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Abstract— In this paper, a model for target 
tracking with data fusion taken from inertial and 
altimeter sensors for a quadcopter is proposed. 
With some environmental restrains and using 
INS/altitude data, the new position and template 
changes are predicted. The model dynamics is 
estimated on the basis of the specifications of the 
UAV IRIS+, with a pointgrey blackfly camera 
(PGE-13E4C-CS), a gimbal (TAROT 2D), and a 
Laser Rangefinder (SF02).Simulation results are 
shown. 

Key words— Image processing, Sensor fusion, 
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1. INTRODUCTION 

Object tracking through image sequences is one of 
the problems of image processing most often studied. 
Besides its inherent worth, tracking is the first step 
for any navigation system based on images. A wide 
variety of algorithms is used to model the object of 
interest and to then look for it in the image. One of 
the first methods to be applied in object tracking is 
template matching. This algorithm takes a known 
intensity mask of the item being tracked and 
compares it with the image until it finds the place 
where their correlation takes its maximum value [1], 
[2], [3], [5]. 

This method presents a series of problems, being 
the change in the object appearance over time one of 
the most significant. Therefore, variations in the light 
and in the shape of the image must be taken into 
account. To address this, a variety of approaches with 
different amount of computational load have been 
employed. [4], [7] 

Updating the template after a certain number of 
frames is a basic method often applied to outline a 
valid solution for some of these problems. The main 
failure of this algorithm is that the object may drift 

from the mask. To keep the element centered in the 
template, the approach proposed by Matthews et al 
[6] is to preserve the first mask and to use it in the 
new template to prevent the drift. Transitory 
occlusion may occur deteriorating the mask in 
algorithms that lack robustness. Nguyen et al [8], 
suggest the use of Kalman filters to estimate the 
intensity of the new template so as to improve 
robustness against occlusions. In newer approaches, 
for example in [10], matching based on local 
brightness is replaced by a search for a model, thus 
avoiding failure caused by light changes. 

At the moment, Kanade-Lucas-Tomasi (KLT) is 
one of the most prevalent tracking methods that use 
template image alignment techniques. It has been 
extensively studied in the seminal work of Lucas and 
Kanade (1981), Shi and Tomasi (1994), and in the 
unifying framework of KLT variants by Baker and 
Matthews (2004). 

Most template matching algorithms for target 
tracking are based on the basic assumption that target 
appearance changes slowly over time. Consequently, 
they are vulnerable to fast rotation or severe camera 
shaking.  

This type of disturbances is frequent in UAV 
vision applications. Tracking algorithms, in general, 
use a template warping model for template matching 
along successive frames in a video sequence [2, 7, 
25]. The choice of warping model plays a significant 
role in the performance of the tracker. The 
homography-based warping model is a 
parametrization with 8 independent variables. 
However, when the camera is exposed to large 
movements the true position and rotation may be too 
different from the initial value acquired by the 
camera on the basis of the previous frame, and as a 
consequence it may be difficult for the algorithm to 
converge. Therefore, an adequate estimate of the 
initial parameters is critical for coping with severe 
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image deformation. 
The advantage in this kind of applications is that 

information of inter frame attitude and position 
change is available before the new frame appears. 
Almost all UAV systems are equipped with inertial 
systems, altimeters, GPS and motion estimators. So 
once these sensors are calibrated, the initial 
parameters can be estimated more accurately, and a 
more robust algorithm can be achieved.  

In this work, a tracking method that uses the 
template matching algorithm developed in [13] is 
proposed. This enhanced algorithm includes inertial 
and altitude sensor data fusion to improve the initial 
estimate of the target position and attitude relative to 
the camera. The algorithm developed is to be 
implemented in the near future on aNvidia Jetson 
TK1 which will control a system made up of an 
IRIS+ UAV, with a pointgrey blackfly camera (PGE-
13E4C-CS), a gimbal TAROT 2D, and a SF02 Laser 
Rangefinder, (see Fig. 1).The simulation results will 
be presented  showing the robustness of the enhanced 
method which uses an algorithm which considers 
image data alone. The dataset introduced for the 
simulations is the one used in the work by Warren et 
al  [33]. 

