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MATRIX GEGENBAUER POLYNOMIALS: THE 2× 2 FUNDAMENTAL CASES

INÉS PACHARONI AND IGNACIO ZURRIÁN

Abstract. In this paper, we exhibit explicitly a sequence of 2 × 2 matrix valued orthogonal polynomials
with respect to a weight Wp,n, for any pair of real numbers p and n such that 0 < p < n. The entries

of these polynomiales are expressed in terms of the Gegenbauer polynomials Cλ
k
. Also the corresponding

three-term recursion relations are given and we make some studies of the algebra of differential operators
associated with the weight Wp,n.

1. Introduction

The theory of matrix valued orthogonal polynomials, without any consideration of differential equations,
goes back to [18] and [19]. In [3], the study of the matrix valued orthogonal polynomials that are eigen-
functions of certain second order symmetric differential operators was started. The first explicit examples
of such polynomials were given in [8], [9], [7], [10] and [4]. See also [5], [6], [1], [2], and the references given
there.

On the two dimensional sphere S2 = SO(3)/SO(2), the harmonic analysis with respect to the action of the
orthogonal group is contained in the classical theory of the spherical harmonics. In spherical coordinates,
the zonal spherical functions on S2 are the Legendre polynomials. More generally, in the case of the n-
dimensional sphere Sn the zonal spherical functions are given in terms of Gegenbauer (or ultraspherical)
polynomials of parameter (n− 1)/2.

This fruitful connection between orthogonal polynomials and representation theory of compact Lie groups
is also established in the matrix case: the matrix valued spherical functions of any K-type are closely related
to matrix valued orthogonal polynomials. In this way, several examples of matrix orthogonal polynomials
which are eigenfunctions of a symmetric differential operator have been obtained by focusing on a group
representation approach. See for example [9], [11], [22], [23], [21] and more recently [16] and [24].

The examples of matrix orthogonal polynomials introduced in this paper are motivated by the spherical
functions of fundamental K-types associated with the n-dimensional spheres Sn ≃ G/K, where (G,K) =
(SO(n + 1), SO(n)). These matrix valued spherical functions were studied in detail in [27] and [29]. The
“group parameters” of the fundamental K-types are p, n ∈ N such that 0 < p < [n/2] and they give rise to
2× 2 matrix valued orthogonal polynomials.

In this paper we go beyond these group parameters and we extend these parameters continuously. We
would like to remark that the group representation theory is a natural source of examples of matrix valued
orthogonal polynomials. We keep this in mind in spite of the fact that the results obtained in this paper are
self-contained, the proofs are of analytic nature and they do not depend on any previous results on spherical
functions.

Given a weight matrix W , it is very natural to study the algebra D(W ), of all differential operators that
have a sequence of matrix valued orthogonal polynomials with respect to W as eigenfunctions, see (3). In
the classical cases of Hermite, Laguerre and Jacobi weights, the structure of this algebra is well understood:
it is a polynomial algebra in a second order differential operator, see [20]. In particular, it is a commutative
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algebra. In the matrix case, the first attempt to go beyond the issue of the existence of one nontrivial element
in D(W ) and to study the full algebra is undertaken in [2], with the assistance of symbolic computation,
for a few weights W . The first deep study of the algebra D(W ) can be founded in [26], where the author
worked out one of the examples introduced in [2]. We refer the reader to [13] for basic definitions and main
results concerning the algebra D(W ). The present paper leads to understand completely a second and more
promising example of D(W ) in a forthcoming paper, [28]. There are very few examples of non-commutative
algebras that arise in a natural setup at the intersection of harmonic analysis and algebras. The study of
such examples for the algebra D(W ) considered here is one step in that direction. ++As a consequence of
this work, together with F.A. Grünbaum, in [12] we extend to a matrix setup a result that traces its origin
and its importance to the work of Claude Shannon in lying the mathematical foundations of information
theory, and to a remarkable series of papers by D. Slepian, H. Landau and H. Pollak.

To the best of our knowledge, this is the first example showing in a non-commutative setup that a bispectral
property implies that the corresponding global operator of “time and band limiting” admits a commuting
local operator. This is a noncommutative analog of the famous prolate spheroidal wave operator.

Now we discuss briefly the content of the paper. In Section 2 we recall the general notions of matrix
valued orthogonal polynomials and some results from [13] about the algebra D(W ).

In Section 3, we introduce our sequence {Pw}w∈N0
of 2 × 2 matrix valued polynomials on [−1, 1] whose

entries are given in terms of the classical Gegenbauer polynomials, for real parameters p and n such that
0 < p < n, see (4). We prove that these polynomials satisfy PwD = ΛwPw, where D is a (right-hand side)
hypergeometric differential operator and the eigenvalue is a diagonal matrix. This differential operator D
is symmetric with respect to the matrix weight W introduced in (12). We use these facts to prove that the
polynomials {Pw}w∈N0

are orthogonal with respect to the weight matrix W = Wp,n (Theorem 3.6).
We also connect our weight matrix Wp,n with the weight considered in [15], where the authors give

examples of matrix valued Gegenbauer polynomials, extending for an arbitrary parameter ν the results in
[16] for ν = 1. See Remark 3.7.

