrinsic symmetry at x. In fact, the connected
group K cannot be bigger than the group of transvections of the symmetric space
Si since Si is compact, and so any Killing field on Si is bounded and hence belongs
to the Lie algebra of the transvection group.

LetK ′′ be the connected closed subgroup ofK ′ with Lie algebra k′′ = [W,W]⊕W.
Note that K ′ ·Hi = K ′′ ·Hi. Moreover, K ′′ acts almost effectively on N . In fact,
K ′′ acts almost effectively on W (see Section 2 of [1]) and if k′′ ∈ K ′′ acts trivially
on N it must act trivially on its linear span. We also have K ′ = K ′′ × K̄ (almost
direct product), where K̄ is the connected closed subgroup of K ′ with Lie algebra
k̄ = [W⊥ ∩ V,W⊥ ∩ V]⊕ (W⊥ ∩ V).

As we have seen above, N = K ′′ ·Hi is a symmetric submanifold of Si and thus
K ′′ must be generated by {sx′ ◦sy′} with x′, y′ ∈ K ′ ·Hi. The following observation
is crucial: {sx′ ◦ sy′} is the identity on the orthogonal complement of W. In fact,
sx′ is the identity on W⊥ ∩V, since this subspace is contained in νx′Si. Moreover,
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sx′ is minus the identity on V⊥, which is tangent to Si at x′. The same is true if
one replaces x′ by y′ and so sx′ ◦ sy′ is the identity on V⊥⊕ (W⊥ ∩V) = W⊥. This
implies that K ′′ acts trivially on W⊥, which contradicts the Slice Lemma 3.1. Then
V = νHiSi which implies that νHiSi = TpΣ is maximal. Thus we have proved that
Σ is a maximal totally geodesic submanifold of M . This finishes the proof of “(ii)
⇒ (i)”. �

From Theorem 4.2 and Table 2 we obtain

Corollary 4.3. Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type. If the restricted root system of M is of type (BCr), (E8), (F4)
or (G2), then every maximal totally geodesic submanifold of M is semisimple.

We have seen in the proof of Theorem 4.2 that νpFi is a Lie triple system when
δi = 1, which implies that TpFi is a reflective Lie triple system when δi = 1. From
Theorem 4.2 we can therefore conclude:

Corollary 4.4. Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type and let Σ be a non-semisimple maximal totally geodesic submani-
fold of M . Then Σ is a reflective submanifold of M .

We remark that the analogous statement for the semisimple case does not hold.
For example, SL3(R)/SO3 is a semisimple maximal totally geodesic submanifold
of G2

2/SO4 which is not reflective.
We recall from [1] the following result:

Theorem 4.5. Let M be an irreducible Riemannian symmetric space. Then

rk(M) ≤ i(M).

From Table 3 we obtain that the codimension of the totally geodesic submanifold
Σ = R × SLr(R)/SOr in M = SLr+1(R)/SOr+1 is equal to r = rk(M), which
implies i(M) ≤ rk(M). Using Theorem 4.5 we thus conclude:

Corollary 4.6. For M = SLr+1(R)/SOr+1 we have rk(M) = r = i(M).

5. Examples of symmetric spaces with rk(M) = i(M)

We first consider the symmetric space M = SLr+1(R)/SOr+1 for r ≥ 1 and
present a more explicit version of Corollary 4.6. This symmetric space has rk(M) =
r and dim(M) = 1

2r(r+ 3). For r = 1 we get the real hyperbolic plane RH2. Thus,
if Σ is a geodesic in M , we have codim(Σ) = 1 = rk(M). For r ≥ 2 we consider the
Cartan decomposition g = k⊕ p of the Lie algebra g = slr+1(R) of G = SLr+1(R)
which is induced by the Lie algebra k = sor+1 of K = SOr+1. The vector space p
is given by

p = {A ∈ slr+1(R) | AT = A}.
We now define

m =

{
A =

(
−tr(B) 0

0 B

)
∈ p

∣∣∣∣ B ∈ glr(R), BT = B

}
.

Then we have

[[m,m],m] =

{
A =

(
0 0
0 B

)
∈ p

∣∣∣∣ B ∈ slr(R), BT = B

}
⊂ m,
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which shows that m is a Lie triple system in p. We have dim(m) = 1
2r(r + 1) and

hence dim(p)− dim(m) = 1
2r(r+ 3)− 1

2r(r+ 1) = r. Thus the connected complete
totally geodesic submanifold Σ of M corresponding to the Lie triple system m,
which is isometric to R × SLr(R)/SOr, satisfies codim(Σ) = r = rk(M). From
Theorem 4.5 we can therefore conclude that the index of SLr+1(R)/SOr+1 is equal
to the rank of SLr+1(R)/SOr+1. We remark that R × SLr(R)/SOr is tangent to
the normal space of a Veronese embedding of the real projective space RP r into p
(see e.g. Lemma 8.1 in [12]).

