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Abstract

Glyphosate retention coefficient (Kd) is modeled as function of soil variables, from a regional sampling,
using: Ordinary and Partial Least Square regression, Random Forest, Generalized Boosted regression (GB),
and Bayesian modelling with INLA; all regressions were fitted using spatial constraint on residuals. INLA
produced the best fit, but GB the best spatial prediction.
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1. Introduction

Diffuse pollution derived from the use of plant protection products is a problem associated with agricultural
intensification [1]. It requires deeper studies to adapt the available knowledge and generate useful technolo-
gies for decision making. The use of herbicides carries environmental risks that depends on the pesticide
molecule and environmental characteristics (soil, climate, and management). Models to evaluate environ-
mental hazards require, as inputs, variables that synthesize the interaction between herbicide and soil. An
interaction that regulates pesticide behaviour in soil is retention, which is parameterized by the adsorption
coefficient (Kd) [2]. It is a continuous variable that expresses the relationship between both, the amount
of herbicide retained and the amount that remains in soil solution. Low values of Kd are often related to
losses of leaching and runoff, while the potential losses by soil erosion are associated with high Kd values.
Several soil variables may be conditioning the retention of the herbicide molecule in a site [3]. These vari-
ables are often spatially structured whereby modeling herbicide retention, through Kd coefficient, requires
accounting for the underlying spatial variability. In general terms, a linear model for spatial data contains a
deterministic component and a random one, which is explained by the spatial autocorrelation process and a
net residual term. Models for spatial prediction can be generated from different strategies that allow fitting
both, the deterministic component and the random one. In this work, approaches of different nature from
which it is possible to adjust a regression model, including the spatial autocorrelation in the residual term,
are addressed. We compare the results of three approaches to fit predictive regression models for spatial
data: the frequentist [4] , the Bayesian [5], [6] and the Boosting-based[7].

2. Materials and Methods

A soil survey was conducted in Córdoba province, Argentina (29o to 35oS, and 61o to 65oW) that collected
samples from the upper 15 cm of soil using a regular 40 × 40 km grid (90 sites)[3]. For each soil sample,
the following variables were obtained: pH, total nitrogen, total organic carbon, Na, K, Ca, Mg, Zn, Mn,
Cu, cation exchange capacity, the percentage of sand, silt and clay, water holding capacity and aluminium
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and iron oxides. The glyphosate Kd was determined in lab according to the bach-equilibrium technique for
the preparation of soil suspensions. The concentration of herbicide in the soil solution under equilibrium
(Ceq) was quantified by high pressure liquid chromatography (HPLC) according to Marek and Koskinen
(2014). The adsorbed concentration (Cad) was calculated as the difference between the initial concentration
and the concentration at equilibrium in the solution. The Kd was obtained as Cad/Ceq. The Kd values were
transformed to the log scale because of the skewness distribution. To help the selection of soil variables
that best explain Kd variability a regression tree improved by resampling (Boosting Regression Tree) [8],
was used. The R package gbm, with the functions gbm.step and gbm.simplify, was implemented to select
the subset of variables that minimize deviance. To fit predictive model for Kd, we assessed the following
strategies: Multiple Linear Regression (ML) with spatially correlated errors through an spatial exponential
function [9]; Random Forest Regression (RF), and Generalized Boosted Regression (GB), with spatially
correlated residuals according with the methodology proposed by proposed by [7]. In the implementation
an exponential model was fitted to the empirical semivariogram of the residuals of both machine learning
algorithm. The same procedure to account for spatiality was implemented on the residuals obtained after
fitting a Partial Least Square regression model (PLS). Additionally, a Bayesian model approached with
Integrated Nested Laplace Approximation (INLA) [6] was fitted on the same data. To account for spatial
correlation during the Bayesian modeling the Matern function solved by spatial partial differential equation
(SPDE) [10], on the spatially structured random component was used. The complete R code to fit predictive
models presented here is available at https://github.com/francagiannini. For all models, the mean square
error (MSE) was obtained from the differences between observed and predicted value. In the Bayesian
framework, it was calculated from the difference between the observed value and the mean of the posterior
distribution for a missing data. The predictive ability of all compared methods was assessed using the leave-
one-out cross-validation method to produce a global error measurement. The Mean Squared Prediction
Error (MSPE) was obtained averaging the differences between the observed Kd value with the predicted
one at each site. Additionally, a punctual prediction error, expressed as percentage of the Kd at each site,
was calculated for all methods. It was referred as Site-Specific-Error (SSE) and categorized as smaller than
20%, between 20% and 40%, and greater than 40% of the site Kd, to visually interpret the goodness of
prediction. The spatial patterns of the predictions (SEE mapping) of all methods were examined for their
validity.