In Section 4 we prove a three-term recursion relation satisfied by {Pw}w∈N0
. Section 5 is focused on

the study of the algebra D(W ). In our case D(W ) is a noncommutative algebra. We provide a basis
{D1, D2, D3, D4, I} of the subspace of the differential operators inD(W ) of order at most two. The differential
operators D1 and D2 are symmetric operators, while D3 and D4 are not. We conjecture that D1, D2, D3, D4

generates the algebra D(W ).

2. Background on matrix valued orthogonal polynomials

Let W = W (x) be a weight matrix of size N on the real line, that is a complex N × N matrix valued
integrable function on the interval (a, b) such that W (x) is positive definite almost everywhere and with
finite moments of all orders. Let MatN(C) be the algebra of all N×N complex matrices and let MatN (C)[x]
be the algebra over C of all polynomials in the indeterminate x with coefficients in MatN (C). We consider
the following Hermitian sesquilinear form in the linear space MatN (C)[x]

〈P,Q〉 = 〈P,Q〉W =

∫ b

a

P (x)W (x)Q(x)∗ dx.

The following properties are satisfied, for all P,Q,R ∈ MatN (C)[x], a, b ∈ C, T ∈ MatN (C)

(1) 〈aP + bQ,R〉 = a〈P,R〉+ b〈Q,R〉,
(2) 〈TP,R〉 = T 〈P,R〉,
(3) 〈P,Q〉∗ = 〈Q,P 〉,
(4) 〈P, P 〉 ≥ 0. Moreover, if 〈P, P 〉 = 0, then P = 0.

Let us denote N0 = N ∪ {0}. Given a weight matrix W one can construct sequences of matrix valued
orthogonal polynomials, that is sequences {Pn}n∈N0

, where Pn is a polynomial of degree n with nonsingular
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leading coefficient and 〈Pn, Pm〉 = 0 for n 6= m. We observe that there exists a unique sequence of monic
orthogonal polynomials {Qn}n∈N0

in MatN (C)[x]. By following a standard argument, given for instance
in [18] or [19], one shows that the monic orthogonal polynomials {Qn}n∈N0

satisfy a three-term recursion
relation

xQn(x) = AnQn−1(x) +BnQn(x) +Qn+1(x), n ∈ N0,

where Q−1 = 0 and An, Bn are matrices depending on n and not on x.

Two weights W and W̃ are said to be similar if there exists a nonsingular matrix M , which does not
depend on x, such that

W̃ (x) = MW (x)M∗, for all x ∈ (a, b).

Notice that if {Pn}n≥0 is a sequence of orthogonal polynomials with respect to W , and M ∈ GLN (C), then

{PnM
−1}n≥0 is orthogonal with respect to W̃ = MWM∗. A weight matrix W reduces to a smaller size if

there exists a nonsingular matrix M such that

MW (x)M∗ =

(
W1(x) 0

0 W2(x)

)
, for all x ∈ (a, b),

where W1 and W2 are weights of smaller size.
For a given weight matrix and a sequence of orthogonal polynomials, it may be of interest the study of

the differential operators having these polynomials as eigenfunctions. Let D be a right-hand side ordinary
differential operator with matrix polynomial coefficients Fi(x) of degree less than or equal to i of the form

(1) D =

s∑

i=0

∂iFi(x), ∂ =
d

dx
,

with the action of D on a polynomial function P (x) given by

(PD)(x) =

s∑

i=0

∂i(P )(x)Fi(x).

We say that the differential operator D is symmetric if 〈PD,Q〉 = 〈P,QD〉, for all P,Q ∈ MatN (C)[x]. It is
a matter of careful integration by parts to see that the condition of symmetry for a differential operator of
order two is equivalent to a set of three differential equations involving the weight W and the coefficients of
the differential operator D.

Proposition 2.1 ([10] or [4]). Let W (x) be a smooth weight matrix supported on (a, b). Let D = ∂2F2(x) +
∂F1(x) + F0. Then D is symmetric with respect to W if and only if





F2W = WF ∗
2

2(F2W )′ − F1W = WF ∗
1

(F2W )′′ − (F1W )′ + F0W = WF ∗
0

with the boundary conditions

lim
x→a,b

F2(x)W (x) = 0, lim
x→a,b

(
F1(x)W (x) −WF ∗

1 (x)
)
= 0.

We consider the following subalgebra of the algebra of all right-hand side differential operators with
coefficients in MatN (C)[x],

D = {D =
∑s

i=0 ∂
iFi : s ∈ N0, Fi ∈ MatN (C)[x], deg Fi ≤ i}.
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Proposition 2.2 ([13], Propositions 2.6 and 2.7). Let W = W (x) be a weight matrix of size N ×N and let

{Qn}n≥0 be the sequence of monic orthogonal polynomials in MatN (C)[x]. If D is a right-hand side ordinary

differential operator of order s, as in (1), such that

QnD = ΛnQn, for all n ∈ N0,

with Λn ∈ MatN (C), then Fi = Fi(x) =
∑i

j=0 x
jF i

j , F i
j ∈ MatN (C), is a polynomial and deg(Fi) ≤ i.

Moreover D is determined by the sequence {Λn}n≥0 and

(2) Λn =

s∑

i=0

[n]iF
i
i , for all n ≥ 0,

where [n]i = n(n− 1) · · · (n− i+ 1), [n]0 = 1.

Given a matrix weight W , the algebra

(3) D(W ) = {D ∈ D : PnD = Λn(D)Pn, Λn(D) ∈ MatN (C), for all n ∈ N0}
is introduced in [13], where {Pn}n∈N0

is any sequence of matrix valued orthogonal polynomials with respect
to W .