 

 
Figure 1: Full system prototype  
 

2. DESCRIPTION OF THE WORK 

2.1. Background 
The use of inertial sensors in machine vision 

applications was proposed more than twenty years 
ago. Further studies have investigated the cooperation 
between inertial and visual systems in autonomous 
navigation of mobile robots, in image correction and 
as a way to improve motion estimation for 3D 
reconstruction of structures. More recently, a 
framework for cooperation between vision sensors 
and inertial sensors has been proposed. The use of 
gravity as a vertical reference allows the calibration 
of focal length camera with a single vanishing point, 
the segmentation of the vertical and the horizontal 
plane. In the work by J. Lobo and J. Dias [14] a 
calibration method is presented which uses a function 
for detecting the vertical reference (gravity) and 3D 
mapping, and in [15], such vertical inertial reference 
is used to improve the alignment and registration of 

the depth map. Applications of this method in 
robotics are increasing. Initial works on vision 
systems for automated passenger vehicles have also 
incorporated inertial sensors and have explored the 
benefits of visual-inertial tracking [16], [17]. Other 
applications include agricultural vehicles [18], 
wheelchairs [19] and robots in indoor environments 
[20], [21]. Other recent works include an application 
of this method in Unmanned Aerial Vehicles (UAV) 
[22], [23]. 

In inertial-aided visual tracking, many approaches 
have been studied. Kaushik [24] showed a scheme  
which compensates for perturbations by using 3-axis 
inertial sensors, and Kanade [25] developed a novel 
inertial-aided Kanade-Lucas-Tomasi (KLT) feature 
tracking method using gyroscope data. In most cases, 
angular motion compensations are performed using 
inertial sensors. To compensate the translational 
motion, accelerometers data is used [26]. Recently, 
the Vestibulo-Ocular Reflex (VOR) based vision 
stabilization systems show fast and accurate 
stabilization performances [27]. Cho et al. presented 
the VOR-based target tracking system using 
accelerometer information [28]. Their paper 
computes the translational motion of the robot by 
using accelerometer information. On the basis of this 
information, a vision sensor mounted on the robot 
rotates towards the selected target, periodically 
compensating errors from visual information. (High 
Performance Vision Tracking system)  

In [29], a 8-DOF affine photometric model has 
been applied. Due to its high computational 
complexity, a restrained Hessian update in KLT as 
well as GPU (graphical processing unit) acceleration 
are used, achieving 1024 feature track at video rate in 
a NVIDIA GeForce 8800 GTX. 

 Tanathong and Lee, [32] propose two methods. 
One that rotates the new frame taking into account 
the inter frame rotation data, and another one that 
rotates only the window where the target position is 
predicted. These two methods are used to enhance the 
KLT affine model. The proposed methods proved to 
be more efficient and accurate than the KLT affine 
option. This reason together with its low 
computational burden have led to the selection of the 
second algorithm for the enhancement of the TV 
tracker of Curetti et al. It is important to take into 
account that the system proposed must be a simple 
system so that it can be implemented on the Nvidia 
Jetson TK1 at 60 fps. 
2.2. Previous work 

This section describes the tracking algorithm 
proposed by Curetti et al. [13] and the second method 
proposed by Tanathong and Lee,  [32] to enhance the 
KLT affine search.  
2.2.1. Adjustable Tracking Algorithm with Adaptive 
Template Matching 

The tracking algorithm proposed [13] consists of 
four sequential steps. First, the best match is found 
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taking into account a normalized template correlation 
and a position predictor. Then, a new template size 
and center is estimated using the image edge map. 
Next, the result of that last step is filtered. Finally, a 
new template is calculated for the next iteration. 

In simple terms, the normalized template is the 
target template without its mean value: 

  (1) 

where t’ is the normalizer template, t is the target 
template and  is the template mean.  

The template update is simply an IIR filter applied 
to the target mask obtained in the image sequence 
and aligned with the normalized correlation. 
2.2.2. Translation-Based KLT Tracker with Rotated 
Tracking Window 

This solution is based on the underlying concept of 
the KLT algorithm with an affine model. Since its 
focus is on dealing with the camera rotation, it only 
considers the rotation factor while other affine 
parameters are discarded. Thus, instead of estimating 
all affine warping parameters, as it occurs in the 
original affine-based tracker, the initial values of the 
rotation matrix are kept constant and only the 
translation vector is determined. Based on this 
assumption, the warping function is expressed as 
equation (2). This motion model reduces the 
computational burden of solving six affine 
parameters to estimate only two translation 
parameters, denoted as p, where p is defined as 〖(dx,dy)〗^T 

  (2) 

This proposed solution may be viewed as if a 
translation-based KLT algorithm were performed 
using the tracking window that has been rotated for a 
constant θ degree. 
2.3. Proposed tracking system  

In this work, the homographic transformation 
between two consecutive frames taken from a UAV 
facing the ground is estimated. The position and 
attitude of the camera in each frame is approximated 
using inertial sensors data and the ground is modeled 
as a plane. With this homographic transformation, the 
tracking window or Region of Intererst (ROI) from 
the Adjustable Tracking Algorithm proposed in [13] 
is mapped to the new image (Fig. 2) and the mask is 
adjusted with the rotation angle. The rest of the 
tracking algorithm is performed as explained in 2.2.1. 
The only modification relative to Tanathong and 
Lee´s algorithm is that the mask size is kept constant. 