3. Results and Discussion

Predictive modeling [11] is the process that provides a mathematical tool (model) to predict an output from a
convenient selected set of data. It demands the full understanding of the undergoing data generating process,
model fitting, and its validation. In this study, we compare the results of three approaches to fit predictive
regression models for spatial regional data. The soil variables of greater relevance to explain the variability
of Kd?s in Cordoba, as indicated by the BRT algorithm, were aluminum oxides, pH, sand percentage and
clay percentage. Consequently, all predictive models were fitted using those soil properties as explanatory
variables. The Bayesian model with INLA produced the best fit (MSE=3.9% of the average Kd). However,
in the cross-validation process to measure predictive ability, the Bayesian model was overcome by the
PLS regression with spatial correlated residuals. The lowest MSPE was 18.9% of the average Kd mean
(Table 1). The relation between MSE (a measure of goodness of fit), and MSPE (a measure of predictive
ability) suggest that the Bayesian modeling with INLA and the SPDE, can overfit data. Thus, the PLS
regression, accounting for spatiality, was a good approach in term of global error measurements. This result
is probably explained by the collinearity among input variables (being the highest correlation coefficient
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equal to -0.75 between sand and clay fractions, p<0.001). The asymmetrical nature of Kd distribution
and the multicollinearity among inputs made Boosted-base algorithms competitive. Such machine learning
methods had been reported as more robust under these conditions [12]. Boosting-based methods, like RF and
GB, have shown their superior performance in various disciplines, but they are commonly used with non-
spatial data. Some uses of these methods with spatial[13], requires accounting the spatial structure through
distance measurements which are incorporated as explanatory variables in the model [14]. However, as
implemented here, spatiality was modeled through an autocorrelation spatial process on the residuals [7]
which is easier to implement from a computational perspective.

Model MSE[%] MSPE[%]
ML 25.2 27.3
PLS 10.2 18.9
RF 11.9 19.9
GB 11.2 19.5

INFLA 3.9 25.4

Table 1: Goodness of fit (MSE) and average predictive ability (MSPE) of alternative regression models
for glyphosate soil adsorption coefficient as a function of four soil variables. Ordinary (ML) and Partial
Least Square regression (PLS), Random Forest (RF) and Generalized Boosted regression (GB); Bayesian
modeling (INLA).
A deeper observation of the SSE showed that most Kd were well predicted in most of the sites (Figure 1) and
high SSE where closely located (Northwest of Cordoba). In these sites, SSE was far superior to 40% and
they consequently raised the global error measurement. However, it is important to highlight that the sites
with high SSE (red points Figure 1) had extremely low Kd values and even with high prediction error, they
are classified as low Kd sites. Thus, these SSE did not lead to misunderstanding of glyphosate retention.

Figure 1: Site specific errors (SSE) for a model of glyphosate soil adsorption coefficient as a function of
aluminum oxides, pH, clay, and sand at the site. SSE was categorized as smaller than 20% (green), between
20% and 40% (yellow), and greater than 40% (red) of the site Kd.

In the Fig. 1 we show that the GB model improved the SSE pattern in spatial predictions with respect
to both PLS and INLA. GB was the procedure that presented the biggest proportion of prediction errors
smaller than 20% of the site mean. Then GB regressions, with spatially correlated errors, can produce
competitive results with respect to the frequentist and the Bayesian approaches. The GB advantage is that
it requires much less statistical assumptions, and it is easier to automate. However, a better understanding
of the process may require models that explicitly show the impact of each input variable like, the produced
with INLA which best fitted the observed data. Further work on modeling the Glyphosate Kd distribution in
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Córdoba may demand modeling strategies which contemplate mixture of distribution because the Kd values
in the Northwest it may come from a different biological process than the others.

4. Conclusions

Visual examination of site-specific prediction errors proved to be an essential tool in assessing the spatial
predictions. This study has simultaneously compared alternative methods for spatial interpolation of an
environmental property (Glyphosate adsorption coefficient). Results confirm the effectiveness of Bayesian
modeling with INLA to obtain good fitting, and the high predictive ability of GB regression in the context of
models with several covariables and a spatial autocorrelation process underlying in the random component.
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