Esta página está disponible en los siguientes idiomas:

Internacional (CC BY-NC-SA 4.0)

Este es un resumen legible por humanos de (y no un sustituto) de la licencia .

Usted es libre de:

Compartir — copiar y redistribuir el material en cualquier medio o formato

Adaptar — remezclar, transformar y construir a partir del material

La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia

Bajo los siguientes términos:

Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.

CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.

No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.

Avisos:

No tiene que cumplir con la licencia para elementos del material en el dominio público o cuando su uso esté permitido por una excepción o limitación aplicable .

Creative Commons — Atribución-NoComercial-CompartirIgual 4.0 Internacional — CC BY-NC-SA 4.0

No se dan garantías. La licencia podría no darle todos los permisos que necesita para el uso que tenga previsto. Por ejemplo, otros derechos como publicidad, privacidad o derechos morales pueden limitar la forma en que utilizan el material.

Universidad Nacional de Córdoba

CONTRIBUCIONES DE LAS PROPIEDADES DEL ESTADO SÓLIDO AL DISEÑO Y DESARROLLO DE BENCENOSULFONIL DERIVADOS DE HETEROCICLOS

Tesis Doctoral

DIDLIGTER

Farm. Fabián Komrovsky

Año 2014

AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT AULOT	IOTECA DE	DENCLAS QUINICAS
A2422 AULOC Incredit Sin Sin Sin Sin Sin Sin Sin Sin Sin Sin	paffee.	A5 336
Autor 1-21		42422
store of the therese, 71712014/3/07/20	4	Autor
sin sin sin sin sin sin sin sin	1	
sin sn. 1 de Inerse, 71712014/3/07/20	al rar	
51 1 de Inerese, 71712014. / 3/07/20) PENEL A	
1 de Inerese, 71712014. 3107/20	.ci.n	
	án L de Ingreso.	717/2014. / 3/07/20
	i de Ingreso.	717 12014. 5107/20

"Contribuciones de las Propiedades del Estado Sólido al Diseño y

Desarrollo de Bencenosulfonil Derivados de Heterociclos"

Tesis Doctoral realizada en:

UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE CIENCIAS QUÍMICAS

DEPARTAMENTO DE FARMACIA

Directora de Tesis:

luczani 3

PROF. DRA. MAZZIERI MARÍA ROSA

Comisión de Tesis:

PROF. DRA. SPERANDEO NORMA R.

PROF. DRA. CUFFINI SILVIA

PROF. DR. VERA DOMINGO MARIANO A.

Evaluador Externo:

Spland

PROF. DR. LABADIÉ GUILLERMO ROBERTO

Agradecimientos

Un trabajo de tesis no se alcanza sólo, para lograrlo es necesaria la colaboración de muchos actores, entre ellos director, co-director, miembros de comisión, amigos y compañeros de laboratorio, de departamento, de Facultad, de Universidad, de la vida y, ni hablar, familiares y amigos. Realizar un trabajo de doctorado no solo es el fruto del esfuerzo individual, sino de la fuerza conjunta de mentes académicas, de voces de aliento y de apoyos incondicionales. Por ello me nace desde lo más profundo, el agradecer a todos los que estuvieron brindando su grano de arena, entre ellos:

A mi directora de Tesis: Maria Rosa, en primer lugar. En quien he encontrado un lazo más profundo que el de la relación tesista-directora. Por la paciencia, por lo enseñado, por la confianza, por las oportunidades y por la gran ayuda brindada.

A los miembros de la comisión, Norma, Mariano y Silvia por sus interesantes aportes y por ser mucho más que miembros de la comisión, trabajando codo a codo en todo esto.

Al Prof. Dr. Guillermo Labadie, por su contribución final, poniendole el moño a este trabajo.

Al Dr. Mino Caira, por compartir con nosotros su gran sabiduría y experiencia, con una humildad y generosidad dignas de destacar.

A la Dra. Graciela Pinto Vitorino, a Alfio, a Alejandra, a Victor y a todas las personas lindas que tuve opotunidad de conocer en Comodoro Rivadavia y que tan bien me han recibido.

A la Facultad de Ciencias Químicas y al CONICET por brindarme el espacio físico, un sueldo y la posibilidad de realizar una tesis. Al Departamento de Posgrado, por su ayuda constante.

A Daniela, Gisele y Natalia por la gran ayuda que me brindaron en todo momento, son autoras de esta tesis junto conmigo. Todas y cada una de ellas han aportado mucho mucho a esta causa.

A los ex 114, Lisandro, Romina y Charo, con quienes comparti mis inicios y de quienes aprendí un montón.

A Carola, Sonia, Nancy, Alejandra, Soledad, Sol, Valeria quienes siempre me han acompañado y alentado. Un gran apoyo en todo momento.

A los sólidos: Diego, Flavia y Eliseo, por las charlas y la ayuda brindada.

A los farmacotécnicos, por estár siempre predispuestos a nuestros pedidos. Entre ellos Andrea, Laura y Celeste, quienes pilotearon algún que otro equipo en aporte a este trabajo.

A los orgánicos que aportaron muchos conocimientos y experiencia, además de reactivos, equipos y tantas cosas más. A todos los integrantes del Dpto de Farmacia y del Dpto de Orgánica, una gran familia conviviendo 9 horas, y hasta veces más, bajo el mismo techo.

Al grupo de análisis térmico, comandado por Norma y Alvaro, por permitirme usar los equipos en todo momento.

A Gloria Bonetto, por estar siempre predispuesta con los experimentos de RMN y por los informes climáticos.

A la gente de pañol, que tanto ha contribuido en la docencia. A Marcelo Ravassi, por ayuda brindada con los equipos.

A Fernanda, Laura, Ester por toda la ayuda aportada desde la secretaria, gracias.

A Quique, Julio, Gloria.

A Roque y a Emilia.

A Juan Pablo Fasano, mi primer maestro en todo esto.

A mi familia alvearense: Oscar, Evelia, Florencia, Anibal, Bautista y Juanse, infinitamente agradecido por todo.

A mis viejitos queridos: Estanis y Mabel, mis primeros maestros, mis ejemplos a seguir, los que me enseñaron y demotraron que hay que seguir adelante a pesar de todo.

Al resto de la familia, entre ellos tios, primos, etc, etc.

En especial, a mi familia: Ana y Ema, por el tiempo que les he robado y la paciencia que me han tenido. Las amo con el corazón y con el alma.

Índice de contenidos

ÍNDICE I	DE CONTENIDOS	9
ABREVIA	ATURAS Y ACRÓNIMOS	
1. 1	NTRODUCCIÓN	
1.1.	MEDICAMENTOS NO DISPONIBLES	
1.2.	EL CICLO INTEGRAL DEL MEDICAMENTO	
1.3.	LA QUÍMICA MEDICINAL	
1.4.	PROPIEDADES DE UNA NEQ	
1.4	4.1. Solubilidad	
	1.4.1.1. Solubilidad durante el descubrimiento y desarrollo de fármacos	
	1.4.1.2. Medición y predicción de la solubilidad	
	1.4.1.3. Mejora de la solubilidad acuosa	
z. c	DBJETIVOS E HIPÓTESIS	
2.1.	OBJETIVO GENERAL	
2.2.	OBJETIVOS ESPECÍFICOS	
2.3.	Hipótesis	
2.4.	QUIMIOTECA ESTUDIADA Y RESULTADOS PRELIMINARES	
2.5.	SELECCIÓN DE LOS DERIVADOS NBS-HET A SER ESTUDIADOS	
3. T	ÉCNICAS EXPERIMENTALES Y COMPUTACIONALES	43
3.1.	ANÁLISIS EXPERIMENTAL DEL ESTADO SÓLIDO	
3.1	1.1. Determinación de estructuras cristalinas	
3.1	1.2. Estudio de propiedades térmicas: análisis térmico	
3.1	1.3. Caracterización molecular por métodos espectroscópicos	
3.1	1.4. Caracterización morfológica	
3.2.	Quimica Computacional	

3	.2.1.	Anàlisis conformacional	
3	3.2.2.	Métodos computacionales de cálculo de energía	
	3.2.2.1	Mecánica Cuántica (Función de Onda Molecular)	
	3.2.2.2	Teoria del Funcional de la Densidad	
	3.2.2.3	Mecánica molecular	
-	3.2.3.	Efecto del solvente	
	3.2.3.1	Consideraciones termodinámicas	
	3.2.3.2	Modelos de solvatación	
4.	ESTUDIO	D DEL ESTADO SÓLIDO	5
4.1.	INTRO	DUCCIÓN	
3	1.1.1.	Estructura externa: hábito cristalino	
4	1.1.2.	Estructura interna	
	4.1.2.1	Polimorfos verdaderos	
	4.1.2.2.	Sólidos amorfos	
	4.1.2.3	Solvatos e hidratos	
	4,1.2.4	Sales de uso farmacéutico	
	4.1.2.5.	Cocristales farmacéuticos.	
	4.1.2.6	Sales versus cocristales	
4.2.	OBJET	īvo	62
4.3.	MATE	RIALES Y MÉTODOS	
4	1.3.1.	Técnicas de caracterización	
4	1.3.2.	Preparación de muestras y estándares de trabajo	
4	4.3.3.	Ensayos de cristalización	
4.4.	Resu	TADOS Y DISCUSIÓN	
4	.4.1.	Análisis por Microscopia de Platina Calentable	
4	1.4.2.	DSC, TG-DTG y DRXP.	
4	1.4.3.	Análisis exploratorio de estabilidad y solubilidad	
	1.4.4.	Búsqueda de polimorfos y caracterizoción de las muestras sólidas obtenidas	
45	Conc		97
	CONC		

5. ES	TUDIO DE PROPIEDADES ESTRUCTURALES TRIDIMENSIONALES	
5.1.	INTRODUCCIÓN	
5.2.	OBJETIVO E HIPÓTESIS	
5.3.	Materiales y Métodos	
5.4.	RESULTADOS Y DISCUSIÓN	
5.4	1. Difracción de Rayos X de Monocristal	
5	5.4.1.1. Interacciones intermoleculares y empaquetamiento cristalino	
5	.4.1.2. Estudio comparativo entre estructuras cristalinas	
5.4.	2. Modelado molecular	
5.4.	3. Comparación entre las estructuras tridimensionales de DRXM y QC	
5.4.	4. Interacciones de hidrógeno intramoleculares	
5	.4.4.1. Análisis de los enlaces de hidrógenos por DRXM	
5	.4.4.2. Análisis de los enlaces de hidrógenos por NBO	
5.4.	5. Piramidalización del N	
5.4.	6. Análisis estereoquímico	
5.5.	CONCLUSIONES	
6. ES	TUDIOS DE SOLUBILIDAD	
6.1.	INTRODUCCIÓN	
6.1.	 Modelos para la predicción de solubilidad 	
6.1.	2. Formación de complejos de inclusión	
6.2.	OBJETIVOS	
6.3,	MATERIALES Y METODOLOGÍAS	
6.3.	1. Solubilidad cinética (S _c)	
6.3.	 Solubilidad termodinámica acuosa (S_a) 	
6.3.	3. Solubilidad termodinámica en mezclas aqua:etanol	
6.3	4. Compleios de inclusión con θ-CD.	148
6.3	5. Formación de corristales	140
6.4		140
144 C	The states of blocks and the states of the s	and the second s

6.4.1.	Solubilidad cinética (S _d)	
6.4.2.	Salubilidad termodinámica acuosa (S _{oc})	
6.4.3.	Solubilidad aparente en mezclas agua:etanol	
6.4.4.	Complejos de inclusión con 8-CD	
6.4.4	4.1. 857HQ:β-CD	
6.4.4	4.2. BSBZT:β-CD	
6.4.5.	Formación de cocristales	
6.5. Co	INCLUSIONES	
7. RELA	CIONES ESTRUCTURA-SOLUBILIDAD	
7.1. IN	MODUCCIÓN	
7.1.1.	Fuentes de datos experimentales	
7.1.2.	Descriptores moleculares	
7,1.3.	Métodos estadísticos aplicados en el modelado	
7.1.4.	Prveba de modelas	
7.1.5.	Modelos de solubilidad.	
7.1.5	5.1. Modelos basados en log P	
7.1.5	5.2. Ecuaciones Generales de Solubilidad (EGS)	
7.1.5	5.3. EGS Extendida (EGSE)	
7.1.5	5.4. Modelos basados en propiedades de solvatación	
7.1.5	5.5. Modelo basado en la aproximación de Hildebrand	
7.1.5	5.6. Programas de cálculo de solubilidad	
7.1.5	5.7. Otros modelos desarrollados	
7.1.5	5.8. Rangos de error aceptados en los cálculos de solubilidad	
7.2. 09	UETIVOS E HIPOTESIS	
7.3. M	ETODOLOGÍAS	
7.3.1.	Relaciones estructura-solubilidad	
7.3.2.	Relaciones cuantitativas estructura-solubilidad	
7.3.2	2.1. Relaciones cuantitativas estructura-solubilidad conocidas	
7.3.2	2.2. Desarrollos propios de relaciones cuantitativas estructura-solubilidad	

A TADOS Y DISCUSIÓN	
Relaciones estructura-solubilidad	
Predicción con modelos de solubilidad existentes	
Relaciones cuantitativas estructura-solubilidad	
1. Relación entre Clog P γ log k _w para el BS8ZT	
2. Comparación entre el modelo de Hildebrand y los modelos I y II	
CLUSIONES	
USIONES GENERALES	
ICE DEL CAPÍTULO 5	
ODUCCIÓN	
TND	
ODOLOGIAS	
JLTADOS	
Conformaciones de sulfonamidas	
Interacciones intermoleculares de sulfonamidas	
Interacciones ligando-receptor	
	Relaciones estructura-solubilidad Predicción con modelos de solubilidad existentes Relacionés cuantitativos estructura-solubilidad 1. Relación entre Clog P y log k _w para el BS82T 2. Comparación entre el modelo de Hildebrand y los modelos I y II CUUSIONES USIONES GENERALES ODUCCIÓN CTIVO ODUCCIÓN CUTADOS Conformacianes de sulfonamidas

Abreviaturas y acrónimos

[B-CD]	Concentración de β-ciclodextrina
C-RMN-ES	Resonancia Magnética Nuclear de "C en Estado Sólido
1Hec F	Tera recristalización fundida
1Rec	1era recristalización
2Rec F	2da recristalización fundida
2Rec	2da recristalización
A	Absorbancia
A	Angström (1 x 10 ⁻¹⁰ m)
AAE	Error Absoluto Promedio
AAEent	Error Absoluto Promedio del conjunto de entrenamiento
AAEtest	Error Absoluto Promedio del conjunto de testeo
ACP	Análisis de Componentes Principales
ADME	Administración, Distribución, Metabolismo y Excreción
ADME-Tox	Administración, Distribución, Metabolismo y Excreción - Toxicidad
AIC	Criterio de Información de Akaike
Ala	Alanina
ANMAT	Administración Nacional de Medicamentos Alimentos y Tecnologías Médicas
ANN	Métodos basados en redes neuronales (del inglés Artilicial Neural Network)
ANOVA	Análisis de la varianza
ARLM	Análisis de Regresión Lineal Multivariado
As 10 %	Asimetría 10 %
As 5 %	Asimetria 5 %
ASPT	Área Superficial Polar Topológica
BD	Biodisponibilidad
BIC	Criterio de Información Bayesiano
BS	Bencenosulfonilo
BSBZT	1-(bencenosulfonil)-1H-benzo-1,2,3-triazol
BSTHIQ	2-(bencenosulfonil)-1,2,3,4-tetrahidroisoguinolina
BSTHQ	1-(bencenosulfonii)-1,2,3,4-tetrahidroguinolina
BSTHQa	2-metil-1-(bencenosulfonil)-1,2,3,4-tetrahidroguinolina
CD	Ciclodextrina
CDB o DSC	Calorimetría Diferencial de Barrido
CIBS	Cloruro de Bencenosulfonilo
Clog P	Logaritmo del Coeficiente de Partición octanol: agua calculado
CP	Componentes Principales
Cp	Cp de Mallows
cps	Cuentas por segundo
DFT	Teoría del Funcional de la Densidad (del inglés Density Functional Theory)
DMF	Dimetilformamida
DMSO	Dimetilsulfóxido
DRIFT	Espectroscopia infrarroja de reflectancia difusa con transformada de Fourier
DRX	Difracción de Rayos X
DRXM	Difracción de Ravos X de Monocristal
DRXP	Difracción de Rayos X de Polvo
DTG	Derivada Primera del Análisis Termogravimétrico (del inglés Derivative
1995-0	Thermogravimetric Analysis)
EE	Error Estándar
EGS	Ecuación General de Solubilidad
EGSE	Ecuación General de Solubilidad Extendida
EH	Enfermedades Huérfanas
EPH	Enlaces Puente de Hidrógeno
ER	Enlaces rotables

ET	Estándar de trabajo
ET ¹	Estado de transición
FA	Farmacopea Argentina
1	Fracción de cosolvente
1.	Fracción de cosolvente
FDA	Food and Drug Administration
4	Fracción de etanol
FH	Fármacos Huérfanos
FO	Físico-químicas
G	Glicerina
Glu	Lieina
CMP	Buenes Prácticas de Esbricación, Elshoración o Manufactura
GRAS	Beconscido Generalmente como Securo (del Inglés Generally Recognized As Safe)
unas u	Lidrágeno
Hat .	Historgeno
His	Historico
	Presidina Cremeteorofie liquide de alte eficiencia
HPLU	Cromatograna inquida de ana enciencia
	Alto rendimiento
HIS	Cribado de alto rendimiento (del ingles High Throughput Screening)
I+D	investigación y Desarrollo
IC ₅₀	Concentración Inhibitoria 50
ICH	Conterencia Internacional de Armonización (del inglés International Conterence on
3283	Harmonisation)
IFA	Ingredientes Farmacéuticos Activos
lle	Isoleucina
IR	Espectroscopia Infrarroja con Transformada de Fourier
п	Investigación traslacional
AL	Modelo de Jouyban-Acree
ĸ	Factor de capacidad
L. donovani	Leishmania donovani
LC	Límite de Cuantificación
LD	Límite de Determinación
Leu	Leucina
LL	Modelo Logarítmico-Lineal
log D	logaritmo del coeficiente de distribución
log k _m	logaritmo del factor capacidad cromatrográfica a 0% de modificador orgánico
log P	logaritmo del Coeficiente de Partición octanol: agua
LPO	Pares de electrones libres del O
MEB	Microscopia Electrónica de Barrido
M-III	Muestra sólida de TM-BSTHO obtenida por evaporación lenta de una solución
	metanólica diluida
MLP	Microsconía de Luz Polarizada
mM	Milmolar
MND	Medicamentos No Discontibles
MO	Microsophia Órdica
MDC o TM	Microscopia de Blatina Calestable o Termomissorcentia
MPCOTM	Desuisción consentual madia
MPD	Error Cundrition Media (del legitic Mana Counted Error)
MODE	Error Cuadrático Medio de Bradicelán (del inclán Mana Saucra Bradictica Error)
MSPE	Error Cuadratico Medio de Predicción (del Ingles Mean Square Predictión Error)
MI	Muestras de trabajo
N	Platos teóricos
NBO	Orbitales Naturales de Enlace (del Ingles Natural Bond Orbital)
NBS-Het	Av-benceriosutionillos derivados de neterocicilos
Rdescriptores	rvumero de descriptores
Rentretemiento	Numero de derivados que integran el conjunto de entrenamiento
NEG	Nueva Entidad Química
Resterno	Numero de derivados que integran el conjunto de datos externos
R guimioteca	Número de derivados que integran la quimioteca

niest	Número de derivados que integran el conjunto de testeo
OMS	Organización Mundial de la Salud
ONG	Organizaciones No Gubernamentales
P. falciparum	Plasmodium falciparum
PA	Proporción aromática
PAD-VI	Muestra sólida de TM-BSTHQ obtenida por evaporación lenta de una solución diluida de n-hexano conteniendo polietileno de alta densidad.
PCM	Modelo de Polarización Continua
PE	Punto de ebullición
PEG 400	Polietilenglicol 400
pt	Punto de fusión
PG	Propilenglical
Phe	Fenilalanina
PLS	Minimos Cuadrados Parciales (del inglés Partial Least Squares)
PM	Peso molecular
p-NO2-BSTHQ	1-(4-nitrobencenosulfonil)-1,2,3,4-tetrahidroquinolina
Pol	Polarizabilidad
QC	Química Computacional
QM	Química Medicinal
OSAR	Relaciones Cuantitativas Estructura-Actividad (del inclés Quantitative Structure-Activity
	Relationship
OSPR	Relaciones Cuantitativas Estructura-Propiedad (del inglés Quantitative Structure-
	Property Relationship
OSS-R	Relaciones Estructura-Solubilidad Acuosa Cuantitativas
OSSR	Relaciones Estructura-Solubilidad Cualitativas y Cuantitativas (del ionlés Quantitativa
aborr	Structure-Solubility Relationshini
OST	Optimización del Estado de Transición (del inclés Transition State Optimization)
OSTR	Relaciones Cuantitativas Estructura-Toxicidad /del inglés Ovantitativa Structura-Toxicity
donn	Relationship)
R	Resolución
Ra	Coeficiente de determinación ajustado
REA	Relaciones Estructura-Actividad
Rt - altura	Factor de respuesta de altura
Rt - área	Factor de respuesta de área
R	Relación de frente
RMSE o RMSD	Error o Desviación Cuadrática Media (del inglés Root-Mean-Square Error o Deviation)
RMSEent	Error Cuadrático Medio del conjunto de entrenamiento
RMSEtext	Error Cuadrático Medio del conjunto de testeo
RSD	Desviación Estándar Relativa (del inglés Relative Standard Deviation)
S aureus	Staphylococcus aureus
Sac	Solubilidad acuosa termodinámica
Sap	Solubilidad aparente
Sc	Solubilidad cinética
Scalo	Solubilidad calculada
SCB	Sistema de Clasificación Biofarmacéutica
SCF	Campo Autoconsistente (del inglés Self Consistent Field)
SCRF	Self-Consistent Reaction Field Methods
SD	Desviación Estándar (del inglés Standard Deviation)
SD	Sultadimidina
S	Solubilidad ideal
SM	Solución Madre
SMX	Sulfametoxazol
S.	Solubilidad intrinseca
T. cruzi	Trypanosoma cruzi
TBC	Tuberculosis
TIMEC	Temperatura de fusión obtenida por Microscopía de Pletina Calentable
TG	Análisis Termogravimétrico o Termogravimetría
Ta	Temperatura de Transición Vítrea
1 M I	

THQ	Tetrahidroquinolina
TLC	Cromatografia en capa delgada (del inglés Thin Layer Chromatography)
TM-BSTHQ	1-(2,3,5,6-tetrametilbencenosulfonil)-1,2,3,4-tetrahidroguinolina
to	Tiempo de retención
Tyr	Tirosina
USP	Farmacopea de los Estados Unidos (del inglés United States Pharmacopeia)
UV	Ultravioleta
Va	Velocidad de disolución
Wm	Ancho de pico
a	Factor de separación o retención relativa
ß	Velocidad de calentamiento
B-CD	B-Ciclodextrina
ð	Desplazamiento químico
ACD	Cambio en la capacidad calorífica
ΔG	Cambio de energía libre de Gibbs
ΔH	Cambio entálpico
ΔH,	Cambio entálpico del proceso de fusión
AS	Cambio entrópico
A	Longitud de onda
Amer	Longitud de onda máxima
pq	Microgramo/s
uL	Microlitro/s
μM	Micromolar
us	Microsegundo/s
σ	Poder solubilizante hasta una fracción de cosolvente de 1
o'C-H	Orbital antienlazante C-H
Cos	Poder solubilizante hasta una fracción de cosolvente de 0.5

Capítulo 1

1. INTRODUCCIÓN

En los últimos años, la industria farmacéutica se ha enfrentado a retos cada vez mayores, como consecuencia de la búsqueda de una mejor calidad de vida de los pacientes, como así también debido al aumento de las presiones económicas y regulatorias, acompañado por el vencimiento de las patentes de medicamentos, principalmente aquellos denominados blockbuster. Todo esto implica un continuo desafío para el desarrollo de nuevos fármacos.¹

Las transformaciones dinámicas que ocurren en el organismo y que forman la Química de la vida, se cumplen en medios esencialmente acuosos. Las reacciones bioquímicas transcurren entre moléculas que se encuentran en solución (o que deben disolverse y transferirse a través de las biomembranas) para llegar al sitio de acción. Las características de los biosistemas y las propiedades físico-químicas (FQ) de los compuestos influencian los procesos de absorción, distribución, metabolismo y excreción (ADME), condicionando su biodisponibilidad[†] (BD). Si la solubilidad acuosa y la velocidad de disolución (V_d) son bajas, un fármaco administrado enteralmente será excretado sin la posibilidad de pasar desde el tracto gastrointestinal al torrente circulatorio.² De esta forma, los problemas de solubilidad diferencial de los fármacos, es decir, su solubilidad acuosa y su capacidad para atravesar membranas biológicas de naturaleza lipídica, muchas veces originan que los efectos terapéuticos no se manifiesten.

Hasta hace poco tiempo, las características del estado sólido y la solubilidad acuosa no se consideraban de interés prioritario en los estudios iniciales de investigación y desarrollo (I+D) de nuevas entidades químicas (NEQ). Pero en años recientes, ha sido evidente la aparición de falsos positivos o negativos en los ensayos biológicos exploratorios y, más aún, de fracasos terapéuticos, a causa de problemas de solubilidad y estabilidad de los nuevos compuestos.¹ Esto ha puesto de manifiesto el papel crucial que ejercen dichas propiedades sobre el desempeño de un fármaco, tanto *in vitro* como *in vivo*. Por lo tanto, las consecuencias de una inapropiada solubilidad acuosa y el desconocimiento de las características del estado sólido de un compuesto se consideran una "punta de iceberg", pues suelen ser las causas de problemas que demoran el desarrollo de muchos medicamentos. Así, el estudio del estado sólido no sólo es útil a la Química y Física estructural, sino que también aporta conocimientos decisivos acerca de propiedades FQ, como solubilidad y estabilidad,^{1, 3} lo que permite, a su vez, su optimización.¹

^a Medicamentos que generan más de 1 billón de dólares de ingresos por año, para el propietario de la patente.

¹ Velocidad y cantidad con la cual un principio activo es absorbido desde la forma farmacéutica y se encuentra disponible en forma inalterada en la circulación sistémica.

1.1. Medicamentos No Disponibles

El presente proyecto se inserta en otro más general que tiene como marco teórico el estudio de medicamentos huérfanos. Este término es definido en países desarrollados, como aquellos que se utilizan para diagnosticar, prevenir y/o tratar enfermedades huérfanas (EH). Fontana y col.⁴ propusieron la utilización del término Medicamentos No Disponibles (MND), ya que se considera más abarcador y acorde a la problemática de nuestro país. Los MND fueron definidos como medicamentos avalados científicamente como de utilidad terapéutica reconocida o hipótesis validada de investigación pero que, por diferentes causas y/o circunstancias, no se comercializan, ni elaboran, ni distribuyen dejando a los pacientes sin el tratamiento necesario, cualquiera fuese su problema de salud, por falta de disponibilidad en el ámbito nacional. La definición de MND tiene las siguientes características destacables:

Ser objetiva y descriptiva por sí misma.

Enfocarse en el paciente y sus necesidades farmacoterapéuticas no satisfechas.

Incluir a todos los medicamentos que no estén disponibles en el ámbito nacional, sin discriminar la clase o categoría.

Poner como criterio importante de inclusión a aquellos avalados científicamente y de utilidad terapéutica reconocida.

Contemplar todas las situaciones de falta de disponibilidad identificadas en nuestro medio (no comercializados en Argentina, formulaciones huérfanas, uso "off-label"⁴, etc.).

Independizarse de la prevalencia de la enfermedad para la que se necesitan.

Los estudios teóricos y trabajos de campo, que sustentaron esta nueva definición, se pueden consultar en la tesis de Fontana.⁵

Actualmente, subsisten enfermedades sin soluciones terapéuticas y problemas en la disponibilidad de algunos medicamentos vitales para dar respuesta a grupos vulnerables o a patologías específicas. Situaciones particulares, en este sentido, son las enfermedades raras o poco frecuentes y las enfermedades olvidadas, desatendidas o de la pobreza. Las primeras involucran a pocos pacientes en una población; sin embargo, su baja frecuencia no lleva asociado bajo impacto socioeconómico y sanitario. Las enfermedades desatendidas, por el contrario, afectan a muchos pacientes, de escasos recursos y en países poco desarrollados o pobres.^{6, 7, 8} En ambas situaciones y, en las intermedias que puedan identificarse, surgen factores epidemiológicos y económicos que sustentan la falta de rentabilidad que incentive la I+D de fármacos. Las estrategias de promoción impulsadas a nivel mundial son la investigación en academias, en colaboración con agencias oficiales, entidades privadas y organizaciones no gubernamentales. Para todas las EH, la idea consensuada es que se necesita descubrir nuevos fármacos e invertir en su I+D, porque está claro, que las empresas farmacéuticas no lo harán.

Entre las enfermedades desatendidas que necesitan de nuevas farmacoterapias se encuentran la malaria, la tuberculosis (TBC), el Chagas y la leishmaniasis, entre otras. Esto se debe a que ellas comparten tres problemáticas principales: los medicamentos existentes son obsoletos, poco efectivos y muchos de ellos no están disponibles.^{9, 10} Por lo tanto, la

⁺ El uso "off-label" es la práctica de prescribir medicamentos autorizados para usos no autorizados (fuera de las indicaciones) y satisfacer las necesidades especiales de un individuo.

Capítulo 1

investigación de nuevos fármacos es absolutamente prioritaria y la industria farmacéutica no tiene interés en llevar a cabo I+D en estas áreas.^{11, 12}

1.2. El ciclo integral del medicamento

Un medicamento es una entidad compleja, definido como toda preparación o producto farmacéutico empleado para la prevención, diagnóstico y/o tratamiento de una enfermedad o estado patológico, o para modificar sistemas fisiológicos en beneficio de la persona a quien se lo administra.¹³ Como tal, es un preparado que contiene uno o varios fármacos[§] y excipientes, formulados en una dosis específica, bajo una determinada forma farmacéutica.¹³ Todo medicamento, para existir como tal, debe superar una secuencia de pasos interrelacionados, desde que la molécula es descubierta o diseñada, hasta que es utilizada en un paciente. Esto suele conocerse como ciclo integral del medicamento.

Las etapas del descubrimiento de un fármaco y desarrollo de un medicamento, representan un proceso largo (entre 8 a 12 años) y complejo. Requiere, además, una gran inversión en recursos humanos y materiales y los resultados son impredecibles. Miles de ideas y compuestos han de ser estudiados, antes de conseguir que unas pocas moléculas superen los rigurosos controles y ensayos necesarios para conseguir que el medicamento más eficaz, seguro y de calidad llegue a ser comercializado.¹⁴

La I+D de los medicamentos se puede dividir en dos grandes etapas, las previas (Fig. 1.1) y las posteriores a la autorización para la comercialización (Fig. 1.2). Las primeras comprenden todas aquellas actividades relacionadas al descubrimiento de nuevos fármacos, a los estudios preclínicos (en animales) y finalmente a los clínicos (en humanos).

Fig. 1.1. Etapas de pre-comercialización de un medicamento.15

Para poder ser empleado en la población, un medicamento debe estar registrado y aprobado por la autoridad sanitaria nacional (ANMAT, en Argentina). Posterior a su comercialización, comienzan los estudios de fase IV que comprenden la detección de nuevas indicaciones y la farmacovigilancia, entre otras. Aquí también quedan incluidas otras acciones profesionales relacionadas con su uso, tal como la prescripción, la dispensación y la administración (Fig. 1.2).⁵

Ingredientes farmacéuticos activos (IFA) principios activos o drogas farmacéuticas.

Capítulo 1

Introducción

Fig. 1.2. Etapas de post-comercialización de medicamentos.⁵

Resulta interesante incluir en esta introducción un concepto relacionado a lo hasta aquí comentado, como es el de **investigación traslacional** (IT), que ha planteado un nuevo paradigma en la I+D de medicamentos.¹⁶ Se trata de entrelazar en un proceso cíclico e iterativo a los investigadores y a los agentes del sistema de salud, proponiendo una retroalimentación entre ambos. Parte de la hipótesis de que, si se logra una buena asociación, las ideas podrían fluir en ambas direcciones, de modo de alcanzar altos niveles de calidad en la decisión de políticas públicas de salud. La IT, conocida también como traducción del conocimiento (*translational knowledge*), diseminación o transferencia del conocimiento (*knowledge transfer*), ha sido definida originalmente como *aquella investigación aplicada y comprehensiva que pretende traducir el conocimiento científico disponible para hacerlo útil a la población*.^{16, 17} El término se refiere a la traslación en tiempo real de la "ciencia de mesada", llevada a cabo sólo en un laboratorio, a la práctica clínica, de aquí la frase asociada: "*from bench to bedside*^{st", 18} La IT ayuda a que los hallazgos de las ciencias básicas sean útiles para aplicaciones prácticas que mejoren la salud y el bienestar de la población.

1.3. La Química Medicinal

La Química Medicinal (QM), marco de referencia metodológico del presente proyecto, centra sus objetivos en la primera etapa de I+D de una NEQ, es decir, en la del descubrimiento. Sin embargo, también se involucra en algunos aspectos del desarrollo (Fig. 1.1). La etapa de descubrimiento puede subdividirse, a su vez, en otras cuatro, todas ellas abordadas por la QM.

 Exploración: Consiste en la búsqueda de nuevos compuestos con actividad biológica. Incluye la identificación de dianas, la síntesis de compuestos y la evaluación de sus actividades biológicas. En los últimos años, esta etapa se ha visto impulsada por la Química Combinatoria y los métodos de cribado de alto rendimiento (HTS, del inglés High Throughput Screening).

 Selección de líderes: Consiste en seleccionar a aquellos compuestos que poseen cierta actividad biológica, la cual no necesariamente es alta, siendo satisfactorio, en general, un valor de concentración inhibitoria 50 (IC₅₀) de 10 µM. Estos compuestos pueden presentar efectos indeseados, que serán optimizados en la etapa siguiente.¹⁹

 Optimización de líderes o prototipos: Aquí se intenta mejorar la actividad biológica que muestra el compuesto líder. Se busca obtener valores de IC₅₀ de alrededor de 10 nM. También, se pretende disminuir sus efectos indeseables, mejorar sus propiedades FQ y farmacocinéticas (ADME). Esta tarea se lleva a cabo principalmente por modificaciones moleculares del líder.

 Selección de candidatos: Finalmente, se eligen aquellos compuestos que, luego de la optimización, han presentado las mejores características de actividad, toxicidad y propiedades FQ. Esta etapa también involucra a los estudios de propiedades farmacocinéticas y de formulación farmacéutica.^{19, 20}

[&]quot; De la mesada al paciente.

La QM ofrece como estrategia principal para el descubrimiento de nuevos fármacos el identificar líderes o prototipos, los que luego pasan a la etapa de optimización. El descubrimiento de un líder se puede realizar de distintas formas:

 Búsqueda al azar: En esta aproximación poco racional, se ensayan muchos compuestos en busca de actividad biológica, sin tener en cuenta su estructura química. Antes de 1935, esta metodología era la única aproximación existente. Actualmente, aún cuando existen otras estrategias mucho más racionales, ésta sigue siendo importante para el descubrimiento de líderes, debido al auge de las técnicas de HTS.

 Descubrimiento casual: En este caso los líderes son encontrados en forma accidental, como por ejemplo, con el descubrimiento de actividad biológica a partir del estudio del metabolismo de fármacos o por observaciones clínicas.

 Diseño racional: Aquí se utiliza "racionalmente" toda la experiencia y la información posible, ya sea de la estructura de un compuesto químico que tenga actividad, de los procesos bioquímicos o farmacológicos involucrados, de las dianas biológicas o terapéuticas conocidas, etc. Actualmente, se refiere al diseño de quimiotecas integradas por derivados químicos similares.²⁰

Si bien el líder posee la actividad biológica buscada, generalmente tiene otras características no deseadas. Es así como, por ejemplo, una baja solubilidad o una pobre absorción pueden llevar a que un compuesto sea excluido más tarde o más temprano de los estudios de I+D y causar demoras en el descubrimiento de muchos fármacos. Limitaciones como las mencionadas pueden superarse a través de modificaciones moleculares (formación de análogos) o la manipulación de las propiedades del estado sólido, entre otros. Finalmente, la **selección de los mejores líderes** conduce a los **candidatos**, los cuales entrarán en las etapas posteriores del desarrollo (Fig. 1.1).

El método tradicional de la QM consistía principalmente en sintetizar los compuestos y medir su actividad, para luego comenzar con los estudios preclínicos.^{7, 21, 22} En contraste con tal aproximación, los actuales criterios de racionalidad imponen nuevos desafíos para acelerar y hacer más eficiente su búsqueda. El perfil deseado de una NEQ es una relación compleja entre sus propiedades FQ, su afinidad y selectividad por el receptor y sus propiedades ADME y toxicológicas (ADME-Tox). Este moderno paradigma de desarrollo de nuevos fármacos, conocido como diseño en paralelo, podría ser sintetizado con la frase "fallar temprano es fallar barato". Esto incluye la determinación o estimación de propiedades FQ (vinculadas a la BD) y ADME-Tox, en las primeras etapas del descubrimiento.²³ Las chances para un diseño exitoso dependen, en gran medida, de cuánta de esta importante información pueda acumularse en etapas tempranas de la investigación. Es por eso que, las estrategias actuales promueven los estudios de dichas propiedades en forma simultánea a los ensayos biológicos (Fig. 1.3).²²

Capítulo 1

Fig. 1.3. Modelo de diseño en paralelo, donde se plantea el estudio de las propiedades FQ en "forma paralela" al descubrimiento, síntesis y ensayos biológicos de las NEQ.²⁴

Este nuevo paradigma incrementa las probabilidades de obtener un fármaco exitoso (con actividad farmacológica y propiedades ADME-Tox óptimas) y no solo un buen ligando para el receptor involucrado, que únicamente haya demostrado una buena afinidad o una actividad biológica *in vitro* aceptable (Fig. 1.4).