Next, we consider the symmetric space M = SOor,r+k/SOrSOr+k with r ≥ 1,

k ≥ 0 and (r, k) /∈ {(1, 0), (2, 0)}. This symmetric space has rk(M) = r and
dim(M) = r(r + k). For (r, k) = (1, 0) we have dim(M) = 1 and so M is
not of noncompact type. For (r, k) = (2, 0) we have the symmetric space M =
SOo2,2/SO2SO2 which is isometric to the Riemannian product of two real hyper-
bolic planes and therefore not irreducible. Note that SOo1,2/SO2 = SL2(R)/SO2

and SOo3,3/SO3SO3 = SL4(R)/SO4.

For r = 1 we get the (k + 1)-dimensional real hyperbolic space M = RHk+1 =
SOo1,1+k/SO1+k. This space contains a totally geodesic hypersurface Σ = RHk and

therefore rk(M) = 1 = i(M).
Now assume that r ≥ 2 and consider the Cartan decomposition g = k ⊕ p of

the Lie algebra g = sor,r+k of G = SOor,r+k which is induced by the Lie algebra
k = sor ⊕ sor+k of K = SOrSOr+k. The vector space p is given by

p =

{
A ∈ sor,r+k

∣∣∣∣ A =

(
0 B
BT 0

)
, B ∈Mr,r+k(R)

}
,

where Mr,r+k(R) denotes the vector space of r × (r + k)-matrices with real coeffi-
cients. We define a linear subspace m of p by

m =

{
A =

(
0 B
BT 0

)
∈ p

∣∣∣∣ B =
(
C 0

)
, C ∈Mr,r+k−1(R)

}
.

A straightforward calculation shows that [[m,m],m] ⊂ m, that is, m is a Lie triple
system in p. We have dim(m) = r(r + k − 1) and hence dim(p) − dim(m) =
r(r + k) − r(r + k − 1) = r. Thus the connected complete totally geodesic sub-
manifold Σ of M corresponding to the Lie triple system m, which is isometric to
SOor,r+k−1/SOrSOr+k−1, satisfies codim(Σ) = r = rk(M). From Theorem 4.5 it

follows that the index of SOor,r+k/SOrSOr+k is equal to r.
Altogether we have now proved the “if”-part of Theorem 1.1:

Proposition 5.1. Let M be one of the following Riemannian symmetric spaces of
noncompact type:

(i) SLr+1(R)/SOr+1, r ≥ 1;
(ii) SOor,r+k/SOrSOr+k, r ≥ 1, k ≥ 0, (r, k) /∈ {(1, 0), (2, 0)}.

Then rk(M) = r = i(M).

6. The classification

The following result was proved in [1] and will be used later.

Theorem 6.1. Let M be an irreducible Riemannian symmetric space, Σ a con-
nected totally geodesic submanifold of M and p ∈ Σ. Then there exists a maximal
abelian subspace a of p such that a is transversal to TpΣ, that is, a ∩ TpΣ = {0}.



16 JÜRGEN BERNDT AND CARLOS OLMOS

Let M = G/K be an irreducible Riemannian symmetric space of noncompact
type and assume that i(M) = r = rk(M). Then there exists a connected complete
totally geodesic submanifold Σ of M with p ∈ Σ such that codim(Σ) = r. According
to Theorem 6.1 there exists a maximal abelian subspace a of p such that a is
transversal to TpΣ. Let Ψ be the set of restricted roots with respect to a and
Λ = {α1, . . . , αr} be a set of simple roots for Ψ. The next result provides a necessary
criterion for an irreducible Riemannian symmetric space M with rk(M) ≥ 2 to
satisfy the equality rk(M) = i(M).

Proposition 6.2. (Boundary Reduction) Let M be an irreducible Riemannian
symmetric space of noncompact type with rk(M) ≥ 2 and assume that the equality
rk(M) = i(M) holds. Then every irreducible boundary component BΦ of M satisfies
rk(BΦ) = i(BΦ).

Proof. Let ΣΦ be the connected complete totally geodesic submanifold of FΦ corre-
sponding to the Lie triple system TpΣ ∩ TpFΦ. Since TpM = TpΣ⊕ a (direct sum)
and a ⊂ TpFΦ, we have TpFΦ = TpΣΦ ⊕ a (direct sum). Thus the codimension of
ΣΦ in FΦ is equal to dim a = r = rk(M) = rk(FΦ).

The orthogonal projection (TpΣΦ)TpBΦ
of the Lie triple system TpΣΦ onto TpBΦ

is a Lie triple system. Let Σ′Φ be the connected complete totally geodesic sub-
manifold of BΦ corresponding to the Lie triple system (TpΣΦ)TpBΦ

. Since TpFΦ =

TpΣΦ ⊕ a = TpBΦ ⊕ aΦ (direct sum) and a = aΦ ⊕ aΦ, we have TpBΦ = TpΣ
′
Φ ⊕ aΦ

(direct sum), which implies that the codimension of Σ′Φ in BΦ is equal to dim(aΦ) =
dim(a) − dim(aΦ) = r − (r − |Φ|) = |Φ| = rk(BΦ). This implies i(BΦ) ≤ rk(BΦ).
However, since BΦ is irreducible, we also have rk(BΦ) ≤ i(BΦ) by Theorem 4.5.
Altogether this implies rk(BΦ) = i(BΦ). �

We recall the following result from [1]:

Theorem 6.3. (Symmetric spaces with index ≤ 3) Let M be an irreducible
Riemannian symmetric space of noncompact type.