We observe that the definition of D(W ) depends only on the weight matrix W and not on the particular
sequence of orthogonal polynomials, since two sequences {Pw}w∈N0

and {Qw}w∈N0
of matrix orthogonal

polynomials with respect to the weightW are related by Pw = MwQw, for w ∈ N0, with {Mw}w∈N0
invertible

matrices (see [13, Corollary 2.5]).

Proposition 2.3 ([13], Proposition 2.8). For each n ∈ N0, the mapping D 7→ Λn(D) is a representation of

D(W ) in MatN (C). Moreover, the sequence of representations {Λn}n∈N0
separates the elements of D(W ) .

We remark that the result in Proposition 2.3 says that the map

D 7→ (Λ0(D),Λ1(D),Λ2(D), . . . . . . )

is an injective morphism of D(W ) into MatN (C)N0 , the direct product of infinite copies, indexed by N0, of
the algebra MatN (C). In particular, if D1, D2 ∈ D(W ) then

D1 = D2 if and only if Λn(D1) = Λn(D2) for all n ∈ N0.

For any D ∈ D(W ) there exists a unique differential operator D∗ ∈ D(W ), the adjoint of D in D(W ),
such that

〈PD,Q〉 = 〈P,QD∗〉,
for all P,Q ∈ MatN (C)[x]. See Theorem 4.3 and Corollary 4.5 in [13]. The map D 7→ D∗ is a *-operation in
the algebra D(W ). Moreover, it is shown that S(W ), the set of all symmetric operators in D(W ), is a real
form of the space D(W ), i.e.

D(W ) = S(W ) ⊕ iS(W ),

as real vector spaces. In particular, the algebra D(W ), together with the involution, is completely determined
by S(W ).

Corollary 2.4. A differential operator D ∈ D(W ) is a symmetric operator if and only if

Λn(D)〈Qn, Qn〉 = 〈Qn, Qn〉Λn(D)∗

for all n ∈ N0.

Also it is worth to recall the following important result from [13].

Proposition 2.5 (Proposition 2.10). If D ∈ D is symmetric then D ∈ D(W ).
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3. Matrix valued orthogonal polynomials associated with the n-dimensional spheres

Motivated by the results obtained in [27] we introduce the following family of polynomials, for w ∈ N0,

(4) Pw(x) = Pn,p
w (x) =




1
n+1 C

n+1

2
w (x) + 1

p+w C
n+3

2

w−2(x)
1

p+w C
n+3

2

w−1(x)

1
n−p+w C

n+3

2

w−1(x)
1

n+1 C
n+1

2
w (x) + 1

n−p+w C
n+3

2

w−2(x)


 ,

with parameters p, n ∈ R such that 0 < p < n. Here Cλ
n(x) denotes the n-th Gegenbauer polynomial

Cλ
w(x) =

(2λ)w
w!

2F1

(
−w, w + 2λ
λ+ 1/2

;
1− x

2

)
, x ∈ [−1, 1],

where (a)w = a(a+ 1) . . . (a+ w − 1) denotes the Pochhammer symbol. As usual, we assume Cλ
w(x) = 0 if

w < 0. We recall that Cλ
w is a polynomial of degree w, with leading coefficient 2w(λ)w

w! .

Let us observe that deg(Pw) = w and the leading coefficient of Pw is a nonsingular scalar matrix

(5)
2w(n+1

2 )w

(n+ 1)w!
Id =

1

w!
2w−1(n+3

2 )w−1 Id.

We start by proving that the polynomials Pw given in (4) are eigenfunctions of the following differential
operator D.

Theorem 3.1. For each w ∈ N0, the matrix polynomial Pw is an eigenfunction of the differential operator

D = ∂2 (1− x2)− ∂
(
(n+ 2)x+ 2 ( 0 1

1 0 )
)
−
( p 0
0 n−p

)
,

with eigenvalue

Λw(D) =

(
−w(w + n+ 1)− p 0

0 −w(w + n+ 1)− n+ p

)
.

Proof. We need to verify that

PwD = ΛwPw.

We will need to use the following properties of the Gegenbauer polynomials (for the first three see [14] page
40, and for the last one see [25], page 83, equation (4.7.27))

(1− x2)
d2

dx2
Cλ

m(x) − (2λ+ 1)x
d

dx
Cλ

m(x) +m(m+ 2λ)Cλ
m(x) = 0,(6)

d

dx
Cλ

m(x) = 2λCλ+1
m−1(x),(7)

2(m+ λ)xCλ
m(x) = (m+ 1)Cλ

m+1(x) + (m+ 2λ− 1)Cλ
m−1(x),(8)

(m+ 2λ− 1)

2(λ− 1)
Cλ−1

m+1(x) = Cλ
m+1(x)− xCλ

m(x).(9)

Also, combining (8) and (9), we have

(10) (m+ λ)Cλ−1
m+1(x) = (λ − 1)

(
Cλ

m+1(x)− Cλ
m−1(x)

)
.
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The entry (1, 1) of the matrix PwD − ΛwPw is

(1− x2)(Pw)
′′
11 − (n+ 2)x(Pw)

′
11 − 2(Pw)

′
12 + w(w + n+ 1)(Pw)11

= (1− x2)

(
1

n+1 C
n+1
2

w + 1
p+wC

n+3
2

w−2

)′′

− (n+ 2)x

(
1

n+1 C
n+1
2

w + 1
p+wC

n+3
2

w−2

)′

− 2
p+w

(
C

n+3
2

w−1

)′

+ w(w + n+ 1)

(
1

n+1 C
n+1
2

w + 1
p+wC

n+3
2

w−2

)
.