Fig. 1.4. Propiedades versus actividad (Adaptado de Kerns y Di²⁵).

1.4. Propiedades de una NEQ

Las diferentes **propiedades de una NEQ**, que influencian su acción farmacológica, se encuentran intimamente relacionadas. A partir del conocimiento de la estructura de una NEQ, su estabilidad, lipofilicidad, solubilidad acuosa y V_d, es posible predecir si su BD será adecuada o no, y si tendrá versatilidad para ser preparada en diferentes formas farmacéuticas.^{22, 24, 26}

Como se observa en la Fig. 1.5, las propiedades estructurales moleculares, como el peso molecular (PM), el volumen, el área superficial polar topológica (ASPT), la polarizabilidad, los enlaces puente de hidrógeno (EPH) y las demás fuerzas intra e intermoleculares, afectan en forma directa a:

Capítulo 1

Introducción

 las propiedades físicas, como la solubilidad, la permeabilidad, el punto de fusión (pf) y la lipofilicidad

- las químicas, como la estabilidad y la reactividad
- las bioquímicas, como la unión a proteinas, el transporte, la IC₅₀ y la dosis letal 50 (DL₅₀).

Estas últimas van a influir, a su vez, sobre las propiedades farmacocinéticas y toxicológicas (propiedades ADME-Tox y BD) y de esta forma sobre el desempeño in vivo de la NEQ.²⁷

Fig. 1.5. Relación entre las propiedades estructurales, FQ, biológicas, farmacocinéticas y toxicológicas (Adaptado de Mannhold y col.²⁶).

El tamaño molecular puede ser un factor limitante de la absorción oral. El PM y el volumen son tomados, generalmente, como descriptores de tamaño, debido a la facilidad en su obtención. Además, el tamaño molecular y los EPH son componentes que afectan en forma directa a la lipofilicidad. Es así que, la capacidad de un compuesto de establecer EPH se correlaciona muy bien con su difusión pasiva. El ASPT, es junto con la lipofilicidad, uno de los parámetros más importantes que caracterizan las propiedades de transporte de una sustancia. Los logaritmos de los coeficientes de partición (log P) y de distribución (log D) en octanol-agua son utilizados para estimar la penetración en membranas y la permeabilidad, incluyendo la absorción gastrointestinal, pasaje a través de barrera hematoencefálica y correlación con propiedades farmacocinéticas.²⁸

Por otra parte, las propiedades del estado sólido de un compuesto son también sumamente importantes en Química Farmacéutica, ya que más del 80 % de los IFA son administrados en estado sólido por vía oral como parte de una forma farmacéutica sólida (cápsulas, comprimidos, suspensiones, etc.). Dichas formas proveen una manera estable, segura y práctica para la administración al paciente.²⁹ Por lo tanto, en los últimos años se ha comprendido la importancia de conocer y optimizar las propiedades del estado sólido, debido al impacto que ejercen sobre el correcto desempeño *in vivo* de un fármaco, la obtención de un proceso de manufactura confiable y la protección de la propiedad intelectual. Las propiedades del estado sólido (conceptos que serán desarrollados en el Capítulo 4) tienen un profundo impacto sobre la solubilidad y la estabilidad. Así, para el diseño racional de una NEQ y para evaluar sus posibilidades de desarrollo, hay que tener en cuenta dichas propiedades, por lo que se requiere una adecuada caracterización de las formas físicas seleccionadas.¹

Finalmente, para lograr una comprensión más completa de las propiedades FQ, la reactividad y la actividad biológica de una molécula es importante conocer su **estructura tridimensional** (geometría molecular). Dicha geometría puede ser obtenida por medio de diferentes metodologías, entre ellas, mediante resolución de la estructura cristalina por técnicas

de difracción de rayos X o a través de cálculos de minimización en fase gaseosa (moléculas aisladas) o en solventes, usando técnicas de modelado molecular o Química Computacional (QC). La geometría juega un papel crucial, tanto en la complementariedad ligando-receptor, como en los procesos ADME-Tox.²⁰

1.4.1. Solubilidad

En general, la solubilidad se define como la cantidad de una sustancia que puede disolverse en un dado volumen de solvente a una temperatura específica. Sin embargo, en un análisis más específico, se podrían definir varios tipos de solubilidad. A lo largo de este trabajo de tesis se usarán las siguientes definiciones:

 Solubilidad termodinámica (S_{ac}). Es la máxima cantidad de la forma cristalina más estable del compuesto que puede permanecer en solución en un dado volumen de solvente, a una dada temperatura y presión, bajo condiciones de equilibrio.³⁰ A lo largo de esta tesis, la S_{ac} hace referencia a la solubilidad en agua, determinada en el equilibrio termodinámico.

 Solubilidad calculada (S_{calc}). Es la solubilidad termodinámica en agua, que ha sido calculada o estimada, mediante la utilización de métodos o modelos in silico.³¹

 Solubilidad cinética (S_c). Es la concentración a la que un precipitado inducido aparece en una solución. Los métodos de medición de S_c fueron diseñados para facilitar las mediciones de alto rendimiento, como las HTS. Se parte del compuesto disuelto (generalmente en DMSO) y, luego, a dicha solución se le agregan alícuotas de agua. La S_c es definida como el valor de concentración en el cual el componente acuoso no puede mantener solubilizado al soluto y este comienza a precipitar.³⁰

• Solubilidad intrinseca (S₀). La mayoria de los compuestos farmacéuticos son electrolitos y pueden existir en diferentes formas iónicas (ácidos o bases débiles o en combinaciones de dos tipos de ionización) dependientes del pH. La S₀ se define como la solubilidad de la forma neutra de un compuesto ionizable. La S₀ de un no-electrolito o de un electrolito con 100 % en su forma neutra es la concentración de su solución saturada en equilibrio con la fase sólida. Tradicionalmente, la S₀ es medida usando el ensayo de agitación de matraz (shake flask), en el cual el sólido es mezclado vigorosamente con agua por un largo periodo. Este método es muy demandante de tiempo, lo que impide que se utilice en ensayos HTS.³⁰

Solubilidad aparente (S_{ap}). Es la concentración de un soluto en un solvente, bajo condiciones de equilibrio aparente, por ejemplo en una solución supersaturada. La S_{ap} está involucrada en diferentes aproximaciones que intentan mejorar la V_d de una NEQ, entre ellas se pueden citar la formación de complejos supramoleculares, la cosolvencia, la formación de sales y cocristales, la reducción del tamaño de partícula y la utilización de formas amorfas o metaestables, entre otras. Por ejemplo, los complejos de inclusión, la utilización de cosolventes o el uso de formas amorfas o polimorfos metaestables suelen producir un incremento de la S_{ap}.³² En general, la forma cristalina más estable seria aquella que presenta la menor solubilidad, por lo que los experimentos que comienzan con una forma sólida metaestable, podrían mostrar una S_{ap} más elevada.³⁰ Cuando se refiere a sales, también es conocida como solubilidad *bufferizada*/tamponada y es la *medida a un determinado pH, por ejemplo 1,2, 4,5 ó 6,8 (pH's conocidos como biorelevantes*).³³ Es así que, la S_{ap} de un electrolito es función de su S₀, del pH y su pKa.³⁴ Para compuestos ionizables, la S_{ap} y la S₀ están relacionadas por la Ec. de Henderson-Hasselbach. Para un compuesto monoácido según la Ec. 1.1 y para un compuesto monobásico por la Ec. 1.2.³⁵

Capítulo 1

$$S_{ap} = S_0 \left[1 + 10^{(\rho H - \rho K_0)} \right]$$
 Ec. 1.1

$$S_{ap} = S_0 \left[1 + 10^{(\rho H - \rho K_0)} \right]$$
 Ec. 1.2

 Solubilidad no bufferizada. Hace referencia a la solubilidad de una solución saturada de un compuesto al pH final de dicha solución (usualmente en agua), la cual puede estar alejada del pH 7 debido a la auto-bufferización. Para compuestos neutros (no ionizables) las solubilidades bufferizadas/tamponadas, no bufferizada e intrinseca coinciden.

La determinación de la Sac implica que la concentración y la forma sólida no cambien con el tiempo. Esto resulta del balance entre las energías de interacción soluto-solvente, comparado con las energías soluto-soluto y solvente-solvente.36 Las fuerzas intermoleculares que explican la S_{sc} son tres: (a) solvente y soluto son puestos en contacto y cada uno interacciona primariamente con moléculas de su tipo, (b) para mover moléculas de soluto a la solución, las interacciones entre el soluto dentro del cristal (energía de red cristalina) y entre el solvente en el espacio requerido para acomodar el soluto (energía de cavitación) deben romperse (ambos son procesos endotérmicos). La entropía del sistema se incrementa ligeramente, ya que la red ordenada de EPH entre moléculas de solvente ha sido interrumpida y (c) una vez que el soluto es rodeado por el solvente, se forman nuevas interacciones estabilizantes (energía de solvatación), como se indica con las moléculas azul oscuro en la Fig. 1.6 (proceso exotérmico). La entropia del sistema se incrementa debido a la mezcla entre soluto y solvente (entropia de mezcla), pero también disminuye localmente debido al orden de corto alcance introducido por la presencia del soluto, tal como se indica con las moléculas de color azul claro.36 La solubilidad es función de tres términos energéticos, como se detalla en la Ec. 1.3 y esquematiza en la Fig. 16.37

S = f (energías de empaquetamiento cristalino + de cavitación + de solvatación)

Ec. 1.3

Fig. 1.6. Fuerzas intermoleculares que explican la Sac-

Así, se puede considerar que el proceso de disolución cuenta, en forma conceptual, con tres grandes etapas. En la primera, el soluto debe vencer las fuerzas de atracción entre sus moléculas para poder cambiar su estado de agregación y una de ellas debe liberarse. En la segunda, las de solvente deben crear cavidades donde se puedan situar las moléculas de soluto. En la tercera, la molécula liberada desde el sólido debe mezclarse con las de solvente. Si consideramos que el soluto es un sólido cristalino, en la primera etapa se debe considerar la fusión del sólido. Una vez que las moléculas de soluto se sitúan en las cavidades del solvente, se produce su solvatación.³⁸

La mezcla de ambos tipos de moléculas se produce debido a una aleatorización y la entropía de la mezcla es el factor determinante. La cavitación también tiene entropía positiva porque aumenta el desorden del solvente. Otro factor es la entalpía: interacciones

Capítulo 1

intermoleculares y EPH entre las moléculas de soluto y solvente deben ser más fuertes, en comparación con las interacciones soluto-soluto y solvente-solvente. Cuanto más fuerte son las primeras, el proceso de disolución será más favorable por razones entálpicas. En forma global, la energía de solvatación es la resultante de todo el proceso.

Así, una pobre S_{ac} puede ser causada, principalmente por dos factores, i) una alta lipofilicidad y ii) interacciones intermoleculares fuertes en el estado sólido, los cuales hacen que la disolución del compuesto sea energéticamente costosa.

La energía libre de todo el proceso de disolución es una función de estado, por lo que no se trata realmente de un proceso en etapas. Para que el proceso de disolución sea espontáneo, como en cualquier transformación termodinámica, la variación de la energía libre de Gibbs debe ser negativa (Ec. 1.4).³⁹

$$\Delta G_s = \Delta H_s - T \Delta S_s \qquad \qquad \text{Ec. 1.4}$$

La energía libre de disolución se relaciona con la Sar a través de la Ec. 1.5.

$$\Delta G_{a} = -RT \ln S_{ar} \qquad \qquad \text{Ec. 1.5}$$

Las soluciones ideales son aquellas que siguen las leyes de Raoult, presentan bajas concentraciones y la naturaleza química del soluto y del disolvente son semejantes. La solubilidad ideal (S') de un sólido, a una temperatura específica T, depende sólo del calor molar de fusión (ΔH_0) y del *pf* del sólido (Ec. 1.6).

$$\ln S' = \frac{-\Delta H_f (pf - T)}{RTpf}$$
 Ec. 1.6

donde ΔH_i es el calor molar de fusión, R es la constante de los gases y T es la temperatura. En las soluciones reales, la cantidad que se disuelve dependerá de la naturaleza química del soluto y del disolvente, y de sus interacciones.^{38,40,42,43}

1.4.1.1. Solubilidad durante el descubrimiento y desarrollo de fármacos

Una inadecuada solubilidad se puede transformar en un gran desafío a superar, ya que esta propiedad influye en etapas que atraviesan horizontalmente todo el proceso de descubrimiento y desarrollo de un fármaco y un medicamento. Entre las cinco propiedades FQ a estudiar en etapas tempranas del descubrimiento (pKa, solubilidad, permeabilidad, estabilidad y lipofilicidad) una escasa solubilidad en agua encabeza la lista de las no deseadas. Es un factor que puede comprometer la evaluación de las demás propiedades, ocultar características indeseadas, influir sobre la farmacocinética y farmacodinamia y, aún, afectar el desarrollo completo.⁴⁴ Por ejemplo, la solubilidad acuosa es central al nivel de los **ensayos in vitro**, dado que cuando es baja puede conducir a una pobre reproducibilidad y a resultados poco confiables. Si un compuesto precipita antes de alcanzar su blanco celular, éste estará expuesto a una concentración de compuesto menor a la nominal y puede producir una respuesta disminuida, indetectable o independiente de la concentración ensayada (falso negativo).⁴⁵

En años recientes, el problema de la pobre solubilidad acuosa se ha vuelto más frecuente debido a las nuevas metodologías de HTS y de Química Combinatoria, como así también del descubrimiento de nuevos blancos biológicos que requieren moléculas más lipofilicas para una mejor eficiencia de ligado. Mientras que, un valor de solubilidad menor a 20 µg/mL era prácticamente inexistente antes de 1980, actualmente la situación se ha revertido, encontrándose cada vez con mayor frecuencia, valores menores a 1 µg/mL.⁴⁶

Los ensayos de solubilidad realizados a lo largo de las diferentes etapas de descubrimiento y desarrollo de una NEQ, se focalizan sobre distintos objetivos. En las de descubrimiento, durante la identificación de líderes, los estudios de solubilidad son usados rutinariamente para clasificar líderes y para identificar potenciales inconvenientes (como una falsa respuesta en los bioensayos). Más adelante, durante la optimización del líder, esta información es usada para guiar al químico en la superación de dificultades asociadas a las propiedades FQ y ADME, en la implementación de estrategias apropiadas y en la toma de decisiones en el desarrollo de candidatos (Fig. 1.7).⁴⁴ Los ensayos realizados en estas etapas son en su mayoría determinaciones cinéticas; sin embargo, las mediciones en equilibrio están siendo introducidas cada vez más temprano. También, se realizan estudios en solventes orgánicos, requeridos en los *screening* de polimorfos, para generar materiales puros, estables y cristalinos de la fase sólida más estable del compuesto.

Las preguntas claves que direccionan las determinaciones de solubilidad durante la etapa de desarrollo se focalizan en las propiedades del estado sólido, en la formulación y en la identificación de correlaciones *in vitro/in vivo* (Fig. 1.7). Será necesario realizar ensayos sobre nuevos lotes de un compuesto. Frecuentemente, los materiales amorfos o parcialmente cristalinos de los estudios iniciales son gradualmente remplazados por lotes de mayor escala y por polimorfos de mayor estabilidad termodinámica y pureza, lo cual puede traer aparejado una significativa disminución en la solubilidad.

La solubilidad de un compuesto es determinada, también, en otros medios, como *buffers* acuosos, cosolventes, complejos (por ejemplo con ciclodextrinas, CD) y agentes emulgentes (surfactantes), aceites, prototipos de formulaciones y fluidos biológicos. Si los compuestos poseen baja solubilidad acuosa o limitaciones en la V_d, la selección de la mejor forma sólida (por ejemplo una sal) y/o formulación puede ayudar a "rescatar" aquellos derivados problemáticos. Aunque las formulaciones no incrementan la solubilidad *per se*, éstas pueden, por elección del mejor par candidato/formulación, presentar al IFA en una forma farmacéutica óptima para la absorción. La identificación de vehículos para uso oral o parenteral, la clasificación de sus capacidades de carga y el análisis de su facultad de inhibir la precipitación por dilución, son otras áreas en las que se usan los datos obtenidos. Durante el desarrollo, también son importantes las pruebas de disolución, para identificar problemas en la velocidad de absorción, establecer correlaciones *in vitro/in vivo*, predecir potenciales efectos de los alimentos, identificar medios biorelevantes y desarrollar estrategias para superar los problemas relacionados a solubilidad y disolución. Las pruebas de disolución asisten en el control de calidad, en estudios de bioequivalencia y en la preparación de bioexenciones^{11, 44}

^{††} Autorización de comercialización que se concede a un medicamento mediante la demostración in vitro, de su equivalencia biofarmacéutica con las referencias establecidas.

Capítulo 1

Introducción

Fig. 1.7. Objetivos de los ensayos de solubilidad en el proceso de descubrimiento y desarrollo de fármacos (Adaptado de Alsenz y col.⁴⁴).

En lo que respecta a correlaciones *in vitro/in vivo*, en etapas avanzadas del desarrollo se aplica el Sistema de Clasificación Biofarmacéutica (SCB). Este esquema correlaciona la disolución *in vitro* con la BD *in vivo* y se basa en el reconocimiento de que la disolución y la permeabilidad gastrointestinal son los parámetros fundamentales que controlan la velocidad y el grado de absorción y, por lo tanto, la BD. Este sistema clasifica a los compuestos en cuatro clases de acuerdo a su solubilidad acuosa y permeabilidad intestinal (Tabla 1.1), dos factores claves para la absorción intestinal.⁴⁷ Generalmente, un compuesto con alta solubilidad acuosa y permeabilidad es considerado exento de problemas de BD.³³

Clase	Solubilidad	Permeabilidad	Etapa Limitante para la absorción
1	Alta *	Alta ^a	No posee
	Baja	Alta	Disolución/Formulación
III	Alta	Baja	Permeabilidad intestinal
IV	Baja	Baja	Disolución y/o permeabilidad intestinal

Tabla 1.1.	Clasificación	de IFA	según el	SCB.47
------------	---------------	--------	----------	--------

^a La mayor dosis del fármaco se disuelve en 250 mL o menos de una solución acuosa en un rango de pH de 1,2-7,5, según la FDA.⁴⁸ y de 1,2-6,8, según la OMS.⁴⁹ caso contrario, el IFA es considerado de baja solubilidad.^{39 b} Se clasifica como altamente permeable, si la cantidad absorbida en humanos es > 90 %, según la FDA.⁴⁸ y > 85 %, según la OMS.⁴⁹

¿Qué se entiende por soluble o poco soluble? La respuesta depende de la etapa de I+D en que se esté. En las de **descubrimiento**, se considera que derivados con solubilidad en agua menor a 100 µg/mL son prácticamente insolubles (Fig. 1.8).⁵⁰ Serajuddin y col.⁵⁰ encontraron que aproximadamente un tercio de los nuevos compuestos sintetizados en laboratorios de QM poseen una solubilidad acuosa menos a 10 µg/mL, la del otro tercio está entre 10 y 100 µg/mL y la del resto es mayor a 100 µg/mL.^{50.51} De forma similar, Lipinski reportó que el 31,2 % de un grupo de 2246 compuestos sintetizados en laboratorios académicos entre 1987 y 1994 presentaron solubilidades iguales o menores a 20 µg/mL.⁵²

Capítulo 1

Fig. 1.8. Recientes tendencias en la solubilidad acuosa de NEQ.⁵⁰

En etapas del desarrollo, los límites dependen particularmente de la dosis terapéutica y la potencia esperada. Lipinski propuso que una solubilidad pobre puede ser tolerada por candidatos altamente potentes, pero valores más favorables serán necesarios para compuestos de baja potencia.²⁵ En este sentido, Faller y Ertl indicaron que un compuesto con una dosis promedio de 1 mg/kg (lo que comprende el 80 % de los fármacos actualmente en desarrollo) debería tener una solubilidad de al menos 100 µg/mL, para considerarse adecuadamente soluble.³⁴ Si con la misma potencia tuviera menos de 10 µg/mL, el compuesto sería pobremente soluble. Conforme a esto, Tong y Wen postularon rangos similares a los anteriores, los cuales se muestran en la Tabla 1.2.³⁹ Aquellos derivados con solubilidades en agua menores a 20 µg/mL, tendrán probablemente problemas, a menos que sean inusualmente potentes (por ejemplo, dosis clínica proyectada de 0,1 mg/kg), inusualmente permeables o a menos que sean sustratos de transportadores biológicos.³⁷

Solubilidad acuosa (µg/mL)	Clasificación	Comentarios
< 20	Baja	Tendrá problemas de solubilidad
20-65	Moderada	Podria tener problemas de solubilidad
> 65	Alta	No tendrá problemas de solubilidad

Tabla 1.2. Clasificación de la solubilidad acuosa de compuestos con dosis de ~ 1 mg/kg (mg de compuesto/kg de peso corporal).³⁵

La Fig. 1.9 representa la mínima solubilidad acuosa que debe poseer un compuesto en función de diferentes potencias orales y permeabilidades intestinales. Se comparan compuestos muy potentes, aquellos con dosis proyectadas de 0,1 mg/kg (tres barras de la izquierda); de potencia media (1 mg/kg), que representa el escenario más común (tres barras centrales) y de baja potencia (10 mg/kg), tres barras de la derecha. En cada uno de los tres escenarios se consideran permeabilidades baja, media y alta.⁵³

Fig. 1.9. Solubilidad minima aceptable (en μg/mL). Las barras muestran la minima solubilidad para permeabilidad (es indicada como P) baja, media y alta a tres dosis clínicas (Adaptado de Curatolo⁵³).

La solubilidad acuosa (expresada en mol/L) es normalmente representada como log S_{ac}. En general, cerca del 85 % de los fármacos comercializados poseen valores de log S_{ac} entre -1 y -5. Valores por encima de -1 no son problemáticos, aunque se los asocia con moléculas altamente polares, como azúcares y péptidos pequeños, que pueden tener baja permeabilidad en membranas, en ausencia de transportadores activos. Así, un rango de log S_{ac} de -1 a -5 refleja un compromiso o situación de equilibrio entre la polaridad adecuada para una razonable solubilidad acuosa y la hidrofobicidad necesaria para un pasaje óptimo a través de biomembranas.

1.4.1.2. Medición y predicción de la solubilidad

La determinación y predicción de la solubilidad acuosa es aún un campo con muchos desafíos en el área farmacéutica, y requiere más investigación experimental y computacional. Actualmente, se conocen muchos métodos experimentales para la determinación de la solubilidad.⁴⁴

La medición de S_e comienza con el compuesto disuelto y representa la solubilidad máxima de la especie que más rápido precipita. Los valores de S_e son tiempo dependiente y obedecen al grado de supersaturación. En general, tienden a estar por encima del valor de S_{ec} y no son reproducibles entre diferentes métodos cinéticos.⁵⁴ La precipitación desde una solución favorece las formas sólidas metaestables, de acuerdo a la "Regla de los estados de Oswald". El tipo de material precipitado no es determinado y puede ser amorfo o cristalino, estar en forma neutra o como sal, existiendo como un cocristal o como una combinación de las anteriores.⁵⁵

La determinación de la S_{ac} se lleva a cabo dispersando un sólido en un líquido. La S_{ac} representa la solubilidad del compuesto en equilibrio con un exceso de sustancia no disuelta al final del proceso de disolución. Es considerada como la solubilidad "verdadera" de un compuesto y como un "estándar de oro" durante el desarrollo de un medicamento. Este valor depende de múltiples propiedades del compuesto y de varios factores experimentales (Tabla 1.3). Para la medición de la S_{ac}, la V_d del compuesto juega un rol importante, dado que la red cristalina del compuesto tiene que experimentar una disrupción como parte del proceso de disolución. Consecuentemente, el material amorfo o poco cristalino exhibe, en general, una mayor V_d comparado con el material cristalino.⁵⁶ Además de la cristalinidad, la V_d es afectada directamente por una amplia variedad de factores, como la velocidad de agitación, la temperatura, el tiempo, el tamaño de partícula, la humectabilidad, la viscosidad (coeficiente de difusión) y la polaridad del solvente.

Capítulo 1

Tabla 1.3. Algunos factores que afectan la Sac (Adaptada de Alsenz y col.44)	
--	--

Factor	Comentario y/o Referencia	
Pureza	Las impurezas afectan la Sac y la Vd	
Tamaño de partícula	Aseguramiento del tamaño de partícula	
Solvente de cristalización	Efecto sobre la Sac y/o Va ⁵⁷	
Polimorfo en inicio/final	Cambio en las propiedades del sólido (amorfos, polimorfos, formación de solvatos)58	
Compuestos ionizables	Composición del buffer, efecto ion común	
Estabilidad en solución	Degradación del compuesto ⁵⁹	
Agregación del compuesto	Formación de agregados promiscuos, 50 autoasociación, 51 reducción de la	
o hábito cristalino	superficie por agregación de las partículas ⁶²	
Crecimiento de partículas	Reducción de la superficie	
Tiempo	Aseguramiento del tiempo de equilibrado	
Temperatura	Eficiencia en el control de la temperatura	
Condiciones de agitación	Homogeneidad en la agitación ⁶³	
Sólido en exceso	Cantidad de sólido residual ⁶⁴	
Separación sólido-líquido	Tamaño de poro de filtro y/o eficiencia de centrifugación	
Pureza del solvente	Agua residual en aceites ⁶⁵ o agua en DMSO ⁶⁶	
Adsorción a superficies	Adsorción a filtros o recipientes ^{67, 68}	
pH inicial/final	Para compuestos ionizables en solución acuosa	
Método analítico	Efecto de impurezas y/o productos de degradación	
Cuantificación	Curva de calibrado. Miscibilidad entre solvente ensavado y el de dilución	

Los avances tecnológicos de la Química Combinatoria y el HTS han llevado a que se sinteticen miles y miles de compuestos y se midan sus actividades biológicas. Sin embargo, los avances en las determinaciones de solubilidad, especialmente la S_{ac}, han sido más lentos. Por esto, hay una tremenda necesidad de realizar modelos *in silico* de alta calidad y confiables para evaluar la solubilidad de compuestos pertenecientes a grandes quimiotecas y de moléculas diseñadas virtualmente con computadoras. En los últimos 20 años se han desarrollado una gran cantidad de métodos de predicción de S_{cak}. Es así que, el número de artículos de investigación originales en esta área es realmente abrumador. Sin embargo, como indicaron los resultados estadísticos, no han emergido la exactitud y la confiabilidad.⁶⁹ Entre los trabajos de predicción de S_{cak} *in silico* se destacan los de Lipinski y col.,⁵⁷ Jorgensen y col.,⁷⁰ Hou y col.,⁷¹ Dearden,⁷² y recientemente los de Wang y col.,^{33, 73} Balakin y Tetko,⁷⁴ y Duchowicz y col.³¹ Esto documenta claramente la importancia de este tema, pero también demuestra que no existe aún un enfoque verdaderamente satisfactorio para la predicción de esta propiedad FQ fundamental.

En general, los modelos de predicción de S_{cato} podrían ser divididos en teóricos, semiempiricos y empíricos. También, desde un punto de vista práctico, se pueden categorizar en dos grupos: los **predictivos** y los **correlativos**. A su vez, dicha clasificación puede aplicarse a la predicción de S_{cato} en un solvente o en mezclas de solventes. El **modelo predictivo** puede trabajar sin utilizar datos de solubilidad experimental (**modelo predictivo puro**) o con el uso de uno o dos determinaciones como datos de entrada o *inputs* (**modelo semipredictivo**). La ventaja de los modelos predictivos puros es que no emplean ningún dato experimental; sin embargo, sus capacidades predictivas son bajas. El **modelo correlativo** provee una relación cuantitativa entre la S_{ac} y variables independientes, como propiedades FQ de los solutos o los solventes. Modelos correlativos validados pueden emplearse para predecir los datos no determinados. Sus ecuaciones emplean parámetros de ajuste para correlacionar los datos de S_{ac} experimental con respecto a diferentes propiedades FQ.⁷⁵

Capítulo 1

1.4.1.3. Mejora de la solubilidad acuosa

Cuando la solubilidad acuosa de un derivado es limitada suele ser necesario recurrir a técnicas que permitan incrementarla. Este objetivo puede abordarse desde diferentes enfoques, a saber:

• El químico o modificación de la estructura molecular (por formación de sales o profármacos). La formación de sales es un método muy efectivo para incrementar la solubilidad, aunque es necesario contar con moléculas que posean grupos ionizables, a partir de los cuales se puedan formar sales de uso farmacéutico. Así, para sustancias con características ácidas, la utilización de una solución de pH básico puede mejorar considerablemente esta propiedad.⁷⁶ Por otro lado, los profármacos suelen estar diseñados para mejorar la BD oral en casos de mala absorción en el tracto gastrointestinal, que suele ser un factor limitante.⁷⁷

 Las modificaciones del estado sólido. La ingeniería cristalina ofrece un gran número de estrategias para aumentar la solubilidad. Entre ellas se pueden citar la utilización de polimorfos metaestables, de formas amorfas y/o partículas ultrafinas y la preparación de cocristales. Esta última es una alternativa a la formación de sales cuando éstas no tienen propiedades sólidas adecuadas o no pueden ser formadas debido a la ausencia de grupos ionizables. En este sentido, los polimorfos, solvatos y cocristales presentan diferencias en sus propiedades FQ, tales como densidad, dureza, índice de refracción, pf, entalpía de fusión, presión de vapor, Sao, V_d. Así, un polimorfo metaestable presentará una S_{se} mayor que la de la forma estable; sin embargo, dicho aumento es temporario, ya que con el tiempo se produce la conversión a la forma termodinámicamente estable y el valor de S_{so} retorna al valor de S_{ac}.⁷⁸ Generalmente, el polimorfo más estable es el más seguro y elegible, pero hay casos en que las formas metaestables pueden ser adecuadas, fundamentalmente, cuando se busca optimizar la San o la V_d. Aunque, las energías reticulares de las formas sólidas (polimorfos, amorfos o solvatos) son responsables de esas diferencias, la mayor variación en Sao se observa entre materiales amorfos y cristalinos.79 La diferencia de Sap entre distintos polimorfos "verdaderos" de un mismo compuesto suele ser menor a 10 (Tabla 1.4), aunque Pudipeddi y Serajuddin mostraron a través de un estudio comparativo, que la relación es típicamente menor a 2.58

Soluto	Temperatura (°C)	Solubilidad (metaestable/estable)
Su-1777DB	27	4,2
Disopiramida	37	1,0
Palmitato de cloranfenicol	30	3,6
Sulfametoxidiacina (III, II)	30	0,6
Sulfatiazol (II, I)	27	1,7

Tabla 1.4. Relación entre la solubilidad del polimorfo metaestable con respecto a la del estable.⁴⁰

Mientras que, la diferencia entre un material amorfo y uno cristalino de un mismo compuesto puede ser de hasta cientos de veces (Tabla 1.5).^{1. 80} Debido a ello, la "amorfización" o vitrificación se ha convertido en un método importante para mejorar la S_{ap} de NEQ, en las que dicha propiedad es muy dependiente de las fuerzas y de la disrupción de la red cristalina. Generalmente, la utilización de diferentes polimorfos, de formas amorfas o el método de reducción de tamaño de partícula al rango de sub micrones (100-200 nm) logró mejores resultados, en aquellos derivados en los cuales la alta cristalinidad era el problema de su baja solubilidad.

Soluto	pf(°C)	Solubilidad (A/C)		
Cafeina	238	5		
Teofilina	272	50		
Morfina	197	270		
Hidroclorotiacida	273	1,1		
Sulfametoxidiacina	215	1,5		
Suitametoxidiacina	215	1,5		

Tabla 1.5. Comparación entre la solubilidad de un material amorfo (A) y un material cristalino (C) (Adaptada de Huang y Tong¹).

• La formación de complejos supramoleculares. En la Química Supramolecular, las CD son consideradas las moléculas más importantes para la solubilización de compuestos orgánicos. Ellas pueden formar complejos de inclusión no covalentes con una amplia variedad de compuestos en solución. Se encuentran ampliamente documentadas las propiedades FQ que imparten las CD a determinados compuestos que acomplejan, entre ellas, cabe destacar el aumento de la S_{ap}^{81, 62} y la estabilidad química.^{83, 84} Su versatilidad permite su aplicación en diversos campos, como alimentos, textiles, medicamentos, protección ambiental y catálisis.^{32, 85, 86}

La utilización de cosolvencia. Es ampliamente reconocida la utilidad de los cosolventes, es decir, solventes orgánicos miscibles con agua, que se usan en cierta proporción para aumentar la S_{ap} de un compuesto en agua. Es frecuente su utilización en formas farmacéuticas líquidas, para aumentar la S_{ap} de fármacos y/o para reforzar la estabilidad química y física de ciertas formulaciones. En este mismo contexto, los cosolventes se usan en forma rutinaria, en las mediciones de bioactividad, para evitar la precipitación del compuesto a ser medido en el medio acuoso del bioensayo. La cosolvencia, entonces, se refiere a la técnica de usar cosolventes (etanol, propilenglicol, glicerina y polietilenglicoles) para los propósitos mencionados.^{43, 07, 00}

 La reducción del tamaño de partícula. La reducción de tamaño a escala nanométrica ha demostrado ser una alternativa muy prometedora, ya que aumenta el área de superficie específica más allá de la micronización y conduce, así, a mejores características de disolución y a una mayor exposición sistémica. Las nanopartículas han mejorado significativamente, en estudios *in vivo*, la BD oral de fármacos poco solubles en agua.⁸⁹

 La modificación tecnológica de la forma farmacéutica. Resultan conocidos los efectos sobre el incremento de la solubilidad acuosa, que tienen las formulaciones basadas en lípidos, la utilización de surfactantes o tensioactivos de diversos tipos (no iónicos, catiónicos o aniónicos) o los sistemas micelares.⁴⁰
2. OBJETIVOS E HIPÓTESIS

II

2.1. Objetivo general

El objetivo general de este proyecto fue estudiar el estado sólido, las propiedades estereoelectrónicas y la solubilidad de algunos *N*-Bencenosulfonilos derivados de heterociclos (NBS-Het), que mostraron promisoria actividad biológica *in vitro*. Esto se planteó con el fin de generar conocimientos que puedan contribuir al diseño y desarrollo de MND para el tratamiento de EH, tales como el mal de Chagas, la TBC, la leishmaniasis y la malaria, entre otras.

2.2. Objetivos específicos

Los objetivos específicos fueron los siguientes:

 Caracterizar las propiedades estructurales de seis derivados, de una quimioteca de NBS-Het, por resolución de sus estructuras cristalinas y cálculos in silico computacionales.

2- Evaluar y mejorar la solubilidad acuosa de los NBS-Het seleccionados.

3- Analizar las relaciones estructura-Sac.

En la Fig. 2.1 se muestra el esquema general del trabajo aplicado en esta tesis doctoral.

Fig. 2.1. Esquema general de trabajo.

En resumen, se consideró estudiar las propiedades del estado sólido de derivados NBS-Het para contribuir al diseño racional de NEQ dentro del marco metodológico y conceptual de la QM. A través de la utilización de técnicas experimentales y computacionales, se planteó analizar propiedades FQ (solubilidad, Clog P, *pf*, donores y aceptores de H, ASPT y proporción aromática) y estructurales (conformaciones en el estado sólido y en el vacío) y analizar las relaciones estructura-S_{ac}.

Objetivos e Hipótesis

Capítulo 2

2.3. Hipótesis

La idea conductora del proyecto marco, en el que se inserta el presente trabajo de tesis, es el diseño y desarrollo de nuevos fármacos y MND, de impacto sanitario y socio-económico para el país, mediante el estudio multidisciplinario de nuevos NBS-Het bioactivos. Se propuso abordar el problema de forma integral, utilizando metodologías propias de la QM y sus estrategias actuales más racionales, abarcando desde las etapas de descubrimiento hasta las del desarrollo de medicamentos. Es así que, para la primera se diseñó y preparó una quimioteca de NBS-Het, que pueda conducir a NEQ con interesantes actividades farmacológicas, a ser utilizadas en medicamentos para TBC, mal de Chagas, leishmaniasis y malaria, entre otras.^{9, 11, 12}

Los compuestos de la quimioteca presentan limitada solubilidad acuosa. Para poder realizar las pruebas biológicas ha sido necesario disolverlos en DMSO o polietilenglicol:etanol.^{20, 90, 91, 92} Remko postuló que, en general, las sulfonamidas alifáticas simples presentan buena solubilidad en agua, en cambio las sulfonamidas aromáticas, con grandes dominios hidrofóbicos, son sustancialmente menos solubles.^{3, 79, 93} En este contexto, se consideró importante caracterizar el estado sólido y las propiedades estereoelectrónicas, evaluar la solubilidad y analizar las relaciones estructura-S_{ac}.

Así, la hipótesis se sustentó en que el estudio del estado sólido y las características estereoelectrónicas, junto a la evaluación de la solubilidad y las relaciones estructura-S_{ac} de los derivados NBS-Het, permitirían optimizar sus propiedades FQ y biofarmacéuticas en etapas tempranas del desarrollo y contribuir al diseño de nuevos análogos.