(1) i(M) = 1 if and only if M is isometric to
(i) the real hyperbolic space RHk+1 = SOo1,1+k/SO1+k, k ≥ 1.

(2) i(M) = 2 if and only if M is isometric to one of the following spaces:
(i) the complex hyperbolic space CHk+1 = SU1,1+k/S(U1U1+k), k ≥ 1;
(ii) the Grassmannian SOo2,2+k/SO2SO2+k, k ≥ 1;

(iii) the symmetric space SL3(R)/SO3.
(3) i(M) = 3 if and only if M is isometric to one of the following spaces:

(i) the Grassmannian SOo3,3+k/SO3SO3+k, k ≥ 1;

(ii) the symmetric space G2
2/SO4;

(iii) the symmetric space SL3(C)/SU3;
(iv) the symmetric space SL4(R)/SO4.

The Riemannian symmetric spaces of noncompact type with rk(M) = 1 = i(M)
are precisely the real hyperbolic spaces SOo1,1+k/SO1+k, k ≥ 1. The irreducible

Riemannian symmetric spaces of noncompact type with rk(M) ≥ 2 whose rank one
boundary components are all real hyperbolic spaces are precisely those for which the
restricted root system is reduced, that is, is not of type (BCr). From Proposition
6.2 we therefore obtain:
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Corollary 6.4. (Rank One Boundary Reduction) Let M be an irreducible
Riemannian symmetric space of noncompact type with rk(M) ≥ 2 and assume that
rk(M) = i(M). Then the restricted root system of M is not of type (BCr).

According to Theorem 6.3, the Riemannian symmetric spaces of noncompact
type with rk(M) = 2 = i(M) are precisely SOo2,2+k/SO2SO2+k, k ≥ 1, and

SL3(R)/SO3. The corresponding Dynkin diagrams with multiplicities are

��	�

�� ��	�

��
1 k

+3 and ��	�

�� ��	�

��
1 1

.

We can easily extract from Table 1 the Dynkin diagrams of rank ≥ 3 with multi-
plicities for which every connected subdiagram of rank 2 is one of the above:

��	�

�� ��	�

�� ��	�

�� ��	�

��
1 1 1 1

, ��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��
1 1 1 1 k

+3 , ��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

����	�

��
1 1 1 1

1

1

hhhh VVVV ,

��	�

��
��	�

��

��	�

�� ��	�

�� ��	�

�� ��	�

��
1

1

1 1 1 1
, ��	�

��

��	�

��
��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��

1

1

1 1 1 1 1
,

��	�

��
��	�

��

��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

�� ��	�

��
1

1

1 1 1 1 1 1
, ��	�

�� ��	�

�� ��	�

�� ��	�

��

1 1 1 1
+3 .

From Proposition 6.2 we thus obtain:

Corollary 6.5. (Rank Two Boundary Reduction) Let M be an irreducible
Riemannian symmetric space of noncompact type with rk(M) ≥ 3 and assume that
rk(M) = i(M). Then M must be among the following spaces:

(1) SLr+1(R)/SOr+1, r ≥ 3;
(2) SOor,r+k/SOrSOr+k, r ≥ 3, k ≥ 0;

(3) E6
6/Sp4;

(4) E7
7/SU8;

(5) E8
8/SO16;

(6) F 4
4 /Sp3Sp1.

We know from Proposition 5.1 that the symmetric spaces in (1) and (2) satisfy
the equality rk(M) = i(M). In order to prove Theorem 1.1 it remains to show that
the four exceptional spaces in Corollary 6.5 do not satisfy the equality rk(M) =
i(M). For M = F 4

4 /Sp3Sp1 we can apply rank three boundary reduction:

Corollary 6.6. The symmetric space M = F 4
4 /Sp3Sp1 does not satisfy the equality

rk(M) = i(M).

Proof. The Dynkin diagram with multiplicities for F 4
4 /Sp3Sp1 is

��	�

�� ��	�

�� ��	�

�� ��	�

��
1 1 1 1

+3 .

We see from Theorem 6.3 that the boundary component BΦ = Sp3(R)/U3 corre-
sponding to the rank three subdiagram

��	�

�� ��	�

�� ��	�

��
1 1 1

+3

does not satisfy the equality rk(BΦ) = i(BΦ). The statement thus follows from
Proposition 6.2. �

The situation for the exceptional symmetric space E6
6/Sp4 is quite interesting

as the following result shows.
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Proposition 6.7. Every irreducible boundary component BΦ of M = E6
6/Sp4 sat-

isfies rk(BΦ) = i(BΦ). However, M does not satify the equality rk(M) = i(M).

Proof. We list the different types of irreducible boundary components of M by
cardinality of Φ.