Applying (6) for λ = 1
2 (n + 1), λ = 1

2 (n + 3) and (7) for λ = 1
2 (n + 3), with m = w, we have that the

entry (1,1) of PwD − ΛwPw, multiplied by (p+ w)/2 is

−(n+ 3)C
n+5
2

w−2 + (n+ 3)xC
n+5
2

w−3 + (w + n+ 1)C
n+3
2

w−2 = 0,

this last identity follows from equation (9) with λ = n+5
2 and m = w−3. Repeating the previous verification,

by changing p by n− p, it follows that the entry (2, 2) of PwD − ΛwPw is also zero.
The entry (1, 2) of PwD − ΛwPw is

(1− x2)(Pw)
′′
12 − (n+ 2)x(Pw)

′
12 − 2(Pw)

′
11 +

(
w(w + n+ 1)− n+ 2p

)
(Pw)12,

if we multiply it by (p+ w) we get

(1− x2)
(
C

n+3
2

w−1

)′′
− (n+ 2)x

(
C

n+3
2

w−1

)′
+ (w(w + n+ 1)− n+ 2p)C

n+3
2

w−1 − 2 (p+w)
n+1

(
C

n+1
2

w

)′
− 2
(
C

n+3
2

w−2

)′
.

(11)

Applying (6) for λ = (n+ 3)/2, m = w − 1, (7) for λ = (n+ 1)/2, m = w and λ = (n+ 3)/2, m = w − 1,
one obtain that (11) is

2x
(
C

n+3
2

w−1

)′
− 2(w − 1)C

n+3
2

w−1 − 2(n+ 3)C
n+5
2

w−3 .

Now, applying (7) and (9), this expression becomes

2(n+ 3)
(
C

n+5
2

w−1 − C
n+5
2

w−3

)
− 2(2w + n+ 1)C

n+3
2

w−1 ,

which is equal to zero by (10) with λ = n+5
2 and m = w − 2. This concludes that the entry (1, 2) of

PwD − ΛwPw is zero. To complete the proof of the theorem we need to verify that the entry (2, 1) is also
zero. This is obtained making exactly the same computations, by changing p by n− p. �

We introduce the weight matrix

(12) W (x) = Wp,n = (1 − x2)
n
2−1

(
p x2 + n− p −nx

−nx (n− p)x2 + p

)
, x ∈ [−1, 1].

Proposition 3.2. For n 6= 2p, the weight W (x) does not reduce to a smaller size.

Proof. Assume that there exists a nonsingular matrix M =

(
m11 m12

m21 m22

)
such that

MW (x)M∗ =

(
w1(x) 0

0 w2(x)

)
.

The entry (1, 2) of MW (x)M∗ is

x2
(
pm11m21 + (n− p)m12m22

)
−
(
m11m22 +m12m21

)
nx+ (n− p)m11m21 + pm12m22,



MATRIX GEGENBAUER POLYNOMIALS: THE 2 × 2 FUNDAMENTAL CASES 7

from here we see that

m11m22 +m12m21 = 0,

pm11m21 + (n− p)m12m22 = 0,(13)

(n− p)m11m21 + pm12m22 = 0.(14)

By combining equations (13) and (14) we have that (n− 2p)m11m21 = 0. The assumption n 6= 2p, together
with (9), implies det(M) = 0, which is a contradiction. �

Remark 3.3. For n = 2p, the weight matrix W reduces to two scalar weights. The corresponding scalar
polynomials are Jacobi polynomials Pα,β

w with (α, β) = (n/2 + 1, n/2− 1) and (α, β) = (n/2 − 1, n/2 + 1),
respectively. In fact, by taking M =

(
1 1
−1 1

)
we have that

MW (x)M∗ = 2p (1− x2)
n
2−1

(
(1 − x)2 0

0 (1 + x)2

)
.

Remark 3.4. We have that the weight matrices Wp,n and Wn−p,n are similar. In fact, by taking M = ( 0 1
1 0 )

we get
MWp,nM

∗ = Wn−p,n.

From Proposition 2.1 and following straightforward computations, one can prove the following result.

Proposition 3.5. The differential operator

D = ∂2 (1− x2)− ∂
(
(n+ 2)x+ 2 ( 0 1

1 0 )
)
−
( p 0
0 n−p

)

is symmetric with respect to the weight function W (x).

In the scalar case, if D is a symmetric differential operator with respect to W and {Pw}w∈N0
is a family

of eigenfunctions of D with different eigenvalues, then the sequence {Pw}w∈N0
is automatically orthogonal

with respect to W . In the matrix case this is not always true since

(15) Λw〈Pw, Pw′〉 = 〈PwD,Pw′〉 = 〈Pw, Pw′D〉 = 〈Pw, Pw′〉Λw′

does not imply that 〈Pw, Pw′〉 = 0, for w 6= w′. Therefore, we prove the orthogonality in the next theorem.

Theorem 3.6. When n 6= 2p the matrix polynomials {Pw}w∈N0
are orthogonal polynomials with respect to

the matrix valued inner product

〈P,Q〉 =
∫ 1

−1

P (x)W (x)Q(x)∗ dx.