Para llevar a cabo esta propuesta, se recurrió a estudios experimentales y teóricos. Se utilizaron la cristalografía de rayos X, complementada con los cálculos teóricos y la medición experimental de la solubilidad, con el desarrollo de modelos predictivos y correlativos de estructura-S_{ac}.⁹⁴

2.4. Quimioteca estudiada y resultados preliminares

A partir de un relevamiento preliminar con bases farmacoepidemiológicas,⁵ se decidió buscar NEQ que puedan transformarse en prototipos novedosos para tratar EH.⁹⁻¹² Con esto en mente, se llevó a cabo una búsqueda exhaustiva de posibles estructuras químicas que permitieran plantear una hipótesis racional de diseño. Se decidió partir de una químioteca focalizada de compuestos que reúnan en sus moléculas características estructurales privilegiadas a nivel biológico,²⁰ pero que la combinación de sus fragmentos moleculares sea original y novedosa. Así, surgió la idea de la preparación de una químioteca compuesta por diferentes NBS-Het. La elección de los heterociclos se realizó entre los que hayan demostrado ser bioactivos, contemplando diversidad estructural. La unión a grupos bencenosulfonilos se fundamenta en que dicho grupo se encuentra presente en numerosos medicamentos y compuestos biológicamente activos, que incluyen:

- antimicrobianos (ej., la sulfanilamida y el sulfametoxazol)
- diuréticos (ej., la furosemida y la clorotiazida)
- antimalárico (ej., la sulfadoxina)
- antiepilépticos (ej., el 1,2-benzixoxazol-3-ilmetanosulfonamida)

Objetivos e Hipótesis

Capítulo 2

- antiglaucomatosos, inhibidores de anhidrasa carbónica (ej., la dorzolamida y la brinzolamida)
- hipoglucemiantes (ej., la tolbutamida, la glibenciamida y la glimidina)
- antitumorales (ej., el N1-(3-cloro-1 H-indol-7il)benceno-1,4-disulfonamida y el E7070)⁹⁵
- fármacos para el tratamiento de la impotencia sexual (ej., el sildenafil).

Las características a destacar de los NBS-Het se resumen a continuación:

- Serie química cuya actividad farmacológica no ha sido exhaustivamente explorada de manera sistemática.
- Son fácilmente accesibles desde el punto de vista sintético.
- Permiten un gran número de variaciones estructurales con poco esfuerzo de sintesis, por lo que es posible la manipulación de las propiedades físicas y químicas relevantes farmacológicamente. Entre ellas se pueden mencionar las propiedades lipofílicas y las estereoelectrónicas, entre otras.
- Altas probabilidades de conducir a productos bioactivos, ya que provienen de fragmentos moleculares que han exhibido bioactividad (estructuras privilegiadas).
- Experiencia en su síntesis, purificación, identificación estructural y preparación de las muestras para ensayos biológicos.^{20, 96, 97}
- Dos de las series estudiadas previamente mostraron actividad farmacológica in vitro en áreas de alto impacto terapéutico.^{90, 99, 100}

En la Fig. 2.2 se resume la conformación de la quimioteca actual. La combinación de cada uno de los 9 heterociclos (Het, A-I) con cada uno de los 16 grupos BS, dio lugar a cerca de 140 derivados con la estructura general mostrada.^{20, 97, 101, 102} Los compuestos de cada serie se nombran utilizando la letra que identifica al heterocicio, seguida del número que corresponde al BS. Por ejemplo, A1 corresponde al derivado 1-(bencenosulfonil)-1,2,3,4-tetrahidroquinolina.

Todos los NBS-Het diseñados y sintetizados exhiben características estructurales (sistemas anillos, conectores y fragmentos) distintivas de fármacos. De esta forma, los fragmentos incluidos se corresponden con los más frecuentes, descriptos por Bernis y Murcho.^{103, 104} No presentan grupos funcionales relacionados a toxicidad, reactividad, alto metabolismo o falsos positivos en los ensayos biológicos.^{106, 106} Los compuestos cumplen con las reglas de Lipinski³⁷ y Vieth,¹⁰⁷ por lo que sus propiedades FQ predecirian una buena BD oral y son considerados dentro de la clasificación de fármacos de "uso oral".

La mayoría de los derivados fueron sometidos a HTS en el Head Parasite Chemotherapy, Swiss Tropical Institute, donde se determinó su actividad frente a cuatro parásitos: Trypanosoma brucei rhodesiense, Typanosoma cruzi (T. cruzi), Leishmania donovani (L. donovani) y Plasmodium falciparum (P. falciparum) y su citotoxicidad frente a células L-6. Como

Objetivos e Hipótesis

observación general, casi todos los derivados mostraron mejor actividad que los heterociclos sin sustituir, al igual que baja citotoxicidad. En general, las mediciones de IC₅₀ dieron buenos resultados. Los derivados de **A**, **B** y **G** mostraron ser los más activos. Teniendo en cuenta los criterios de Jorgensen (IC₅₀~ 10 µM) algunos compuestos fueron identificados como líderes o prototipos frente a *T. cruzi, P. falciparum* y *L. donovani.*¹⁰⁶ Ellos fueron:

Los derivados A3, A9, B3 y B9, con buena actividad frente a P. falciparum (IC₅₀ entre 8-12 μM); B15 y G15 con IC₅₀ = 1,5 μM frente al mismo parásito.

Los compuestos E3, E9 y G3, con actividades frente a *T. cruzi* (IC₅₀ de 1,15, 1,08 y 2,80 μM, respectivamente), similares a la del fármaco de referencia (Benznidazol, 2,13 μM). A3 y B3 con valores de IC₅₀ de 9,97 y 11,44 μM, respectivamente, frente al mismo parásito.¹⁰⁹

 El G16, resultó activo frente a L. donovani con una IC₅₀ de 0,23 μM, similar a la que presenta la referencia (Miltefosina, 0,25 μM). En tanto, el derivado A16 presentó una IC₅₀ de 0,35 μM. Los compuestos B16 (0,62 μM), C16 (0,76 μM), E16 (0,73 μM) y F16 (0,64 μM), resultaron sólo 3 veces menos activos. El B15 (2,16 μM) y el G15 (1,53 μM), de actividades moderadas.

Por otro lado, el **D1**, exhibió actividad antibacteriana frente a *Staphylococcus aureus* ATCC 29213 (*S. aureus*) y *Escherichia coli* ATCC 25922 resultando similar a la de las sulfonamidas, pero con un mecanismo de acción diferente. Su actividad bactericida se correlacionó con el máximo incremento de anión superóxido. La detección de especies reactivas del oxígeno (estrés oxidativo) evidenció incremento de anión superóxido al incubarse con *S. aureus*.⁹⁷ Otro resultado importante, fue la actividad inhibitoria del **D1** en cultivos de epimastigotes y tripomastigotes de *T. cruzi* (cepa Tulahuen),^{92, 96} y no mostró efecto hemolítico sobre glóbulos rojos humanos. La determinación de citotoxicidad sobre los derivados de la familia D, mostró que no son tóxicos, según el *Brine Shrimp Test.* Estos hallazgos alientan a continuar con la optimización de análogos y extender los estudios biológicos a otros agentes infecciosos, tales como parásitos, bacterias y micobacterias.

2.5. Selección de los derivados NBS-Het a ser estudiados

La Fig. 2.3 muestra las estructuras de los compuestos seleccionados para ser estudiados en el presente trabajo de tesis, y que forman parte de la quimioteca de NBS-Het antes mencionada.

Objetivos e Hipótesis

Capítulo 2

Fig. 2.3. Estructuras de los compuestos estudiados en el presente trabajo de tesis.

Para la selección de los derivados se tuvieron en cuenta los siguientes criterios racionales:

- Incluir diversidad entre las propiedades estructurales, físicas y estereoelectrónicas de los derivados elegidos, lo que contribuiría a aumentar el conocimiento sobre cómo influyen y se relacionan los diferentes parámetros. En consecuencia, se eligieron al BSTHQ (A1), al BSTHQa (B1), al BSBZT (D1) y al BSTHIQ (C1), cuatro derivados sin sustituyentes sobre la porción BS, pero con distintos heterociclos.
- Estudiar compuestos con diferentes sustituyentes en el BS de un mismo heterociclo. Se sumaron, así, el p-NO₂-BSTHQ (A3) y el TM-BSTHQ (A16). Resulta interesante destacar la variabilidad entre propiedades lipofilicas, ubicándose el primero entre los más hidrofilicos, mientras que el segundo entre los más lipofilicos.²⁰
- Incluir compuestos con actividad antiparasitaria comprobada. Tres de los seis derivados, el BSBZT (D1), el p-NO₂-BSTHQ (A3) y el TM-BSTHQ (A16) figuran entre los 15 líderes seleccionados para el diseño de análogos con actividad antichagásica, antimalárica y antileishmanía.²⁰ Además, el BSTHQ (A1) posee una apreciable actividad antibacteriana.¹¹⁰

Ш

3. TÉCNICAS EXPERIMENTALES Y COMPUTACIONALES

En este capítulo se presenta una breve descripción de las diferentes técnicas experimentales empleadas en esta tesis para la caracterización de las propiedades del estado sólido de los compuestos estudiados. Además, se utilizaron herramientas computacionales de QC, que también se exponen de manera concisa. Las discusiones se limitan a los aspectos fundamentales de las técnicas empleadas, omitiéndose los desarrollos matemáticos y los fundamentos teóricos.

3.1. Análisis experimental del estado sólido

La caracterización del estado sólido de un compuesto tanto de su estructura física (material), como química, requiere de una combinación de metodologías,¹¹¹ entre las cuales se pueden citar las que se describen a continuación.

3.1.1. Determinación de estructuras cristalinas

Entre las técnicas utilizadas para determinar estructuras cristalinas se encuentran la:

- Difracción de rayos X de monocristal (DRXM)
- Difracción de rayos X de polvo (DRXP).

Ellas pueden utilizar fuentes convencionales o no convencionales como la radiación sincrotrón.

La cristalografía de rayos X es una herramienta sumamente útil para la investigación de sólidos cristalinos, siendo la DRX el método experimental más habitual para comprender sus características estructurales, químicas y del material.

Los sólidos cristalinos se caracterizan por un orden interno, que puede ser representado por una serie de planos paralelos y equidistantes. En la información que proporciona la DRX, se distinguen dos aspectos diferenciados y complementarios. Por una parte, la celda unitaria que determina las reflexiones en el patrón de difracción y por otra, la naturaleza de los átomos y las posiciones que estos ocupan en la red cristalina que define las intensidades de las reflexiones. De esta forma, el análisis del patrón de difracción de un dado compuesto constituye el procedimiento para obtener información acerca de la estructura molecular y cristalina del cristal. Cada patrón de difracción es característico para una red cristalina de un compuesto determinado y cualquier variación en la estructura interna del cristal, se traduce en un patrón diferente.

Los patrones de DRX de sólidos cristalinos se pueden obtener a partir de un cristal único (monocristal) y/o de muestras policristalinas (polvos). La técnica que utiliza monocristales se conoce como DRXM, mientras que la que usa polvos se conoce como DRXP. La DRXM es factible de utilizar cuando se logra la obtención de monocristales de alta calidad y tamaño

adecuado (paso limitante y, en casos, complicado). Un "buen" cristal para la resolución de la estructura, es aquel que presenta 0,1-0,4 mm en al menos dos de sus dimensiones, alto grado de orden interno, caras y bordes regulares (lo cual no es excluyente, ya que muchas veces esto no se cumple).¹¹² Dicha herramienta permite determinar la estructura cristalina y como consecuencia el empaquetamiento y la conformación de las moléculas en el estado sólido. Además, las interacciones intra e intermoleculares son elucidadas con resolución atómica, proveyendo una gran variedad de datos relacionados a la estructura química.¹¹³ Esto transforma a la DRXM en la técnica experimental por excelencia para el conocimiento de la estructura molecular y cristalina en el estado sólido.

Por otra parte, la **DRXP** es un método efectivo para distinguir fases solidas con distinta estructura cristalina. Se trata de un método experimentalmente más simple que la DRXM, ya que se pueden utilizar muestras policristalinas. Los datos obtenidos se grafican en un difractograma o patrón, donde se representa la intensidad (en cuentas por segundo, cps) en función del ángulo 2θ (°).¹¹¹ Cuando dos difractogramas colectados en las mismas condiciones (longitud de onda, tiempo por paso, intervalo de 2θ), presentan las posiciones de todas sus reflexiones coincidentes, esto indica que se trata de la misma fase. La relación de intensidades es importante que presenten coincidencia, sólo que a veces presentan diferencias por efecto de orientación preferencial. El procesamiento de los datos en la DRXP proporciona información de los planos cristalinos difractantes, pero la elucidación estructural resulta más dificultosa en comparación con la DRXM. Debido a la presencia de cierto grado de desorden cristalino, las reflexiones presentan picos de ancho variable La proporción del componente amorfo de la sustancia provoca un halo que se observa en la línea de base del difractograma.

3.1.2. Estudio de propiedades térmicas: análisis térmico

Bajo la denominación de análisis térmico se engloban un conjunto de técnicas que permiten estudiar la variación de una propiedad de un material, mientras la sustancia es sometida a un programa de temperatura controlado, en una determinada atmósfera. Esto puede consistir en calentar o enfriar a una determinada velocidad, o mantener la temperatura constante, o una combinación de ambas. Las metodologías más comunes de análisis térmico se detallan en la Tabla 3.1, junto con las propiedades que cada una mide.

Propiedad	Técnica	Abreviación
Masa	Termogravimetria	TG, del inglés Thermogravimetric
Temperatura	Análisis Térmico Diferencial	DTA, del inglés Differential Thermal Analysis
Entalpia	Calorimetría Diferencial de Barrido	DSC, del inglés Differential Scanning Calorimeter
Dimensiones	Termodilatometria	
Propiedades mecánicas	Análisis Termomecánico	TMA, del inglés Thermo Mecanic Analysis
Propiedades ópticas	Termomicroscopía	TM
Propiedades magnéticas	Termomagnetometria	
Propiedades eléctricas	Termoelectrometria	
Propiedades acústicas	Termosonometria	TS
Evolución de gas radioactivo	Análisis Térmico de Emanación	ETA, del inglès Emanation Thermal Analysis
Evolución de partículas	Análisis de Termopartículas	TPA, del inglés Thermo Particulate Analysis

Tabla 3.1. Principales técnicas de análisis térmico.

En esta sección, se describen someramente dos de las metodologías que más se utilizaron: la TG y la DSC.

La TG es una técnica en la cual la masa de una muestra, en una atmósfera específica, es monitoreada en función de la temperatura o del tiempo (δm/δt o δm/δT), mientras es sometida a un programa de temperatura controlada.¹¹⁴ El resultado de un análisis TG se muestra en forma de una gráfica, conocida como curva TG. En ella, se representa la masa, en valor absoluto o en porcentaje, en función de la temperatura o del tiempo. Una característica fundamental de la TG es que solo permite detectar procesos en los que se produce ganancia o pérdida de masa, tales como la sublimación, la desorción, la absorción y la descomposición. En cambio, los que no tienen asociados cambios de masa, como por ejemplo la fusión reversible y las transiciones sólido-sólido, entre otros, no son detectados por esta técnica. Por ello, la TG es utilizada básicamente para el análisis cuantitativo de ganancia o pérdida de masa. Una de sus aplicaciones más extendidas en el área farmacéutica es la determinación del contenido de agua o solvente presente en una muestra y la determinación de la esteguiometría de solvatos o hidratos. Usualmente, junto con la TG, se suele graficar la primera derivada, conocida como curva DTG (del inglés Derivative Thermogravimetric Analysis) ya que los cambios de masa (peso), se traducen en picos. La gráfica DTG, que es la representación de la velocidad de cambio de masa (dm/dt) en función de la temperatura, ayuda a identificar con mayor claridad la temperatura inicial y final de los procesos térmicos y permite detectar la presencia de eventos solapados. Un parámetro importante en las curvas DTG es el valor del máximo del pico, el cuál corresponde a la temperatura de máxima velocidad de reacción o del proceso en general.

Otra técnica de análisis térmico comúnmente utilizada y complementaria a la TG, es la DSC, en la cual se compara el flujo de calor (dQ/dt) de una muestra contenida en un portamuestra con el de un portamuestras vacío, que actúa como referencia, en una atmosfera controlada y en un rango de temperatura predeterminado.¹¹⁷ El resultado gráfico de este análisis se denomina curva DSC y consiste en la representación de la diferencia de energía (flujo calórico) entre la muestra y la referencia en función de la temperatura o del tiempo. Así, en una curva característica se pueden observar picos negativos o positivos que se corresponden con eventos endotérmicos o exotérmicos y cambios en la línea de base. Las endotermas representan procesos en los cuales se absorbe calor, tales como fusión, ebullición, sublimación, transiciones de fase, desolvatación y degradación química, entre otros. Por su

Capítulo 3

parte, las exotermas representan la cristalización, la descomposición por oxidación o reducción, o reacciones químicas que liberan calor. La integración del área de un pico es una medida del cambio de entalpia, asociado con el evento térmico. Esta técnica es ampliamente utilizada en la caracterización de sustancias, dado que es posible obtener datos termodinámicos importantes tales como *pf*, capacidad calorífica, calor de fusión o transiciones polimórficas, si ocurren a temperaturas inferiores al *pf*.¹¹³ La curva de DSC de un compuesto puede ser afectada por la velocidad de calentamiento (β), la atmosfera que rodea a la muestra, el recipiente que la contiene y el tamaño de las partículas. Por lo tanto, la comparación de curvas DSC puede efectuarse solo cuando han sido registradas en idénticas condiciones experimentales.

El análisis DSC también permite determinar pureza química, aplicando la ecuación de van't Hoff (Ec. 3.1). Dicha determinación está basada en el hecho de que las impurezas disminuyen el pf de un material puro. Las transiciones de fusión de sólidos puros, 100 % cristalinos, deberían ser infinitamente agudas, pero impurezas o defectos en la estructura cristalina amplian el rango de fusión y bajan el pf a una temperatura por debajo de T_e (pf del componente puro).¹¹⁴

$$T_{\alpha} = -\frac{RT_{e}^{2}X_{2}}{\Delta H_{e}}\frac{1}{F} + T_{e}$$
 Ec. 3.1

donde T_m es la temperatura de la muestra en el equilibrio (en K), T_e es el *pf* del componente puro (en K), R es la constante de los gases (8,314 J/mol/K), X_2 es la concentración de impurezas (en fracción molar), ΔH_f es la entalpía de fusión del compuesto puro (J/mol) y *F* es la fracción de la muestra que está fundida a T_m . Esta fracción es obtenida a partir de las endotermas de fusión de DSC, donde el área del pico, hasta una temperatura específica, puede ser relacionado al área total (Fig. 3.1.A).

La Ec. 3.1 predice una relación lineal cuando T_m es graficado en función de 1/F (Fig. 3.1.B), con una ordenada al origen igual a T_e y una pendiente *a* (Ec. 3.2). La diferencia $T_e - T_m$ corresponde al descenso del *pf* y es igual a la pendiente *a* de la línea recta obtenida. La temperatura de fusión teórica (T_e) es obtenida por la extrapolación a 1/F = 0.^{114, 115}

La DSC presenta la ventaja de ser una técnica rápida y sensible, que requiere unos pocos miligramos de muestra. Tanto la DSC como la TG están codificadas en la Farmacopea de los

Estados Unidos (USP, del inglés United States Pharmacopeia)¹¹⁶ y en la Farmacopea Argentina (FA)¹³ para la caracterización del estado sólido de IFA y excipientes.

3.1.3. Caracterización molecular por métodos espectroscópicos

Entre los métodos espectroscópicos utilizados para la caracterización molecular, se encuentran:

- Espectroscopía infrarroja con transformada de Fourier, IR.
- Espectroscopía infrarroja de reflectancia difusa con transformada de Fourier, DRIFT.
- Espectroscopía Raman.
- Resonancia magnética nuclear de ¹³C en estado sólido.

En esta tesis, se utilizaron las dos primeras.

La espectroscopía de IR o espectroscopia vibracional es una técnica muy utilizada para el estudio del estado sólido de compuestos orgánicos. Su principio básico es la medición de la cantidad de radiación IR absorbida o transmitida por una muestra, lo cual puede ser efectuado en el modo transmisión o reflectancia. La energía de esta radiación es baja, provocando sólo cambios vibracionales en los enlaces moleculares. El espectro IR de un sólido se puede medir suspendiéndolo en aceite mineral (nujol, por ejemplo) o mortereando la muestra con KBr y formando una pastilla mediante la aplicación de presión. Las energías asociadas con los modos vibracionales de un compuesto químico están comprendidas en el rango de frecuencias de 400-4000 cm⁻¹. La posición de las bandas de absorción (cm⁻¹, en el eje x) como su intensidad (% de transmitancia o absorbancia, A, en el eje y) son características del movimiento molecular subyacente, y en consecuencia de los átomos participantes en el enlace, su conformación y el ambiente inmediato.¹¹¹ Así, ciertos grupos funcionales producirán bandas en regiones espectrales características, las que constituyen la base empírica para la interpretación de los espectros IR.

Una variante de la técnica de IR es la **DRIFT**. Como consecuencia de la interacción con las particulas de un sólido, el haz de luz IR incidente puede sufrir absorción, reflexión y dispersión. La parte de la luz dispersada dentro de la muestra y que retorna a la superficie es considerada reflexión difusa, la que al ser captada por el detector, da lugar al correspondiente espectro DRIFT. Este representa las unidades lineales Kubelka-Munk (que corresponde aproximadamente a la A en el modo transmisión de la IR) en función de números de onda (cm⁻¹).¹¹⁷ Aquí, el sólido a analizar se dispersa en un medio no absorbente, sin ser sometido a energía mecánica (no es comprimido, sino dispersado en KBr) ni térmica durante su preparación. La espectroscopia DRIFT es mejor que la IR para diferenciar entre polimorfos, porque se necesita mínima manipulación de la muestra.

3.1.4. Caracterización morfológica

La caracterización morfológica de un sólido se puede realizar a partir de las siguientes técnicas:

- Microscopía óptica (MO).
- Microscopía de luz polarizada (MLP).
- Microscopia de platina calentable o Termomicroscopia (MPC o TM).
- Microscopía electrónica de barrido (MEB).

Las tres primeras fueron utilizadas en este trabajo de investigación.

La MO provee información significativa acerca de la morfología, el tamaño de las partículas y de su naturaleza cristalina o amorfa. Se basa en la incidencia de un haz de luz visible sobre una muestra (colocada en el portaobjeto del microscopio óptico) que puede reflejar o transmitir dicha luz para ser detectada, después de amplificaciones, mediante sistemas ópticos, por el ojo humano o por cámaras fotográficas o de video.

Si al microscopio óptico se le adicionan filtros polarizadores, que dejan pasar luz que vibra en un único plano (luz polarizada), se obtiene un microscopio de luz polarizada. La MLP permite distinguir entre sustancias anisotrópicas e isotrópicas. Se denominan anisotrópicas a las *sustancias cuyas propiedades dependen de la orientación del cristal*, por ejemplo, la velocidad de transmisión de la luz. Muchas de las sustancias anisotrópicas de interés farmacéutico presentan birrefringencia o doble refracción, la cual ocurre cuando un cristal provoca la separación de un rayo de luz en dos rayos desigualmente refractados y polarizados, dada la diferencia en la velocidad de la luz. Por este motivo, las partículas cristalinas cambian de color o se ven opacas, al rotar la platina en un microscopio de luz polarizada. La intensidad de la luz decrece cuando los planos de polarización en el cristal coinciden con los planos polarizables del microscopio. Las partículas amorfas y los cristales de simetría cúbica son isotrópicos (presentan independencia entre las propiedades y la dirección) y no se observan cambios al rotar la platina del microscopio.¹¹¹ Es así que diversas farmacopeas, entre ellas la USP y la FA consignan la MLP como la técnica oficial para determinar la cristalinidad de algunos IFA.^{13, 118, 119}

Por otra parte, la MPC es uno de los métodos más antiguos y simples para el estudio de transiciones de fase en cristales. La observación microscópica de una sustancia sometida a cambios de temperatura permite visualizar procesos de fusión, recristalización y transformaciones de fases, entre otros. Se considera complementaria de la DSC y TG, siendo particularmente útil para confirmar transiciones y eventos térmicos detectados con esas técnicas analíticas.¹¹³ Las aplicaciones más importantes de la MPC se resumen en la Tabla 3.2.

Determinación de pf	Rango de fusión (pureza)			
Sublimación	Estimación rápida de la presión de vapor Sublimación a formas polimórficas			
Cristalización	Cristalización desde fase fundida Características y cinética del crecimiento cristalino			
	Morfología de los cristales			
Transformación de fases	Transformaciones sólido-sólido			
Desolvatación	Detección de solventes (burbujas) usando aceites minerales			

Tabla 3.2. Algunas aplicaciones generales de la MPC (Adaptada de Griesser y col. 120)

Es importante destacar que en la MPC, la precisión y exactitud de los valores de las temperaturas son dependientes de la platina de calentamiento y del sistema de medición. En el caso de la platina Kofler, utilizada en esta tesis, las temperatura determinadas tuvieron una incerteza de ± 3 °C y las velocidades de calentamiento no fueron lineales. No obstante ello, resultó útil para el análisis complementario de las muestras estudiadas, observándose en ciertos casos una buena concordancia entre las temperaturas determinadas por MPC y DSC. Es importante resaltar que la temperatura de fusión informada (*Tf*_{MPC}) es la correspondiente a la desaparición de la última traza de sólido, criterio habitualmente seguido en MPC.¹¹⁴

La microscopía se utiliza en el área farmacéutica para la evaluación de la morfología (hábito) de las sustancias sólidas, detectar la presencia de aglomerados o agregados de partículas, y obtener una estimación de la distribución de sus tamaños.

3.2. Química Computacional

Se denomina QC al conjunto de métodos computacionales que permiten construir, visualizar y analizar sistemas moleculares.¹²¹ Se trata de un conjunto de técnicas que permiten calcular la energía de las moléculas, teniendo en cuenta las posiciones relativas de los átomos en el espacio. Es una herramienta poderosa en el diseño de fármacos con la cual se puede simular o imitar el comportamiento de las moléculas.¹²² El tamaño y número de moléculas que pueden estudiarse es muy diverso y es parte determinante de los recursos computacionales que se necesitarán para el análisis.

La condición primordial para realizar cualquier estudio de QC es la **definición de la** estructura molecular. Las moléculas quedan inequívocamente descritas por la naturaleza de los átomos que la componen y la posición relativa de sus núcleos. Si no se dispone de modelos experimentales, la estructura molecular puede ser construida virtualmente, asignando a las coordenadas internas (grados de libertad) valores estándares y promedio. Luego, la estructura debe ser optimizada, en función de su energía potencial, lo que significa encontrar el mínimo de dicha función. Como la energía potencial depende del ordenamiento espacial, su valor mínimo corresponde a la estructura molecular más estable. La mayoría de los algoritmos de minimización trabajan introduciendo pequeños cambios en las coordenadas internas y evaluando su impacto sobre la energía global de la molécula. La utilización de los métodos de muestreo de conformaciones, puede ser útil para estudiar la superficie de energía potencial de moléculas flexibles, lo que se denomina **análisis conformacional**.

3.2.1. Análisis conformacional

Un confórmero es cada uno de los ordenamientos espaciales que puede adoptar un compuesto, estas estructuras se obtienen al girar, alrededor de sus enlaces simples, una parte de la molécula respecto a otra. Cuando existe flexibilidad en la molécula se pueden presentar distintos isómeros conformacionales. El **análisis conformacional** se lleva a cabo realizando torsiones alrededor de enlaces sencillos (grados de libertad) y observando los cambios que se producen en la energía molecular. Esto se realiza comúnmente de forma sistemática, incrementando cada ángulo diedro en un valor fijo. A medida que el número de ángulos a considerar aumenta, las estructuras a estudiar crecen en forma combinatoria y con ellas el tiempo de cálculo. Cada una de las geometrías resultantes se optimiza, fijando los ángulos considerados. Los resultados se visualizan mediante curvas que muestran la variación de la energía en función del grado de libertad.⁷

3.2.2. Métodos computacionales de cálculo de energía

Existen diversos procedimientos para hallar el valor, lo más exacto posible, de la energia molecular. Entre ellos, pueden encontrarse diferentes aproximaciones para el cálculo, las cuales son: la mecánica cuántica (donde se agrupan los métodos semiempiricos y los *ab initio*), los métodos de la Teoría del Funcional de la Densidad (DFT, del inglés *Density Functional Theory*) y los de DFT Tight-Binding (DFTB)¹²³ y la mecánica molecular.¹²⁴ Los datos obtenidos dificilmente tienen significado en su valor absoluto, sino que se usan para

hallar y comparar diferencias de energía entre dos geometrías distintas de un sistema molecular, calculadas por el mismo método.

3.2.2.1. Mecánica Cuántica (Función de Onda Molecular)

La resolución de la ecuación de Schrödinger mediante los postulados de la **mecánica cuántica**, permite calcular la energía asociada a una determinada geometría molecular con mucha exactitud y, por lo tanto, con mayor complejidad. Así, se obtiene no solo la energía del sistema, sino también una descripción de la densidad electrónica en cada uno de los puntos del entorno molecular. La resolución de esta ecuación es compleja y se ha podido llevar a cabo exactamente solo para el átomo de H. En el resto de las moléculas, se deben incorporar una serie de aproximaciones, que finalmente condicionan la calidad de los resultados obtenidos. Los métodos que incluyen las aproximaciones expuestas anteriormente se denominan *ab initio* y permiten estudiar un sistema a partir de los postulados de la química cuántica. Estos abordan el problema "desde el principio", sin disponer de información empírica adicional, considerando como dato, solo a las constantes universales.¹²⁵ A continuación se describen brevemente las principales¹²⁵:

- La de Born-Oppenheimer, la cual estima que, siendo el movimiento de los electrones tan rápido respecto al de los núcleos, cuando se estudian las propiedades electrónicas de una molécula, se puede considerar que los núcleos permanecen fijos.
- La de orbitales atómicos y moleculares, en la que la función de onda de un sistema polielectrónico (Ψ) se puede resolver variacionalmente utilizando sólo un determinante de Slater (método Hartree-Fock) construido a partir de funciones de onda monoelectrónicas (φ), o usando muchos determinantes de Slater (métodos Post Hartree-Fock), que es lo más utilizado actualmente.
- La de la combinación lineal de orbitales atómicos (CLOA), según la cual los orbitales moleculares monoelectrónicos (φ) se obtienen mediante una combinación lineal de los orbitales atómicos que componen la molécula (Ec. 3.3).

$$\varphi_i = \sum_{j}^{\text{VOM}} c_{ij} \cdot \chi_j$$
 Ec. 3.3

Bajo estas aproximaciones, "calcular" una función de onda consiste en determinar el conjunto de coeficientes *c*_i que hace mínima la energía de la molécula (Ec. 2.3). Dado que cada electrón se encuentra bajo el campo eléctrico del resto, el orbital molecular monoelectrónico, *φ*, dependerá de los demás y la búsqueda del mejor conjunto de coeficientes deberá ser iterativa. Esta aproximación se denomina campo autoconsistente (*Self Consistent Field*, SCF).¹²⁴La calidad de estos métodos depende de la base utilizada para representar los orbitales de la molécula.¹²⁴ A modo de ejemplo, la base 6-31+G* hace referencia a las seis funciones gaussianas usadas en la descripción de los orbitales internos (*core*). Los números después del guion indican la cantidad de funciones que se utilizan para los orbitales de valencia (en este caso serían 3 y 1 función de Gauss). El asterisco indica que, además, se han considerado funciones de polarización, es decir, que se representan a los orbitales atómicos con un número superior al de los de valencia. En este caso, se adiciona un conjunto de orbitales *d* a los átomos pesados (distintos de H). El signo "+" indica que se han añadido al cálculo funciones difusas, esto es, de tipo *s* y *p* de mayor tamaño, permitiendo a los orbitales ocupar una mayor región del espacio. La aplicación de dichas funciones es importante para los

sistemas donde los electrones están relativamente lejos de lo núcleos, por ejemplo, con pares desapareados, aniones y sistemas en estado excitado, entre otros.¹²⁶

Sólo en el método Hartree-Fock, la calidad depende de la expansión de la base, ya que con otros *ab initio* (Post Hartree-Fock) cuando más exacto sea el nivel de teoría mejor será la calidad.

Otro grupo de cálculos cuánticos lo conforman los métodos semiempíricos, en donde sólo se consideran los electrones de valencia. Además, se omiten algunos términos en el cálculo de la interacción entre los electrones y se preestablecen algunos parámetros para explicar datos experimentales (parametrización). Los métodos semiempíricos más utilizados en la actualidad son los llamados MNDO, PM6, AM1 y PM3.¹²⁵

3.2.2.2. Teoria del Funcional de la Densidad

Generalmente, los métodos incluidos en la DFT son considerados como una alternativa más accesible a los *ab initio*, ya que demandan mucho menos recursos computacionales, sin perder exactitud y no utilizan parametrización externa. Al igual que los *ab initio*, intentan encontrar una solución al problema de definir la distribución de los electrones en la molécula. La idea básica de la DFT es utilizar la densidad electrónica (*p*) como variable del sistema, en lugar de la función de onda de los electrones. Esta aproximación está basada en el teorema de Hohenberg-Kohn, que afirma que la energía del estado basal de un sistema multielectrónico es completa y únicamente determinada por su densidad.¹²⁴ Es decir, la energía es un funcional de la densidad. Estos métodos calculan la energía electrónica *E*, como la suma de varios términos (Ec. 3.4).

$$E = E_7 + E_V + E_J + E_{XC}$$
 Ec. 3.4

donde E_T es la energía cinética, E_V contiene términos de energía potencial atractiva electrónnúcleo y los términos repulsivos entre núcleos, E_J representa la energía de repulsión coulombiana entre electrones, y E_{XC} es la energía de intercambio-correlación. Este término es el gran desafío de los métodos de la DFT, ya que no existe una solución exacta y se han propuesto numerosas aproximaciones para su cálculo, incluso la separación de ambos efectos ($E_{XC} = E_X + E_C$).^{124, 127, 128} De este modo, se conocen diferentes funcionales de densidad, que se diferencian en las aproximaciones utilizadas para calcular E_{XC} . Uno de ellos, el B3LYP, utiliza el funcional Becke (B3) para la E_X y el funcional de Lee-Yang-Parr (LYP) para la E_C .¹²⁵

3.2.2.3. Mecánica molecular

Una forma más sencilla de obtener la energía relativa de una determinada conformación, consiste en utilizar el formalismo de la **mecánica molecular**. Aquí, las ecuaciones usadas siguen las leyes de la fisica clásica y aplican el estudio sobre los núcleos, considerando a los electrones de forma paramétrica o empirica. Se calcula la energía potencial (*V*) de una molécula, suponiendo que los núcleos están sometidos a un campo de fuerza, compuesto por una suma de términos que corresponden a distintas contribuciones y que determinan la energía molecular en función de su geometría. Ellos son los que modelizan las tensiones de los enlaces ($V_{enlaces}$), de sus ángulos ($V_{angulos}$), sus torsiones ($V_{diedros}$), las interacciones de Van der Waals (V_{VdW}), las electrostáticas (V_{electr}) y las de los EPH (V_H). La energía potencial queda expresada como muestra la Ec. 3.5, la cual se aplica en algunos campos de fuerza sencillos.

Capítulo 3

$$V = V_{enlaces} + V_{dvgulus} + V_{diadron} + V_{VdW} + V_{elaces} + V_H$$
 Ec. 3.5

El formalismo de la mecánica molecular es de alcance limitado y los resultados obtenidos de su aplicación deben usarse con prudencia, principalmente cuando la estructura presenta sistemas conjugados de electrones π. En contraposición, su principal ventaja es la rapidez de su cálculo utilizando las computadoras actuales.¹²⁵

3.2.3. Efecto del solvente

Las moléculas que interaccionan con un medio fisiológico se encuentran rodeadas de agua. Es por ello que, las estructuras determinadas experimentalmente por DRXM o los modelos obtenidos mediante cálculos sobre una molécula aislada (en vacío) pueden no ser adecuados para la modelización del fármaco en un sistema biológico. La simulación de la influencia del agua (o de otros solventes) sobre la estructura y las propiedades moleculares resulta de máximo interés desde el punto de vista teórico y experimental.

3.2.3.1. Consideraciones termodinámicas

La energia libre de solvatación (∆G_{sol}) es el cambio de energía producido por la transferencia de una molécula desde el vacio a un solvente y puede considerarse constituida por tres componentes (Ec. 3.6).

$$\Delta G_{ad} = \Delta G_{abar} + \Delta G_{bdW} + \Delta G_{aav}$$
 Ec. 3.6

La ΔG_{electr} es la componente electrostática y es particularmente importante para solutos polares y cargados, debido a la polarización del solvente, el cual se modela como un medio uniforme de constante dieléctrica ε . La ΔG_{votw} representa las interacciones de van der Waals entre soluto y solvente y puede dividirse en un término repulsivo, ΔG_{rep} y uno de dispersión atractiva, ΔG_{dave} . El ΔG_{cov} es la energía libre requerida para formar la cavidad del soluto en el seno del solvente. Esta componente es positiva y es un compromiso entre la variación de entropia asociada a la reorganización de las moléculas de solvente alrededor del soluto y el trabajo realizado contra la presión del solvente para crear la cavidad. Además de los tres términos, se puede incorporar un cuarto, ΔG_m para aquellos sistemas donde se establecen EPH entre el soluto y el solvente.