(1) |Φ| = 1: BΦ = SL2(R)/SO2;
(2) |Φ| = 2: BΦ = SL3(R)/SO3;
(3) |Φ| = 3: BΦ = SL4(R)/SO4;
(4) |Φ| = 4: BΦ = SL5(R)/SO5 and BΦ = SOo4,4/SO4SO4;
(5) |Φ| = 5: BΦ = SL6(R)/SO6 and BΦ = SOo5,5/SO5SO5.

As we have shown in Proposition 5.1, each of these boundary components satisfies
rk(BΦ) = i(BΦ).

We have n = dim(M) = 42 and r = rk(M) = 6. Assume that there exists a
maximal totally geodesic submanifold Σ of M with d = codim(Σ) = 6. We first
assume that Σ is semisimple. Then the inequality in Corollary 3.5 is satisfied and
thus Σ is a reflective submanifold of M . As usual, we write Σ = G′/K ′, where G′

is the connected closed subgroup of E6
6 with Lie algebra g′ = [TpΣ, TpΣ]⊕TpΣ and

K ′ = G′p. Note that K ′ is connected since Σ is simply connected. Let s ∈ I(M)

be the geodesic reflection of M in Σ and define τ : E6
6 → E6

6 , g 7→ sgs−1. It is
clear that G′, and hence also K ′, is contained in the fixed point set of τ . Since s
commutes with the geodesic symmetry of M at p, we have τ(Sp4) = Sp4. Let H
be the connected component of the fixed point set of τ|Sp4

containing the identity
transformation of Sp4. Note that K ′ ⊂ H. Then Sp4/H is a (simply connected)
Riemannian symmetric space of compact type. However, as we observed in the
proof of Corollary 3.5, we have dim(K ′) ≥ dim(Σ) − rk(M) = 30 and therefore
dim(Sp4/H) ≤ dim(Sp4/K

′) ≤ 6. Since there is no Riemannian symmetric space
of Sp4 of dimension ≤ 6 we conclude that there is no reflective submanifold Σ of
M with codim(Σ) = 6. [Note: This fact can also be seen directly from Leung’s
classification of reflective submanifolds. However, we prefer to give a conceptual
proof here.] Therefore Σ cannot be semisimple. If Σ is non-semisimple, then Σ =
R×SOo5,5/SO5SO5 by Table 3 and hence codim(Σ) = 16, which is a contradiction.
Altogether we can now conclude that there is no totally geodesic submanifold in M
with codim(M) = 6. This implies rk(M) < i(M). �

As a consequence of Proposition 6.7 we can now settle the two remaining cases.

Corollary 6.8. The symmetric spaces M = E7
7/SU8 and M = E8

8/SO16 do not
satisfy the equality rk(M) = i(M).

Proof. We see from Table 1 that the Dynkin diagram with multiplicities for E6
6/Sp4

can be embedded into the Dynkin diagrams with multiplicities for E7
7/SU8 and

E8
8/SO16. This means that E6

6/Sp4 is an irreducible boundary component of both
E7

7/SU8 and E8
8/SO16. From Proposition 6.2 and Proposition 6.7 we can conclude

that both M = E7
7/SU8 and M = E8

8/SO16 do not satisfy the equality rk(M) =
i(M). �

Theorem 1.1 now follows from Proposition 5.1, Corollary 6.5, Corollary 6.6,
Proposition 6.7 and Corollary 6.8. We also obtain the following interesting charac-
terization of the exceptional symmetric space E6

6/Sp4:
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Proposition 6.9. The exceptional symmetric space E6
6/Sp4 is the only irreducible

Riemannian symmetric space M of noncompact type with rk(M) ≥ 3 for which
every irreducible boundary component B satisfies rk(B) = i(B) but the manifold
itself does not satisfy rk(M) = i(M).

7. Further applications

In this section we will calculate i(M) for a few irreducible Riemannian symmetric
spaces M of noncompact type using the methods we developed in this paper and
Leung’s classification of reflective submanifolds. We first recall some known results
to put our results into context.

The totally geodesic submanifolds of Riemannian symmetric spaces M of non-
compact type with rk(M) = 1 were classified by Wolf in [14]. We use the following
notations: RHk+1 = SOo1,1+k/SO1+k denotes the (k + 1)-dimensional real hyper-

bolic space, CHk+1 = SU1,1+k/S(U1U1+k) denotes the (k+1)-dimensional complex
hyperbolic space, HHk+1 = Sp1,1+k/Sp1Sp1+k denotes the (k + 1)-dimensional

quaternionic hyperbolic space, and OH2 = F−20
4 /Spin9 denotes the Cayley hy-

perbolic plane. Here, k ≥ 1. The totally geodesic submanifolds of irreducible
Riemannian symmetric spaces M of noncompact type with rk(M) = 2 were classi-
fied by Klein in [5], [6], [7] and [8]. From Wolf’s and Klein’s classifications we obtain
i(M) for all irreducible Riemannian symmetric spaces M of noncompact type with
rk(M) ≤ 2. Some of the indices for rk(M) = 2 were calculated by Onishchik in
[13]. We summarize all this in Table 4.