Proof. We know that Pw is a polynomial of degree w and its leading coefficient is a nonsingular diagonal
matrix (see (5)). We only have to verify that for w 6= w′, 〈Pw, Pw′〉W = 0. Since Pw is an eigenfunction of
the differential operator D, which is symmetric with respect to W , we have that (15) holds with

Λw =
(

λw,1 0
0 λw,2

)
=
(

−w(w+n+1)−p 0
0 −w(w+n+1)−n+p

)
,

see Theorem 3.1. Therefore, for i, j = 1, 2 we have λw,i〈Pw,i, Pw′,j〉 = λw′,j〈Pw,i, Pw′,j〉, where Pw,i is the
i-th row of the polynomial Pw, and

〈Pw,i, Pw′,j〉 =
∫ 1

−1

Pw,i(x)W (x)P ∗
w′ ,j(x) dx ∈ C.

It is not difficult to verify that λw,i 6= λw′,j , for w 6= w′ or i 6= j. Then we have

(16) 〈Pw,i, Pw′,j〉 = 0, for w 6= w′ or i 6= j.

Therefore 〈Pw , Pw′〉 = 0, for w 6= w′, which concludes the proof of the theorem. �



8 INÉS PACHARONI AND IGNACIO ZURRIÁN

Remark 3.7. Recently, in [15] the authors study some families on matrix valued polynomials, depending on
one real parameter ν > 0, of arbitrary size (2ℓ+1)× (2ℓ+1) with ℓ ∈ 1

2N. These weights are not irreducible.

For ℓ = 1, 3
2 , 2 appears some irreducible 2× 2 blocks W

(ν)
+ and W

(ν)
− . See Remark 2.8 (ii) there.

The case ℓ = 3/2 does not match with the examples considered in this paper. The cases ℓ = 1 and
ℓ = 2 are particular cases of our weight matrices Wp,n by choosing our parameters (p, n) = (ν, 2ν + 1) and

(p, n) = (ν, 2ν + 3), for ℓ = 1 and ℓ = 2 respectively. In fact, with L =
(

0
√
2

−1 0

)
and D =

(
1 0
0 −2

)
we get

W
(ν)
+ =

(ν + 2)

(2ν + 1)
LWν,2ν+1L

∗ for ℓ = 1,

W
(ν)
− =

(ν + 4)(ν + 2)

(2ν + 1)(2ν + 3)
DWν,2ν+3D

∗ for ℓ = 2.

The case ν = 1 was previously studied in [16] and [17].

4. Three-term recursion relation

The main result of this section is a three-term recursion relation satisfied by the sequence of orthogonal
polynomials studied in this paper. We give a proof by using some properties of the Gegenbauer polynomials.

Theorem 4.1. The orthogonal polynomials {Pw}w∈N0
satisfy the three-term recursion relation

xPw(x) = AwPw−1(x) +BwPw(x) + CwPw+1(x),

where

Aw =

(
(n+w)(p+w−1)(n−p+w+1)
(p+w)(n−p+w)(2w+n+1) 0

0 (n+w)(p+w+1)(n−p+w−1)
(p+w)(n−p+w)(2w+n+1)

)
,

Bw =

(
0 −p

(p+w)(p+w+1)
−(n−p)

(n−p+w)(n−p+w+1) 0

)
, Cw = w+1

2w+n+1I.

Proof. To verify the (1, 1)-entry of the equation in the statement of the theorem we need to prove that

x
(

1
n+1C

n−1

2
−1

w (x) + 1
p+wC

n+3

2

w−2(x)
)
= (n+w)(p+w−1)(n−p+w+1)

(2w+n+1)(p+w)(n−p+w)

(
1

n+1C
n−1

2
−1

w−1 (x) + 1
p+wC

n+3

2

w−3(x)
)

− p
(p+w)(p+w+1)(n−p+w)C

n+3

2

w−1(x) +
w+1

2w+n+1

(
1

n+1C
n−1

2
−1

w+1 (x) + 1
p+w−1C

n+3

2

w−1(x)
)
.

(17)

By replacing the identities given by (8) for λ = n+1
2 , m = w and λ = n+3

2 , m = w − 2, one obtain that
(17) is equivalent to

(w+n)
(n+1)(2w+n+1)

(
−1 + (p+w−1)(n−p+w−1)

(p+w)(n−p+w)

)
C

n+1

2

w−1(x)

+
(
− p

(p+w)(p+w+1)(n−p+w) +
w+1

(2w+n+1)(p+w+1) − w−1
(p+w)(2w+n−1)

)
C

n+3

2

w−1(x)

+ (n+w)
p+w

(
( n−p+w−1
(2w+n+1)(n−p+w) − 1

2w+n−1

)
C

n+3

2

w−3(x) = 0.

(18)

Thus, by using the relation (10) for λ = n+3
2 and m = w − 2, the identity in (18) follows after some

straightforward computations.
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Now we verify that the equation for the (1, 2)-entry in the statement of the theorem holds. We need to
verify that the following identity holds

1
p+w xC

n+3

2

w−1(x) =
(n+w)(n−p+w+1)

(p+w)(2w+n+1)(n−p+w)C
n+3

2

w−2(x)

− p
(p+w)(p+w+1)

(
1

n+1C
n+1

2
w (x) + 1

n−p+wC
n+3

2

w−2(x)
)
+ w+1

(2w+n+1)(p+w+1)C
n+3

2
w (x).