3.2.3.2. Modelos de solvatación

Se han desarrollado una gran diversidad de estrategias para introducir el efecto del solvente en los cálculos de energía molecular. Ellas difieren principalmente en dos aspectos básicos: i) el nivel de detalle utilizado para describir el soluto y ii) la manera en que se describe el solvente, mediante técnicas clásicas discretas o "modelizándolo" como un medio continuo, caracterizado por su constante dieléctrica.¹⁸

Modelos clásicos continuos. Centran su atención en el soluto, mientras que el entorno se describe como un medio continuo, caracterizado por la constante dieléctrica del solvente. Al introducir el compuesto, el medio se polariza, generando un campo eléctrico que actúa sobre la distribución de carga del soluto (campo de reacción). Los primeros modelos usaban cavidades simples (esferas o elipsoides) para describirlo. Actualmente, se disponen de aproximaciones más elaboradas, que ajustan la forma de la cavidad a la de la molécula de soluto.¹⁸

Capítulo 3

Modelos cuánticos continuos. Los modelos de solvatación más comúnmente utilizados en moléculas de gran tamaño son los métodos autoconsistentes (*self-consistent reaction field methods, SCRF*). En ellos, el soluto se ubica en una cavidad inmersa en el seno del solvente y se considera a nivel cuántico. El solvente se describe en forma aproximada, mediante un medio continuo caracterizado por la constante dieléctrica. El medio continuo se polariza a causa de la distribución de carga del soluto, pero también la densidad electrónica de éste se polariza, por la respuesta (campo de reacción) del solvente. Dado que los resultados obtenidos son sensibles a la forma de la cavidad, resulta fundamental ajustarla a la forma de la molécula. Quizás el método de aproximación más utilizado sea el modelo de polarización continua (PCM).¹⁶ Este crea una cavidad con la forma de la molécula, que se encuentra inmersa en el solvente, considerado continuo. La cavidad se conforma de esferas superpuestas, centradas en los átomos o grupos funcionales de la molécula de soluto. El radio de las esferas es semejante a los de van der Waals, correspondientes a los átomos sobre los cuales se centra cada esfera.

Los modelos continuos permiten obtener buenas descripciones de las propiedades de solvatación, a un costo computacional moderado. Su desventaja es que, por definición, no tienen en cuenta la estructura molecular del solvente y, al aplicarlos, se pueden perder interacciones importantes. Esto es particularmente importante en sistemas con interacciones soluto-solvente fuertes y altamente direccionales, como sucede entre las moléculas polares y el agua. Una situación de compromiso, para lograr una descripción adecuada del sistema físico, sin consumir excesivo tiempo de cálculo, se basa en aplicar un método híbrido. Este consiste en la incorporación explícita de un número mínimo de moléculas de solvente alrededor del soluto, con el fin de permitir la formación de las interacciones fuertes y colocar este sistema en un campo de polarización continua.¹⁸

Modelos clásicos discretos. Una alternativa al uso de modelos continuos es la consideración explícita del solvente en el sistema. La gran cantidad de moléculas que hay que considerar, limita el estudio a descripciones clásicas basadas en el uso de campos de fuerza. A diferencia de los modelos antes descriptos, en las técnicas discretas es necesario obtener representaciones promediadas del sistema soluto-solvente, que se pueden obtener por técnicas de dinámica molecular o Monte Carlo.¹⁸

Modelos híbridos. Se pueden utilizar modelos híbridos de mecánica cuántica/mecánica molecular (QM/MM), en los que la descripción cuántica se limita al soluto, mientras que el solvente se describe mediante un campo de fuerzas clásico. Se agrega, además, un término de acoplamiento que incluye las interacciones soluto-solvente. Aunque este método resulta muy atractivo, presenta la limitante del costo computacional elevado para el tratamiento de moléculas de interés biológico.^{120, 129}

4. ESTUDIO DEL ESTADO SÓLIDO

Cuando las propiedades del estado sólido de los candidatos y NEQ no están optimizadas pueden producir problemas en varias etapas de I+D, tanto en los ensayos biológicos exploratorios, como en el desarrollo del IFA y del medicamento. Una comprensión exhaustiva de la manera en que las características del estado sólido influencian la solubilidad, la estabilidad entre otras propiedades, puede tener un gran impacto sobre la búsqueda de soluciones, al poder identificar la raíz del problema.¹ Además, su conocimiento es un requisito necesario para la aprobación y comercialización de nuevos medicamentos.¹³⁰ Ello se debe a que los compuestos químicos, en general, y los IFA en particular, pueden existir como diferentes polimorfos. La obtención y caracterización de la mayor cantidad posible de formas sólidas de una NEQ y/o IFA, facilita la selección del polimorfo que reúne las mejores propiedades FQ, farmacotécnicas y biofarmacéuticas. Además, permite prever las transiciones de fase que pudieran generarse por el procesamiento farmacéutico o el almacenamiento. Dichas formas sólidas podrían poseer propiedades mejoradas o indeseables, y afectar la calidad, eficacia y seguridad del medicamento que las contiene.²⁹

El presente capítulo detalla los resultados obtenidos en la caracterización del estado sólido de los seis compuestos seleccionados (Fig. 2.3). Primero, se procedió a la síntesis y purificación de los mismos. Luego, se exploró la estabilidad y la solubilidad de los derivados en diferentes solventes. A partir de los resultados obtenidos, se llevaron a cabo ensayos de cristalización controlados con el fin de determinar si los compuestos exhibían o no polimorfismo cristalino. Además, como parte del mismo estudio, se prepararon monocristales que permitieron resolver la estructura cristalina de cinco derivados, resultados que se presentan en el Capítulo V.

4.1. Introducción

En general, un material sólido, ya sea que esté constituido por moléculas (sólidos moleculares), iones (sólidos iónicos) o átomos (sólidos atómicos) puede ser descripto por su estructura externa, es decir por su apariencia o morfología (hábito cristalino) o por su estructura interna (arreglo molecular) (Fig. 4.1).²⁹ De acuerdo a esta última, los sólidos pueden clasificarse como amorfos o cristalinos. El término cristalino hace referencia a un cristal ideal en el cual la unidad estructural o celda unitaria se repite de forma regular e indefinida en las tres dimensiones del espacio.¹¹¹ Cada celda unitaria posee una orientación, forma y volumen específico, que contiene los átomos y moléculas necesarios para generar el cristal. Cuando el orden local, definido por la celda unitaria, es rigurosamente preservado a lo largo de la partícula, se está en presencia de un monocristal o cristal único. Los sólidos

moleculares cristalinos pueden estar constituídos por un único tipo de moléculas (sólidos de entidad única o monocomponentes) o por dos o más moléculas diferentes (aductos moleculares o sólidos multicomponentes).²⁹

Fig. 4.1. Esquema general de clasificación de sólidos de interés farmacéutico (Adaptado de Byrn y col.¹¹¹ y Aitipamula y col.¹³¹).

Entre los sólidos cristalinos de identidad única, se incluyen a los polimorfos "verdaderos"[#] y entre los aductos moleculares, se pueden mencionar a:

- los solvatos, que contienen moléculas del compuesto y del solvente, en proporciones estequiométricas o no,
- las sales, que están formadas por moléculas ionizadas y sus contraiones,
- los cocristales que están constituidos por moléculas de dos o más compuestos, asociadas molecularmente dentro de una misma red cristalina.¹³¹

Tanto los sólidos cristalinos monocomponentes, como los multicomponentes pueden presentar diferentes formas sólidas, fenómeno conocido como polimorfismo cristalino.

La variedad de fenómenos relacionados con el polimorfismo requiere un monitoreo del espacio cristalino de un compuesto.¹³² Explorar dicho espacio es investigar exhaustivamente posibles polimorfos "verdaderos", solvatos y formas amorfas, a fin de identificar la fase sólida más estable y la existencia de formas inestables que se interconvierten en función de la temperatura y el procesamiento farmacéutico. Cabe notar que, si bien se han hecho enormes esfuerzos para estudiar el polimorfismo de diversas sustancias, el conocimiento actual del fenómeno como tal, es todavía embrionario y las relaciones entre crecimiento cristalino y nucleación de los primeros cristalitos sigue siendo aún un misterio.¹³²

En los últimos años, el concepto de **polimorfismo cristalino farmacéutico**, se ha expandido de sus límites originales para abarcar otras **formas sólidas**. Así, para la Agencia Americana de Alimentos y Medicamentos (FDA),¹³³ en concordancia con la Conferencia

¹¹ Formas cristalinas con diferentes arreglos o conformaciones de una misma molécula. Poseen la misma composición química y diferente empaquetamiento cristalino y/o distintas conformaciones o arreglos.

Capítulo 4

Internacional de Armonización (ICH),¹³⁴ son polimorfos las formas cristalinas con diferentes arreglos o conformaciones de una misma molécula (**polimorfos "verdaderos"**),¹³⁵ las **formas amorfas** y los **solvatos/hidratos**. A continuación, se describen algunos aspectos relacionados a la estructura externa e interna de los sólidos de interés farmacéutico (Fig. 4.1).

4.1.1. Estructura externa: hábito cristalino

La prevalencia de diferentes hábitos cristalinos se atribuye a las interacciones solutosolvente en las interfases cristal-solución. Esto llevaría a alterarlas, producir cambios en la cinética de crecimiento y estimular o inhibir el desarrollo de ciertas caras del cristal. Además, la polaridad del solvente y las interacciones que conduzcan a su adsorción o no sobre ciertas caras del soluto, serían factores críticos al determinar el hábito de cristalización de un sólido.¹³⁶ El crecimiento de cristales, también puede ser perturbado por el crecimiento simultáneo de otros adyacentes o al contactar con las paredes del recipiente. Como resultado, el desarrollo de caras en un plano puede inhibirse o producir formas irregulares. Los cristales con formas irregulares son descriptos como anhedros o alotriomorfos (carecen de límites rectilíneos netos), mientras que aquellos con bordes y caras bien reconocibles, se denominan euhedros o idiomorfos (Fig. 4.2). Los anhedros, a pesar de que tienen formas irregulares, poseen un arreglo regular interno, lo cual se puede confirmar por DXR.¹³⁷

Fig. 4.2.Cristal anhedro (A) y cristal euhedro (B).137

Algunos de los hábitos cristalinos frecuentemente hallados en cristales euhedros de sólidos farmacéuticos, se muestran en la Fig. 4.3. Para la descripción de la apariencia externa o hábito de las partículas se utilizan algunos descriptores específicos, por ejemplo: tabular, laminar, acicular, prismático, hojas, cúbico, fibroso, etc.¹³⁸

Fig. 4.3. Hábitos cristalinos comúnmente hallados en los sólidos farmacéuticos. 118, 137, 139

Además, para describir el grado de asociación de las partículas se emplean los siguientes términos: lamelar, agregado, aglomerado, esferulita, drusa, etc.¹¹⁸ Se pueden, también, detallar

Capítulo 4

los bordes, el color, la presencia de defectos u oclusiones y las características de la superficie (lisa, porosa, resquebrajada, etc.) de las partículas.²⁷

4.1.2. Estructura interna

4.1.2.1. Polimorfos verdaderos

En un sentido estricto, un polimorfo es una forma sólida que contiene un único tipo de molécula en la red cristalina y, para distinguirlo de las otras formas denominadas polimorfos en el área farmacéutica, suele designárselo como **polimorfo "verdadero"** (Fig. 4.4), tal como proponen Bernstein¹³⁶ y otros autores. Por razones termodinámicas y bajo condiciones especificas, solo una forma sólida es la estable (excepto en un punto de transición) y se lo denomina **termodinámicamente estable**. Este posee la menor energía libre de Gibbs y es la forma menos soluble. En la práctica, debido a consideraciones cinéticas, pueden existir o co-existir, en su presencia, varias formas termodinámicamente inestables, denominadas metaestables.¹⁴⁰ Las diferentes estructuras cristalinas de una misma sustancia, exhiben frecuentemente distintas propiedades físicas, tales como *pf*, dureza y hábito cristalino, entre otras.

Fig. 4.4. Representación esquemática de las diferentes formas sólidas de un IFA.

La importancia de caracterizar el estado sólido de una NEQ y de identificar la presencia de diversos polimorfos han sido ampliamente documentadas en la literatura científica.^{141, 142} Las diferencias en solubilidad y V_d,^{143, 144} morfología y color,¹⁴⁵ propiedades mecánicas^{146, 147} y estabilidad FQ¹⁴⁸ pueden tener un profundo impacto sobre la BD y la elaboración de la forma farmacéutica. En la Tabla 4.1 se consignan varias de las propiedades que suelen diferir entre los polimorfos de una sustancia.¹³²

Propiedades	Ejemplos
De empaquetamiento	Volumen de celda unitaria, densidad, indice de refracción, higroscopicidad
Termodinámicas	pl, entalpia, entropia, energia libre, solubilidad aparente
Espectroscópicas	Transiciones electrónicas (espectro UV-visible), vibracionales (espectros infrarrojo y raman), rotacionales (espectro de microondas), de spin nucleares (espectro RMN en estado sólido)
Cinéticas	V _a , velocidad de reacciones en estado solido, estabilidad
De superficie	Energía libre de superficie, hábito cristalino
Mecánicas	Dureza, compactabilidad, compresibilidad, fluidez de polvos

Tabla 4.1. Propledades que difieren entre distintos polimorfos (Adaptada de Brittain¹³²).

Se considera que, aproximadamente un tercio de los compuestos orgánicos y cerca del 80 % de los IFA comercializados exhiben polimorfismo.¹⁴⁹ En general, se ha observado, que el número es mayor cuando existe alta flexibilidad molecular. La gran mayoria de los IFA presentan entre uno y tres formas sólidas, aunque hay compuestos con un número elevado, por ejemplo el fenobarbital (13 polimorfos), la cimetidina (7 polimorfos, más algunos hidratos), el sulfatiazol (5 polimorfos, más numerosos solvatos), la carbamacepina (5 polimorfos, más un dihidrato y varios solvatos), entre otros.¹⁴⁹ También, se ha observado que el polimorfismo es muy frecuente en algunas familias de fármacos, como es el caso de los barbitúricos (70 % de ellos presentan polimorfos), de las sulfonamidas (60 %) y de los esteroides (23 %).¹¹¹

La búsqueda de polimorfos puede efectuarse experimental o teóricamente. Pero, si bien los métodos computacionales o *in silico* han avanzado significativamente en los últimos años, los experimentales siguen siendo la elección de preferencia, porque las diferencias en la energía reticular de las fases sólidas son usualmente muy pequeñas, y ello hace que la predicción computacional sea muy difícil. Se conocen muchas técnicas experimentales para explorar el polimorfismo. Sin embargo, la cristalización a partir de soluciones (saturadas, diluidas o sobresaturadas) es el método más utilizado, y el solvente la principal variable a manipular. A este respecto, cabe destacar que, las propiedades del estado sólido son específicas de cada compuesto y, debido a ello, no existen aún lineamientos generales para la búsqueda de polimorfos. Sin embargo, se han publicado algunas sugerencias y guías para llevar a cabo el estudio en forma sistemática.¹³³ De allí que se deban probar diferentes métodos y manipular diferentes variables a fin de llevar a cabo un estudio razonablemente exhaustivo.¹³²

Las agencias regulatorias de medicamentos, entre ellas la FDA,¹³³ exigen la demostración de estructuras cristalinas inequivalentes, mediante la utilización de la DRXM, constituyendo la evidencia definitiva de polimorfismo. Sin embargo, en ausencia de datos de DRXM, se considera aceptable la utilización de la DRXP. Las demás técnicas analíticas son consideradas útiles para la caracterización adicional de las distintas formas sólidas, complementando la demostración definitiva de polimorfismo.²⁹

La espectroscopía de IR puede ser útil para caracterizar polimorfos, ya que el espectro es sensible a cambios en la conformación molecular.¹¹¹ Sin embargo, la técnica no siempre resulta definitoria, ya que muchas veces los diferentes polimorfos de una misma sustancia presentan espectros IR similares, particularmente cuando se utiliza el método de la pastilla de KBr.¹¹¹ Dicho método, aunque se ha utilizado por años para la identificación de compuestos orgánicos, tiene la desventaja de que la muestra puede experimentar transiciones de fases inducidas por el mortereado y la compresión (~10000 psi) requeridos para procesar la muestra. En cambio, la **DRIFT**, que demanda mínima manipulación de la muestra, resulta la mejor elección.

Por otro lado, la MPC se considera un método rápido para el estudio del estado sólido y la detección de polimorfos, siendo muy importante en los estadios tempranos del desarrollo de un medicamento, cuando se disponen de pocos miligramos de una sustancia.

4.1.2.2. Sólidos amorfos

Estos presentan empaquetamiento molecular semejante a un cristal, pero carecen del orden y la simetría translacional-orientacional. En la Fig. 4.4 se observa una representación esquemática del arreglo molecular de un sólido cristalino y de uno amorfo.

Los sólidos amorfos se caracterizan por poseer una única temperatura de transición vitrea (T_g).^{§§111} Son definidos termodinámicamente como sólidos fuera del equilibrio, ya que poseen un exceso de entalpia, entropía y energía libre. Por esta causa, tienden a liberar completamente la energía interna almacenada, a través de la cristalización (desvitrificación), o bien parcialmente, por medio de procesos de relajación irreversibles. Presentan mayor S_{ap} y V_d y, muchas veces, mejores características de compresión que sus contrapartes cristalinas, aunque son menos estables física y químicamente. Se obtienen mediante diferentes procedimientos, entre ellos el enfriamiento rápido de la fase fundida, la precipitación por adición de antisolventes al compuesto disuelto, la liofilización, la introducción de impurezas o la deshidratación de hidratos cristalinos.¹⁵⁰

4.1.2.3. Solvatos e hidratos

Son cristales que presentan moléculas de solvente en posiciones regulares de la estructura cristalina (Fig. 4.4).¹¹¹ La asociación de las moléculas de un solvente con las de un compuesto sólido puede ocurrir de diferentes maneras:

- empaquetamiento y cristalización con las moléculas del compuesto, (solvato cristalino)
- absorción en regiones desordenadas o en defectos que pueden surgir por diferentes mecanismos de estrés (mortereado, granulación, etc.)
- adsorción en la superficie del sólido (a través de EPH, fuerzas van der Walls o dipolo-dipolo)
- inclusión física en un cristal en crecimiento (inclusiones líquidas).

En el caso de los solvatos cristalinos, la incorporación de la/s molécula/s del disolvente en la red cristalina generará una nueva especie, con propiedades diferentes a las del cristal anhidro. Generalmente, el rol del solvente es otorgar estabilidad a la red cristalina, fomentando interacciones más fuertes entre las moléculas.¹³²

Dado que el agua es el disolvente más usado en los procesos farmacéuticos, su ingreso en la red cristalina determinará la formación de **hidratos cristalinos**, la subclase más importante de los solvatos. De hecho, un tercio de los IFA conocidos forman hidratos.¹³² El tamaño pequeño de la molécula de agua y su capacidad de formar EPH multidireccionalmente, facilitan su incorporación dentro de la celda unitaria, colaborando en la formación de estructuras cristalinas estables. Los hidratos y los solvatos también pueden presentar diferentes formas polimórficas, fenómeno denominado como **solvatomorfismo**.¹¹¹

4.1.2.4. Sales de uso farmacéutico

Una sal es un sólido cristalino iónico o electrovalente. La transformación de un ácido o base libre a su forma salina es un recurso ampliamente utilizado en el área farmacéutica. Esto queda

^{**}Temperatura a la cual un sólido amorfo cambia desde un estado vitreo a un estado gomoso.

evidenciado en el elevado número de medicamentos comercializados que poseen el fármaco en forma salina.^{51, 151}

La S_{ac} de un compuesto ácido o básico débil, su pKa, el pH del medio, entre otros factores, determinan si el compuesto podrá formar una sal apta para uso farmacéutico. La interrelación pH-solubilidad también dictaminará qué tipo de contraiones podrían ser necesarios para su formación, con qué facilidad puede hidrolizarse, cuál comportamiento de disolución podría ser esperado bajo diferentes condiciones de pH gastrointestinales y si la S_{ap} y la V_d podrían ser influenciadas por el efecto de ion común.^{51, 152} El cambio en la estructura cristalina que se produce en una NEQ o IFA con la formación de sales puede tener variados efectos. Así, muchos aspectos farmacéuticos de los medicamentos pueden modularse usando la estrategia de convertir el IFA en su sal, entre ellos, la S_{ap}, la V_d, la estabilidad y las propiedades organolépticas, entre otras.

4.1.2.5. Cocristales farmacéuticos

Los cocristales farmacéuticos son una subcategoría de los cocristales, una clase de compuestos conocidos desde hace mucho tiempo pero escasamente estudiados.¹³¹

Si bien actualmente no existe una definición uniformemente aceptada, en la literatura científica se coincide en que estos son materiales cristalinos compuestos por dos o más componentes, generalmente en relación estequiometria, que permanecen juntos por enlaces no-covalentes; es decir, son cristales multicomponentes. En el marco regulatorio propuesto por la FDA,¹⁵³ los cocristales farmacéuticos son clasificados como complejos moleculares IFAexcipiente, siendo el excipiente el compuesto orgánico neutro formador de cocristales (el coformador). Los cocristales, dentro de esta amplia categoría, están únicamente definidos por el hecho de que la asociación molecular entre el IFA y su/s excipiente/s ocurre dentro de la red cristalina.¹³¹

Sus componentes individuales, en sus estados puros, son sólidos a temperatura ambiente, y están presentes en una proporción estequiométrica definida. Se mantienen unidos por enlaces no covalentes, incluyendo EPH, π…π *stacking* y fuerzas de van der Waals, conduciendo a un complejo termodinámicamente más estable que el IFA y el coformador por separado. Los cocristales poseen una estructura cristalina diferente a la de sus componentes puros, con distintos patrones de empaquetamiento, exhibiendo, a menudo, propiedades FQ propias. El coformador puede, también, ser farmacológicamente activo y usarse para potenciar, complementar o producir un efecto sinérgico sobre las actividades de cada uno de ellos.^{129, 154} Además, los cocristales farmacéuticos pueden ser usados para direccionar propiedades FQ, como S_{ap}, estabilidad y BD durante el proceso de desarrollo, sin cambiar la composición química del IFA.¹⁵⁵

4.1.2.6. Sales versus cocristales

Las diferencias estructurales entre la sales y los cocristales dependen de la posición relativa del hidrógeno, si éste es transferido completamente, se habla de una **sal**, mientras que si forma parte de un EPH, sería un **cocristal**.¹⁵⁴ De esta manera, los cocristales están formados por un arreglo ordenado de dos o más tipos de moléculas neutras, mientras que una sal comprende una asociación de moléculas ionizadas. La transferencia de un hidrógeno, depende de los valores de pKa de los componentes, lo que permite predecir la formación de una sal o de un cocristal. En el primer caso, se requiere una diferencia de pKa de aproximadamente 2,7 unidades entre la base conjugada y el ácido conjugado [pKa (base) - pKa (ácido) ≥ 2,7]. Sin embargo, esta regla no siempre se cumple.¹⁵⁴

4.2. Objetivo

El objetivo específico planteado para esta parte de la investigación fue caracterizar el estado sólido de los seis compuestos seleccionados de la quimioteca, mediante la búsqueda sistematizada de polimorfos y la obtención de monocristales.

4.3. Materiales y métodos

La obtención de los seis derivados se realizó por reacción de condensación entre el heterociclo correspondiente y el cloruro de bencenosulfonilo sustituido adecuadamente, siguiendo los procedimientos de síntesis descriptos por Hergert⁹⁶ y Pagliero.²⁰ La purificación del **BSTHQ**, el **BSTHQa**, el **BSTHiQ** y el *p*-NO₂-BSTHQ se efectuó por filtración a través de una mezcla de sílica gel y carbón activado (para eliminar impurezas coloreadas) y posterior recristalización de etanol, a excepción del **BSTHQ**, en el que se utilizó etanol:agua 5:1. El compuesto **TM-BSTHQ** se purificó mediante lavados de la fase orgánica (cloruro de metileno) con soluciones acuosas ácidas, básicas y neutras y, posterior recristalización de metanol. El **BSBZT** se purificó únicamente por recristalización de acetato de etilo.

Los reactivos de síntesis se adquirieron a Sigma-Aldrich® y Across Organics® y se utilizaron sin previa purificación. El DMSO-d6 y el KBr, ambos de grado espectroscópico, se adquirieron a Merck®, Darmstadt, Alemania. La sílica gel fue de grado 60 (230-400 mesh, 60 Å, Merck®). Para TLC, se utilizaron placas de sílica gel G/UV Whatman, de 250 µm de espesor, con indicador de fluorescencia UV₂₅₄ y soporte de aluminio (Merck[®]).

Los polímeros utilizados como heteronúcleos para los ensayos de cristalización fueron: poliestireno, poliuretano, polietileno de alta densidad, polipropileno y quitosano. Todos ellos fueron donación del Grupo de Polímeros, Departamento de Química Orgánica, Facultad de Ciencias Químicas, UNC.

Para el secado de las muestras sólidas se utilizaron NaOH y CaCl₂ anhidros y sílica gel anhidra como indicador (empleando un desecador y vacío proporcionado por una trompa de agua) o P₂O₅ anhidro y una pistola de Abderhalden con vacío de ~ 5 mm Hg, a temperatura ambiente.

La piridina se anhidró por destilación fraccionada, a presión reducida, y se conservó sobre granallas de NaOH anhidro. El agua utilizada fue purificada con un sistema Milli Q (Millipore, Billerica, EEUU). Los demás solventes, tales como acetato de etilo, diclorometano, cloroformo, acetonitrilo, acetona, benceno, tolueno, metanol, etanol, *iso*-propanol, *n*-butanol, *iso*-butanol, *n*pentanol, *n*-pentano, *n*-hexano, *n*-heptano, DMSO, dimetilformamida (DMF) y polietilenglicol (PEG) fueron de grado analítico o HPLC y de marcas disponibles en el mercado nacional (Sintorgan[®], Biopack[®], Cicarelli[®], Anedra[®], Dorwill[®]). En la Tabla S.4.1 (Anexos) se detallan las propiedades más relevantes, junto con las marcas comerciales de cada uno de los solventes utilizados.

4.3.1. Técnicas de caracterización

Cromatografía en capa delgada (TLC). Para las corridas cromatográficas se utilizaron dos sistemas de solventes. Las cubas de desarrollo se saturaron previamente con los vapores del sistema. Se utilizó el método de revelado con luz UV.

Cromatografía líquida de alta eficiencia (HPLC). Se usó un equipo Bio-Rad Laboratories Series 800 HRLC System, una bomba Bio-Rad Model 2700 Solvent Delivery System, un detector UV-1806 Bio-Rad UV-Visible Detector y una interfase Bio-Rad. Se utilizó

una columna de fase reversa RP18 (Symmetry Columns Shields Waters Corp., Milford, EEUU) de 4,6 x 150 mm con partículas de relieno de 3,5 µm de diámetro. Las muestras se disolvieron en metanol absoluto. El volumen de inyección fue de 20 µL. La fase móvil consistió en una mezcla de metanol:agua (80:20 V/V) la cual se filtró a través de membranas de 0,45 µm y se desgasificó mediante vacío. Las muestras inyectadas fueron las provenientes de dos recristalizaciones consecutivas, preparadas en soluciones de concentración 0,1 mg/mL y por triplicado. Este procedimiento se repitió dos días diferentes.

Para el tratamiento estadístico de los datos obtenidos por HPLC, se realizó una determinación de valores aberrantes u *outliers*, empleando el test de Dixon para valores extremos, considerando un nivel de significancia del 5 %.¹⁵⁶ Después, se efectuó un análisis estadístico de test *t* de muestras independientes, para determinar si existían diferencias estadísticamente significativas entre las áreas correspondientes a las recristalizaciones sucesivas.^{156, 157} Se utilizó el programa InfoStat.¹⁵⁸

Fusiómetro de tubo capilar. Para la determinación del rango de fusión (método del tubo capilar) se usó un fusiómetro de bloque de acero, en baño de aire. Los valores de pf se informaron en °C y sin corregir.

♦ MPC. Se utilizó un microscopio óptico con platina calentable Kofler (Ernst Leitz, Wetzlar, Alemania), con una termocupla Eden HI 8056 (Rango: -50-650 °C, exactitud: ± 3 °C). Las muestras se analizaron sin morterear, con y sin adición de aceite de silicona. Se usaron objetivos de 32X o de 10X, con una luminiscencia de 0,5 A y velocidades de calentamiento variadas (1, 5, 10 y 30 °C/min, aproximadamente, según el rango de temperatura de trabajo). Es importante resaltar que la temperatura de fusión informada, determinada a partir de esta técnica (*Tf*_{MPC}), es la correspondiente a la desaparición de la última traza de sólido, criterio habitualmente seguido en MPC.¹¹⁴

◆ TG. Se usó un equipo HI-Res Modulated TGA 2950 (TA Instruments Inc., New Castle, EEUU). Se analizaron muestras exactamente pesadas (1-2 mg) en cápsulas de aluminio abiertas y se calentaron a una velocidad de calentamiento (β) de 10 °C/min desde 25 °C hasta una temperatura por encima del *pf* (dependiendo del compuesto), bajo purga de N₂(99,99 %, 50 mL/min). La escala de temperatura se calibró con níquel (temperatura Curie 358,15 °C). Las curvas TG se analizaron con el programa Universal Analysis 2000 para Windows (TA Instruments).

♦ DSC. La mayoría de los experimentos se realizaron en un analizador DSC 2920 Modulated DSC TA Instruments Inc. (DSC 1, Departamento de Farmacia, Facultad de Ciencias Químicas, UNC). Para las determinaciones donde fue necesario controlar la velocidad de enfriamiento, se utilizó un DSC Mettler Toledo DSC823 (DSC 2, Facultad de Ciencias Agropecuarias, UNC). Se analizaron muestras exactamente pesadas (1-2 mg) en cápsulas de aluminio no herméticas y se calentaron desde 25 °C hasta una temperatura por encima del *pl.* Se utilizaron $\beta = 1$ y 10 °C/min, bajo purga de N₂ (99,99 %, 50 mL/min). La escala de temperatura se calibró con indio (99,999 %, *pl* = 156,60 °C). Como referencia se usaron cápsulas vacías de aluminio. Para el análisis de la pureza por DSC se usó una $\beta = 1$ °C/min.

IR. Los espectros IR se adquirieron en los espectrofotómetros Bruker IFS28 o Nicolet-Avatar 360 E.S.P., cubriendo el rango de 4000-400 cm⁻¹ y acumulando 64 barridos (resolución = 4 cm⁻¹). Se procesaron con el programa OMNIC E.S.P. 5.1 (Nicolet Corp., Madison, Wisconsin, EEUU). Las muestras se morterearon durante 5 min y se prepararon como pastillas (discos) de KBr (1-5 mg de muestra en 100 mg de KBr anhidro, diámetro de 13 mm, presión de 369 MPa, tiempo de prensado de 1 min).

 DRIFT. Los espectros se adquirieron en el mismo espectrofotómetro Nicolet que se describió arriba, pero utilizando un accesorio DRIFT. Se registraron acumulando 64 barridos

(resolución = 4 cm⁻¹) y se procesaron con el programa OMNIC E.S.P. 5.1 (Nicolet Corp.). Las muestras no se morterearon y se las dispersó en KBr al 2-5 % P/P mediante un mezclado físico (2-5 mg de muestra en 100 mg de KBr anhidro). La mezcla se colocó en un portamuestra de 13 mm de diámetro.

◆ DRXP. Los patrones de DRXP se obtuvieron a temperatura ambiente (aproximadamente 25 °C) en los siguientes difractómetros: a) PANalytical X'PERT PRO (Philips, Holanda; situado en el Departamento. de Fisicoquímica, Facultad de Ciencias Químicas, UNC) con ánodo de CuKα longitud de onda (λ = 1,5418 Å, 40 kV, 40 mA), y b)PANalytical PW1710 (Philips, Holanda; situado en la Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Patagonia San Juan Bosco, Comodoro Rivadavia) con ánodo de CuKα longitud de onda (λ = 1,5418 Å, 40 kV, 20 mA). La medición se llevó a cabo con un tamaño de paso de 0,03 ° y un tiempo de 2 s/paso. El intervalo de medición fue entre 3 y 35 ° 20. Para uniformar el tamaño de partícula y reducir el fenómeno de orientación preferencial, las muestras se morterearon suavemente con pilón y mortero de ágata y se depositaron en portamuestras de Si, de aluminio o de vidrio. El procesamiento de los datos experimentales se efectuó con el programa Origin[®] o X'PERT Data (del paquete de programas del difractómetro a).

ORXP con temperatura variable (DRXP-TV).Los patrones se obtuvieron con un difractómetro Bruker D8 Advance (Bruker Corp., Alemania) con ánodo de CuKα longitud de onda (λ = 1,5418 Å).La velocidad de calentamiento fue de 3 °C/min. Para la obtención de cada patrón, la muestra se expuso primero a los rayos X durante 1 h a 30 °C. Luego, se aumentó la temperatura a 50 °C y se mantuvo durante 2 min, antes de una nueva exposición a los rayos X. El patrón de DRXP se registró durante un período de 1 h. El proceso se repitió con el resto de las temperaturas establecidas. Este trabajo fue realizado en colaboración con el Prof. Dr. Mino Caira, Dpto. Química, Universidad de Ciudad del Cabo, Sudáfrica.

4.3.2. Preparación de muestras y estándares de trabajo

Para la preparación de las muestras de trabajo (MT) y los estándares de trabajo (ET)¹¹⁷ de cada uno de los seis compuestos estudiados, se siguió la metodología resumida en la Fig. 4.6.¹⁹⁹ Con este fin, una vez que fueron sintetizados y purificados mediante dos recristalizaciones sucesivas, se estudiaron sus características térmicas y difractométricas, utilizando MPC, DSC, TG-DTG y DRXP.

^{***} Los ET son materiales de uniformidad comprobada, cuya monografía no ha sido incluida en la FA, ni en ninguna de las Farmacopeas internacionalmente reconocidas, desarrollado localmente por el usuario, cuyo empleo se reserva a ensayos químicos y físicos específicos, en los que se comparan sus propiedades con las de un producto problema y posee un grado de pureza adecuado para el empleo al que se destina.

Capítulo 4

Fig. 4.6. Diagrama de flujo de la metodología utilizada para la preparación de las MT y los ET.

Una vez concluidas las etapas indicadas en Fig. 4.6, se exploró la estabilidad de las MT en solución y la solubilidad en diferentes solventes (Fig. 4.7).

Fig. 4.7. Diagrama de flujo de los estudios de estabilidad y solubilidad realizados sobre las MT.

Ensayos de estabilidad en solución. La estabilidad de los seis compuestos se evaluó en diferentes solventes orgánicos (concentración ~ 0,01 g/mL) durante 24 h a 25 ± 2 °C. Para detectar la presencia de posibles productos de degradación (heterociclo o bencenosulfonilo correspondientes) se utilizó TLC, comparando los valores de relaciones de frente (R) de las muestras con los de testigos respectivos, en dos sistemas de solvente diferentes.

Ensayos de solubilidad. Para la estimación de la solubilidad de los seis compuestos en estudio, se colocó una cantidad exactamente pesada de cada uno de los compuestos recristalizados sin morterear, en tubos de Kahn y se agregaron cantidades conocidas del solvente de elección hasta lograr la disolución total del sólido. La agitación se efectuó con un agitador tipo vórtex durante 30 s, entre agregado y agregado de solvente, ya temperatura ambiente. La solubilidad informada representa la masa del compuesto dividida el volumen total de solvente adicionado.¹³⁶

Para la elección de los solventes a ensayar, se tomó en cuenta que Yang y Guillory¹⁶⁰ al estudiar el estado sólido de cinco sulfonamidas ácidas antibacterianas (sulfabenzamida, sulfaguanidina, sulfapiridina, sulfametoxipiridazina y sulfaetidol) reportaron la obtención de diferentes formas sólidas, utilizando como solventes de cristalización diferentes alcoholes, agua y acetona. Por esta razón, se consideró importante que dichos solventes fueran incluidos en los ensayos de estabilidad y solubilidad.

Usando la información encontrada a partir de una búsqueda bibliográfica exhaustiva y los resultados de los estudios de estabilidad y solubilidad, se diseñaron los ensayos de cristalización y los solventes a utilizar en el *screening* de polimorfos de cada derivado.

4.3.3. Ensayos de cristalización

Para la búsqueda de polimorfos y la preparación de monocristales se recurrió a la cristalización controlada, metodología que aplica diferentes solventes/antisolventes, temperaturas, condiciones de cristalización (velocidad de enfriado rápido/lento, etc.). Además, se emplearon la cristalización por evaporación y tratamiento térmico y la cristalización en presencia de heteronúcleos,¹⁶¹ utilizando diferentes polímeros como núcleos de cristalización. Los ensayos de cristalización se llevaron a cabo en una cámara aislada (Fig. 4.8) de vibraciones, de luz y con temperatura controlada diariamente (23 ± 3 °C).

Fig. 4.8. Cámara utilizada para los ensayos de cristalización. A) Vista externa y B) Vista interna donde se muestran las paredes y el piso recubiertos con poliestireno expandido y el termómetro que se usó para controlar la temperatura diariamente.

Las diferentes metodologías empleadas para la obtención de las muestras sólidas se detallan a continuación:

Capítulo 4

 I- Preparación de una solución saturada y descenso rápido de temperatura. Se prepararon soluciones saturadas, empleando cantidades exactamente pesadas de los analitos, disolviêndolos en solventes orgánicos a ebullición. Luego, se filtraron en caliente y se llevaron al freezer (-15 °C) y dejaron en reposo hasta la aparición de precipitado. Los cristales obtenidos se filtraron al vacio.

 II- Preparación de una solución saturada y descenso lento de la temperatura. Se siguió el procedimiento antes descripto, con la diferencia que a la solución filtrada se la mantuvo en el baño de agua donde se realizó la disolución, con el calentamiento apagado, hasta la formación de cristales. Los cristales obtenidos se filtraron al vacío.

 III- Evaporación lenta. El procedimiento llevado a cabo se ilustra en Fig. 4.9. El mismo puede efectuarse utilizando una aguja como se indica en la figura o con papel metálico perforado, según sea la presión de vapor del solvente utilizado.¹⁶² La experiencia se llevó a cabo a temperatura ambiente.

Fig. 4.9. Representación esquemática del método de evaporación lenta (Adaptada de Cuhna y col. 162).

 IV- Difusión de vapor. Esta técnica consiste en la saturación líquido-vapor de un solvente polar y de baja presión de vapor (el solvente) por parte de otro de baja polaridad y elevada presión de vapor (el antisolvente), ambos colocados en un sistema hermético, pero en diferentes recipientes. Los vapores del antisolvente difunden desde el receptáculo exterior hacia el interior de un tubo en el que se ha colocado una solución del compuesto a cristalizar, preparado en el "solvente". Por efecto del antisolvente, el compuesto comienza a precipitar lentamente desde el seno de la solución.¹⁶² La Fig. 4.10 muestra esquemáticamente el procedimiento. Esta experiencia se realizó a temperatura ambiente.