Table 4. The index i(M) for irreducible Riemannian symmetric
spaces M of noncompact type with rk(M) ≤ 2 and totally geodesic
submanifolds Σ of M with codim(Σ) = i(M)

M Σ dim(M) i(M) Comments

RHk+1 RHk k + 1 1 k ≥ 1

CHk+1 CHk (and RH2 for k = 1) 2(k + 1) 2 k ≥ 1
HHk+1 HHk (and CH2 for k = 1) 4(k + 1) 4 k ≥ 1
OH2 OH1, HH2 16 8

SL3(R)/SO3 R× RH2 5 2
SOo2,2+k/SO2SO2+k SOo2,1+k/SO2SO1+k 2(k + 2) 2 k ≥ 1

SL3(C)/SU3 SL3(R)/SO3 8 3

G2
2/SO4 SL3(R)/SO3 8 3

SO5(C)/SO5 SO4(C)/SO4, SOo2,3/SO2SO3 10 4

SU2,2+k/S(U2U2+k) SU2,1+k/S(U2U1+k) 4(k + 2) 4 k ≥ 1
SU∗

6 /Sp3 SL3(C)/SU3, HH2 14 6

G2(C)/G2 G2
2/SO4, SL3(C)/SU3 14 6

Sp2,2/Sp2Sp2 Sp2(C)/Sp2 16 6
SO∗

10/U5 SO∗
8/U4, SU2,3/S(U2U3) 20 8

Sp2,2+k/Sp2Sp2+k Sp2,1+k/Sp2Sp1+k 8(k + 2) 8 k ≥ 1

E−26
6 /F4 OH2 26 10

E−14
6 /Spin10U1 SO∗

10/U5 32 12

Let M be a connected Riemannian manifold and denote by Sr the set of all
connected reflective submanifolds Σ of M with dim(Σ) < dim(M). The reflective
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index ir(M) of M is defined by

ir(M) = min{dim(M)− dim(Σ) | Σ ∈ Sr} = min{codim(Σ) | Σ ∈ Sr}.

It is clear that i(M) ≤ ir(M) and thus ir(M) is an upper bound for i(M). Leung
classified in [10] and [11] the reflective submanifolds of irreducible simply connected
Riemannian symmetric spaces of compact type. Using duality this allows us to
calculate ir(M) explicitly for all irreducible Riemannian symmetric spaces M of
noncompact type. We list the reflective indices ir(M) for all M with rk(M) ≥ 3 in
Table 5.

Table 5. The reflective index ir(M) for irreducible Riemannian
symmetric spaces M of noncompact type with rk(M) ≥ 3 and
reflective submanifolds Σ of M with codim(Σ) = ir(M)

M Σ dim(M) ir(M) Comments i(M) = ir(M)?

SLr+1(R)/SOr+1 R× SLr(R)/SOr
1
2
r(r+ 3) r r ≥ 3 yes

SL4(C)/SU4 Sp2(C)/Sp2 15 5 yes
SLr+1(C)/SUr+1 R× SLr(C)/SUr r(r + 2) 2r r ≥ 4 ?
SU∗

2r+2/Spr+1 R× SU∗
2r/Spr r(2r + 3) 4r r ≥ 3 ?

SOor,r+k/SOrSOr+k SOor,r+k−1/SOrSOr+k−1 r(r + k) r r ≥ 3, k ≥ 1 yes

SO2r+1(C)/SO2r+1 SO2r(C)/SO2r r(2r + 1) 2r r ≥ 3 yes

Spr(R)/Ur RH2 × Spr−1(R)/Ur−1 r(r + 1) 2r − 2 r ≥ 3 yes for r ≤ 5,

otherwise ?
SUr,r/S(UrUr) SUr−1,r/S(Ur−1Ur) 2r2 2r r ≥ 3 yes

Spr(C)/Spr RH3 × Spr−1(C)/Spr−1 r(2r + 1) 4r − 4 r ≥ 3 ?
SO∗

4r/U2r SO∗
4r−2/U2r−1 2r(2r−1) 4r − 2 r ≥ 3 ?

Spr,r/SprSpr Spr−1,r/Spr−1Spr 4r2 4r r ≥ 3 ?

E−25
7 /E6U1 E−14

6 /Spin10U1 54 22 ?

SOor,r/SOrSOr SOor−1,r/SOr−1SOr r2 r r ≥ 4 yes

SO2r(C)/SO2r SO2r−1(C)/SO2r−1 r(2r − 1) 2r − 1 r ≥ 4 yes

SUr,r+k/S(UrUr+k) SUr,r+k−1/S(UrUr+k−1) 2r(r + k) 2r r ≥ 3, k ≥ 1 yes

Spr,r+k/SprSpr+k Spr,r+k−1/SprSpr+k−1 4r(r + k) 4r r ≥ 3, k ≥ 1 yes for r− 1 ≤ k,

otherwise ?
SO∗

4r+2/U2r+1 SO∗
4r/U2r 2r(2r+1) 4r r ≥ 3 ?