(19)

From (10) for λ = n+3
2 and m = w − 1 we have that the right-hand side of (19) is

n+w+1
(p+w)(2w+n+1)C

n+3

2

w−2(x) +
w

(p+w)(2w+n+1)C
n+3

2
w (x).

Therefore, (19) is proved, since it is equivalent to (8) with λ = n+3
2 and m = w − 1.

For the entries (2, 2) and (2, 1) we proceed in a similar way, by observing that we need to do the same
computations as in the cases (1, 1) and (1, 2) respectively, by changing p by n− p. This concludes the proof
of the theorem. �

The sequence of monic orthogonal polynomials is given by

(20) Qw =
w!(n + 1)

2w
(
n+1
2

)
w

Pw, w ∈ N0.

The first polynomials of the sequence {Qw}w∈N0
are

Q0 = Id, Q1 =

(
x 1

p+1
1

n−p+1 x

)
, Q2 =



x2 − p

(n+3)(p+2)
2

p+2x

2
n−p+2x x2 − n−p

(n+3)(n−p+2)


 ,

Q3 =




x3 − 3(p+1)
(n+5)(p+3)x

3
p+3x

2 − 3
(n+5)(p+3)

3
n−p+3x

2 − 3
(n+5)(n−p+3) x3 − 3(n−p+1)

(n+5)(n−p+3)x


 .

Remark 4.2. Observe that from (16) and (20) we have that 〈Qw, Qw〉 is always a diagonal matrix. Moreover
one can verify that

〈Qw, Qw〉 = ‖Qw‖2 =
π2[w/2]Γ(n/2 + 1 + [w/2])

w!(n+ 2w + 1)Γ((n+ 3)/2)

[(w−1)/2]∏

k=1

(n+ 2k + 1)

(
p (n−p+w+1)

p+w 0

0 (n−p)(p+w+1)
n−p+w

)
.

5. The algebra D(W )

In this section we discuss some properties of the structure of the algebra D(W ), defined in (3), for our
weight matrix W (x) introduced in (12). We are not interested in the cases when p = n − p, since the
weight reduces to classical scalar weights, see Remark 3.3. We observe that in our example, the polyno-
mials {Pw}w∈N0

, given in (4), and the monic orthogonal polynomials {Qw}w∈N0
have the same sequence of

eigenvalues, since they are related by a scalar multiple, see (20).

First of all we observe that the space of differential operators of order zero in D(W ) consists of scalar
multiplies of the identity operator. In fact, a differential operator of order zero, having the sequence of monic
orthogonal polynomials {Qw}w as eigenfunctions, is a constant matrix L such that

QwL = Λw Qw, for all w ∈ N0.

From (2) we have that Λw = L for every w. When w = 1, we obtain that the entries of L satisfy L11 = L22

and (p + 1)L12 = (n − p + 1)L21. Thus, looking at the case w = 2 we get (n − 2p)L12 = 0. Therefore we
obtain that any operator of order zero L in D(W ) is a multiple of the identity matrix.
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Now we study differential operators of order at most two in the algebraD(W ). Let {Qw}w∈N0
the sequence

of monic orthogonal polynomials with respect to W and D a differential operator of order at most two in
D(W ). From Proposition 2.2 we have

D = ∂2(A2x
2 +A1x+A0) + ∂(B1x+B0) + C ∈ D(W )

if and only if

QwD =
(
w(w − 1)A2 + wB1 + C

)
Qw, for all w ∈ N0.

Here A2, A1, A0, B1, B0, C are 2× 2 complex matrices. Let us denote Qw,j the coefficients of the polynomial
Qw, i.e., Qw =

∑w
j=0 Qw,j x

j , with Qw,w = I. Therefore D ∈ D(W ) if and only if

j(j − 1)Qw,jA2 + j(j + 1)Qw,j+1A1 + (j + 1)(j + 2)Qw,j+2A0 + jQw,jB1

+ (j + 1)Qw,j+1B0 +Qw,jC −
(
w(w − 1)A2 + wB1 + C

)
Qw,j = 0

for all w ∈ N0 and j = 0, . . . , w. For j = w − 1 and j = 0 we respectively obtain

(w−1)(w − 2)Qw,w−1A2 + w(w − 1)A1 + (w − 1)Qw,w−1B1 + wB0 +Qw,w−1C

−
(
w(w − 1)A2 + wB1 + C

)
Qw,w−1 = 0

(21)

and

(22) 2Qw,2A0 +Qw,1B0 +Qw,0C −
(
w(w − 1)A2 + wB1 + C

)
Qw,0 = 0.

Now from (21) considering w = 1 and w = 2, and from (22) considering w = 2, we respectively obtain

B0 = (B1 + C)Q1,0 −Q1,0C, 2A1 = (2A2 + 2B1 + C)Q2,1 −Q2,1B1 − 2B0 −Q2,1C,

2A0 = (2A2 + 2B1 + C)Q2,0 −Q2,1B0 −Q2,0C.

From the expression of Q1 and Q2, given at the end of Section 4, we know that

Q1,0 =

(
0 1

p+1
1

n−p+1

)
, Q2,1 =

(
0 2

p+2
2

n−p+2 0

)
, Q2,0 =

−p
(n+3)

(
1

(p+2) 0

0 1
(n−p+2)

)
.

By using (20) and (4) it is easy to see that

Qw,w−1 =

(
0 w

p+w
w

n−p+w

)
, for all w ∈ N.