Fig. 4.10. Representación esquemática de la técnica de cristalización por difusión de vapor (Adaptada de Cuhna y col.¹⁶²).

 V- Precipitación por adición de antisolvente. Esta técnica, al igual que la anterior, utiliza el concepto de la antisolvencia. Para ello, se utilizaron pares solvente/antisolvente miscibles entre sí. Se disolvió una determinada cantidad de compuesto en el mínimo volumen de un dado solvente, a temperatura ambiente. Luego, se agregó gota a gota el antisolvente frío (4 °C), hasta la aparición de un precipitado persistente.¹⁶³

• VI- Cristalización con heteronúcleos. Este método de cristalización se basa en la nucleación heterogénea, la cual se define como *el proceso por el cual la nucleación ocurre debido a partículas extrañas o superficies que no son químicamente idénticas al material nucleado.*^{161, 164} La técnica plantea la nucleación y crecimiento de cristales en presencia de partículas o superficies, las cuales actúan como heteronúcleos para la cristalización.^{184, 185} Estos son, en general, polímeros orgánicos sólidos insolubles tanto en agua como en solventes orgánicos y que aportan nuevos grupos funcionales. Por lo tanto, pueden influir en el tipo de polimorfo obtenido. Cabe destacar que, la nucleación con polímeros ha permitido obtener nuevos polimorfos de IFA estudiados por años sin resultados positivos.¹⁶⁴ Además, ha resultado útil para la producción directa de monocristales para la resolución por DRXM.^{161, 164}

Para aplicar esta técnica, es necesario conocer la compatibilidad polímero/solvente a utilizar, verificando que sea insoluble y estable en el solvente seleccionado. Con este fin, se colocaron porciones de diferentes polímeros en tubos de vidrio con tapa y se les agregaron dos mL de los solventes correspondientes. Luego de 48 h de inmersión, se llevó a cabo una inspección visual, a fin de determinar si se habían hinchado o deformado, y un análisis del sobrenadante por TLC, para descartar que se hubieran solubilizado o degradado. Los pares polímero/solvente, que resultaron compatibles fueron:

- poliestireno/n-hexano y n-heptano.
- poliuretano/diclorometano, cloroformo y n-hexano.
- polietileno de alta densidad/ diclorometano, cloroformo, n-hexano y n-heptano
- polipropileno/diclorometano y cloroformo.
- quitosano/etanol.

Para la cristalización, se colocaron 5 mL de una solución diluida de la muestra, preparada en un solvente apto, en un vial de vidrio. Luego, se adicionó una porción del polímero seleccionado. El vial se cubrió con papel de aluminio y se lo dejó en reposo al abrigo de la luz, a temperatura ambiente, hasta la evaporación completa del solvente. Los cristales formados se removieron cuidadosamente con espátula.

 VII- Ciclos de calentamiento-enfriamiento-calentamiento. Este ensayo intenta analizar posibles transformaciones de fase de la muestra a estudiar. Para su correcta aplicación, es importante corroborar la estabilidad térmica del compuesto, a unos grados por encima de su temperatura de fusión, lo cual asegurará que el proceso sea reversible. Los ciclos de calentamiento-enfriamiento-calentamiento se llevaron a cabo en una platina de calentamiento Kofler (MPC), excepto en el caso del TM-BSTHQ, el cual se calentó en el equipo DSC. En todos los experimentos, se realizó un primer ciclo de calentamiento desde 20 °C hasta unos grados por encima del *pl* del compuesto; luego, un enfriado lento sobre la platina del MPC (o en la celda DSC para el TM-BSTHQ). Una vez alcanzada la temperatura ambiente, el portamuestra se colocó en freezer a -15 °C, dentro de un recipiente cerrado, por 5 min, para después someterlo a un segundo ciclo de fundido. Se analizaron comparativamente los eventos que ocurrieron en uno y otro ciclo.

En el caso del **TM-BSTHQ**, cuando se usó el DSC 1, las muestras se calentaron hasta 120 °C y se enfriaron dentro de la celda hasta temperatura ambiente. Luego, se las llevó a freezer durante 5 min y se las recalentó hasta 120 °C. Este procedimiento se efectuó utilizando dos β (1 y 10 °C/min). Las determinaciones utilizando el DSC 2 fueron las siguientes:

- Corrida 1: Calentamiento (de 20 a 120 °C) a 10 °C/min, enfriamiento (de 120 a 20 °C) a -10 °C/min, recalentamiento (de 20 a 120 °C) a 10 °C/min.
- Corrida 2: Idem a 1, solo que el enfriamiento fue a -5 °C/min.

Capítulo 4

A las muestras sólidas obtenidas a partir de los diferentes ensayos de cristalización, se les controló nuevamente la pureza química por TLC. Las que demostraron ser estables, fueron caracterizadas aplicando diferentes técnicas analíticas, tales como MPC, DRIFT, TG, DSC y DRXP. Las últimas cuatro se aplicaron solamente en las muestras que exhibieron diferencias morfológicas y/o térmicas.

4.4. Resultados y Discusión

Los derivados BSTHQ, BSTHQa, p-NO2-BSTHQ y TM-BSTHQ se obtuvieron mediante el procedimiento de síntesis que se muestra en el Esquema 4.1.

 BSTHQ
 R., R., R., R., R., R., R. H.

 BSTHQa
 R., a CH.; R., R., R., R., R., R. H.

 P-NO2-BSTHQ
 R., R., R., R., R., R., R. H.

 TM-BSTHQ
 R., R., R., R., R., R., R., R., R., CH.

Esquema 4.1. Sintesis del BSTHQ, del BSTHQa, del p-NO2-BSTHQ y del TM-BSTHQ (a = piridina anhidra, 60 °C).

Por otra parte, los derivados BSBZT y BSTHIQ se sintetizaron según se muestra en los Esquemas 4.2 y 4.3, respectivamente.

Esquema 4.2. Síntesis del BSBZT (a = piridina anhidra, 65 °C).

Esquema 4.3. Síntesis del BSTHiQ (a = piridina anhidra, 40 °C).

Los rendimientos finales (considerando síntesis, filtración o lavados y primera recristalización) fueron del 78 % para el BSTHQ, 89 % para el BSTHQa, 43 % para el BSBZT, 72 % en el caso del BSTHiQ, 60 % para el *p*-NO₂-BSTHQ y 66% para el TM-BSTHQ.

La identificación y el control de pureza de los seis compuestos estudiados se realizó mediante TLC, *pf*, *pf* mezcla, IR, HPLC y DSC. Para todos ellos, se analizaron las muestras obtenidas tanto en la 1° (1Rec) como la 2° recristalización (2Rec) a excepción del **BSTHQa**, para el cual se utilizaron las muestras obtenidas en las 2Rec y 3Rec, ya que con la 1Rec no se obtuvo una pureza adecuada (< 99 %).

Por **TLC**, se pudo comprobar que las muestras de cada compuesto, obtenidas por sucesivas recristalizaciones, presentaron idénticos *R*₆ Además, no exhibieron ninguna mancha extra en el carril de siembra, en ninguno de los dos sistemas de solventes ensayados, indicando que todas poseían pureza cromatográfica. Las *R*₁ de todos los compuestos se correspondieron con los reportados por Hergert⁹⁶ y Pagliero,²⁰ confirmando la identidad de los mismos. Los valores de *R*₁ de los distintos compuestos se muestran en la Tabla S.4.2 (Anexos 4.2).

Los *pf* de los seis compuestos, determinados por el método del tubo capilar, fueron coincidentes con los reportados por Hergert⁹⁶ y Pagliero.²⁰ Además, los *pf* mezclas de las muestras sólidas obtenidas por dichos autores y las preparadas en este trabajo de tesis presentaron rangos estrechos y comparables con los *pf* de cada derivado puro, lo cual demostró la identidad de los seis compuestos (Tabla S.4.3, Anexos 4.3).

Los espectros IR permitieron confirmar la identidad de los compuestos. No se observaron diferencias en las posiciones e intensidades de las bandas de absorción de las muestras provenientes de las dos recristalizaciones sucesivas de cada derivado. Las señales más destacadas de los espectros IR de los seis derivados NBS-Het, se detallan en el Anexo 4.3.

Las muestras provenientes de las recristalizaciones consecutivas del BSTHQ, el BSTHQa, el BSBZT y el BSTHiQ se analizaron también por HPLC, a fin de determinar su pureza cromatográfica. Como se aprecia en la Tabla 4.2, las áreas porcentuales relativas de dichas muestras fueron todas cercanas al 100 %. Esto reveló que, una nueva recristalización no conducía a un aumento de su pureza cromatográfica (ver Anexo 4.4).

Además, se evaluó la pureza térmica por DSC para muestras del BSTHQ, el BSBZT, el BSTHiQ y el p-NO₂-BSTHQ recristalizadas una vez (1Rec) y para la 2Rec del BSTHQa y el TM-BSTHQ. Los datos obtenidos se presentan en la Tabla 4.2, mientras que las curvas DSC respectivas se pueden consultar en el Anexo 4.5.

	BSTHQ	BSTHQa	BSBZT	BSTHIQ	P-NO2- BSTHQ	TM- BSTHQ
Pureza HPLC (% relativo de áreas)	98,7	99,6	99,7	100	ND	ND
Pureza DSC (mol%)	99,93 (1Rec) *	99,85 (2Rec) ^b	99,79 (1Rec) ^a	99,93 (1Rec)"	99,88 (1Rec) "	99,88 (2Rec) ^b

Tabla 4.2. Purezas por HPLC y DSC de los derivados NBS-Het.

1Rec - muestra recristalizada una vez. ⁵2Rec - muestra recristalizada dos veces consecutivas.

Los resultados obtenidos por TLC, pl mezcla e IR confirmaron la identidad de cada una de los compuestos. A su vez, por TLC, pl, HPLC y DSC se estableció que el grado de pureza de cada una de las muestras preparadas era aceptable (mayor al 99 %).

Capítulo 4

4.4.1. Análisis por Microscopía de Platina Calentable

A fin de evaluar las características morfológicas y el comportamiento de los sólidos durante su calentamiento, se recurrió a la MPC. El examen microscópico de las muestras reveló que todas ellas estaban constituidas por particulas cristalinas. En la Tabla 4.3, se presentan las fotografías registradas a través de la lente del microscopio Kofler. Como se aprecia, el hábito cristalino de cinco de los compuestos estudiados no experimentó cambios con las sucesivas recristalizaciones, a excepción del *p*-NO₂-BSTHQ, el cual presentó diferentes hábitos en la 1Rec (fibroso) y la 2Rec (acicular).

Muestra	BST	THQ	BST	HQa	BS	BZT
Muestra Hábito	1Rec laminar 1,6	2Rec laminar 1,0	2Rec accular 2	3Rec acicular 1,8	1Rec prismático 1,5	2Rec prismático 1,0
Fotografía (escala en mm)	and the second					۲
Muestra	BST	HiQ	p-NO ₂ -E	BSTHQ	TM-E	STHO
Muestra	1Rec	2Rec	1Rec	2Rec	1Rec	2Rec
Hábito	libroso	libroso	fibroso (pequeños)	acicular	laminar	laminar
	2,5	3,0	1.0	1.0	1,0	1.0
Fotografia (escala en mm)				N		AL AN

Tabla 4.3. Hábitos cristalinos de los seis derivados NBS-Het estudiados.

Durante el análisis por MPC, las muestras del **BSTHQ**, el **BSTHQa**, el **BSBZT**, el **BSTHIQ** y el *p*-NO₂-BSTHQ no presentaron ningún evento térmico previo a la fusión (saltos o movimientos, cambios de hábito o de color, o liberación de burbujas cuando se cubrieron con silicona). Además, las temperaturas de fusión determinadas por este método, *Tl*_{MPC}, fueron similares para los sólidos provenientes de las dos recristalizaciones (Tabla 4.4). En cambio, en el caso del **TM-BSTHQ** 1Rec fundió parcialmente a 80 °C y luego completamente a 90 °C. En tanto, la 2Rec sólo presentó una fusión a 91 °C. Cabe señalar que, en el caso de este compuesto, las recristalizaciones se efectuaron a partir de soluciones de distinta concentración. Así, para la 1Rec se utilizó una solución de 0.25 g/mL y para la 2Rec una de 0.07 g/mL.

Capítulo 4

		TfMPC (°C) "	
Compuesto	1Rec	2Rec	3Rec
BSTHQ	65	66	
BSTHQa		114	114
BSBZT	133	132	-
BSTHIQ	161	161	
p-NO2-BSTHQ	119	119	
TM-BSTHQ	80 y 90	91	

Tabla 4.4. Temperaturas de fusión determinadas por MPC (TIMPC) de los seis derivados NBS-Het.

La temperatura de fusión informada corresponde a la desaparición de la última traza de sólido."

4.4.2. DSC, TG-DTG y DRXP

A los fines de completar la caracterización térmica de los seis derivados en estudio y de determinar si alguna de las muestras recristalizadas estaban solvatadas, contenían solvente residual o presentaban alguna transición de fase no detectada por MPC, se recurrió a la DSC y la TG. En la Tabla 4.5 se consignan los datos DSC y TG-DTG más relevantes, mientras que las respectivas curvas se presentan en las Figs. S.4.6.1- 4.6.6 (Anexos 4.6).

Las curvas DSC del **BSTHQ**, del **BSTHQa**, del **BSBZT**, del **BSTHiQ** y del *p*-NO₂-BSTHQ, correspondientes a sus dos recristalizaciones consecutivas, presentaron entre 25 y 140 °C un único pico endotérmico agudo, debido a la fusión de las mismas (Figs. S.4.6.1-4.6.5, Anexos 4.6). Las temperaturas extrapoladas de inicio (T_{onset}) y de pico (T_{pico}) de dichas muestras fueron coincidentes (Tabla 4.5), dentro de los errores experimentales de la técnica, indicando que no había diferencias térmicas entre ellas. En cambio, las curvas DSC de la 1 y 2Rec del **TM-BSTHQ**, si bien mostraron un pico agudo de fusión con T_{onset} prácticamente iguales, el pico de la 1Rec exhibió un pequeño hombro en la ladera derecha, sugiriendo la presencia de un segundo componente o bien diferencias externas de la muestra (cristalinidad, tamaños de partículas, etc.).¹¹⁴ Previo a la fusión, ninguno de los derivados presentó endotermas de desolvatación, ni saltos o picos atribuibles a pérdidas de masa, indicando que eran sólidos libres de solvente.

Las curvas TG-DTG de los seis derivados presentaron una región horizontal en el rango de temperaturas comprendido entre 25 y el punto de fusión de cada uno, indicando que no se verifican pérdidas de masa en dicha zona. Sin embargo, por encima de 150 °C, aproximadamente, todos exhibieron pérdidas de masa asociadas a un proceso de descomposición, indicando que estos compuestos son estables en estado sólido pero en estado fundido descomponen. El Tonset de pérdida de masa determinada por DTG (Tabla 4.5) indica claramente que el BSTHQa, el BSBZT y el BSTHIQ son más inestables que el BSTHQ, el *p*-NO₂-BSTHQ y el TM-BSTHQ, en estado fundido, ya que la descomposición comienza a temperaturas muy próximas a las de fusión. El análisis cromatográfico de las fases fundidas del BSTHQa, del BSBZT y del BSTHIQ, obtenidas por calentamiento en el Kofler (hasta sus *pl*) y enfriándolas inmediatamente a -15 °C, reveló la presencia de productos de degradación, lo cual fue consistente con los resultados DSC y TG-DTG. Esto no fue observado en los tres
derivados restantes, ya que estos, con el mismo procedimiento de fusión-enfriamiento, no mostraron productos de degradación.

			DSC		DTG
Compuesto	esto Muestra T _{onset} (°	T _{onset} (°C) ^a	T _{pico} (°C) ^b	∆H ₇ (J/g)	T _{onset} de pérdida de masa
PETUO	1Rec	66,0	66,7	81,1	153,0
BSTHU	2Rec	66,1	66,9	81,3	157,2
PETHON	2Rec	110,6	111,5	100,8	153,5
BSTHQa	3Rec	110,6	111,2	103,7	154,9
00077	1Rec	126,9	128,8	114,3	160,0
85821	2Rec	128,6	129,7	114,8	162,4
PETHIO	1Rec	155,2	156,0	147,2	177,9
BSTHIQ	2Rec	155,3	156,0	144,9	178,8
NO BOTHO	1Rec	119,1	119,4	75,5	214,0
P-NO2-BSING	2Rec	118,9	119,4	77,4	214,3
TH DOTUG	1Rec	92,0	93,6 y 97,7 (hombro)	81,6	217,7
IM-BSTHQ	2Rec	92.2	93,1	87,6	211,1

Tabla 4.5. Datos de DSC y TG-DTG de las recristalizaciones de los seis derivados NBS-Het.

* Temperatura extrapolada de inicio de pico, Tonset por su sigla en inglés.

^b Temperatura máxima de pico.

En la Tabla 4.6 se indican los picos más intensos del patrón de DRXP de cada muestra de los derivados NBS-Het estudiados, mientras que sus difractogramas se presentan en las Fig. S.4.6.1 - 4.6.6 (Anexos 4.6).

Tabla 4.6. Listados de las reflexiones más intensas de los patrones de DRXP de muestras de los seis derivados NBS-Het.

Compuesto	Muestra	Reflexión de máxima intensidad (° 20)	Otros picos característicos (° 20)
DETUO	1Rec	8,62	8,62, 14,14, 17,23
BSING	2Rec	8,58	8,58, 13,95, 17,19
POTUOS	2Rec	20,05	10,00, 11,02, 20,05, 23,59
bsinua	3Rec	23,49	9,96, 11,1, 19,98, 23,49
DODTT	1Rec	14,35	10,18, 14,35, 15,04, 20,32, 21,55, 25,09, 28,81
DODLI	2Rec	28,95	10,17, 14,37, 15,15, 20,28, 21,66, 24,99, 28,95
PETHIO	1Rec	19,96	9,70, 10,84, 19,36, 19,96, 29,17
Barnio	2Rec	20,04	9,78, 10,95, 19,44, 20,04, 29,22
- NO BETHO	1Rec	30,42	10,56, 13,40, 21,30, 30,42
p-NO2-BSTHQ	2Rec	30,39	10,59, 13,56, 21,42, 30,39
TH BOTHO	1Rec	14,81	7,43, 11,21, 13,22, 14,81, 15,74, 22,25, 23,51
IM-DSING	2Rec	15,65	7,37, 11,27, 13,22, 14,72, 15,65, 22,13, 23,45

Los patrones de DRXP de las muestras preparadas de los seis compuestos estudiados resultaron coincidentes entre sí (Tabla 4.6). En efecto, cuando se comparan los difractogramas de dos cristalizaciones diferentes de cada derivado, no se observa la presencia de nuevas reflexiones, indicativas de fases adicionales, ni desplazamientos en las posiciones de los picos. Sólo se observaron variaciones en las intensidades y ancho de los picos, atribuibles a diferencias en el grado de orden cristalino, el tamaño de partículas y al fenómeno de

orientación preferencial, el cual no pudo eliminarse de las muestras. Esto reveló que, con las condiciones de cristalización ensayadas, se obtiene para cada compuesto la misma fase cristalina.

Cabe destacar, que los difractogramas de las 1Rec y 2Rec del **TM-BSTHQ** resultaron similares, observándose solo diferencias en las intensidades de algunos picos, lo cual indicó que las muestras eran isomórficas. Por tanto, las diferencias térmicas observadas por DSC, TG y MPC podrían indicar que las muestras presentan diferencias en su grado de cristalinidad y/o en factores externos (tamaño de cristal, defectos cristalinos, etc.) o bien existir gérmenes polimórficos no detectables por la DRXP. A fin de obtener información complementaria sobre la estructura interna de las muestras del **TM-BSTHQ**, se recurrió a la DRIFT. Dichos espectros también presentaron buena concordancia para las muestras procedentes de las diferentes cristalizaciones, como era de esperar (Fig. S.4.7, Anexos 4.7). Un análisis más detallado del comportamiento térmico de este derivado se desarrolla en una sección posterior.

Sobre la base de los resultados obtenidos, y dado que las muestras recristalizadas presentaron una elevada pureza química (> 99 %), se eligió a las 1Rec del BSTHQ, el BSBZT, el BSTHIQ y el *p*-NO₂-BSTHQ como MT para la búsqueda de polimorfos; en tanto que, sus 2Rec se calificaron como ET (referencia química, térmica y cristalográfica). Para el BSTHQa, se utilizó la 2Rec como MT y la 3Rec como ET. En cambio, para el TM-BSTHQ, se usó la 2Rec como MT y ET, debido al comportamiento térmico presentado por la 1Rec (Tabla 4.5).

4.4.3. Análisis exploratorio de estabilidad y solubilidad

Los resultados correspondientes a la estabilidad de los derivados NBS-Het en diferentes solventes se muestran en la Tabla S.4.8 (Anexos 4.8). El BSTHQa y el TM-BSTHQ resultaron ser estables en todos los solventes ensayados, durante las 24 h de medición. El BSTHQ y el *p*-NO₂-BSTHQ resultaron estables en la mayoría de los solventes ensayados, a excepción de tolueno en el cual se detectó degradación a la hora para el BSTHQ y a las 2 h para el *p*-NO₂-BSTHQ. El BSTHiQ mostró ser estable en casi todos los solventes ensayados, a excepción de tolueno y cloroformo. En cambio, el BSBZT demostró ser inestable en varios de los solventes ensayados, tales como acetonitrilo, benceno, cloroformo, diclorometano, DMF, DMSO, *iso*butanol, *iso*-propanol, metanol, *n*-heptano y tolueno.

Una vez identificados los solventes en los cuales los compuestos eran estables, se efectuaron ensayos de **solubilidad** a fin de determinar cuáles de ellos eran solventes o antisolventes y se obtuvo una solubilidad estimativa (Tabla 4.7). En función de los resultados obtenidos y según los criterios establecidos por la FA VII Ed. para la clasificación de solubilidad de un compuesto,¹³ se puede concluir que:

 Los compuestos BSTHQ, BSTHQa, BSBZT, p-NO2-BSTHQ y TM-BSTHQ fueron solubles (solubilidad ≥ 33 mg/mL) en acetato de etilo, acetona, acetonitrilo, benceno, cloroformo y diclorometano.

 El BSTHiQ fue moderadamente soluble (solubilidad entre 10-33 mg/mL) en acetato de etilo, acetona, acetonitrilo y benceno.

 Los derivados BSTHQa, BSBZT, BSTHiQ, p-NO2-BSTHQ y TM-BSTHQ fueron ligeramente solubles (solubilidad entre 1-10 mg/mL) en alcoholes, a excepción del BSTHQ que presentó una solubilidad mayor de 10 mg/mL.

 Todos los compuestos fueron prácticamente insolubles (solubilidad < 0,1 mg/mL) en agua.

Capítulo 4

Estudio del Estado Sólido

 Los compuestos BSTHQa, BSBZT, BSTHIQ, p-NO2-BSTHQ y TM-BSTHQ fueron prácticamente insolubles en n-pentano y n-heptano, mientras que el BSTHQ fue ligeramente soluble en dichos solventes.

	BSTHO	BSTHQa	BSBZT	BSTHIQ	p-NO2-BSTHQ	TM-BSTHQ
acetato de etilo	≥100	50,5	ND	9,1	≥73	≥51
acetona	2100	≥100	≥100	19,8	≥78	≥50
acetonitrilo	49,5	33.7	ND	12,6	≥79	≥53
agua	0.08	<0,05	<0,011	<0.05	<0,05	<0.05
benceno	≥100	50.5	ND	13,6	≥79	≥51
clorotormo	≥100	≥100	ND	ND	≥64	≥55
diclorometano	≥100	≥100	ND	48	≥64	≥50
etanol	12.8	6	2.5	0,9	5,2	4,7
(so-butanol	14.3	4.5	ND	0,5	2	2,2
iso-propanol	16,8	5,1	ND	0,6	2	2,3
metanol	24,8	12	ND	1,6	6	9
n-butanol	19,6	7	0,51	0,9	3,5	5
n-heptano	3,0	<0,1	<0,1	<0,1	<0.1	<0,1
n-hexano	3,7	2,8	ND	0,2	0,2	0.2
n-pentano	3.2	<0.1	<0,1	<0,1	<0.1	<0.1
n-pentanol	14,6	2.4	2.5	0.7	0,5	8
tolueno	ND	48	ND	ND	ND	≥48

Considerando los resultados de solubilidad y estabilidad, junto a la información de miscibilidad entre solventes obtenida de bibliografía¹³⁵ se diseñó la Tabla 4.8, la cual permite elegir, de forma dinámica, pares de cosolventes o solvente/antisolvente para diseñar ensayos de cristalización para este tipo de compuestos.

Capítulo 4

Buen cosolvente				-			-					111								
Antisolvente	8		2			8	and				ō	10	-	-	2	0	2	ō		
Buen solvente puro	0 e	ŭ	듣	m	E.	5	net	Ц	8	2	ta.	pa	2 C	ane	star	San	tar	an	O	enc
Mal solvente puro	tat	Cet	eto	Ag	enc	lo	20L	ð	NO	Eta	m m	E.	fete	But	1ª	F	Per	Ben	P	공
Pares inmiscibles	Ace	×	Ac		B	ŏ	ŝ		-		12	8	2	é	5	ć	é	5		-
Mal cosolvente		- 2					-		1	1	- 10			-0	- 1	-		1	- 11	_
Acetato etilo				1																
Acetona																				
Acetonitrilo		19	13												20	1				
Agua					-	- 31														24
Benceno																				
Cloroformo				100																
Diclorometano		11																		
DMF			1																	
DMSO		-11	-													3				
Etanol							-					1								
iso-Butanol																				
iso-Propanol						1.11											- 1			
Metanol		1										-								
n-Butanol										-										
n-Heptano															1					
n-Hexano		1.0																		
n-Pentano			1						1											
n-Pentanol																				
PEG													-							
Tolueno				10								121								

Tabla 4.8. Solventes buenos y malos y sistemas cosolventes y antisolventes para los seis NBS-Het estudiados (Adaptado de Keraliya y col. 136).

Los veinte solventes puros que se ensayaron se representaron en los 20 casilleros de la diagonal. Según la solubilidad que presentaron los derivados NBS-Het, se los clasificó en forma general, como buenos o ligeramente buenos (≥ 1 mg/mL) o malos (< 1 mg/mL). El valor de corte (*cutoff*) de 1 mg/mL se estableció arbitrariamente, considerando aproximadamente los límites establecidos en la FA.¹³ Es importante aclarar que la Tabla 4.8 plantea una clasificación general de los solventes estudiados, presentándose excepciones. Por ejemplo, el *n*-pentano se clasificó como mal solvente o antisolvente para los derivados estudiados, aunque el **BSTHQ** presentó una solubilidad de 3,2 mg/mL.

Si se contabilizan los sistemas de buenos cosolventes (por ejemplo, las mezclas binarias de dos solventes buenos) estos suman 120 (240/2 casilleros azules). Por otro lado, si contabilizamos los sistemas antisolventes (mezclas binarias de un solvente bueno y otro malo) ellos suman 38 (76/2 casillas verdes). Las búsquedas por tablas de miscibilidad de solventes confirmaron que 20 pares son inmiscibles entre sí (40/2 casillas grises) lo cual es importante para los estudios de antisolvencia, ya que estos pares no deben ser utilizados.

Capítulo 4

4.4.4. Búsqueda de polimorfos y caracterización de las muestras sólidas obtenidas

A fin de obtener diferentes formas sólidas de los seis derivados NBS-Het, se ensayaron los siete procedimientos de búsqueda de polímorfos descriptos en la Sección 4.3.3. En la Tabla 4.9 se resumen los 166 ensayos realizados.

	BSTHQ	BSTHQa	BSBZT	BSTHIQ	p-NO ₂ BSTHQ	TM- BSTHQ
Nº de solventes "	19	20	8	18	19	20
Procedimientos utilizados de obtención de polimorfos	I-VII	I-VI	I-VI	I-VI	I-VII	1-IV y VII
Condiciones de cristalización ^b	32	31	18	29	29	27

Tabla 4.9. Resumen de los ensayos de cristalización realizados sobre los seis derivados NBS-Het.

* Número de solventes en los que el compuesto demostró ser estable. * Ensayos totales realizados sobre cada derivado, variando las condiciones de cristalización (solvente/antisolventes, velocidades de enfriamiento, polímeros, etc.)

En el caso del **BSTHQ**, el análisis por MPC reveló que las muestras obtenidas presentaban *TI*_{MPC} similares, comprendidas entre 64 y 66 °C, sugiriendo que todas correspondían a la misma fase cristalina que la del ET (*TI*_{MPC} = 66 °C). Cabe señalar que la precisión del MPC Kofler es de ± 3 °C; por lo tanto, los valores estuvieron dentro del rango de variación de la medición. Además, al no evidenciarse eventos térmicos previos a la fusión se descartó la presencia de polimorlos de menor *pl* o solvatos (Tabla S.4.9.1.1, Anexos). Con los procedimientos I-VI, se obtuvieron sólidos euhedros,¹³⁷ constituidos por partículas de color blanco transparente. El hábito cristalino predominante fue el laminar (igual que su ET), excepto en el ensayo V (etanol:*n*-pentano), donde exhibió hábito tabular. Cabe señalar que la descripción de los hábitos cristalinos de todas las muestras se efectuó siguiendo la nomenclatura consignada por la USP¹¹⁸ y por Haleblian.¹³⁷

La muestra del **BSTHQ** seleccionada para ser caracterizada por DRXP y DRIFT fue la obtenida de etanol:*n*-pentano (V). En la Tabla 4.10 se comparan las características morfológicas y térmicas de esta muestra y el ET, determinadas por MPC.

Capítulo 4

Tabla 4.10. Características morfológicas y térmicas del BSTHQ ET y del BSTHQ etanol:n-pentano (V) determinadas por MPC.

	BSTHQ ET	BSTHQ etanol:n-pentano (V)
Hábito cristalino	laminar	tabular
	1,0 mm	1,0 mm
Fotografia		Market Control of Cont
Datos térmicos	Eventos térmicos previos a la fusión: No Tímec: 66 °C	Eventos térmicos previos a la fusión: No 7f _{MPC} : 65 °C
Datos térmicos ª	Burbujeo: No Eventos térmicos previos a la fusión: No T/ _{MPC} : 66 °C	Burbujeo: No Eventos térmicos previos a la fusión: No 7f _{MPC} : 65 °C

^a Se repltió el ensayo embebiendo los cristales en aceite de silicona.

Los patrones de DRXP de las muestras del **BSTHQ** etanol:*n*-pentano (V) y el ET resultaron coincidentes entre sí (Fig. S.4.9.1.1 y Tabla S.4.9.1.2, Anexos 4.9.1). En efecto, no se observó la aparición de nuevas reflexiones indicativas de fases adicionales, y hubo buena coincidencia con las posiciones de los picos. Esto reveló que, en las condiciones ensayadas, se obtiene la misma fase cristalina, la del ET. Sólo se observaron variaciones en las intensidades de los picos, atribuibles a diferencias en orientación preferencial. Por otro lado, los espectros DRIFT de la muestra y del ET (Fig. S.4.9.1.2, Anexos 4.9.1) no mostraron diferencias en las posiciones y formas de las bandas de absorción. Esto indicó que sus estructuras serían las mismas, lo que a su vez concuerda con los resultados encontrados por DRXP.

En el caso del **BSTHQa**, se comprobó por MPC, que las muestras obtenidas presentaban TI_{MPC} similares, comprendidas entre 113 y 115 °C, sugiriendo que todas correspondian a la misma fase cristalina, la del ET ($TI_{MPC} = 114$ °C). No se observaron eventos térmicos previos a la fusión (Tabla S.4.9.2.1, Anexos 4.9.2).

Con respecto a las características morfológicas, el hábito predominante fue el acicular (al igual que su ET), aunque también se obtuvieron muestras con hábitos laminar y prismático y sólidos anhedros.

Los cristales del **BSTHQa** acetona (III) se seleccionaron para su caracterización por DRXP, TG, DSC y DRIFT, dadas las diferencias que presentaron en el hábito cristalino con respecto al ET. En la Tabla 4.11 se presentan los datos térmicos y morfológicos de ambas muestras.

	BSTHQa ET	BSTHQa acetona (III)
Hábito cristalino	acicular	sólido anhedro
Fotografía	1,8 mm	1,0 mm
Datos térmicos	Eventos térmicos previos a la fusión: No Tí _{MPC} : 114 °C	Eventos térmicos previos a la fusión: No T/ _{MPC} : 114 °C
Datos térmicos ª	Burbujeo: No Eventos térmicos previos a la fusión: No	Burbujeo: No Eventos térmicos previos a la fusión: No

Tabla 4.11. Características morfológicas y térmicas del BSTHQa ET y del BSTHQa acetona (III) determinadas por MPC.

Se repitió el ensayo embebiendo los cristales en aceite de silicona.

El difractograma de DRXP del **BSTHQa** acetona (III) resultó coincidente con el del ET, indicando que poseían la misma estructura cristalina (Fig. S.4.9.2.1 y Tabla S.4.9.2.2, Anexos 4.9.2). Las curvas DSC y TG del **BSTHQa** ET y acetona (III) presentaron perfiles similares, inclusive sus T_{onset} (110,6 °C y 109,8 °C, respectivamente) fueron similares. Al igual que para el ET, para el **BSTHQa** acetona no se observaron picos DSC endotérmicos, ni pérdidas de masa por debajo de 100 °C, que podrían atribuirse a procesos de desolvatación (Fig. S.4.9.2.2, Anexos 4.9.2). Los espectros DRIFT de ambas muestras fueron superponibles, evidenciando la presencia de la misma estructura molecular, lo cual es coincidente con los resultados obtenidos por DRXP (Fig. S.4.9.2.3, Anexos 4.9.2).

Los procedimientos de cristalización aplicados en el **BSBZT** condujeron a muestras sólidas con *Tf*_{MPC} similares entre sí, comprendidas entre 131 y 134 °C, sugiriendo que todas corresponderían a la misma fase cristalina (igual a la del ET, *Tf*_{MPC} = 132 °C). Además, no se observaron eventos térmicos previos a la fusión, descartándose la existencia de polimorfos de menor *pl* o solvatos (Tabla S.4.9.3.1, Anexos 4.9.3).

El hábito predominante fue el prismático (igual que el de su ET), aunque algunas muestras presentaron hábito laminar, y otras fueron sólidos anhedros.

La muestra **BSBZT** quitosano (VI) se seleccionó para ser caracterizada por DRXP y DRIFT, por presentar un hábito cristalino diferente con respecto al ET. En la Tabla 4.12 se presenta un análisis comparativo de los datos obtenidos por MPC de esta muestra y su ET.

	BSBZT ET	BSBZT quitosano (VI)
Hábito cristalino	prismático	sólido anhedro
Fotografia	1,0 mm	1.0 mm
Datos térmicos	Eventos térmicos previos a la fusión: No Tímeo: 133 °C	Eventos térmicos previos a la fusión: No Títuro: 131 °C

Tabla 4.12. Características morfológicas y térmicas del BSBZT ET y del BSBZT quitosano (VI) determinada por MPC.

Los patrones de DRXP del **BSBZT** ET y quitosano (VI) resultaron coincidentes entre sí. Sólo se observaron variaciones en las intensidades y ancho de algunos picos, atribuibles a la orientación preferencial (Fig. S.4.9.3.1, Anexos 4.9.3). Los espectros DRIFT fueron similares (Fig. S.4.9.3.2, Anexos 4.9.3), indicando que las muestras no presentaban diferencias estructurales, y ello fue congruente con los resultados hallados por DRXP.

La cristalización del **BSTHiQ** con los procedimientos I-VI, condujo a 29 muestras que exhibieron *Tl*_{MPC} similares entre si, comprendidas entre 159 y 163 °C, sugiriendo que todas correspondían a la misma fase sólida, la de su ET (*Tl*_{MPC} = 161 °C). Un aspecto destacable de dichas muestras es que todas presentaron el hábito acicular, el cual fue coincidente con el del ET (Tabla S.4.9.4.1, Anexos 4.9.4). Al igual que con los derivados precedentes, no se observó para ninguna de las muestras eventos térmicos previos a la fusión, a excepción del **BSTHIQ** agua (I), para la cual se detectó la liberación de burbujas cuando fue embebida en aceite de silicona. Esto indicaría la presencia de solvente residual en la muestra o un posible hidrato. Dicho material se seleccionó para su caracterización por DRXP, análisis térmico (DSC y TG) y DRIFT. En la Tabla 4.13 se resumen las características morfológicas y térmicas del **BSTHIQ** ET y del **BSTHIQ** agua (I).

Capítulo 4

	BSTHIQ ET	BSTHiQ agua (I)
Hábito cristalino	acicular	acicular
Fotografía	3,0 mm	3,0 mm
Datos térmicos	Eventos térmicos previos a la fusión: No T/ _{MPC} : 161 °C	Eventos térmicos previos a la fusión: No T/MPC: 161 °C
Datos térmicos *	Burbujeo: No Eventos térmicos previos a la fusión: No 7/wec: 161 °C	Burbujeo: Si (126-150 °C) Eventos térmicos previos a la fusión: No T/uec: 160 °C

Tabla 4.13. Características morfológicas y térmicas del BSTHIQ ET y del BSTHIQ agua (I) determinadas por MPC.

* Se repitió el ensayo embebiendo los cristales en aceite de silicona.