E6
6/Sp4 F 4

4 /Sp3Sp1 42 14 ?
E6(C)/E6 F4(C)/F4 78 26 ?

E7
7/SU8 R× E6

6/Sp4 70 27 ?

E7(C)/E7 R× E6(C)/E6 133 54 ?

E8
8/SO16 RH2 × E7

7/SU8 128 56 ?

E8(C)/E8 RH3 × E7(C)/E7 248 112 ?

F 4
4 /Sp3Sp1 SOo4,5/SO4SO5 28 8 yes

E2
6/SU6Sp1 F 4

4 /Sp3Sp1 40 12 ?

E−5
7 /SO12Sp1 E2

6/SU6Sp1 64 24 ?

E−24
8 /E7Sp1 E−5

7 /SO12Sp1 112 48 ?

F4(C)/F4 SO9(C)/SO9 52 16 ?
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As an application of Corollaries 3.5 and 4.4 we will now calculate the index of a
few symmetric spaces. Let Σ be a maximal totally geodesic submanifold of an n-
dimensional irreducible Riemannian symmetric space M of noncompact type with
r = rk(M) ≥ 2 such that i(M) = codim(Σ). If Σ is non-semisimple, then Σ is
a reflective submanifold by Corollary 4.4. If Σ is semisimple and d = codim(Σ)
satisfies d(d+ 1) < 2(n− r), then Σ is a reflective submanifold of M by Corollary
3.5. It follows that if codim(Σ) ≤ ir(M)−1 and (ir(M)−1)ir(M) < 2(n− r), then
Σ is a reflective submanifold. Altogether this implies the following

Proposition 7.1. Let M be an irreducible Riemannian symmetric space of non-
compact type with rk(M) ≥ 2. If

(ir(M)− 1)ir(M) < 2(dim(M)− rk(M)),

then i(M) = ir(M).

The inequality in Proposition 7.1 can be checked explicitly for each symmetric
space M in Table 5:

Corollary 7.2. The following Riemannian symmetric spaces M of noncompact
type with rk(M) ≥ 3 satisfy the inequality in Proposition 7.1 and therefore satisfy
the equality i(M) = ir(M):

(i) SLr+1(R)/SOr+1, r ≥ 3;
(ii) SL4(C)/SU4;
(iii) SOor,r+k/SOrSOr+k, r ≥ 3, k ≥ 1;

(iv) SO2r+1(C)/SO2r+1, r ≥ 3;
(v) Spr(R)/Ur, 3 ≤ r ≤ 4;

(vi) SOor,r/SOrSOr, r ≥ 4;
(vii) SO2r(C)/SO2r, r ≥ 4;
(viii) SUr,r+k/S(UrUr+k), r ≥ 3, k ≥ 1;
(ix) Spr,r+k/SprSpr+k, 3 ≤ r ≤ k.

We inserted this result into the last column of Table 5.
We can also use these methods to determine all irreducible Riemannian symmet-

ric spaces M of noncompact type with i(M) = 4.

Theorem 7.3. (Symmetric spaces with index four) Let M be an irreducible
Riemannian symmetric space of noncompact type. Then i(M) = 4 if and only if M
is isometric to one of the following symmetric spaces:

(i) HHk+1 = Sp1,1+k/Sp1Spk, k ≥ 1;
(ii) SU2,2+k/S(U2U2+k), k ≥ 1;
(iii) SOo4,4+k/SO4SO4+k, k ≥ 0;

(iv) SO5(C)/SO5;
(v) Sp3(R)/U3;
(vi) SL5(R)/SO5.

Proof. From Tables 4 and 5 and Corollary 7.2 we see that every symmetric space
listed in Theorem 7.3 satisfies i(M) = 4. Conversely, let M be an irreducible
Riemannian symmetric space of noncompact type with i(M) = 4 and let Σ be a
maximal totally geodesic submanifold of M with d = codim(Σ) = 4. If rk(M) ≤ 2
we obtain from Table 4 that M is one of the spaces in (i), (ii) and (iv). Assume that
rk(M) ≥ 3. If Σ is non-semisimple, then Σ is reflective by Corollary 4.4. If Σ is
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semisimple and dim(M)− rk(M) ≥ 11, then Σ is reflective by Corollary 3.5. Thus
we have ir(M) = i(M) = 4 if dim(M)− rk(M) ≥ 11 and we can use Table 5 to see
that M is isometric to a space in (iii). The symmetric spaces M with rk(M) ≥ 3
and dim(M)− rk(M) < 11 are SL4(R)/SO4 and SOo3,4/SO3SO4 (which both have
index 3 by Theorem 6.3), Sp3(R)/U3 and SL5(R)/SO5 (which both have index 4
by Corollary 7.2). This concludes the proof of Theorem 7.3 �

The analogous argument does not work for index five. For example, M =
SU3,3/S(U3U3) has ir(M) = 6, but for d = 5 the inequality d(d+ 1) < 2(dim(M)−
rk(M)) is not satisfied, so we can only conclude i(M) ∈ {5, 6} with our results
so far. However, using the classification in [2] of cohomogeneity one actions on
irreducible Riemannian symmetric spaces of noncompact type, we can improve the
inequality in Corollary 3.5 when codim(Σ) ≥ 5:

Proposition 7.4. Let M be an n-dimensional irreducible Riemannian symmetric
space of noncompact type with r = rk(M) ≥ 2 and let Σ be a semisimple connected
complete totally geodesic submanifold of M with codim(Σ) = d ≥ 5. If

d(d− 1) < 2(n− r − 1),

then Σ is a reflective submanifold of M .