To determine the matrices A2 = (aij), B1 = (bij) and C = (cij), we first combine the entries in the
diagonal of the matrix (21) to obtain

2(n+ 2)a21 =

(
(n+ p+ 2)b21 − 2c21

)

p+ 1
+

(p+ 2)(p+ w)(2c12 − (n− p)b12)

(n− p+ 1)(n− p+ 2)(n− p+ w)
,

2(n+ 2)a12 =

(
(2n− p+ 2)b12 − 2c12

)

n− p+ 1
+

(n− p+ 2)(n− p+ w)(2c21 − p b21)

(p+ 1)(p+ 2)(p+ w)
.

Since these identities are valid for any integer w ≥ 3 we conclude that, if n 6= 2p then 2c12 = (n − p)b12
and 2c21 = p b21. Therefore b21 = 2(p+ 1)a21 and b12 = 2(n− p+ 1)a12.

By combining the nondiagonal entries of (21) we have

(n− 2p+ 1)
(
(n+ 2)a11 − b11

)
= (n− 2p− 1)

(
(n+ 2)a22 − b22

)

and

c11 − c22 = (p+ 1)(p+ 2)a22 − p(p+ 1)a11 + p b11 − (p+ 1)b22.

Equation (22) with w = 3 says that

2Q3,2A0 +Q3,1B0 +Q3,0C −
(
6A2 + 3B1 + C

)
Q3,0 = 0.
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Now, by using the expression of Q3 = x3 + Q3,2x
2 + Q3,1x + Q3,0 given at the end of Section 4, it is not

difficult to see that b11 = (n+2)a11. Thus b22 = (n+2)a22, and c11−c22 = p(n−p+1)a11−(p+1)(n−p)a22.
Therefore, the matrices A2, A1, A0, B1, B0, C are given in terms of the entries of A2 and c11, as we state

in the following theorem.

Theorem 5.1. The differential operators of order at most two in D(W ) are of the form

D = ∂2F2(x) + ∂F1(x) + F0,

where

F2(x) =x2

(
a11 a12
a21 a22

)
+ x

(
a12 − a21 a11 − a22
a22 − a11 a21 − a12

)
+

(
a22 a21
a12 a11

)
,

F1(x) =x

(
(n+ 2)a11 2(n− p+ 1)a12
2(p+ 1)a21 (n+ 2)a22

)
+

(
−pa21 + (n− p+ 2)a12 (n− p+ 2)a11 − (n− p)a22
−pa11 + (p+ 2)a22 (p+ 2)a21 − (n− p)a12

)
,

F0 =

(
p (n− p+ 1)a11 + c (n− p)(n− p+ 1)a12

p (p+ 1)a21 (p+ 1)(n− p)a22 + c

)
.

(23)

with a11, a12, a21, a22, c arbitrary complex numbers.

Proof. We have already proved that any differential operator of order at most two in D(W ) is of this form
for some constant a11, a12, a21, a22, c ∈ C. Let D2 be the complex vector space of the differential operators
in D(W ) of order at most two. Then we have that dimD2 ≤ 5.

From Proposition 2.1 it is not difficult to see that a differential operator D of order two, with coefficients
given by (23), is a symmetric operator if and only if

a11, a22, c ∈ R and p a21 = (n− p) a12.

From Proposition 2.5 any symmetric operator D ∈ D belongs to the algebra D(W ). Thus there exists (at
least) five R-linearly independent symmetric operators in D2. Therefore dimD2 = 5 and this concludes the
proof of the theorem. �

Corollary 5.2. There are no operators of order one in the algebra D(W ).

The elements of the sequence {Qw}w are eigenfunctions of the operators D ∈ D(W ) and they satisfy
QwD = Λw(D)Qw ,for w ∈ N0. We explicitly state the eigenvalues Λw using formula (2): for a differential
operator D = ∂2F2 + ∂F1 + F0 we have

Λw(D) = w(w − 1)F 2
2 + wF 1

1 + F 0
0 ,

with F i
i (i=1,2,3) the leading coefficient of the polynomial coefficient Fi of the differential operator D.

Therefore we get

Corollary 5.3. Let D ∈ D(W ), defined as in Theorem 5.1. The monic orthogonal polynomials {Qw}w
satisfy

QwD = Λw(D)Qw, for w ∈ N0,

where the eigenvalue Λw(D) is given by

Λw(D) =

(
(w + p)(w + n− p+ 1)a11 + c (w + n− p)(w + n− p+ 1)a12

(w + p)(w + p+ 1)a21 (w + n− p)(w + p+ 1)a22 + c

)
.

Now we introduce a useful basis for the differential operators of order at most two in the algebra D(W ):
the identity I and

D1 = ∂2

(
x2 x
−x −1

)
+ ∂

(
(n+ 2)x n− p+ 2

−p 0

)
+

(
p (n− p+ 1) 0

0 0

)
,
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D2 = ∂2

(
−1 −x
x x2

)
+ ∂

(
0 p− n

p+ 2 (n+ 2)x

)
+

(
0 0
0 (p+ 1)(n− p)

)
,

D3 = ∂2

(
−x −1
x2 x

)
+ ∂

(
−p 0

2(p+ 1)x p+ 2

)
+

(
0 0

p(p+ 1) 0

)
,

D4 = ∂2

(
x x2

−1 −x

)
+ ∂

(
n− p+ 2 2(n− p+ 1)x

0 p− n

)
+

(
0 (n− p)(n− p+ 1)
0 0

)
.