Al analizar en forma integral los resultados encontrados por DRXP, DSC, TG y DRIFT del BSTHiQ agua (I) y ET, se confirmó que ambas muestras sólidas cristalizaron como una única fase anhidra. En efecto, los patrones de DRXP fueron coincidentes en posiciones (20) e intensidades relativas (Fig. S.4.9.4.1, Anexos 4.9.4). Las curvas DSC y TG (Fig. S.4.9.4.2, Anexos 4.9.4) también resultaron prácticamente superponibles, con Torser similares (155,3 °C y 154,8 °C, respectivamente). No se evidenciaron eventos DSC endotérmicos y/o exotérmicos por debajo de 155 °C, ni tampoco pérdidas de masa en la curva TG, lo cual llevó a descartar la presencia de hidratos, solvente residual y transiciones sólido-sólido en ese rango de temperatura. Los espectros DRIFT resultaron superponibles (Fig. S.4.9.4.3, Anexos 4.9.4).

Las 29 muestras obtenidas, utilizando los procedimientos I-VI, del *p*-NO₂-BSTHQ, presentaron por MPC *Tf*_{MPC} similares, comprendidas entre 117 y 119 °C, sugiriendo que todas correspondían a la misma fase cristalina, la misma del ET (*Tf*_{MPC} = 119 °C). No se observaron eventos térmicos sugestivos de transiciones sólido-sólido, ni desolvataciones, descartándose la existencia de polimorfos de menor *pf* o solvatos (Tabla S.4.9.5.1, Anexos 4.9.5). Es de destacar que, todas las muestras fueron sólidos euhedros,¹⁹⁷ constituidos por partículas transparentes de color amarillo. Se observaron varios hábitos, entre ellos el laminar y el prismático, pero el predominante fue el acicular (al igual que su ET). En la Fig. 4.11 se aprecia una fotografía de los cristales prismáticos del *p*-NO₂-BSTHQ, que nuclearon a partir de poliestireno.

Fig. 4.11. Fotografia del p-NO2-BSTHQ cristalizado con poliestireno como heteronúcleo.

Para el TM-BSTHQ, aplicando los procedimientos I-IV y VII, se obtuvieron 27 sólidos euhedros, con diferentes hábitos: prismático, laminar y acicular. En cambio, por evaporación lenta de benceno y en el ciclo de calentamiento-enfriamiento se obtuvieron dos muestras sólidas que se presentaron como sólidos anhedros.

Las muestras obtenidas exhibieron comportamientos térmicos variados. Algunas presentaron un solo evento de fusión, con Tt_{MPC} comprendidas entre 90 y 94 °C, similar al ET ($Tt_{MPC} = 91$ °C). Otras, mostraron dos eventos, el primero se manifestó en forma de fusión parcial y el segundo como una fusión total, en ambos casos las Tt_{MPC} variaron dependiendo de la muestra (Tabla S.4.9.6.1, Anexos 4.9.6).

Aunque no provino del screening de polimorfos, es de destacar aqui el comportamiento del TM-BSTHQ 1Rec (Tablas 4.4 y 4.5), debido a que, tal como se detalló anteriormente, evidenció por DSC a 10 °C/min, un pico de fusión ancho con un pequeño hombro a aproximadamente 97,7 °C (Fig. 4.13). Los sucesivos intentos para reproducir la obtención de dicha muestra, bajo las condiciones indicadas, no tuvieron éxito. En tanto que, el TM-BSTHQ 2Rec, elegida como ET, pudo ser reproducida y obtenida en múltiples oportunidades.

Las muestras del **TM-BSTHQ** logradas de polipropileno (VI), benceno (III), etanol (I) y etanol (II) se seleccionaron para su caracterización por DSC y se compararon con las de 1Rec y 2Rec (Fig. 4,12 y 4.13). El examen de las curvas DSC de 1Rec a dos β diferentes (Fig. 4.12 y 4.13) reveló que con una velocidad de calentamiento lenta (Fig. 4.12) la muestra exhibe dos endotermas. En cambio, a 10 °C (Fig. 4.13) exhibe un pico de fusión seguido de un pequeño hombro endotérmico, sugiriendo conversiones polimórficas dependientes de la velocidad de calentamiento. La 2Rec, en cambio, presentó un único evento de fusión (T_{entet} = 92,6 °C) a las dos β utilizadas. El **TM-BSTHQ** polipropileno (VI) presentó una sola endoterma a las dos β utilizadas, mientras que para el **TM-BSTHQ** benceno (III) a 1 °C/min se visualizaron dos picos endotérmicos, a 89,8 °C y 95,1 °C (T_{onset}, Fig. 4.12) y uno a 10 °C/min (Fig. 4.13), sugiriendo también conversiones polimórficas dependientes de calentamiento.

Fig. 4.12. Curvas DSC (β = 1 *C/min) de muestras seleccionadas del TM-BSTHQ (flujo de N₂ a 50 mL/min).

Capítulo 4

Es de destacar que, en el rango comprendido entre 25 y 90 °C, ninguna de las curvas DSC (Fig. 4.12 y 4.13) del **TM-BSTHQ**, presentaron picos endotérmicos atribuibles a procesos de desolvatación. Ello fue confirmado por TG, ya que las curvas respectivas (Fig. S.4.9.6.1, Anexos 4.9.6) no mostraron pérdida de masa en el intervalo de temperaturas mencionado. Esto evidenció la ausencia de solvatos y de solvente residual para las muestras del **TM-BSTHQ**.

Fig. 4.13. Curvas DSC (β = 10 °C/min) de muestras seleccionadas del TM-BSTHQ (flujo de N₂ a 50 mL/min).

Los intentos de conseguir monocristales del TM-BSTHQ resultaron exitosos cuando se utilizaron las técnicas de:

- evaporación lenta de una solución diluida en n-hexano conteniendo polietileno de alta densidad (PAD-VI) y
- evaporación lenta de una solución metanólica diluida (M-III)

En la Tabla 4.14 se presentan los datos térmicos y morfológicos de dichas muestras.

Capítulo 4

	PAD-VI	M-III
Solvente	n-hexano	metanol
Hábito cristalino	prismático	laminar
Fotografia	1,0 mm	1,0 mm
Datos térmicos	Eventos térmicos previos a la fusión: No 7f _{MPC} : 92 °C	Eventos térmicos previos a la fusión: No T/MPC: 90 °C
Datos térmicos *	Burbujas: No Eventos térmicos previos a la fusión: No 7f _{MPC} : 92 °C	Burbujas: No Eventos térmicos previos a la fusión: No <i>Tl</i> _{MPC} : 89 °C

Tabla 4.14. Características morfológicas	y térmicas del PAD-VI y de	el M-III determinadas por MPC.
--	----------------------------	--------------------------------

^a Se repitió el ensayo embebiendo los cristales en aceite de silicona.

Los monocristales obtenidos fueron de un tamaño adecuado, con los cuales se pudieron resolver sus estructuras cristalinas, aplicando la DRXM. Esto resultó útil para confirmar si correspondían a polimorfos diferentes, dado que entre ambas muestras se presentaron características morfológicas distintas y leves diferencias en los análisis térmicos (Tabla 4.14). Las estructuras cristalinas del **TM-BSTHQ** PAD-VI y M-III, resueitas a -100 °C, fueron isoestructurales. Para confirmar que las determinaciones a temperatura ambiente y -100 °C no produjeran cambios de fase, se midieron los parámetros de celda unitaria a varias temperaturas (Tabla 4.15). Entre 22 °C y -100 °C las dos muestras poseen la misma fase (de aquí en adelante Forma I del **TM-BSTHQ**). La contracción de la celda unitaria, que se observó al disminuir la temperatura, fue un comportamiento esperable.¹⁰⁶ Se llevó a cabo la resolución completa de la estructura cristalina y el refinamiento de ambas, a -100 °C, determinándose que pertenecían al grupo espacial *P2*₁/c, monoclínico.

Tabla 4.15. Dimensione	es de la ce	Ida unitaria (a, bycen	Ayβen°)d	el TM-BS	THQ PAD-	/I y M-III a
diferentes temperaturas	(°C).		11-24-2-22	and set of the set	adat concrete a	/C56///15/012110	1152

Temp	22		2		-23		-48		-73		-100	
-	PAD- VI	м-ш	PAD- VI	м-ш	PAD- VI	м-ш	PAD- VI	M-111	PAD- VI	м-ш	PAD- VI	M-III
4	9,049	9,019	9,041	9,033	9,028	9,022	9.019	9.014	9,005	9,007	8,998	8,995
h	7,959	7,942	7.922	7,926	7,894	7,896	7,869	7,868	7,834	7,843	7,814	7,815
e.	24,206	24,192	24,220	24,228	24,225	24,228	24,230	24,235	24,220	24,238	24,334	24.235
β	98,894	98,889	98,956	98,943	99,073	99,056	99.177	99,168	99.265	99.263	99.371	99.371

En la Fig. 4.14 se comparan los patrones de DRXP experimentales de 1Rec y 2Rec con el calculado a partir de los datos de la estructura cristalina del **TM-BSTHQ** PAD-VI. Como puede apreciarse, todos son coincidentes en posiciones (2θ) e intensidades relativas, a partir de lo cual se pudo confirmar que 1Rec y 2Rec eran isomórficos y poseían la misma estructura monoclínica (Forma I) que el **TM-BSTHQ** PAD-VI y M-III.

Fig. 4.14. Patrones experimentales de DRXP del TM-BSTHQ 1 Rec y 2Rec, y patrón calculado del TM-BSTHQ PAD-VI.

A pesar de que 1Rec y 2Rec resultaron isoestructurales, sus comportamientos térmicos fueron diferentes (Fig. 4.12). Ello podría atribuirse a la presencia de una fase polimórfica adicional, sólo detectada por DSC, o a factores externos (tamaños, defectos cristalinos, etc.). A fin de profundizar sobre el comportamiento térmico de 1Rec, se recurrió a la DRXP-TV. Las temperaturas a las cuales se efectuaron dichas determinaciones se programaron en función de las endotermas encontradas por DSC. A partir de 88 °C se notaron cambios en las intensidades de algunos picos, pero las variaciones más importantes se visualizaron a 91 °C. El pico dominante a 14,66 ° 20 desaparece y surge uno nuevo a 18,67 ° 20. El patrón a 91 °C, probablemente representa otra fase cristalina. Estos cambios se corresponden con los observados por DSC para dicha muestra. La endoterma a T_{onset} = 91,8 °C y la pequeña exoterma a T_{onset} = 93,2 °C corresponderían a la conversión de la fase inicial en una nueva fase. En tanto que, la segunda endoterma a T_{onset} = 96,9 °C se asociaria a la fusión de esa segunda fase, ya que el patrón DRX a 97 °C, corresponde al de un material fundido (Fig. 4.15).

Capítulo 4

Fig. 4.15. Patrones de DRXP-TV del TM-BSTHQ 1Rec en el rango 30-97 °C.

La muestra fundida se dejó enfriar en el difractómetro hasta 25 °C y posteriormente se examinó por MLP. El examen microscópico reveló la presencia de cristales bien formados y con buenas propiedades de extinción, a partir de los cuales se seleccionó un monocristal que resultó útil para resolver la estructura cristalina de la muestra (Capítulo 5). La estructura cristalina de la misma no fue coincidente con la previamente resuelta del **TM-BSTHQ**, y ello indicó que por calentamiento hasta 100 °C y posterior enfriamiento hasta 25 °C, se obtiene una segunda fase cristalina monoclínica (grupo espacial *P*2₁/n) de este compuesto, la cual se designó como polimorfo II. Los detalles sobre el empaquetamiento y conformaciones de ambas fases se presentan en el Capítulo 5. En la Fig. 4.16 se exhiben los patrones DRXP calculados de ambas fases (polimorfo I y II).

Fig. 4.16. Patrones calculados a partir de los datos de DRXM de las estructuras cristalinas de las Formas I y II.

Además de determinar la estructura cristalina del **TM-BSTHQ** 1Rec F, se registró su perfil DSC a dos β. A 10 °C/min (Fig. 4.17.A), la curva mostró tres endotermas separadas entre sí en aproximadamente 10 °C. En cambio, a 1 °C/min (Fig. 4.17.B), la tercera endoterma fue apenas detectable. Esto indicaría que el comportamiento térmico es afectado por la velocidad de calentamiento y que se estaría en presencia de varias fases sólidas, no sólo las formas I y II del **TM-BSTHQ**.

Fig. 4.17. Curva DSC del TM-BSTHQ 1Rec F (después de ser calentado desde 25 °C a 100 °C y enfriado nuevamente a 25 °C) a dos β: A) 10 °C/min y B) 1 °C/min.

A fin de interpretar los eventos DSC de 1Rec F, se efectuaron observaciones por MPC (Fig. 4.18) y determinaciones de DRXP-TV (Fig. 4.19). Como se aprecia en la Fig. 4.18, por MPC se visualizó la fusión entre 70-73 °C y luego, entre 77-82 °C, una cristalización. Después de los 82 °C y hasta los 130 °C, no se observaron cambios térmicos en el sólido.

Capítulo 4

Conforme a lo indicado por la Fig. 4.19, los patrones DRXP-TV de la muestra fueron superponibles entre 65 °C y 90 °C, descartándose la ocurrencia de transiciones de fases a esas temperaturas. La invariancia de los difractogramas a 73 °C, 82 °C y 92 °C (las temperaturas de las endotermas DSC de la Fig. 4.17) es de destacar, ya que este resultado está en contraposición con lo indicado por DSC. Sin embargo, debe mencionarse que las condiciones experimentales de ambos experimentos no fueron estrictamente similares Se notaron algunas diferencias en los patrones registrados a 30 y 50 °C, que indicarían que la/s fases de partida experimentarían algún cambio inducido por el calentamiento. La temperatura de fusión de 1Rec F registrada por DRXP-TV fue menor (92 °C) que la obtenida para 1Rec (97 °C), en coincidencia con los datos DSC (Fig. 4.17). Estos resultados sugerirían que los cambios observados por DSC tendrían su origen en factores externos de la muestra o bien que la misma posee gérmenes polimórficos no detectables por DRXP-TV.

Capítulo 4

Fig. 4.19. Patrones de DRXP-TV del TM-BSTHQ 1Rec F en el rango 30-95 °C.

Las muestras **TM-BSTHQ** 1Rec y 2Rec también fueron calentadas y enfriadas en dos equipos DSC, uno sin control (DSC 1) y otro con control de la velocidad de enfriamiento (DSC 2). Con el DSC 1 se emplearon dos velocidades de calentamiento (1 y 10 °C/min) y no se registraron las curvas DSC de enfriamiento, ya que el equipo no permitía su registro. En las Figs. 4.20 A y B se exhiben las curvas DSC de calentamiento para el **TM-BSTHQ** 1Rec y 2Rec a las dos velocidades estudiadas. Como rasgo distintivo, puede mencionarse que las curvas correspondientes a los materiales fundidos y recalentados (1Rec F y 2Rec F) presentaron exotermas de cristalización por debajo de 50 °C (Fig. 4.20 A) o 70 °C (Fig. 4.20 B), las cuales no estaban presentes en las muestras inicialmente calentadas (1Rec y 2Rec). Luego de éstas, se observaron diferentes endotermas que variaron en número (dos, tres e incluso cuatro) y en las T_{onset}. Estos resultados indicarian que el **TM-BSTHQ** presenta un comportamiento térmico complejo, con transiciones de fases y/o eventos térmicos inducidos por el calentamiento y enfriamiento y sus respectivas velocidades.

1

Fig. 4.20. Ciclos de calentamiento-enfriamiento-calentamiento sobre 1Rec y 2Rec, con β = 1 °C/min (A) y β = 10 °C/min (B).

Con el DSC 2, en cambio, se estudió la 2Rec, la cual fue sometida a dos condiciones diferentes en las que se variaron las velocidades de enfriamiento (corrida 1 a -10 y corrida 2 a - 5 °C/min). El análisis de estos resultados mostraron que, en la corrida 1, se obtuvo un sólido que presentó, en el segundo calentamiento, una endoterma a T_{orret} = 92 °C. Mientras que en la corrida 2, el segundo calentamiento produjo un pico a T_{orret} = 73 °C. Se pudo corroborar así, que las interconversiones son sensibles a las velocidades de enfriamiento que se utilicen, llevando a producir fundidos con diferentes endotermas en uno y otro caso.

Cabe señalar, que el polimorfismo es frecuente en las sulfonamidas. Un ejemplo notable es la clorpropamida, fármaco cuyo polimorfismo fue estudiado exhaustivamente por Faudone,¹⁶⁷ la cual presentó múltiples polimorfos sensibles a los ciclos de calentamiento-enfriamiento.

Por otro lado, se llevó a cabo un mortereado en la muestra 1Rec, con el objetivo de estudiar el efecto de reducción del tamaño de las partículas sobre el comportamiento térmico. Se realizó

Capítulo 4

Estudio del Estado Sólido

una malaxado suave durante 1 min y otro más intenso durante 5 min. Los resultados, expuestos en la Fig. 4.22, demuestran que la doble endoterma sigue permaneciendo sin cambios, por lo que el tamaño de los cristales no estaría afectando al comportamiento térmico evidenciado por dicho material.

Fig. 4.21. Curvas DSC a β = 1 °C/min sobre muestras mortereadas de 1Rec.

En resumen, el análisis integral de todas las curvas DSC, permitiría identificar un total de cuatro endotermas de fusión, con los estudios realizados hasta el momento. Las T_{onset} de las mismas serian aproximadamente: 73 °C (i), 82 °C (ii), 92 °C (iii) y 97 °C (iv). Las curvas DSC del **TM-BSTHQ** 2Rec y el **TM-BSTHQ** polipropileno (VI) sólo presentaron la endoterma iii. En cambio, las curvas del **TM-BSTHQ** 1Rec, etanol (I) y (II) exhibieron las endotermas iii y iv. En 1Rec F se obtuvieron curvas con tres endotermas (i, ii y iii). Mientras que la curva DSC de 2Rec F a 10 °C/min presentó las cuatro endotermas (i, ii, iii y iv), como se aprecia en la Fig. 4.20, donde la endoterma ii se observa al ampliar la zona.

4.5. Conclusiones

Se prepararon 166 muestras sólidas correspondientes a los seis derivados de NBS-Het seleccionados, aplicando siete métodos de cristalización distintos. Todas las muestras se caracterizaron por MPC, y las que presentaron características morfológicas o térmicas diferentes se analizaron además por DRXP, DRXP-TV, TG, DSC y/o DRIFT.

La caracterización de las propiedades del estado sólido del BSTHQ, el BSTHQa, el BSBZT, el BSTHiQ y el p-NO₂-BSTHQ indicó que cada uno de ellos presenta, al menos, una fase cristalina, la cual sería la estable a temperatura ambiente (Tabla 4.16). Para el TM-BSTHQ, en cambio, se logró identificar, caracterizar y resolver la estructura cristalina de dos fases (Formas l y II). La forma I, se obtiene por cristalización en diferentes solventes y condiciones, mientras que la forma II se obtuvo por calentamiento y enfriamiento de la fase fundida del polimorfo I. La forma II no fue posible, hasta el momento, obtenerla por ensayos de cristalización, y no se dispone de un patrón experimental que coincida con el calculado. Conforme a lo evidenciado por DSC y DRXP-TV, el TM-BSTHQ presentaría formas polimórficas adicionales. Aislar y caracterizar completamente todas ellas, y determinar sus relaciones termodinámicas y

estructurales es una proyección importante de este trabajo de tesis, y podría formar parte de un proyecto a futuro.

Se pudo establecer, también, que las condiciones de cristalización y los solventes utilizados son factores que afectan al hábito cristalino del BSTHQ, el BSTHQa, el BSBZT, el p-NO₂-BSTHQ y el TM-BSTHQ (Tabla 4.16).

Tabla 4.16. Resumen de los hábitos cristalinos y fases encontradas para los seis derivados NBS-Het estudiados.

	BSTHQ	BSTHQa	BSBZT	BSTHIQ	p-NO2- BSTHQ	TM-BSTHQ
Hábitos	Laminar, tabular, sólido anhedro	Acicular, Iaminar, prismático, sólido anhedro	Prismático, Iaminar, sólido anhedro	Fibroso	Acicular, laminar, prismático, fibroso, sólido anhedro	Laminar, acicular, prismático, sólido anhedro
Fases cristalinas (Ta = temperatura ambiente)	Una fase que sería la estable a Ta	Una fase que sería la estable a Ta	Una fase que sería la estable a Ta	Una fase que sería la estable a Ta	Una fase que seria la estable a Ta	Forma I y II

5. ESTUDIO DE PROPIEDADES ESTRUCTURALES TRIDIMENSIONALES

La actividad intrínseca de un compuesto y el modo de interacción con los receptores biológicos son dependientes de su estructura química tridimensional en solución, pero este conocimiento es aún de difícil acceso. Es así que las geometrías moleculares, determinadas experimentalmente por DRXM, a partir de sus estructuras cristalinas o las obtenidas mediante cálculos sobre una molécula en el vacío (aislada) o en un solvente, se consideran, actualmente, las mejores aproximaciones para su estudio.

A lo largo de este capítulo se detallan los estudios de las propiedades estructurales tridimensionales del BSTHQ, el BSTHQa, el BSBZT, el BSTHIQ, el p-NO₂-BSTHQ y el TM-BSTHQ. Se presentan los resultados encontrados mediante resolución de sus estructuras cristalinas y de cálculos de los mínimos obtenidos por QC, en fase gaseosa (moléculas aisladas) y en agua. Finalmente, se compara la información proveniente de ambas metodologías. Se analizan las conformaciones preferidas y los EPH intramoleculares, recurriendo a cálculos de Orbitales Naturales de Enlace (NBO).¹⁶⁸ Además, se estudia la piramidalización del N y sus consecuencias sobre el ordenamiento tridimensional de los derivados, las energías relativas entre diferentes isómeros, las barreras energéticas y los estados de transición (ET⁴).

La información obtenida podrá ser aplicada en futuros estudios de screening virtual y análisis 3D-QSAR y como herramientas para el diseño racional de nuevos análogos.

5.1. Introducción

La capacidad de las moléculas de interaccionar entre sí y con las de su entorno, a través de fuerzas de reconocimiento molecular (no covalentes) va determinar todo su comportamiento en el estado sólido, líquido, en solución y también sus propiedades farmacológicas (interacciones fármaco-receptor, farmacocinéticas, biofarmacéuticas, etc.). Entre las principales interacciones intermoleculares se pueden mencionar a los EPH y a las fuerzas de van der Waals.

Los EPH influyen no sólo en la conformación molecular, sino también en la formación de la red cristalina y, por consiguiente, en las propiedades FQ macroscópicas tales como pf y solubilidad, entre otras.¹⁶⁹⁻¹⁷¹ La estructura secundaria de una gran variedad de compuestos se debe, por lo general, a la formación de dichos enlaces. Están presentes en el agua, como así

Capítulo 5

también en estructuras macrocíclicas complejas y en los pares de bases del ADN, entre otras. Los primeros identificados fueron, los ahora denominados clásicos como los O-H···A y N-H···A (A = O, N, halógeno, etc.). En años más recientes, se conocieron los EPH denominados no convencionales, entre ellos los X-H···A, formados por donantes (X = C) y aceptores débiles (A = O, N o sistemas π). Ellos fueron descubiertos antes, o incluso durante la década del 70, pero no se los estudió en profundidad por ser considerados poco importantes.¹⁷² Esta situación cambió a partir de la década del 80, al advertir que estaban implicados en muchas estructuras cristalinas de moléculas pequeñas y también en solución e incluso en la acción de los fármacos a nivel biológico.^{170, 173}

Las preferencias direccionales de los EPH estarían determinadas por restricciones geométricas fuertes, cumpliendo así el papel de soporte o mantención de la estructura final.¹⁷³ Pueden ser descriptos a partir de tres parámetros característicos, que son: distancia entre aceptor y donor (*d*), distancia entre los átomos pesados X y A (*D*) y ángulo entre éstos últimos, con el H como vértice (θ), Fig. 5.1.

Fig. 5.1. Parámetros geométricos estudiados en EPH.

Utilizando los parámetros antes mencionados, Jeffrey clasificó a los EPH en fuertes, moderados y débiles, según los criterios que se resumen en la Tabla 5.1.¹⁷⁰

	Fuerte	Moderado	Débil
Tipo de interacción	Fuertemente covalente	Electrostática	Electrostática/dispersiva
d (Å)	1,2-1,5	1,5-2,2	> 2,2
Estiramiento de X-H (Å)	0,08-0,25	0,02-0,08	< 0,02
X-H vs. H-A	X-H ~ HA	X-H < H-A	X-H << H A
D (Å)	2,2-2,5	2,5-3,2	> 3,2
Direccionalidad	Fuerte	Moderada	Débil
0 (°)	170-180	> 130	> 90
Energia de enlace (kcal/mol)	15-40	4-15	< 4

Tabla 5.1. Clasificación de EPH establecida por Jeffrey.¹⁷⁰

Los parámetros que describen a los enlaces del tipo C-H--O han sido estudiados por Desiraju y col.¹⁷⁴ y por Taylor y Kennard,¹⁷⁵ quienes establecieron valores límites determinados a partir del análisis de estructuras cristalográficas:

- Distancia d: entre 2,0-3,0 Å.
- Distancia D: entre 3,0-4,0 Å.
- Ångulo θ: entre 90-180 °.
- Energía de enlace: 4 kcal/mol, aproximadamente.

En el estudio de los EPH, es necesario considerar, además, los efectos estereoelectrónicos, relacionados a la superposición de orbitales. En los enlaces del tipo C-H--O=S se presentan orbitales llenos (pares de electrones libres de O, LPO) que actúan como donores de electrones y, por otro lado, orbitales vacios o deficientes de densidad electrónica, los orbitales antienlazantes (σ*C-H), que proceden de átomos aceptores de electrones. En los enlaces C-H---N, los orbitales llenos son el par de electrones libres del N (LPN). Es así que, en el EPH se

Capítulo 5

produce la transferencia de una pequeña cantidad de densidad electrónica desde el aceptor de H (O=S o N) al donor de H (C-H). A este efecto se lo conoce como hiperconjugación⁺⁺⁺. El estudio de este fenómeno puede llevarse a cabo a través del cálculo de los NBO. Este permite modelar la estructura natural de Lewis lo más exacta posible, porque tiene en cuenta todos los detalles del orbital, para incluir el más alto porcentaje de densidad electrónica. La función de onda electrónica es descrita en términos de un conjunto de orbitales de Lewis ocupados y un conjunto de orbitales de no-Lewis desocupados.¹⁷⁸ Este análisis proporciona una herramienta efectiva para la interpretación química de interacciones hiperconjugativas y transferencias de densidad electrónica desde orbitales llenos a vacíos, a través del estudio de perturbaciones de segundo orden.

Otro aspecto a tener en cuenta en el estudio estructural detallado de los NBS-Het es la piramidalización del N. Una característica del grupo sulfonamida, presente en muchas estructuras de interés farmacéutico, es que tiende a exhibir piramidalización del N más frecuentemente de lo que lo hacen otras amidas.¹⁷⁷ Estos hallazgos fueron descriptos por varios autores, entre ellos Yamaguchi y col.¹⁷⁷ para arilsulfonamidas; Remko y col.¹⁷⁸ para un grupo específico de N-sulfonamidas ácidas biológicamente activas, Eastman y col.¹⁷⁹ para tetrahidroquinolinas con un grupo sulfonamida exocíclico, entre otros. Este comportamiento lleva a que el N pueda comportarse como un centro quiral o estereocentro, y aunque algunos autores lo definen como configuracionalmente lábil,¹⁸⁰ dada la posibilidad de que existan diferentes ordenamientos espaciales en la molécula. Sadowski¹⁸¹ postuló que el N piramidal puede cambiar libremente su configuración entre *pseudo*-estereoisómeros. Este cambio conformacional suele tener una barrera energética de la magnitud de un ángulo de torsión.

La asimetría de los átomos de N triplemente enlazados se consideró improbable durante mucho tiempo, ya que se conocía, por ejemplo, que la frecuencia de inversión del N en el NH₃ era de 1010 Hz.182 La isomerización del N se produce por inversión. En este sentido, Eliel183 postuló en 1969 que no existían enantiómeros estables de las aminas acíclicas trisustituidas (triligantes), pese a que son estructuras piramidales trigonales, es decir tetraédricas, con un vértice del tetraedro ocupado por el par de electrones libres del N. Esta afirmación se fundamentaba en que no era posible resolver los isómeros, debido a su rápida interconversión a temperatura ambiente. Sin embargo, en 1980, pudo aislarse un compuesto ópticamente activo con un N asimétrico184 y actualmente, se conocen muchos ejemplos de sulfonamidas con N hibridizado sp3.177.178 Por el contrario, De Benedetti y col.195 estudiaron diferentes bencenosulfonilos con N exocíclicos (PhSO₂NH-R) y encontraron que la diferencia de energía entre la hibridización sp² y sp³ era de 3,36 kcal/mol a favor de la sp², lo que sugirió que, para estos derivados, el N hibridizado sp² era el preferido. Estos hallazgos llevarían a la conclusión que, la piramidalización y, por lo tanto la hibridización, son fuertemente dependientes de la estructura.185 Wong y col. estudiaron, en 1988, la piramidalización del N en una gran variedad de moléculas activas a nivel biológico (sulfonamidas y amidas, entre otras) analizando estructuras cristalográficas y utilizando cálculos teóricos. Ellos encontraron que, la presencia de un grupo carbonilo adyacente al N favorece la geometría planar, mientras que la falta de grupos conjugantes beneficia al estado tetragonal, aunque sustituyentes aromáticos cubren todo el rango entre los dos estados. También concluyeron que, el efecto estérico tiene una pequeña influencia sobre la disposición espacial del N.¹⁸⁶

⁺⁺⁺ Asociación estabilizante que resulta de la interacción de los electrones en un orbital lleno con uno adyacente vacío (de tipo no enlazante o antienlazante), para producir un orbital molecular extendido.

Capítulo 5

Por otra parte, una distinción estricta entre isómeros configuracionales y conformacionales es sutil, y no hay un consenso al respecto. Algunos autores, usan el término "configuración" como sinónimo de "arreglo de los átomos en el espacio en una molécula de constitución definida", definición que también puede aplicarse a conformación. La distinción más fundamental está dada en el hecho de que los isómeros se puedan interconvertir por rotación de enlaces simples o no, siendo conformacionales o configuracionales, respectivamente. Por ello a los confórmeros también se los denomina rotámeros.¹⁸²

Las definiciones dadas arriba, no tienen en cuenta aspectos relacionados con las barreras de energías. En general, éstas suelen ser bajas entre diferentes confórmeros, aunque no necesariamente son altas entre distintas configuraciones. Por ejemplo, puede ser bastante baja, de aproximadamente 8 kcal/mol como en la etilmetilpropilamina o moderada como en el caso de la metilfenilpropilfostina (32,1 kcal/mol). Sin embargo, el **criterio de aislabilidad** (que sean entidades aislables), puede ser un argumento para considerar a los enantiómeros de etilmetilpropilamina como isómeros conformacionales. La inversión de las aminas puede ser considerado como cualquiera de los dos, un cambio conformacional o configuracional, dependiendo del autor que lo describe.

Los estereoisómeros pueden ser aislados u observados dependiendo, fundamentalmente, de la barrera de energía (ΔG^{\ddagger}), donde por ejemplo 20 kcal/mol corresponde a una velocidad de interconversión de 0,013 s⁻¹. Así, en el clorociclohexano sus estereoisómeros están separados por una barrera de entre 10 y 11 kcal/mol, siendo difícil su aislamiento a temperatura ambiente. Su espectro de RMN, a 25 °C, es simple (promedio), en cambio, a -100 °C, por debajo de la temperatura de coalescencia,^{###} muestra las señales de las dos estructuras. Trabajando a -150 °C los dos isómeros pueden ser aislados.¹⁶²

Las barreras de inversión del N son usualmente demasiado bajas para permitir aislar los dos enantiómeros. Sin embargo, dado que la inversión del N piramidal hibridizado sp³ involucra un ET[#] planar (hibridizado sp²), el incremento del carácter *p* en el N disminuiría la velocidad de la inversión. Un incremento de este tipo puede producirse por una restricción de los ángulos del N (por ejemplo en aminas cíclicas) y por grupos electronegativos, dado el aumento de la repulsión con el par de electrones libres del N. Por ejemplo, la 1-cloro-2-metilaziridina (Fig. 5.2), posee una amina cíclica con un Cl directamente unido al N. En este caso, ambos factores cooperan y la barrera de interconversión entre los estereoisómeros es de 27 kcal/mol, por lo que se los pudo aislar.^{180, 183}

Fig. 5.2. Estructura de la 1-cloro-2 metilaziridina.¹⁸⁷

Finalmente, en el análisis que nos ocupa, sería oportuno resumir algunas definiciones importantes. En lo que respecta a la estereoquímica en el estado gaseoso o líquido y en solución, una **modificación racémica** es, usualmente, una mezcla equimolecular de dos enantiómeros. Se caracteriza por poseer idénticas propiedades físicas (punto de ebullición, índice de refracción y densidad y espectro IR) que las de sus enantiómeros puros (excepto propiedades asimétricas como la rotación de la luz polarizada). Lo anterior no sucede en el

¹¹¹ Temperatura a la cual las señales se unen, por el rápido intercambio, observándose un promedio.

estado sólido, en donde las fuerzas intermoleculares a nivel del cristal son altamente específicas y sensibles a pequeños cambios en la geometría.¹⁴ Como resultado de esto, se encuentran desviaciones del comportamiento ideal y pueden presentarse los siguientes tres casos:

 Mezcla racémica o conglomerado (cristal enantiomérico u homoquiral). Es una mezcla de cristales de dos enantiómeros puros, separados y formando cada uno su propio cristal. Es decir que, cada isómero tiene mayor afinidad por las moléculas de su misma clase. Dado que el conglomerado es una mezcla de cristales de las formas + y -, sus propiedades son, en general, similares a aquellas de los enantiómeros puros. Sin embargo, el *pf* es menor y la solubilidad mayor que la de los componentes puros.¹⁶⁶

 Compuesto racémico o racemato (cristal heteroquiral). Se denomina así al sólido en el que dos moléculas enantioméricas están presentes en iguales cantidades dentro de la estructura de un único cristal (lo que prevalece en un 90-95 %, por sobre los conglomerados). En este caso, cada isómero tiene mayor afinidad por su opuesto y llevará a que enantiómeros opuestos se agrupen dentro de la celda unidad del cristal, en igual número. Los compuestos racémicos difieren en la mayoría de las propiedades físicas con respecto a sus enantiómeros, es decir en sus espectros IR en el estado sólido, patrones de DRXP, pf y solubilidad.¹⁸⁶

 Soluciones sólidas racémicas. Aquí, el arreglo de las moléculas en el sólido es al azar, comportándose como las modificaciones racémicas, es decir, poseen idénticas propiedades a la de los enantiómeros puros, incluso en pf y solubilidad (aunque pueden diferir ligeramente).¹⁰⁸

En el proceso de cristalización de los **conglomerados**, una de las dos moléculas enantioméricas puede cristalizar preferentemente, mientras la otra permanece en solución. El fenómeno, conocido como "**resolución espontánea**", produce una auténtica separación de los dos isómeros. Este excelente mecanismo de separación de enantiómeros, ha sido propuesto como una de las razones más plausibles para explicar el origen de la quiralidad en la naturaleza.^{182, 188, 190} Existen varios métodos para identificar conglomerados, entre ellos la DRXM, es un método directo, aplicable cuando se puede obtener un buen cristal. Los experimentos de difracción comienzan con la asignación del grupo espacial del cristal, el cual refleja la simetría de las moléculas constituyentes. Las muestras enantiopuras de moléculas quirales necesariamente cristalizan en grupos espaciales no-centrosimétricos. Esta información, junto con la del número de moléculas, Z, por celda unitaria, revela la presencia o ausencia de un centro de simetría. Así, si el grupo espacial encontrado es no-centrosimétrico, entonces la muestra es un conglomerado.¹⁸²

5.2. Objetivo e hipótesis

Poder acceder a una buena estimación de la estructura 3D, es el punto de partida para la derivación de parámetros estéricos y para el estudio de las propiedades electrónicas. Dentro de marco conceptual, se planteó el estudio de las propiedades estereoelectrónicas de los seis compuestos que forman parte de esta investigación. Por lo tanto, el objetivo propuesto para esta etapa del trabajo fue caracterizar las propiedades estructurales tridimensionales de los seis derivados seleccionados, a partir de la quimioteca de NBS-Het, considerando en particular:

- El análisis de las conformaciones preferidas y los EPH intramoleculares.
 - El estudio de la piramidalización del N y sus consecuencias a nivel conformacional y configuracional.

Se planteó, como hipótesis, que un abordaje a través de dos metodologías complementarias, como son la DRX y la QC, permitiría profundizar en el conocimiento de las geometrías moleculares de los derivados NBS-Het. Además, el estudio de las características estéricas y electrónicas resultaría clave para comprender su influencia sobre las conformaciones moleculares observadas, y, por ende, sobre sus posibilidades de interacción intermolecular y sobre muchas de sus propiedades FQ.

En la Fig. 5.3 se esquematiza la metodología seguida.

Fig. 5.3. Esquema de trabajo propuesto para el estudio de las propiedades estructurales 3D de los derivados NBS-Het.

5.3. Materiales y métodos

Los monocristales de los seis derivados en estudio, se obtuvieron por diferentes técnicas, tal como se detalló en el Capítulo 4. Los datos de DRXM fueron colectados en un Difractómetro Bruker Nonius Kappa CCD con radiación MoKα (*λ*= 0,71073 Å) y se colectaron a 173 K, bajo flujo constante de N₂. La simetría del cristal y el grupo espacial se dedujo de la inspección de los registros de difracción. Todos los átomos de H fueron localizados por las diferencias en los mapas de densidad electrónica y fueron incluidos en posiciones idealizadas, según los parámetros térmicos isotrópicos relacionados a los átomos a los que se encontraban directamente unidos. Todos los átomos pesados (no H) se refinaron anisotrópicamente. El programa Mercury de la *Cambridge Structural Database* (CSD),¹⁹¹ se usó para analizar las estructuras cristalinas resueltas. Estos estudios fueron realizados en colaboración con el Prof. Dr. Mino Caira, Departamento de Química, Universidad de Ciudad del Cabo, Sudáfrica, quien levó adelante la resolución de las estructuras cristalinas por DRXM.