Proof. As usual, we write Σ = G′/K ′ and identify SOd with SO(νpΣ). Since
d ≥ 5 and any connected subgroup of SOd is totally geodesic in SOd, we see from
Corollary 7.2 that the minimal codimension of a connected subgroup of SOd is
equal to d− 1, which is exactly the codimension of SOd−1. A principal K ′-orbit on
Σ has dimension n−d− rk(Σ), which implies dim(K ′) ≥ n−d− rk(Σ) ≥ n−d− r.
Consequently, if 1

2 (d − 1)(d − 2) < n − d − r, then dim(K ′) > 1
2 (d − 1)(d − 2) =

dim(SOd−1). The inequality 1
2 (d− 1)(d− 2) < n− d− r is equivalent to d(d− 1) <

2(n − r − 1). If the kernel ker(ρ) of the slice representation ρ : K ′ → SO(νpΣ)
has positive dimension, then Σ is a reflective submanifold by Proposition 3.4. If
dim(ker(ρ)) = 0, then we must have k′ = sod and the action of K ′ on the unit sphere
in νpΣ is transitive. This implies that Σ is a totally geodesic singular orbit of a
cohomogeneity one action on M . It was proved in [2] that with five exceptions any
such orbit is reflective. Three of the five exceptions do not satisfy the assumption
d ≥ 5. The remaining two exceptions are Σ = GC

2 /G2 in M = SO7(C)/SO7

and Σ = SL3(C)/SU3 in M = GC
2 /G2, and both do not satisfy the inequality

d(d− 1) < 2(n− r − 1). It follows that Σ is reflective. �

Note that the assumption d ≥ 5 in Proposition 7.4 is essential. For example,
Σ = G2

2/SO4 is a semisimple totally geodesic submanifold of M = SOo3,4/SO3SO4

with d = codim(Σ) = 4. The inequality in Proposition 7.4 is satisfied, but Σ is
non-reflective. For d = 3 the totally geodesic submanifold Σ = SL3(R)/SO3 in
M = G2

2/SO4 provides a counterexample.
From Proposition 7.4 we obtain:

Corollary 7.5. Let M be an irreducible Riemannian symmetric space of noncom-
pact type and let Σ be a semisimple connected complete totally geodesic submanifold
of M with codim(Σ) ≥ 5. If codim(Σ) = rk(M), then Σ is a reflective submanifold
of M .

Proof. For d = codim(Σ) = rk(M) = r the inequality in Proposition 7.4 becomes
r2 + r < 2n − 2. It is clear that n = dim(M) ≥ 1

2#(R) + r, where (R) denotes
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the restricted root system of M . For every root system occuring here we have
r2 + r ≤ #(R), with equality if and only if (R) = (Ar). Altogether this implies
r2 + r ≤ #(R) ≤ 2n− 2r < 2n− 2 and hence Σ is reflective by Proposition 7.4. �

From Proposition 7.4 we also obtain:

Corollary 7.6. Let M be an irreducible Riemannian symmetric space of noncom-
pact type with rk(M) ≥ 2, i(M) ≥ 5 and ir(M) ≥ 6. If

(ir(M)− 2)(ir(M)− 1) < 2(dim(M)− rk(M)− 1),

then i(M) = ir(M).

Proof. Let Σ be a maximal totally geodesic submanifold of M such that d =
codim(Σ) = i(M) ≥ 5. We put n = dim(M) and r = rk(M). If Σ is non-semisimple,
then Σ is a reflective submanifold by Corollary 4.4 and hence d ≥ ir(M). If Σ is
semisimple and d < ir(M), then d(d− 1) < 2(n− r− 1) by assumption and thus Σ
is a reflective submanifold by Corollary 7.4, which is a contradiction to d < ir(M).
It follows that d ≥ ir(M) and therefore i(M) = ir(M). �

We can use Corollary 7.6 to calculate a few more indices for symmetric spaces
which cannot be obtained via the inequality in Proposition 7.1 and are therefore
not listed in Corollary 7.2:

Corollary 7.7. The following symmetric spaces satisfy i(M) = ir(M):

(i) Sp5(R)/U5;
(ii) SUr,r/S(UrUr), r ≥ 3;

(iii) Spr,r+k/SprSpr+k, k + 1 = r ≥ 3;
(iv) F 4

4 /Sp3Sp1.