 
Figure 2: ROI projection from one frame to the 
next. 
2.4. Simulation results 

Through the use of simulations, the efficacy of the 
proposed method is compared to the one developed 
by Curetti et al. in [13]. The data used to simulate 
both tracking systems is found in  

https://wiki.qut.edu.au/display/cyphy/Kagaru+Airb
orne+Dataset. 

They were obtained with the following 
experimental setup: 

• a 1/3 scale Piper Cub with a 3.6-m wing span 
of and a 2.3m-fuselage length , capable of 
attaining speeds of 30 to 110km/h with a 
maximum payload of 6kg. 

• an off-the-shelf mini-ITX computer system 
running an Intel Atom processor (1.6GHz), 
with two 64GB solid-state drives in a RAID0 
configuration 

• an IEEE1394B color Point Grey Flea 2 
camera. The camera is placed in the fuselage 
of the platform, facing downwards towards the 
terrain,  

• a 6-mm lens is used with a field of view of 
approximately 42°×32° 

Data was collected over a 90 second portion of 
flight, at an altitude of 20-100m and a speed of 
20m/s. Bayer encoded color images were logged at a 
resolution of 1280×960 pixels at 30Hz. Shutter time 
for each frame was set at 8.5μS to counteract motion 
blur. The area was rural farmland with relatively few 
trees, animals and buildings. 

An XSens MTi-G INS/GPS system was used as 
the INS/GPS measurement system. GPS, unfiltered 
IMU data and filtered INS pose were recorded at 
120Hz from the XSens MTi-G. 

To make the simulation data more similar to the 
dynamic of the application proposed (rotorcraft 
UAV), the images were transformed simulating faster 
trajectories. The main change observed for different 
trajectories was the yaw maximum angular speed. As 
the maximum speed of the rotorcrafts UAV is around 
200º/seg, the following velocities were simulated: 3, 
10, 17, 24, 31, 45 and 59º/seg. 

The targets used to evaluate both systems were the 
same (20 random targets). The results are shown in 
Figures 1, 2, 3 and 4. 

 In Fig. 3 the efficacy of the proposed system 
(corrected with the inertial data) is compared with the 
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original method proposed by Lobo and Dias  [14] 
(uncorrected). We define efficacy as the number of 
targets that were followed correctly during the 1.3 
second of simulated trajectory over the total of 
targets in the sample. The proposed method is more 
robust to violent movements and has an efficacy of 
more than 90%, even at a yaw angular speed of 
59º/seg. The uncorrected method efficacy is high 
when the movements are slow; however, for faster 
movements, its efficacy falls. 

 
Figure 3 Comparison between the efficacy of the proposed 
system (corrected) and the original method (uncorrected) for 
different yaw maximum speed 

 
In Fig. 4, the horizontal component of the tracked 

trajectory of the 20 targets is shown for the 
uncorrected system in a trajectory with a maximum 
yaw angular speed of 3º/seg. From the sample of 20 
targets, only one cannot be followed (notice the 
sudden change in one of the trajectories). 

 
Figure 4 Horizontal component of the tracked trajectory of the 
20 targets for the uncorrected system, with a maximum yaw 
angular speed of 3º/seg 
 

In Fig. 5, the vertical component of the tracked 
trajectory of the 20 targets is shown for the 
uncorrected system in a trajectory with a maximum 
yaw angular speed of 59º/seg. From the sample of 20 
targets, 8 targets cannot be followed. 

 

 
Figure 5 Vertical component of the tracked trajectory of the 20 
targets for the uncorrected system, with a maximum yaw angular 
speed of 59º/seg 

 
In Fig. 6, the vertical component of the tracked 

trajectory of the 20 targets is shown for the corrected 
system in a trajectory with a maximum yaw angular 
speed of 59º/seg. From the sample of 20 targets, only 
two cannot be followed 

 
Figure 6 Vertical component of the tracked trajectory of the 20 
targets for the corrected system, with a maximum yaw angular 
speed of 59º/seg 
 

3. CONCLUSIONS AND FUTURE 
DIRECTIONS  

The proposed method is more robust to violent 
movements and has an efficacy of more than 90%, 
even at a yaw angular speed of 59º/seg. The 
uncorrected method can be used if the dynamics of 
the application are slow (less than 24º/seg. of yaw 
angular speed), However, its efficacy falls when the 
movement is faster. The accuracy of the systems 
depends on the application, but more specifications 
are needed if a method is to be chosen. In the future, 
the proposed method will be evaluated using data 
collected with this lab experimental platform. Also, 
the tracking system will be implemented with an on 
board image processing on the Nvidia Jetson TK1. 
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