Ec. 5.1

Con el fin de complementar el estudio de las geometrías estructurales y sumar el aporte de las propiedades electrónicas, se llevaron a cabo estudios de QC (cuyo esquema general de trabajo se muestra en la Fig. 5.4). Las estructuras de los seis derivados en estudio, se optimizaron en vacío y en agua, tomando como base los mínimos absolutos informados anteriormente por Pagliero.²⁰ Se usó DFT, con un funcional B3LYP y la base 6-311+G(2d,p). Para los cálculos en solvente, se utilizó el formalismo conocido como "campo de reacción autoconsistente" (*Self-Consistent* Reaction Field, SCRF),¹⁹² recurriendo específicamente al método de solvatación IEFPCM.^{193, 194} Todos estos estudios se llevaron adelante implementado el paquete Gaussian 03¹⁹⁵ o Gaussian 09.¹⁹⁶ Se calcularon, además, otras propiedades necesarias, como orbitales moleculares, cargas de Mülliken y cargas ajustadas al potencial electrostático.

En cada caso, se emplearon los cálculos de frecuencia vibracional ("freq = noraman") para confirmar la naturaleza de los mínimos encontrados. No se obtuvieron frecuencias imaginarias para las geometrías minimizadas, lo que confirma que dichas estructuras representan verdaderos mínimos sobre la superficie de energía potencial. A lo largo de todo este trabajo, las energías y ∆E se informan corregidas a punto cero.

Las estructuras obtenidas por QC, se compararon con las estructuras cristalinas. Las diferencias entre ellas se calcularon como desviación cuadrática media (RMSD) con el programa VMD 1.8.7.¹⁹⁷ La RMSD es la medida de las distancias promedio entre los átomos de dos moléculas alineadas, indicando la divergencia entre ellas (Ec. 5.1, donde δ es la distancia entre N pares de átomos equivalentes).

RMSD =

Fig. 5.4. Esquema general de trabajo llevado a cabo para los estudios de QC.

Los EPH intramoleculares se estudiaron a partir de las geometrías optimizadas y con el análisis de los NBO. Para investigar los modelos de transferencia de carga que se producen al formarse los enlaces de H, se analizaron las poblaciones electrónicas de NBO y las energías perturbativas de 2do orden para las interacciones C-H--O y C-H--N, utilizando el programa *Natural Bond Orbitals*,¹⁶⁸ tal como se encuentra implementado en el programa Gaussian 03 y con el nivel B3LYP/6-31+G(d,p). Los orbitales NBO se visualizaron con el programa Chemcraft (www.chemcraftprog.com).

El estudio de la piramidalización del N, la presencia de isómeros conformacionales y configuracionales, los ET[#] y las barreras energéticas, se llevaron a cabo a través del siguiente protocolo. En primer término, se realizaron los estudios conformacionales, a través de la rotación del ángulo diedro que define la posición relativa del grupo bencenosulfonilo con respecto al heterociclo (q3). Para ello se usó DFT B3LYP/6-311G+(d,p) para efectuar la rotación (en la mayoría de los casos). Mientras que, la base 6-311G+(2d,p) se utilizó para la optimización y el cálculo de la frecuencia. De esta forma, la superficie de energía potencial se exploró a través de una cuidadosa rotación sistemática (usando "opt = modredundat", con 36 pasos de 10 ° cada uno) del ángulo q2. Luego de identificar los isómeros más estables, se calcularon las barreras de interconversión entre los vecinos más cercanos y se hallaron los ET[‡], utilizando los métodos QST2 o QST3,198 al nivel B3LYP/6-31G(d) y, finalmente, optimizando con 6-311+G(2d,p). En el análisis QST2 se incluyeron las dos estructuras a ser estudiadas y a partir de ellas se halló la geometría del ET[‡]. En cambio, en el método QST3 se incluyeron las dos moléculas de interés, más una estructura que se aproxima al ET[#] (guess). Se emplearon cálculos de frecuencia vibracional para confirmar la naturaleza de los ET⁴. En todos los casos se obtuvo una frecuencia imaginaria (un único valor propio negativo).

Estos estudios se realizaron en colaboración con el Prof. Dr. Mariano Vera. Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar de la Plata.

Por otro lado, en lo que respecta al análisis de la estereoquímica en solución, se recurrió a experimentos de ¹H-RMN y a mediciones de rotación óptica. Para el análisis de la piramidalización del N y sus posibles configuraciones, se llevaron a cabo mediciones de ¹H-RMN, en un equipo Bruker Advance II 400 Hz Ultra Shield[™], equipado con una sonda de detección multinuclear inversa. Las experiencias se realizaron en DMSO-d6, variando la temperatura desde ambiente hasta 55 °C y agregando sales de europio, como reactivo de desplazamiento quiral. Las mediciones de rotación óptica se realizaron en un polarímetro Jasco P-1010 (Easton, Maryland, EEUU).

5.4. Resultados y Discusión

5.4.1. Difracción de Rayos X de Monocristal

Se obtuvieron cristales de excelente calidad óptica, con los cuales se lograron resolver las estructuras cristalinas del BSTHQ, del BSTHQa, del BSBZT, del *p*-NO₂-BSTHQ y de dos polimorfos del TM-BSTHQ (Formas I y II). En el caso del BSTHIQ, los cristales obtenidos fueron de tamaño muy pequeño, lo cual impidió la aplicación de la DRXM y la resolución de su estructura cristalina. La Tabla 5.2 resume la forma de obtención de los monocristales y los datos más relevantes de las estructuras cristalinas del BSTHQ, el BSTHQa, el BSBZT, el *p*-NO₂-BSTHQ y el TM-BSTHQ (Formas I y II).

Capítulo 5

Tabla 5.2. Procedimientos para la obtención de monocristales del BSTHQ, el BSTHQa, el BSBZT, el p-NO2-BSTHQ y el TM-BSTHQ (Formas I y II); hábitos cristalinos y datos cristalográficos más relevantes.

	BSTHQ	BSTHQa	BSBZT	P-NO2- BSTHQ	TM-BSTHQ Forma I	TM-BSTHQ Forma II
Procedimiento	ш	III	IV	IV	III y VI	VII
Solvente	n-hexano	etanol-éter dietílico	etanol	etanol	metanol y n-hexano	Obtenido desde fase fundida
Hábito	laminar	prismático	prismático	prismático	prismático y laminar	sólido anhedro
Fotografía (escala = 1 mm) ^b				E		0
Sistema cristalino °	Ortorrómbico	Monoclínico	Triclinico	Monoclínico	Monoclínico	Monociinico
Grupo espacial	P212121 (N° 19)	P2,/c (N° 14)	P-1 (N° 2)	P21/c (N° 14)	P21/c (N° 14)	P21/n (Nº 14)
Z°	4	4	2	4	4	4

^a Procedimiento de cristalización realizado para la obtención del monocristal (Sección 4.3.3).
^b Fotografías obtenidas desde el MPC. ^{c, d, e} Tablas S.5.1.1-6, Anexos.

Los datos de resolución y refinamiento de las seis estructuras se pueden consultar en las Tablas S.5.1.1-6 (Anexos 5.1). A partir del análisis por DRXM, se hallaron las estructuras 3D expuestas en la Fig. 5.5. Debido a que las dos fases polimórficas del **TM-BSTHQ** presentaron la misma conformación, sólo se muestra una.

Capítulo 5

Fig. 5.5. Estructuras tridimensionales obtenidas mediante DRXM de las moléculas estudiadas.

A partir de los datos de DRXM, se estudiaron cuatro ángulos de torsión de interés, ϕ_1 - ϕ_4 (Fig. 5.6). El ángulo ϕ_1 y el ϕ_2 representan la conformación del heterociclo; el ϕ_3 define la posición relativa del grupo bencenosulfonilo con respecto al heterociclo y el ϕ_4 , la orientación del anillo benceno en relación al grupo sulfonilo.

Fig. 5.6. Ángulos de torsión φ₁-φ₄, en los derivados NBS-Het. En turquesa se representan los átomos involucrados en el ángulo diedro considerado. Se usa como ejemplo el BSTHQ.

La primera observación general a destacar es el plegamiento de las moléculas en forma de V (también llamada *mariposa*) teniendo como eje el grupo sulfonilo, lo que ya fue descripto por De Benedetti y col. en 1991.¹⁹⁹ Para los compuestos del tipo sulfonamida, sería la conformación más favorable desde el punto de vista energético. Sólo el **TM-BSTHQ** mostró un plegamiento menos pronunciado, ya que los sustituyentes en posición *orto* ejercerían impedimento estérico. Como consecuencia de ello, cambia la posición relativa del bencenosulfonilo y el heterociclo, llevando a la molécula a adoptar una disposición más alargada o extendida en el espacio.

El anillo heterocíclico del BSTHQ, el BSTHQa, el p-NO₂-BSTHQ y el TM-BSTHQ adoptó una conformación en la cual, los átomos N₁, C₉, C₁₀, C₄ se encuentran prácticamente coplanares, mientras que los C₂ y C₃ se ubicaron por encima y por debajo del plano, respectivamente (Fig. 5.7).

Fig. 5.7. Estructura tridimensional del BSTHQ, donde se observa el heterociclo con los átomos N₁, C₂, C₁₀, C₄ prácticamente coplanares y los C₂ y C₃ por encima y por debajo del plano.

En la Tabla 5.3 se muestran los ángulos diedros φ₁ y φ₂ relevantes de los heterociclos THQ y THQa.

Tabla 5.3. Angulos diedros (°) relevantes en los compuestos NBS-Het con heterociclos THQ y THQa.							
-	BSTHO	BSTHQa	p-NOz-BSTHQ	TM-BSTHQ Forma I	TM-BSTHQ Forma II		
φ1 a	3,5(3)	-4,2(3)	-0,2(2)	1,2(2)	-3,4		
φ2."	-59,4(3)	58,9(3)	61,53(19)	63,13(18)	61,72		

"La desviación estándar estimada (e.s.d.s) se indica entre paréntesis.

En las estructuras tridimensionales obtenidas por DRXM, el átomo de N₁ de todos los derivados muestra una piramidalización significativa, con excepción del **BSBZT**, que tiende a ser planar (mayor carácter sp²). En este último, las distancias de enlace N₁-N₂ y N₂-N₃ son significativamente diferentes, lo cual es consistente con los enlaces simples y dobles representados en la estructura convencional (Tabla 5.4). Además, se trata de nitrógenos con diferentes electronegatividades y densidades electrónicas, puesto que dos de ellos aportan un electrón al sistema π y el otro aporta dos electrones, lo que mantiene aromático al anillo a pesar de la alternancia.

Tabla 5.4. Distancias	de	enlaces	(A)	para el	BSBZT.
-----------------------	----	---------	-----	---------	--------

Enlaces	Distancias, A (e.s.d.s)				
S10-O11	1,421(2)				
S ₁₀ -O ₁₂	1,429(2)				
S10-N1	1,685(3)				
S10-C13	1,747(3)				
N1-N2	1,400(4)				
N ₂ -N ₃	1,286(4)				
N ₃ -C ₄	1,393(4)				
N ₁ -C ₅	1,384(4)				

5.4.1.1. Interacciones intermoleculares y empaquetamiento cristalino

La estructura cristalina del **BSTHQ** mostró un único enlace intermolecular de tipo C-H--O, que contribuye a la estabilización de cristal, no evidenciándose fuerzas de tipo π--π stacking. La falta de interacciones intermoleculares fuertes explica el *pf* bajo del sólido (61 °C). El empaquetamiento molecular se muestra en la Fig. 5.8. El pico de mayor intensidad en el patrón de DRXP, calculado a partir de los datos de la estructura cristalina (Fig. S.5.2, Anexos) se presenta a 14,1 ° 2θ y corresponde a la reflexión desde el plano -1 0 -2 en el cristal. Algunos

Capítulo 5

planos representativos de esta familia se muestran en la Fig. 5.8.A, en donde se evidencia que el grupo -SO₂ se encuentra cerca de ellos. La segunda reflexión más intensa se produce a 8,7 ° 2θ y corresponde a la reflexión de los planos 002 (Fig. 5.8.B), que están distribuidos equitativamente por los átomos pesados.

Fig. 5.8. Empaquetamiento cristalino del BSTHQ. Vistas desde el plano [010] (A) y desde el [001] (B).

El patrón de DRXP teórico del **BSTHQ**, obtenido a 100 K, se comparó con el experimental del **BSTHQ ET** medido a 298,15 K. En ambos, las posiciones 20 son comparables, aunque presentaron diferentes intensidades debido, probablemente, a la orientación preferencial de la muestra policristalina. Por lo tanto, se concluye que las fases cristalinas del **BSTHQ ET** y del monocristal con el cual se resolvió la estructura, son coincidentes.

En el cristal del **BSTHQa**, las moléculas se mantienen unidas, principalmente, por interacciones de van der Waals. Se identificó un único EPH intermolecular débil de tipo C-H--O. No se detectaron interacciones de tipo $\pi \cdot \pi$ stacking, hallándose anillos centroides separados por más de 4,9 Å. El empaquetamiento molecular visualizado en forma paralela al eje a, se muestra en la Fig. 5.9.

Fig. 5.9. Empaquetamiento cristalino del BSTHQa (vista desde el plano [100]).

En el cristal del **BSBZT**, las interacciones intermoleculares más destacadas incluyeron dos EPH del tipo C-H-··O (C₅-H₆···O₁₂ y C₇-H₇··O₁₁) e interacciones π ··· π stacking paralelas, tipo sandwich (face-to-face). La Fig. 5.10 muestra las tres interacciones π ··· π , con distancias entre los centroides de anillos en el rango de 3,6-3,7 Å.

Fig. 5.10. Interacciones π--π stacking en el BSBZT (con separación entre los centroides de < 4 Å).

Además, pudo observarse una red de EPH de tipo C-H--O, que lleva a la formación de lazos (ribbons) infinitos entre moléculas del BSBZT, que se desplazan paralelos al eje c (Fig. 5.11).

Fig. 5.11. Porción de un lazo infinito en el BSBZT basado en EPH C-H--O.

En la Fig. 5.12 se muestra un diagrama del empaquetamiento del **BSBZT**, visto en forma paralela al eje c, a lo largo del cual se propagan los lazos. Estos están localizados en cada una de las cuatro esquinas de la celda unitaria.

Fig. 5.12. Empaquetamiento cristalino del BSBZT [001].

Las moléculas en el cristal del **p-NO₂-BSTHQ** se mantienen unidas por un EPH intermolecular débil de tipo C-H--O (C₁₅-H₁₅--O₁₃) e interacciones de van der Waals. Se observaron también interacciones de tipo π--π stacking entre el fenilo del bencenosulfonilo y la porción aromática de la THQ, hallándose anillos centroides separados por menos de 4,9 Å, en una disposición paralela desplazada. El empaquetamiento cristalino de este derivado y las interacciones antes mencionadas se muestran en la Fig. 5.13, visto a lo largo del eje b.
Capítulo 5

Fig. 5.13. Empaquetamiento cristalino del p-NO2-BSTHQ (a lo largo del eje b) e interacciones π--π.

Las moléculas presentes en los cristales de las Formas I y II del TM-BSTHQ⁸⁸⁸ demostraron ser conformacionalmente similares (Fig. 5.14.A). Esto se ve reflejado, además, en los volúmenes de la celda unitaria de cada polimorfo, que tienden a ser equivalentes: 1684,12(9) Å³ y 1671,45(4) Å³ para I y II, respectivamente (Tablas S.5.1.5 y S.5.1.6, Anexos 5.1).²⁰⁰ Por el contrario, sus empaquetamientos cristalinos fueron significativamente diferentes (Fig. 5.14.B).

Fig. 5.14. A) Conformaciones y B) empaquetamientos cristalinos (a lo largo del eje b), de las Formas I (rojo) y II (verde) del TM-BSTHQ.

En el cristal de la Forma I, las moléculas se mantienen unidas por un EPH intermolecular débil (C₅-H₅--O₁₂) e interacciones de van der Waals. En cambio, las moléculas de la Forma II no poseen EPH intermoleculares, solo interacciones de van der Waals de tipo C-H---H-C.²⁰¹

⁸⁸⁸ La obtención de estos dos polimorlos del TM-BSTHQ se describió en la Sección 4.4.4 del Capítulo 4.

Tampoco se detectaron interacciones de tipo π--π stacking en ninguna de las dos formas, hallándose anillos centroides separados por más de 4,9 Å (Fig. S.5.3, Anexos 5.3).

5.4.1.2. Estudio comparativo entre estructuras cristalinas

Se llevó a cabo un estudio comparativo entre las estructuras tridimensionales, obtenidas por DRXM, de los NBS-Het estudiados. Con este fin, se sumó la información cristalográfica proveniente de otros tres compuestos relacionados estructuralmente y publicados en la CSD.¹⁹¹ Estos fueron, la *N*-(4-fluor-bencenosulfonilo)-2-metil-1,2,3,4-tetrahidroquinolina (*p*-F-BSTHQa), análogo del BSTHQa, reportado por Pagliero y col.,⁹⁰ el *N*-(4-metilbencenosulfonilo)-1*H*-1,2,3benzotriazol (*p*-CH₃-BSBZT) un derivado similar al BSBZT publicado por Rodríguez y col.²⁰² y el *N*-4-*tert*-butilbencenesulfonilo-1H-benzimidazol (TB-BSBZD) descripto por Abdireymov y col.²⁰³ Por lo tanto, se compararon las estructuras tridimensionales de los ocho NBS-Het (Fig. 5.15) y se analizaron particularmente, las relaciones entre las interacciones intermoleculares evidenciadas entre las moléculas en el cristal y sus *pf*.

Fig. 5.15. Estructuras cristalinas y conformaciones de ocho derivados NBS-Het.

El análisis conformacional comparativo se realizó observando los ángulos de torsión φ₃ y φ₄ (Tabla 5.5).

Tabla 5.5. Ángulos diedros relevantes	, φ ₃ y φ ₄ (°) de los ocho compuestos NBS-Het.
---------------------------------------	---

	BSTHQ	p-NO2- BSTHQ	TM- BSTHQ Forma I	TM- BSTHQ Forma II	BSTHQa	p-F- BSTHQa	BSBZT	p-CH ₃ - BSBZT	TB- BSBZD
φ3	65,8	81,9	141,4	140,5	77,4	77,4	94,6	85,0	86,2
φ	72,7	86,0	117,4	122,4	77,6	71,1	94,4	96,0	92,1

Los derivados con heterociclos THQ y THQa se caracterizaron por poseer conformaciones variadas, lo cual se debería a las fuerzas presentes en la red cristalina y al propio empaquetamiento. Por un lado, el BSTHQ, el BSTHQa y el p-F-BSTHQa exhibieron valores de

Capítulo 5

 ϕ_3 y ϕ_4 semejantes y, por lo tanto, conformaciones similares (Tabla 5.5). Entre ellos la mayor desviación se produjo entre el ϕ_3 del **BSTHQ** y el de los dos restantes, diferencia que puede apreciarse mejor al superponer las estructuras moleculares del **BSTHQ** y el **BSTHQa** (Fig. 5.16). Por otro lado, el *p*-NO₂-BSTHQ y el **TM-BSTHQ** presentaron ángulos ϕ_3 y ϕ_4 de mayor valor absoluto, comparados con los tres primeros compuestos analizados.

Fig. 5.16. Estructuras cristalinas del BSTHQ (rojo) y el BSTHQa (verde) superpuestas (se superponen solo estas dos para una mejor visualización).

Los compuestos con heterociclos totalmente aromáticos, como es el caso del BSBZT, el *p*-CH₃-BSBZT y el TB-BSBZD, mostraron similaridad conformacional. En general, los valores de φ₃ fueron mayores que la de los derivados de THQa y THQ (a excepción del TM-BSTHQ).

También, se compararon las interacciones intermoleculares que establecen todos los derivados, con sus correspondientes *pf* (Tabla 5.6). Es de destacar que el *p*-CH₃-BSBZT, que mostró la mayor cantidad de interacciones intermoleculares, presentó un *pf* muy por encima de los demás (~ 234 °C). Los derivados TB-BSBZD, *p*-F-BSTHQa y BSBZT tienen *pf* similares (~ 122 °C) y en cada uno de ellos se observaron dos EPH intermoleculares. El *p*-NO₂-BSTHQ exhibió un EPH y una interacción π -- π , poseyendo un *pf* intermedio (~ 115 °C) entre los derivados con uno y dos EPH. En las estructuras cristalinas del BSTHQ, el TM-BSTHQ y el BSTHQa se identificó solo una interacción de H, lo que explicaría que sus *pf* hayan sido los más bajos encontrados (< 100 °C).

	BSTHO	p-NO2- BSTHQ	TM-BSTHQ Forma I	TM-BSTHQ Forma II	BSTHQa	p-F- BSTHQa	BSBZT	p-CH ₂ -BSBZT	TB-BSBZD
Inter	сно	С15- Н15О13 1 хх	C5-H5O12		с-н-о	C17- H17O13 C7-H7F	C6-H6O12 C7-H7O11 3 xx	C14-H14-N2 C1a-H15-O12 C7-H7-O11 C9-H9-Arilo	C7-H7O2 C13-H13O1
pt	61-62	115-116	88-89	•	99-100	121,0- 121,5	123-124	233,9-235,9	121,9-122,9

Tabla 5.6. Interacciones intermoleculares y pf (°C) de los ocho derivados NBS-Het estudiados.

Sin interacciones. * ND = No determinado.* Enlaces de hidrógeno intermoleculares.

5.4.2. Modelado molecular

A los fines de comparar metodologías experimentales y teóricas, se realizaron cálculos de minimización de las geometrías del BSTHQ, el BSTHQa, el BSBZT, el p-NO₂-BSTHQ y el TM-BSTHQ Forma I y II, mediante modelado molecular. Los resultados de los cálculos de los mínimos absolutos mostraron que los derivados, poseen conformaciones similares, tanto en vacío como en agua. Esto pudo corroborarse, tanto por la visualización de los confórmeros

Capítulo 5

termodinámicamente más estables, como por el análisis de sus ángulos diedros φ₁-φ₄ (Tabla 5.7).""

	Ángulos diedros	QC (vacio)	QC (agua)	DRXM
	φt (Nt-Cg-C10-C4)	1,6	1,8	3,5
POTUO	φ ₂ (N ₁ -C ₂ -C ₃ -C ₄)	-59,2	-58,9	-59,4
BSING	φ ₃ (C _{2*} N _{1*} S _{11*} C ₁₄)	80,3	78	65,8
	φ4 (N1-S11-C14-C19)	79,7	81	72,7
	φ1 (N1-C3-C10-C4)	-2,8	-2,8	-4,2
	φ ₂ (N ₁ -C ₂ -C ₃ -C ₄)	58,3	57,9	58,9
BSTHQa	φ ₃ (C ₂ -N ₁ -S ₁₂ -C ₁₅)	-80,1	-77,8	-77,4
	φ ₄ (N ₁ -S ₁₂ -C ₁₅ -C ₁₅)	100	99	104,6
00077	φ ₃ (N ₂ -N ₁ -S ₁₀ -C ₁₃)	-67,6	-77,5	-94,6
BSBZI	φ ₄ (N ₁ -S ₁₀ -C ₁₃ -C ₁₄)	88	88,7	84,2
	φ1 (N1-C3-C10-C4)	2,3	2,2	0.2
	φ ₂ (N ₁ -C ₂ -C ₃ -C ₄)	-58,9	-58,8	-61,5
p-NO2-BSTHQ	φ ₃ (C ₂ -N ₁ -S ₁₁ -C ₁₄)	82,8	78,3	81,9
	φ4 (N1-S11-C14-C19)	79,8	79,9	86
	φ ₁ (N ₁ -C ₉ -C ₁₀ -C ₄)	1,6	2,1	1,2
TM-BSTHQ	φ ₂ (N ₁ -C ₂ -C ₃ -C ₄)	-59,1	-59,1	-63,1
Forma I	φ ₃ (C ₂ -N ₁ -S ₁₁ -C ₁₄)	-148,9	-146,6	-141,4
	φ4 (N1-S11-C14-C15)	-115,8	-116,1	-117,4
	φ1 (N1-C3-C10-C4)	1,6	2,1	-3,4
TM-BSTHQ	φ ₂ (N ₁ -C ₂ -C ₃ -C ₄)	-59,1	-59,1	-61,7
Forma II	φ ₃ (C ₂ -N ₁ -S ₁₁ -C ₁₄)	-148,9	-146,6	-140,5
	@# (N1-S11-C14-C15)	-115.8	-116,1	-122.4

Tabla 5.7. Ángulos diedros (°) obtenidos a partir de datos de DRXM y QC en vacío y agua, para las geometrías del BSTHQ, del BSTHQa, del BSBZT, del p-NO2-BSTHQ y del TM-BSTHQ Forma I y II.

5.4.3. Comparación entre las estructuras tridimensionales de DRXM y QC

Las estructuras de mínima energía obtenidas por métodos computacionales se compararon con las encontradas por DRXM, es decir, con las conformaciones adoptadas por las moléculas en el estado sólido. Para la comparación se utilizó el indicador RMSD, considerando que valores menores a 1,0 Å se presentan para conformaciones similares, en tanto que, si son menores a 0,3 Å corresponden a estructuras casi idénticas.²⁶ Cuando se confrontaron las conformaciones obtenidas para el **BSTHQ**, en el vacio y en el cristal, la mayor desviación (14,5 °) se produce a nivel del diedro q₃ (C₂-N₁-S₁₁-C₁₄), con un RMSD de 0,34 Å. Las estructuras comparadas del **BSTHQa**, tienen una mejor concordancia (RMSD = 0,09 Å), considerándose idénticas entre sí. Por el contrario, el mismo análisis para el **BSBZT** dio como resultado un RMSD de 1,15 Å, observándose una gran desviación en el q₃ (N₂-N₁-S₁₀-C₁₃) de 27 °. Esta diferencia puede explicarse si se toman en cuenta las fuerzas de cohesión presentes en la

Estos ángulos se definen igual que en la Fig. 5.6.

Capítulo 5

estructura cristalina, pero ausentes en la molécula aislada en vacio.²⁰¹ En cuanto al *p*-NO₂-BSTHQ, las conformaciones presentaron entre si un RMSD de 0,16 Å. El TM-BSTHQ Forma I, posee una desviación de 7,5 ° en el diedro φ₃ (C₂-N₁-S₁₁-C₁₄) con un RMSD de sólo 0,20 Å. Mientras que la Forma II, posee un RMSD, apenas mayor, de 0,22 Å. Por lo tanto, todas serían consideradas casi idénticas. En la Fig. 5.17, se muestran superpuestas las estructuras obtenidas por DRXM y por QC en vacio.

Fig. 5.17. Superposición de estructuras obtenidas por QC (rojo) y DRXM (verde), del BSTHQ, el BSTHQa, el BSBZT, el p-NO₂-BSTHQ, el TM-BSTHQ Forma i y el TM-BSTHQ Forma II.

5.4.4. Interacciones de hidrógeno intramoleculares

Pagliero y col.⁹⁰ confirmaron la presencia de enlaces del tipo C-H-·O=S en los derivados NBS-Het, mediante cálculos teóricos y espectroscopía de ¹H-RMN^{††††}. Los reportados por dichos autores se detallan a continuación:

- =C₈H···O=S y -C₂H···O=S para derivados de las familias THQ (A) y THQa (B).
- -C1H-O=S y -C3H-O=S para los derivados de la familia THiQ (C).
- =C₆H···O=S para los derivados de la familia BZT (D).

Para un conocimiento más detallado de los resultados anteriores, se analizaron los parámetros geométricos, obtenidos a partir de la resolución de las estructuras cristalinas y por cálculos teóricos y de los parámetros estereoelectrónicos, a través de NBO.^{205, 206} Para los seis derivados, se midieron los parámetros d, D y θ de sus conformaciones de mínima energía y de las estructuras cristalinas de los cinco derivados resueltos en este trabajo de tesis. Se

analizaron todas las disposiciones atómicas que podrían llegar a establecer EPH y los resultados se detallan en la Tabla 5.8

Tabla 5.8. Parámetros geométricos que definen las interacciones de H de los seis derivados (las distancias están en Á, mientras que los ángulos en °).

		-	DRXM			QC	
	Parámetros	d	D	θ	d	D	θ
	Ca-Ha-Osa	+		-	2,29	2,90	115,5
RETHO	C2-H28-O12				2,28	2,87	112,6
barna	C15-H15-O12	-	52		2,51	2,93	102,8
	C19-H19-O13		14		2,69	3,01	97,4
	Ca-Ha-O14				2,27	2,89	113,9
PETHON	C2-H28-O13		32	-	2,25	2,87	114,5
osinua	C16-H16-O13		1		2,50	2,93	102,3
	C20-H20O14				2,67	3,01	97,2
	C18-H18-O12	2,58	2,94	102,6	2,56	2,97	101,1
BSBZT	C14-H14-O11	2,61	2,95	101,4	2,60	2,98	99,6
	Cs-H6-O12		1	-	2,48	3,08	113,5
	C1-H18-O12				2,46	2,91	103,7
DETUIO	C3-H38-O13				2,41	2,94	108,4
BSTHIC	C15-H15-O12				2,56	2,96	100,7
	C19-H18O13				2,57	2,97	100,4
-	Ca-Ha-Otz	2,29	2,88	119,2	2,30	2,91	114,2
	C2-H28-O13	2,32	2,84	111.8	2,28	2,86	111,6
NO DETUO	C15-H15-O13	2,57	2,93	103,1	2,50	2,93	102,2
p-NO2-BSTHQ	C19-H19-O12	2,62	2,95	101,0	2,66	2,99	97,1
	C18-H18O21	2,43	2,72	97,2	2,40	2,72	95,3
	C16-H16-O22	2,42	2,71	97,6	2,39	2,72	95,3
	Ca-He-Our	3,56	3,53	78,7	3,83	3,66	72,8
	C2-H28-O13	2,30	2,79	108,5	2,28	2,82	108,6
IM-BSTHQ	C23-H23-O12	2,27	2,71	105,6	2,32	2,71	99,0
Poma	C20-H20-O13	2,51	2,92	104,7	2,62	2,88	92,1
	C20-H20-N1	2,41	3,22	139,6	2,42	3,25	132,8
	Ca-He-Ost	3,58	3,48	76,7	3,83	3,66	72,8
TM-BSTHQ	C2-H28-O13	2,31	2,79	108,6	2,28	2,82	108,6
Forma II	C21-H23-O12	2,39	2,71	98,3	2,32	2,71	99,0
	C20-H20-O13	2,68	2,94	95,6	2,62	2,88	92,1
	G20-H20-N1	2,35	3,13	136,3	2,42	3,25	132,8

* Estructura cristalina no resuelta.- Valores no disponibles.

Al analizar los **parámetros estructurales** mostrados en la Tabla 5.8 (excluyendo la disposición C₈-H₈...O₁₂ del **TM-BSTHQ** Formas I y II, mostrada en rojo) y teniendo en cuenta los criterios establecidos por Desiraju y col.,¹⁷⁴ por Taylor y Kennard.¹⁷⁵ y por Jeffrey¹⁷⁰, se puede concluir que:

 Las distancias de enlaces H--O (d), obtenidas por DRXM y por QC, se encuentran en el rango 2,25-2,69 Å y, por lo tanto, dentro de los límites postulados por Desiraju y col.¹⁷⁴ (2,0-3,0 Å) y por la clasificación de Jeffrey para interacciones débiles (> 2,2 Å).¹⁷⁰

Capítulo 5

 Las distancias C--O (D), aparecieron entre 2,71 y 3,25 Å, es decir, están levemente por debajo del intervalo propuesto por Desiraju y col. (3,0-4,0 Å)¹⁷⁴ y según Jeffrey podrían considerarse interacciones moderadas (2,5-3,2 Å),¹⁷⁰ lo que estaría mostrando interacciones más favorecidas.

 Todos los ángulos C-H--O (θ) están entre 92,1-139,6 ° lo que está conforme con el rango encontrado por Desiraju y col,¹⁷⁴ por Taylor y Kennard.¹⁷⁵ y por Jeffrey.¹⁷⁰

Finalmente, todas las disposiciones C-H--O analizadas para los NBS-Het estudiados pueden considerarse como interacciones de H, a la luz de los límites establecidos por los autores arriba mencionados. La gran excepción es C₈-H₈--O₁₂ del **TM-BSTHQ**, que claramente se aleja de una geometría óptima para establecer EPH.

5.4.4.1. Análisis de los enlaces de hidrógenos por DRXM

Desde un punto de vista **cristalográfico**, se considera que distancias interatómicas menores que la suma de los radios de van der Waals indican la existencia de EPH.¹⁶⁶ Según este criterio, en el **BSTHQ**, la conformación molecular observada en la estructura cristalina, es mantenida por tres enlaces intramoleculares, C₂-H₂...O₁₂, C₈-H₈...O₁₃ y C₁₅-H₁₅...O₁₂, con distancias C...O en el rango de 2,825(4)-2,930(3) Ă. En el **BSTHQa**, se observaron las tres mismas interacciones intramoleculares (C₂₈-H₂₈...O₁₃, C₈-H₈...O₁₄ y C₁₆-H₁₆...O₁₃). Dichos enlaces, se pueden apreciar en la representación de bolas, en donde se ve el contacto de los radios de van der Waals (Fig. 5.18).

Fig. 5.18. Representación de bolas del BSTHQa.

En cuanto al **BSBZT**, se observaron dos EPH intramoleculares, el primero (ligeramente más fuerte que el segundo) conformado por C₁₈-H₁₈--O₁₂ y el segundo por C₁₄-H₁₄--O₁₁, que es geométricamente menos favorable.

La conformación del p-NO₂-BSTHQ es mantenida por tres EPH intramoleculares (C_{2B}-H₂₈--O₁₃, C₈-H₈--O₁₂ y C₁₅-H₁₅--O₁₃), al igual que en el BSTHQ, más dos interacciones establecidas entre los O del NO₂ y los enlaces C-H del fenilo (C₁₆-H₁₆--O₂₂ y C₁₈-H₁₈--O₂₁).

Las conformaciones de las Formas I y II del **TM-BSTHQ** en el estado sólido se estabilizan a través de cuatro EPH intramoleculares (C₂₈-H₂₈···O₁₃, C₂₃-H₂₃···O₁₂, C₂₀-H₂₀···O₁₃ y C₂₀-H₂₀···N₁). Todas las interacciones descriptas anteriormente se resumen en la Tabla 5.9.

Capítulo 5

BSTHQ	BSTHQa	BSBZT	p-NO2-BSTHQ	TM-BSTHQ Forma I	TM-BSTHQ Forma II
C8-H8O13, C28-H28O12, C15-H15O12	C8-H8-O14, C28-H28-O13, C16-H16-O13	C18°H18 O12, C14°H14 O11	C ₈ ·H ₈ ···O ₁₂ , C ₂₈ ·H ₂₈ ···O ₁₃ , C ₁₅ ··H ₁₅ ···O ₁₅ , C ₁₈ ··H ₁₅ ···O ₂₁ , C ₁₈ ··H ₁₆ ···O ₂₂	C ₂₈ -H ₂₈ O ₁₃ , C ₂₅ -H ₂₃ O ₁₂ , C ₂₀ -H ₂₀ O ₁₃ , C ₂₀ -H ₂₀ N ₁	C ₂₈ -H ₂₈ O ₁₃ , C ₂₅ -H ₂₃ O ₁₂ , C ₂₀ -H ₂₀ O ₁₃ , C ₂₀ -H ₂₀ N ₁

Tabla 5.9. Interacciones intramoleculares de los cinco derivados NBS-Het, según resultados de DRXM.

Las disposiciones C₁₉-H₁₉...O₁₃, C₂₀-H₂₀...O₁₄, C₆-H₆...O₁₂, C₁₉-H₁₉...O₁₂ y C₈-H₈...O₁₂ de las estructuras cristalinas del **BSTHQ**, el **BSTHQa**, el **BSBZT**, el **p-NO₂-BSTHQ** y el **TM-BSTHQ**, respectivamente, no se definen como EPH desde el punto de vista cristalográfico. Esto se debe a que las distancias H...O están por encima de la suma de los radios de van der Waals de H y O (2,67 Å).¹⁶⁹

5.4.4.2. Análisis de los enlaces de hidrógenos por NBO

En general, dado que los EPH tienen un componente electrostático, los argumentos basados sólo en la distancia, pueden llegar a ser arbitrarios cuando se está estudiando interacciones muy débiles como las que involucran a los C-H…O. Por esta razón, se amplió el análisis hacia el estudio de los parámetros estereoelectrónicos. En este caso, se consideró que los pares de electrones libres del O (LPO) están participando como donores (o el LPN en el caso de C-H…N) y el orbital antienlazante σ*C-H como aceptor (LPO→σ*C-H).²⁰⁷

Las energías de las perturbaciones de 2do orden, E⁽²⁾ (donor-→aceptor), se calcularon a partir del análisis de NBO realizado sobre los mínimos obtenidos en vacío (Tabla 5.10). Cuando se representan gráficamente los orbitales LPO y o*C-H, es posible visualizar los EPH, ya que se producen sus solapamientos (Fig. 5.19). Por ejemplo, para el BSTHQ, se observaron interacciones entre C2-H2B-O12, C8-H8-O13 y C15-H15-O12 (Tabla 5.10) y los mismos pueden observarse en la Fig. 5.19, donde es claro el solapamiento de los orbitales involucrados. En cambio, el ordenamiento C19-H19-O13 no presentó solapamiento de los orbitales LPO13→σ*C19-H₁₉ y confirmaron, así, la falta de EPH intramolecular entre ellos. Este resultado, a su vez, coincide con lo obtenido por DXRM, para este derivado. Al llevar a cabo este mismo análisis en los derivados BSTHQa, p-NO2-BSTHQ y TM-BSTHQ, se llegó a las mismas conclusiones sobre la posibilidad de formación de EPH. En cambio, el BSBZT presentó interacciones en las disposiciones Ce-He-O12 y C18-H18-O12, que fueron diferentes a las obtenidas por DRXM (C14-H14...O11 y C18-H18...O12). Esto sería originado por la diferencia del ángulo diedro N2-N1-S10-C13. entre la estructura cristalina (-94,6 °) y el mínimo en vacío (-67,6 °), que lleva a favorecer una u otra interacción. Es importante recordar que las fuerzas intermoleculares en el cristal del BSBZT fueron más fuertes que en los otros derivados analizados. Esto podría estar influyendo en las diferencias observadas entre las estructuras obtenidas por DRXM y QC. Por otra parte, el BSTHIQ presentó dos EPH, como describió Pagliero,20 los cuales involucraron a C1-H1-O12 y C3-H3-O13-

Capítulo 5

Estudio de Propiedades Estructurales 3D

Tabla 5.10. Energias de perturbación de 2do orden (E⁽²⁾) en kcal/mol (El análisis NBO fue llevado a cabo a nivel B3LYP/6-31+G(d,p)).