Proof. Let M be one of the symmetric spaces in (i)-(iv). It is clear that rk(M) ≥ 2.
From Theorems 6.3 and 7.3 we see that i(M) ≥ 5 and from Table 5 we see that
ir(M) ≥ 6. It is a straightforward calculation to show thatM satisfies the inequality
in Corollary 7.6, which then implies i(M) = ir(M). �

We inserted this result into the last column of Table 5.
We can now also settle the classifications for i(M) = 5 and i(M) = 6.

Theorem 7.8. (Symmetric spaces with index five) Let M be an irreducible
Riemannian symmetric space of noncompact type. Then i(M) = 5 if and only if M
is isometric to one of the following symmetric spaces:

(i) SOo5,5+k/SO5SO5+k, k ≥ 0;

(ii) SL4(C)/SU4;
(iii) SL6(R)/SO6.

Proof. From Corollary 7.2 and Table 5 we see that every symmetric space listed in
Theorem 7.8 satisfies i(M) = 5. Conversely, let M be an irreducible Riemannian
symmetric space of noncompact type with i(M) = 5 and let Σ be a maximal
totally geodesic submanifold of M with d = codim(Σ) = 5. From Table 4 we
obtain rk(M) ≥ 3. If Σ is non-semisimple, then Σ is reflective by Corollary 4.4. If
Σ is semisimple and dim(M)− rk(M) > 11, then Σ is reflective by Proposition 7.4.
Thus we have ir(M) = i(M) = 5 if dim(M)− rk(M) > 11 and we can use Table 5
to see that M is isometric to one of the spaces in (i)-(iii). If dim(M)− rk(M) < 11
we saw in the proof of Theorem 7.3 that i(M) ∈ {3, 4}. There is no symmetric
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space M with rk(M) ≥ 3 and dim(M)− rk(M) = 11. This concludes the proof of
Theorem 7.8 �

Theorem 7.9. (Symmetric spaces with index six) Let M be an irreducible
Riemannian symmetric space of noncompact type. Then i(M) = 6 if and only if M
is isometric to one of the following symmetric spaces:

(i) SOo6,6+k/SO6SO6+k, k ≥ 0;

(ii) SU3,3+k/S(U3U3+k), k ≥ 0;
(iii) SU∗6 /Sp3;
(iv) GC

2 /G2;
(v) Sp2,2/Sp2Sp2;
(vi) Sp4(R)/U4;
(vii) SO7(C)/SO7;

(viii) SL7(R)/SO7.

Proof. From Tables 4 and 5 we see that every symmetric space listed in Theorem
7.9 satisfies i(M) = 6. Conversely, let M be an irreducible Riemannian symmetric
space of noncompact type with i(M) = 6 and let Σ be a maximal totally geodesic
submanifold of M with d = codim(Σ) = 6. If rk(M) ∈ {1, 2} we see from Table
4 that M is one of the spaces in (iii)-(v). We assume that rk(M) ≥ 3. If Σ
is non-semisimple, then Σ is reflective by Corollary 4.4. If Σ is semisimple and
dim(M) − rk(M) > 16, then Σ is reflective by Proposition 7.4. Thus we have
ir(M) = i(M) = 6 if dim(M)−rk(M) > 16 and we can use Table 5 to see that M is
isometric to one of the spaces in (i), (ii), (vii) and (viii). If dim(M)−rk(M) < 12 we
saw in the proof of Theorem 7.8 that i(M) ∈ {3, 4}. The symmetric spaces M with
rk(M) ≥ 3 and 12 ≤ dim(M)−rk(M) ≤ 16 are SOo3,5/SO3SO5 and SOo3,6/SO3SO6

(which both have index 3 by Theorem 6.3), SOo4,4/SO4SO4 and SOo4,5/SO4SO5

(which both have index 4 by Theorem 7.3), SL6(R)/SO6 and SL4(C)/SU4 (which
both have index 5 by Theorem 7.8), Sp4(R)/U4 (which has index 6 by Corollary
7.2 and Table 5), SU3,3/S(U3U3) (which has index 6 by Corollary 7.7 and Table
5). This concludes the proof of Theorem 7.8 �

We cannot continue beyond i(M) = 6 with our methods. For example, the
symmetric space M = Sp3(C)/Sp3 satisfies dim(M) = 21 and rk(M) = 3. Thus
the inequality d(d−1) < 2(dim(M)−rk(M)−1) = 34 in Proposition 7.4 is satisfied
if and only if d ≤ 6. However, from Table 5 we know that ir(M) = 8. Thus we
must have i(M) ∈ {7, 8}. We cannot exclude the possiblity i(M) = 7 here.

It is worthwhile to point out that the only irreducible Riemannian symmetric
space M with i(M) < ir(M) known to us is M = G2

2/SO4. This leads us to the

Conjecture. Let M be an irreducible Riemannian symmetric space of non-
compact type and M 6= G2

2/SO4. Then i(M) = ir(M).

We verified the conjecture in this paper for several symmetric spaces and for all
symmetric spaces with i(M) ≤ 6 or dim(M) ≤ 20. In the last column of Table 5
we summarize the current status of this conjecture.
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