The corresponding eigenvalues are

Λw(D1) =
(
(w+p)(w+n−p+1) 0

0 0

)
, Λw(D2) =

(
0 0
0 (w+p+1)(w+n−p)

)
,

Λw(D3) =
(

0 0
(w+p)(w+p+1) 0

)
, Λw(D4) =

(
0 (w+n−p)(w+n−p+1)
0 0

)
.

Remark 5.4. The differential operator D appearing in Theorem 3.1 is D = −D1 −D2 + p(n− p)I.

We observe here that, for example,

Λw(D1)Λw(D3) 6= Λw(D3)Λw(D1), for all w ∈ N0.

By using Proposition 2.3 we obtain that D1D3 6= D3D1, which in turn implies the following result.

Corollary 5.5. The algebra D(W ) is not commutative.

By following the same argument, through the sequence of eigenvalues, we obtain the following relations
among the differential operators D1, D2, D3, D4.

D1D2 = 0, D2D1 = 0, D1D3 = 0, D4D1 = 0, D2D4 = 0, D3D2 = 0, D2
3 = 0, D2

4 = 0,

D3D1 = D2D3 − (n− 2p)D3, D1D4 = D4D2 − (n− 2p)D4, D3D4 = D2
2 − (n− 2p)D2,

D4D3 = D2
1 + (n− 2p)D1.

Conjecture 5.6.

(1) There are no operators of odd order in D(W ).
(2) The second order differential operators in D(W ) generate the algebra D(W ).

For a differential operator of order two D = ∂2F2 + ∂F1 + F0 ∈ D(W ), the explicit expression of the
adjoint operator D∗ is

D∗ = ∂2G2 + ∂G1 +G0,

where the polynomials Gi, i = 0, 1, 2, are defined by

G0 = 〈Q0, Q0〉Λ0(D)∗〈Q0, Q0〉−1, G1 = 〈Q1, Q1〉Λ1(D)∗〈Q1, Q1〉−1Q1(x) −Q1(x)G0,

G2 = 〈Q2, Q2〉Λ2(D)∗〈Q2, Q2〉−1Q2(x)− ∂(Q2)G1(x) −Q2(x)G0,

see Theorem 4.3 in [13].

Also from Corollary 4.5 in [13], we obtain the expression for the corresponding eigenvalues for the adjoint
operator D∗, in terms of the eigenvalues of the differential operator D and the norm of the polynomials Qw,

Λw(D
∗) = 〈Qw, Qw〉Λw(D)∗〈Qw, Qw〉−1, for all w.

By using the expressions of 〈Qi, Qi〉, given at the end of Section 4, and making straightforward computa-
tions, we can verify that

D∗
1 = D1, D∗

2 = D2, and D∗
3 = p

n−pD4.

Therefore

E3 = (n− p)D3 + pD4 and E4 = i
(
(n− p)D3 − pD4

)
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are also symmetric operators, because for any D ∈ D(W ) the operators D+D∗ and i(D−D∗) are symmetric
operators. Explicitly,

E3 = (n− p)D3 + pD4 = ∂2

(
−x(n− 2p) x2p− n+ p
x2(n− p)− p x(n− 2p)

)
+ ∂

(
2p 2p(n− p+ 1)x

2(p+ 1)(n− p)x 2(n− p)

)

+

(
0 p(n− p)(n− p+ 1)

p(p+ 1)(n− p) 0

)
,

−iE4 = (n− p)D3 − pD4 = ∂2

(
−nx −x2p− n+ p

x2(n− p) + p nx

)
+ ∂

(
−2p(n− p+ 1) −2p(n− p+ 1)x
2(p+ 1)(n− p)x 2(n− p)(p+ 1)

)

+

(
0 −p(n− p)(n− p+ 1)

p(p+ 1)(n− p) 0

)
.

The corresponding eigenvalues are

Λw

(
E3

)
=

(
0 p(n− p+ w)(n− p+ w + 1)

(n− p)(p+ w)(p+ w + 1) 0

)
,

Λw

(
− iE4

)
=

(
0 −p(n− p+ w)(n− p+ w + 1)

(n− p)(p+ w)(p+ w + 1) 0

)
.

Remark 5.7. In [16] the authors study matrix valued orthogonal polynomials related to spherical functions

on the group (SU(2)× SU(2), SU(2)). The weight matrix is W
(ν)
+ , with ν = 1 in the notation of Remark 3.7.

Let us denote D̃1, D̃2 and D̃3 the differential operators D1,D2 and D3 appearing in Theorem 8.1 in [16].
Then we have the following relations with our operators D1, D2, D3 and D4 for the case n = 3 and p = 1

D̃1 = L(D1 +D2 − 3)L−1, D̃2 = LD2L
−1, D̃3 = −

√
2L(2D3 +D4)L

−1.

Acknowledgements. We would like to thank the referees for many useful comments and suggestions that
helped us to improve a first version of this paper.

References
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[2] M. M. Castro and F. A. Grünbaum. The algebra of differential operators associated to a given family of matrix valued
orthogonal polynomials: five instructive examples. Int. Math. Res. Not., 27(2):1–33, 2006.

[3] A. J. Durán. Matrix inner product having a matrix symmetric second-order differential operator. Rocky Mt. J. Math.,
27(2):585–600, 1997.
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