BSTHQ		BSTHQa		BSBZT	-
LP(1)O12-0*C2-H28	0,70	LP(1)O13-→σ*C2-H2E	0,73	LP(1)Q ₁₀ -σ"C ₁₀ -H ₁₀	0,32
LP(2)O12→σ*C2-H281	0,47	LP(3)O13-0*C2-H28	1,68	LP(1)O ₁₂ →σ*G ₆ ·H ₅	0,52
LP(3)O12→σ*C2-H28	0,68	LP(1)O _M -+o*C ₈ -H ₆	0.83	LP(3)O12-0*C6-H6	0.52
LP(1)O12-0*CE-Hn	0.46	LP(2)O ₁₄	0,51		
LP(2)O15-0*Cs-Hill	1,36	LP(3)OLL+o*Ca-Ha	0,62		
LP(1)On-o'CiscHin	0,41	LP(2)On-orGineHis	0.43		

BSTHIQ		p-NO2-BSTHQ		TM-BSTHQ	
LP(3)Otz-+o*Ct-Ht	0.51	LP(1)O ₁₂ →d*C ₂ -H ₂₀	0,58	LP(1)O(g-+0*Cg-Hg	0,55
LP(1)O13-+O*Ca-Ha	0,25	LP(3)O12-+0*C2-H28	1,27	LP(3)O13-0*C2-H2	0.95
LP(3)O13-++d*C2-H3	0.87	LP(1)O ₁₃ →σ*C ₈ -H ₈	0,75	LP(1)Our-+O'Gar-Has	0.35
		LP(2)Otamo"Co-Ha	0,44	LP(1)Our-o"CarHa	0.95
		LP(3)O1,-+0*Cn-Hn	0,58	LP(1)0	0.47
		LP(1)Op-o*Cra-Hin	0.41	LP(2)O13-+0"Cpo-Hpu	0.49
		LP(1)O21→σ*C18-H18	0,33	LP(1)N1→0+C20-H20	1,68
		LP(2)O21-+0*C18-H18	0,46		
		LP(1)O22-+0*C15-H16	0,33		
		LP(2)O22→0*C16-H16	0,46		

Fig. 5.19. Orbitales LPO y o*C-H involucrados en los EPH del BSTHQ (valores de contorno: 0,04).

Resumiendo, el análisis comparativo entre DRXP y QC mostró resultados congruentes respecto a las interacciones de EPH intramoleculares. Solo el **BSBZT** manifestó diferencias entre los establecidos en estado sólido y en vacío. La Fig. 5.20 muestra dichos enlaces gráficamente, según los valores obtenidos por NBO.

Capítulo 5

Fig. 5.20. EPH (líneas triples) obtenidos por NBO en los seis NBS-Het estudiados (mínimos en vacío).

Se observó que, los derivados **BSTHQ**, **BSTHQa** y *p*-NO₂-BSTHQ presentaron interacciones entre el sulfonilo y los H del heterociclo que tendieron a ser más fuertes (mayores energías de pertubación) que las del sulfonilo con los H del benceno debido, probablemente, a restricciones geométricas. El **TM-BSTHQ** tuvo un comportamiento diferente del observado en los otros derivados del mismo heterociclo (THQ). Al poseer los grupos metilos en la posición *orto* del bencenosulfonilo, se lograron establecer más interacciones de tipo C-H--O. En tanto que, siendo la posición relativa entre el bencenosulfonilo y el heterociclo diferente, la interacción C₂₈-H₂₈--O₁₃ se mantiene, pero se pierde el EPH C₈-H₈--O₁₂ presente en las demás THQ. En el **BSTHIQ** sólo se establecieron interacciones con la porción heterociclica. Los EPH intramoleculares presentes en la estructura del **BSBZT** son diferentes, según se encuentre en el cristal o en vacío.

En conclusión, con el estudio de los parámetros estereoelectrónicos, utilizando cálculos NBO, se identificaron las disposiciones atómicas que conducían a los EPH. Además, se corroboró que estos resultados en vacío son congruentes con los obtenidos por cristalografía de rayos X, a excepción del **BSBZT**. Los rangos establecidos por Desiraju y col.,¹⁷⁴ por Taylor y Kennard.¹⁷⁵ y por Jeffrey¹⁷⁰ se deben usar con cuidado en casos donde las interacciones son débiles.

5.4.5. Piramidalización del N

En las estructuras cristalinas resueltas y en los mínimos obtenidos por QC, todos los compuestos, a excepción del **BSBZT**, presentan el N anular piramidalizado. Dicha disposición conlleva a una pérdida de la planaridad del heterociclo, que en ciertas conformaciones es mayor que en otras. Para llevar a cabo un estudio más detallado de esta característica estructural se usaron diferentes parámetros, tales como:

 el ángulo Θ (Fig. 5.21), que corresponde a la sumatoria de los tres ángulos planos alrededor del N (Θ = Φ₁ + Φ₂ + Φ₃). El Θ de un átomo de N plano trigonal ideal es de 360 °.

 el ángulo α (Fig. 5.21), que es el ángulo fuera del plano del átomo de azufre, con respecto al plano definido por el átomo de N y los dos átomos de C adyacentes.²⁰⁸ El α está entre 0 ° (sp² puro) y 55 ° (sp³ puro).¹⁸⁵ Por ejemplo, Yamaguchi y col.,¹⁷⁷ luego de estudiar 349 N-arilsulfonamidas con el N piramidalizado, encontraron para el ángulo Θ un rango de 332,3-360,0 °, mientras que, para α el rango obtenido fue de 23 a 60 °.

 el ángulo de torsión del Ν, τ_N (R₁-N-R₂-R₃), que se extiende desde 120 ° para el N sp³ hasta 180 ° para los sp².

 la distancia entre el átomo de N y el plano formado por sus tres sustituyentes (D Nplano). Este se halla generalmente entre 0,2 y 0,4 Å para N piramidalizados y cercano a 0 ° para N planares.²⁰⁹

 la hibridización del átorno de N y las ocupancias electrónicas en los diferentes orbitales, para lo cual se recurrió al análisis NBO.

Fig. 5.21. Parámetros geométricos O y a que definen la piramidalización del N.

Los resultados obtenidos, luego de aplicar todos los criterios arriba descriptos a los seis derivados en estudio, se resumen en la Tabla 5.11. Los cuatro parámetros geométricos (Θ, α, T_N y D N-plano) demostraron que los derivados **BSTHQ**, **BSTHQa**, **BSTHQ**, **p-NO₂-BSTHQ** y **TM-BSTHQ**, presentarían piramidalización del N. En cambio, el **BSBZT** demostró una disposición casi planar. Con elanálisis NBO, se logró demostrar que el N de los derivados **BSTHQ**, **BSTHQa**, **BSTHIQ**, **p-NO₂-BSTHQ** y **TM-BSTHQ** adopta una hibridización sp³ con un carácter *p* enriquecido (Tabla 5.11), lo cual explica el carácter piramidal observado en sus estructuras. Esto también fue reportado por Remko y col. para el grupo de *N*-sulfonamidas ácidas estudiadas.¹⁷⁸ Dicho comportamiento, lleva a que el N pueda comportarse como un centro estereogénico.

Los derivados en estudio presentaron distancias de enlace S-C_{arom} dentro del rango 1,78-1,80 Å (Tabla 5.11), como se describe para sulfonamidas heterociclicas y aromáticas.¹⁷⁸ Estas distancias corresponden a una longitud de enlace simple entre un C hibridizado sp² y un S, lo cual se debe a que el grupo sulfonamida y el anillo aromático se encuentran aproximadamente perpendiculares.¹⁷⁸ Los derivados **BSTHQ**, **BSTHQa**, **BSTHiQ** y *p*-NO₂-**BSTHQ** adquieren una conformación en la cual el enlace S-C_{arom} es *anti*-periplanar con respecto al par de electrones

Capítulo 5

libres del N (Fig. 5.22). Es decir que, el par de electrones libres del N divide en dos al ángulo O=S=O, sugiriendo que ese rotámero es estabilizado por la interacción de dicho par de electrones libres con los orbitales *d* del azufre.^{209, 210} En cambio, el **TM-BSTHQ** posee una disposición *syn*-periplanar entre el par de electrones libres del N y el enlace S-C.

Fig. 5.22. Conformación anti-periplanar (A) y syn-periplanar (B) entre el enlace S-C_{aron} y el par de electrones libres del N.

Parámetros	BSTHQ	BSTHQa	BSBZT	BSTHIQ	P-NOT BSTHQ	TM-BSTHQ
Geométricos (O, a y T _N en ° y D N-plano en Å) ^a	Θ = 339,1 α = 30,5 T _N = 149,5 D N-plano = 0,238	$\Theta = 337,4$ $\alpha = 29,4$ $T_N = 150,6$ D N-plano = 0,230	$\Theta = 347,0$ $\alpha = 7,4$ $T_N = 172,6$ D N-plano = 0,062	$\Theta = 334,3$ $\alpha = 22,5$ $T_N = 143,5$ D N-plano = 0,297	$\Theta = 338,5$ $\alpha = 29,7$ $T_N = 150,3$ D N-plano = 0,232	Θ = 335,8 α = 46,2 T _N = 133,8 D N-plano = 0,373
Longitud N-S (Å) *	1,69	1,69	1,73	1,67	1,65	1,67
Longitud S- Caron (Å) ^a	1,79	1,79	1,78	1,79	1,80	1,82
Electrónicos ^b	s (21,3 %); p 3,7 (78,6 %); d 0,0 (0,0 %)	s (21,3 %); p 3,7 (78,4 %); d 0,0 (0,3 %)	s (28,4 %); p 2,5 (71,6 %); d 0,0 (0,0 %)	s (25,6 %); p 2,9 (74,4 %); d 0,0 (0,0 %)	s(22,6 %); p 3,4 (77,3 %); d 0,0 (0,0 %)	s(21,0 %); p 3,8 (79,0 %); d 0,0 (0,1 %)
Hibridización del N	sp ³	sp ³	sp ²	sp ³	sp ³	sp ³
Hibridación calculada	sp ^{3.69}	sp ^{3,68}	sp ^{2,52}	sp ^{2.91}	sp ^{3,42}	sp ^{3,78}
Centros quirales	N	N y C ₂	No posee	N	N	N

Tabla 5.11. Parámetros que describen la piramidalización de los seis derivados.

^a Ángulos y distancias extraídos de las estructuras de mínima energía en vacio (QC con B3LYP/6-311+G(2d,p)). ^b Obtenidos por cálculos NBO B3LYP/6-31+G(d,p).

5.4.6. Análisis estereoquímico

Los resultados obtenidos mediante la **resolución de su estructura cristalina** confirmaron que el **BSTHQ** cristalizó en el grupo espacial P2₁2₁2₁, el cual es no-centrosimétrico. Esto significa que todas las moléculas en el cristal tuvieron la misma estereoquímica en el átomo de N y, por lo tanto, la posibilidad de dos *pseudo*-estereoisómeros (Fig. 5.23).

Capítulo 5

Fig. 5.23. Estereoisómeros del BSTHQ con distinta configuración en el N.

No es de esperar que la reacción de síntesis utilizada en este trabajo de tesis origine un producto quiral.¹⁸² De todos modos, se confirmó la ausencia de rotación óptica por polarimetría $([\alpha]^{25.3}_{D} = 0.2 \pm 0.1^{\circ}$ (c. 0.9, *n*-hexano)) a temperatura ambiente. Estos resultados contrastan notablemente con los provenientes de la DRXM, donde sólo se observó el isómero 1*R* en el cristal analizado. Esto podría explicarse si el **BSTHQ** hubiera cristalizado como conglomerado (grupo espacial P2₁2₁2₁, no-centrométrico) lo cual sucede con un 5 a un 10 % de prevalencia.¹⁸²

En este punto de la discusión cabría preguntarse si la muestra sólida se originó por una resolución espontanea (isómero 1*R* en estado sólido y 1*S* en solución) o por una cristalización estereoselectiva, estando presentes ambos isómeros en diferentes cristales (conglomerado) y la selección del monocristal para la DRXM, correspondió al 1*R*.¹⁸² A partir de una inspección visual no fue posible observar, en la muestra, cristales diferentes (que puedan atribuirse al otro isómero). Tampoco se pudieron analizar otros cristales de esta muestra por DRXM. En cambio, se realizó una búsqueda bibliográfica en la base de datos de la CSD,¹⁹¹ para conocer si existían informados otros compuestos con el mismo comportamiento peculiar que el **BSTHQ**. Se hallaron informes, por un lado, de Hashmi y col.²¹¹ que reportaron que la 7-metil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol (Fig. 5.24.A) cristalizó en el grupo espacial monoclínico P2₁/c (centrosimétrico) y con Z = 4. Esto significa que dos de las cuatro moléculas tienen una orientación en el N y las otras dos la opuesta. Aunque, los autores no comentaron al respecto, esto queda claro al observar el empaquetamiento cristalino (Fig. 5.24.B).

Fig. 5.24. A) Estructura 2D y 3D del 7-metil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol. B) Empaquetamiento cristalino visto a lo largo del eje b.²¹¹

Otra estructura reportada fue el (R)-1-(4-bromofenilsulfonil)-3,6-dimetil-1,2,3,4tetrahidroquinolina, resuelta por Reichardt y col.,²¹² que cristalizó en el grupo espacial monoclínico P2₁, con Z = 4 (Fig. 5.25.A). Los autores postulan que en la unidad asimétrica hay

Capítulo 5

dos moléculas con diferentes conformaciones del anillo tetrahidropiridina, pero con la misma configuración absoluta (*R*) en el C₃. Esto pone de manifiesto que ellos consideraron a los isómeros del N, como confórmeros. A continuación, se muestra la celda unitaria, vista a lo largo del eje *a*, en donde se observan las cuatro moléculas, dos con el N en una disposición espacial y las otras dos con la opuesta (Fig. 5.25.B).

Además de los dos casos arriba descriptos, se puede sumar a esta discusión los resultados obtenidos de las estructuras cristalinas del *p*-NO₂-BSTHQ y el TM-BSTHQ Formas I y II, resueltas en el presente trabajo. Ambas cristalizaron en grupos espaciales centrosimétricos y, por lo tanto, presentaron los dos isómeros del N en la celda unitaria, es decir, que cristalizarían como racematos (Fig. 5.5).

A partir de todas las observaciones presentadas arriba, se destaca aún más el comportamiento particular del **BSTHQ** en su estado sólido. Desde este punto de vista, sería racional denominar a estos estereoisómeros del compuesto, como enantiómeros originados por un N estereogénico. Por estas razones, consideramos de interés profundizar el estudio de los isómeros del **BSTHQ**, ahora recurriendo a herramientas de QC. Se llevó a cabo un **análisis conformacional**, a través de la rotación del ángulo diedro φ₃ (C₂-N₁-S₁₁-C₁₄, Fig. 5.6) sobre los dos isómeros por separado. Para el cálculo se empleó B3LYP/6-311G(d,p) y las estructuras de partida fueron, por un lado el mínimo absoluto obtenido anteriormente (Sección 5.4.2) que corresponde al 1*R*-**BSTHQ** (1a) y, por otro, la imagen especular de esta estructura el 1*S*-**BSTHQ** (2a). La notación que se usará de ahora en adelante consiste en utilizar números para diferenciar las configuraciones y letras para los confórmeros. La Fig. 5.26 muestra los resultados obtenidos, en un gráfico de energía relativa en función del ángulo diedro C₂-N₁-S₁₁-C₁₄.

Capítulo 5

Fig. 5.26. Rotación del ángulo diedro φ₃ (C₂-N₁-S₁₁-C₁₄). A) Para el 1*R*-BSTHO (partiendo de 1a) y B) para el 1*S*-BSTHO (partiendo de 2a).

Los perfiles de energía relativa difieren a los informados por Pagliero²⁰ usando el método semiempírico AM1, ya que empleando B3LYP/6-311G(d,p), se hallaron mínimos no equivalentes en cada isómero configuracional. Como puede apreciarse en la Fig. 5.26, para ambos estereoisómeros existen tres estructuras que se corresponden con mínimos energéticos, 1a (mínimo absoluto) y 1b y 1c (mínimos locales). Es interesante notar que en ninguno de ellos se invierte la configuración del N, por lo que solo se obtienen, a partir de esta rotación, diferentes confórmeros, los cuales se presentan superpuestos en la Fig. 5.27.

Fig. 5.27. Superposición (a partir del heterociclo) de los diferentes confórmeros del (1*R*)-BSTHQ (1a rojo, 1b violeta y 1c amarillo).

Al comparar las energías de los contórmeros 1a-c, se observó que se tratan de mínimos no equivalentes, pero que están próximos en energía (∆E ~1,56 kcal/mol, Tabla 5.12).

Tabla 5.12.	Valores	de ángulos	diedros y	energías	relativas	de los	diferentes	confórmeros	del (1R)-
BSTHQ.									

Puntos estacionarios	Diedro C2-N1-S11-C14 (*)	AE (kcal/mol)
1a	80,30	0,00
1b	-69.08	1,55
10	-139,08	1,57

* El refinamiento (single point) de los mínimos se llevó a cabo con 6-311+G(2d,p), realizando los cálculos de frecuencia y correcciones térmicas de punto cero.

Por lo tanto, utilizando cálculos ab initio, la rotación en torno al enlace N-S, no cambia la estereoquímica del N. Para poder estudiar las características de inversión del N y su comportamiento energético, fue necesario cambiar las coordenadas del análisis. Fue así que

Capítulo 5

se consideró rotar específicamente el diedro C₈-C₉-N₁-S₁₁, partiendo de 1b, que ya poseía el ángulo C₂-N₁-S₁₁-C₁₄ rotado y sólo faltaba que se produzca la inversión de N (Fig. 5.28.A). De esta forma, se obtuvo el otro isómero (2d) con un cambio conformacional en el ciclo de la THQ e inversión del N (Fig. 5.28.B).

Fig. 5.28. A) Diedro C₈-C₉-N₁-S₁₁ de 1b rotado para lograr el cambio configuracional. B) Perfil de inversión (*flipping*) del N.

El isómero 2d, a diferencia de 1a, posee el grupo bencenosulfonilo rotado cerca de 180 ° en torno al enlace N-S y con el N invertido (Fig. 5.29). El 1a posee el ciclohexeno en conformación *semi-silla*, mientras que 2d lo tiene en conformación *sofá*. Sus diferencias energéticas se presentan en la Tabla 5.13. Al comparar las estructuras de 2d con 2a, se vio que ambas poseen igual configuración, pero cambian conformacionalmente a nivel del anillo de la THQ. El 2a (al igual que 1a y su estructura cristalina) posee el C₂ y C₃ por encima y por debajo del plano del heterociclo (*semi-silla*), respectivamente; por el contrario 2d presenta ambos átomos por encima de dicho plano (*sofá*).

Fig. 5.29. Comparación de las estructuras de 1a (sin color) y 2d (color naranja). A y B son distintos puntos de visualización.

Las energias de 1a, 1d y 2d relativas a 2a fueron 0,02, 0,75 y 0,76 kcal/mol, respectivamente. Además, con el fin de profundizar el análisis, se identificó y caracterizó el ET[‡] y la barrera de energía entre las diferentes estructuras. Para ello, se utilizó la función QST2 y se realizó el cálculo en vacío y en *n*-heptano (preestablecido en Gaussian y elegido por similitud a *n*-hexano). Se estudió el ET[‡] entre 1a y 2a (ET[‡]_{1a-2a}), entre 1d y 2d (ET[‡]_{1d-2d}) y entre 1a y 2d (ET[‡]_{1a-2d}). Estos resultados se resumen en la Tabla 5.13. En la Fig. 5.30, se presentan

Capítulo 5

las conformaciones mínimas y los ET[‡] del BSTHQ; junto a las energías relativas con respecto al mínimo absoluto, es decir 2a.

Tabla 5.13. Valores de energía de las diferentes configuraciones del BSTHQ (1 y 2) y de diferentes conformaciones (a-d) en n-heptano (energías similares se obtuvieron en vacio).

Puntos estacionarios	∆G (kcal/mol)	∆E (kcal/mol)
1a - 2a	0,06	0,02
ET ¹ 10-20 - 1a	3,00	2,12
ET [‡] ta-2a - 2a	3,06	2,14
2d - 1d	0,05	0,01
ET ¹ 10-20 - 2d	2,19	1,32
ET ¹ 1d-2d - 1d	2,24	1,33
2d - 1a	0,63	0,75
ET ⁴ 1a-2d - 2d	2,52	1,42
ET [‡] 1a-2d - 1a	3,14	2,17

Fig. 5.30. Conformaciones de mínima energía y ET¹ sobre la superficie de energía potencial del BSTHQ; y las energías relativas al mínimo absoluto, 2a (refinadas con 6-311+G(2d,p)).

En los ET[‡] obtenidos se observa una disposición casi planar del N, que tendría lugar al producirse la inversión. Un resultado similar fue reportado por Lambert y col.²¹³ en *N*-tosilaminas cíclicas. En general, se observó que, para el **BSTHQ**, el proceso de interconversión involucra rotación e inversión, tal cual fue descripto por Thiel y col.²¹⁴ para la *N*-metilmetanosulfonamida. A pesar de que no se estudiaron los procesos de rotación e inversión por separado, postulamos que la rotación sería el paso limitante en este proceso. Esto se fundamenta en el hecho de que el enlace N-S tendría una rotación restringida, a causa del carácter doble parcial que posee, siendo su longitud de 1,69 Å, la cual es menor a la de un enlace simple N-S (1,75 Å). Además, si se observan las energías relativas obtenidas en la rotación del diedro ϕ_3 (C₂-N₁-S₁₁-C₁₄) encontramos máximos (no refinados) de alrededor de 7

kcal/mol (Fig. 5.26.A y B), mientras que en la rotación del diedro C₈-C₉-N₁-S₁₁, donde sólo se produce la inversión (porque la rotación ya se efectuó) el máximo (no refinado) del perfil posee una energía de aproximadamente 1,8 kcal/mol (Fig. 5.28.B).

Se obtuvieron, en general, barreras de inversión bajas, comparadas con el NH2 (5,8 kcal/mol)215. 216 o con (CH3)2NH (4,4 kcal/mol).217 Entre 2a y 1a es de 2,12 kcal/mol. En tanto que, entre 2d y 1a es de 1,42 kcal/mol, lo que coincide con lo descripto por Baert y col.218 para ciclohexanos fusionados con anillos aromáticos, en donde la conformación sofá resultó 1,2 kcal/mol menos estable que la semi-silla. Por esta razón se podría esperar que, en solución y a temperatura ambiente, se presente una alta velocidad de interconversión entre los diferentes isómeros. Este es, probablemente, la consecuencia más importante de la flexibilidad conformacional y configuracional del grupo sulfonamida,217 y explica el hecho que en solución y a temperatura ambiente, estos isómeros no se lograron separar. Así mismo, el espectro 1H-RMN del BSTHQ correspondió a un promedio de los espectros de ambas configuraciones. Lo mismo se observó al agregar sales de europio (reactivo de corrimiento químico) y al variar la temperatura hasta 55 °C (las mediciones a menores temperaturas no se pudieron realizar por cuestiones técnicas). Resultados similares encontraron Huisman y col.219 para el derivado N-(bencenosulfonil)-2,3-dihidroquinolina-4(1H)-ona, en el cual los H del α-metileno aparecen con igual desplazamiento. Los autores adjudicaron este fenómeno a una rápida inversión del N, que lleva a producir la equivalencia magnética de dichos H.

Todo lo anterior permite inferir que la formación de un conglomerado del **BSTHQ** desde *n*hexano fue un hecho muy interesante, considerando la baja barrera energética de inversión que posee este derivado en solución y la poca prevalencia de este fenómeno (5-10 %).

En otro contexto, el derivado **BSTHQa** presenta dos centros estereogénicos (N y C₂) y, por lo tanto, la posibilidad de cuatro diastereómeros. Para simplificar y facilitar la discusión se denominará a cada uno de la siguiente manera: el 1*S*,2*R* como 1, el 1*R*,2*S* como 2, el 1*S*,2*S* como 3 y el 1*R*,2*R* como 4 (Fig. 5.31).

Fig. 5.31. Posibles isómeros configuracionales del BSTHQa.

A partir de la **resolución de la estructura cristalina** del **BSTHQa**, se pudo comprobar que cristalizó en el grupo espacial P2₁/c (centrosimétrico, Z = 4). Por lo tanto, dos de las cuatro moléculas en la celda unidad tienen la misma estereoquímica en el N y en el C₂, mientras que las otras dos tienen la opuesta. Los ángulos de torsión correspondientes poseen magnitudes iguales pero signos opuestos. Además, en el cristal estuvieron presentes los isómeros 1

Capítulo 5

(1S,2R) y 2 (1R,2S) pero no los dos restantes (3 y 4). Se llevó a cabo una búsqueda de estructuras cristalinas reportadas en la CSD,¹⁹¹ y se pudo comprobar que este comportamiento resultó frecuente entre compuestos similares. Así, Hashmi y col.²¹¹ reportaron las estructuras del 2-metil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol y del 2,7-dimetil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol (Fig. 5.32). Estos autores llevaron a cabo las sintesis sin controlar la estereoquímica.

Fig. 5.32. Estructuras 2D y 3D del 2-metil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol (A) y del 2,7dimetil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol (B).²¹¹

El 2-metil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol cristalizó en el grupo espacial Pbca, con 8 moléculas en la celda unidad, mientras que el 2,7-dimetil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol lo hizo en el grupo P-1, con Z = 4. Ambos grupos espaciales son centrosimétricos, por lo que la mitad de las moléculas tienen una disposición específica en el C₂ y en el N y, la otra mitad, la opuesta. Se vio que ambas presentaron los isómeros 1*R*,2*S* y 1*S*,2*R*, estando ausentes los correspondientes 1*S*,2*S* y 1*R*,2*R*. En la Fig. 5.33 se muestra el empaquetamiento cristalino del 2,7-dimetil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol (omitiéndose el del 2-metil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol por la dificultad de observar el empaquetamiento con Z = 8).

Fig. 5.33. Empaquetamiento cristalino del 2,7-dimetil-1-bencenosulfonil-1,2,3,4-tetrahidroquinolin-8-ol, a lo largo del eje a.²¹¹

Un fenómeno similar al descripto arriba, se observó con el derivado *p*-F-BSTHQa (grupo espacial P2₁/c centrosimétrico con Z = 4).⁹⁰ A partir de todos estos antecedentes, se puede concluir que el comportamiento observado para el BSTHQa resulta frecuente en esta clase de derivados.

Capítulo 5

Con el objetivo de analizar los diferentes isómeros del **BSTHQa**, al igual que se hizo con el **BSTHQ**, se llevó a cabo un **análisis conformacional**, mediante la rotación del ángulo diedro φ₃ (C₂-N₁-S₁₂-C₁₅). Se analizaron los dos isómeros 1 (1*S*,2*R*) y 2 (1*R*,2*S*) por separado. Se empleó el B3LYP/6-311G(d,p) y las estructuras de partida fueron los mínimos absolutos obtenidos anteriormente y que llamaremos 1a y 2a. En la Fig. 5.34.A, se presentan los resultados obtenidos para el isómero 2.

Fig. 5.34. A) Rotación del ángulo diedro φ₃, C₂-N₁-S₁₂-C₁₅ en 2 ((1R, 2S)-BSTHQa) y B) Superposición a partir del heterociclo de los diferentes confórmeros: 2a rojo, 2b azul y 2c amarillo.

Con la rotación realizada, se encontraron tres mínimos no equivalentes próximos en energía (Tabla 5.14), como ocurrió con el **BSTHQ**. Estos fueron 2a (que corresponde al mínimo absoluto y a la estructura cristalina), 2b y 2c, mínimos locales (Fig. 5.34.B). Al igual que con el **BSTHQ**, a partir de esta rotación no se logró invertir el N. El isómero 1 (1*S*,2*R*), no mostrado, condujo a los mismos resultados, obteniéndose también los isómeros 1a, 1b y 1c.

Puntos estacionarios	Diedro $\phi_3 C_2 N_1 - S_{12} - C_{15}$ (°)	∆E (kcal/mol)
2a	80,63	0,00
2b	-69,37	1,74
20	-139.37	1,97

Tabla 5.14. Valor de ángulos diedros	y energías relativas de los	diferentes confórmeros del BSTHQa.
--------------------------------------	-----------------------------	------------------------------------

Por otro lado, también se estudió el perfil energético que se produciría por la inversión del N, rotando el diedro C₈-C₉-N₁-S₁₂ y partiendo desde 2b (Fig. 5.35.A). La Fig. 5.35.B muestra los resultados obtenidos.

Fig. 5.35. A) Ángulo diedro C₈-C₉-N₁-S₁₂ de 2b ((1*R*,2*S*)-BSTHQa), rotado para lograr el cambio configuracional. B) Pertil de inversión del N.

Como puede apreciarse en la Fig. 5.35.B, a partir de tratamiento del ángulo específico C₈-C₉-N₁-S₁₂, se obtiene otro isómero configuracional (denominado 4). Éste es otro de los diatereómeros posibles del **BSTHQa**, cuya configuración no se encontró en la estructura cristalina. La isomerización se llevó a cabo a través de la inversión del N y un cambio conformacional en el anillo del ciclohexeno, dado que el metilo adopta una posición ecuatorial. Así, mientras que 1 y 2 poseen el ciclohexeno en conformación *semi-silla*, 4 lo tiene en la conformación *sofá*.

Por otro lado, se estudiaron los isómeros 3 (1*R*,2*R*) y 4 (1*S*,2*S*), realizando una rotación, a nivel 6-31G(d), del ángulo diedro φ_3 , C₂-N₁-S₁₂-C₁₅ (Fig. 5.36). En estas estructuras (3 y 4) el metilo se encuentra en posición ecuatorial, lo cual no es favorable energéticamente. Por esta razón, partiendo desde dichas configuraciones y rotando el diedro C₂-N₁-S₁₂-C₁₅, se produce la inversión del N, cambiando a las configuraciones más estables en cada caso (lo que no ocurrió con 1 y 2). Así, por inversión del N se observó un consecuente cambio configuracional y el derivado pasó de 3 (1*R*,2*R*) a 1 (1*S*,2*R*) y de 4 (1*S*,2*S*) a 2 (1*R*,2*S*), ambos con el metilo en posición axial.

Fig. 5.36. Rotación del ángulo diedro φ₃ (C₂-N₁-S₁₂-C₁₅) partiendo de 4 ((15.25)-BSTHQa).

Una vez realizado el análisis conformacional, se procedió a la caracterización de los ET[‡] y de las barreras energéticas entre los cuatro isómeros y sus estructuras de mínima energía, 1a (1*S*,2*R*), 2a (1*R*,2*S*), 3a (1*R*,2*R*) y 4a (1*S*,2*S*). Una vez obtenido el ET[‡], se realizó un refinamiento a nivel 6-311+G(2d,p), en vacío, como así también en etanol y éter dietílico (solventes de donde se obtuvo el monocristal). Las energías relativas fueron similares en los tres sistemas estudiados, por lo que en la Tabla 5.15 y en la Fig. 5.37 se resume lo obtenido en vacío. En la Fig. 5.37, se presentan las conformaciones de mínima energía y los ET[‡] del **BSTHQa**, junto a las energías relativas con respecto al mínimo absoluto (1a).

Tabla 5.15. Valor de ángulos diedros y energías relativas de las diferentes configuraciones del BSTHQa.

Puntos estacionarios	AG (kcal/mol)	AE (kcal/mol)
2a - 1a	0,08	0,02
ET [#] 10-20 - 28	12,73	11,85
ET ¹ 19-28 - 18	12,81	11,87
3a - 1a	5,35	5,20
ET ⁴ _{1a-3a} - 3a	8,03	7,03
ET [‡] _{ta-3a} - 1a	13,38	12,23

Fig. 5.37. Conformaciones de mínima energía y ET[†] sobre la superficie de energía potencial del BSTHQa; y las energías relativas al mínimo absoluto (refinadas con 6-311+G(2d,p)).

En la Fig. 5.38.A y B se presentan los perfiles energéticos obtenidos para 1a y 2a, y para 1a y 3a, respectivamente, para visualizar las diferencias.

Capítulo 5

Fig. 5.38. A) Optimización del estado de transición (QST2) entre 2a (1R,2S) y 1a (1S,2R). B) QST3 entre 3a (1R,2R) y 1a (1S,2R). Retinados en vacio a nivel 6-311+G(2d,p).

Las configuraciones 1*R*,2*S* y 1*S*,2*R* tuvieron una barrera de 11,85 kcal/mol (Fig. 5.38.A). Pero considerando que dichas estructuras están en equilibrio y que son isoenergéticas, habrá una población igualitaria de ambas. Como se aprecia en la Fig. 5.38.B, el isómero 3a (1*R*,2*R*), con el metilo ecuatorial, resultó ser 5,2 kcal/mol menos estable que 1a (1*S*,2*R*), con el metilo axial. Lo mismo sucedió con 1*S*,2*S* y 1*R*,2*S*, a favor de este último. Considerando que estas estructuras se encuentran en equilibrio, esta diferencia en energía supone un enriquecimiento del 99,9 % a favor de la ubicación axial del metilo, según la ecuación de Gibbs.²²⁰ Esto explica que en el cristal estén presentes los isómeros 1*R*,2*S* y 1*S*,2*R*, ambos con el metilo en posición axial.

Pagliero y col.⁹⁰ realizaron un extensivo análisis de RMN sobre este derivado y concluyeron que, en soluciones de DMSO y a temperatura ambiente, el metilo de la posición 2 se encuentra, generalmente, en posición axial.⁹⁰

Los ET⁴ hallados poseen el N con una disposición casi planar. En cuanto al análisis acerca de rotación-inversión, a diferencia de lo discutido para el **BSTHQ**, en el **BSTHQa** ambos procesos tendrían requerimientos energéticos similares, ya que el metilo en posición 2 produciría una restricción a la inversión. En la rotación del diedro φ₃, C₂-N₁-S₁₂-C₁₅ (Fig. 5.34) se encuentran máximos no refinados de aproximadamente 7 kcal/mol, y en la rotación de C₈-C₉-N₁-S₁₂ (Fig. 5.35.B) el máximo se ubica a alrededor de 6 kcal/mol.

En lo que concierne al **BSBZT**, debido a que posee un N planar con hibridización sp², no tiene centros quirales. Igualmente se llevó a cabo el análisis conformacional, mediante la rotación del diedro φ₃, N₂-N₁-S₁₀-C₁₃, utilizando 6-31G(d) (Fig. 5.39).

Capítulo 5

Fig. 5.39. Rotación del diedro q₃, N₂-N₁-S₁₀-C₁₃ del BSBZT.

Se obtuvieron dos mínimos isoenergéticos (1a con un $\varphi_3 = -67.62^\circ$ y 1b con un $\varphi_3 = 68,41^\circ$), lo cual se confirmó cuando ambos se refinaron a nivel 6-311+G(2d,p). Este resultado, se explica por la planaridad del heterociclo, lo que hace indiferente el posicionamiento del bencenosulfonilo, hacia cualquiera de sus caras.

En la estructura cristalina del BSBZT, ambas conformaciones (1a y 1b) están presentes dentro de la celda unidad, con grupo espacial P-1 y con un Z = 2.

Hallazgos similares fueron informados por Stepnicka y col.²²¹ para el 1-(metilsulfonil)-1*H*-1,2,3-benzotriazol, ya que cristalizó en el grupo espacial monoclínico P2₁/c con un Z = 4, presentando los dos confórmeros analizados en el **BSBZT** (Fig. 5.40,A). Lo mismo sucedió con la estructura del **p-CH₃-BSBZT**, resuelta por Rodríguez y col.²⁰² que cristalizó en el grupo espacial P-1 con un Z = 2 (Fig. 5.40,B).

Fig. 5.40. Empaquetamiento cristalino de 1-(metilsulfonil)-1H-1,2,3-benzotriazol, a lo largo del eje b (A) y del p-CH₃-BSBZT a lo largo del eje a (B).

El BSTHiQ posee un N piramidalizado, con un α = 22,5 °, por lo que está al límite del rango establecido por Yamaguchi y col. (23-60 °)¹⁷⁷ y es el derivado que menos carácter sp³ (sp^{2,91}) presenta a nivel del N (excluyendo al BSBZT).

La rotación del diedro φ_3 , C₁-N₂-S₁₁-C₁₄, a nivel 6-31G(d), dio el perfil de energía mostrado en la Fig. 5.41. En él se puede observar la presencia de dos mínimos no equivalentes (1 y 2). Estos estereoisómeros tienen diferente configuración en el N, el 1 es R (φ_3 = -69,48 °),

Capítulo 5

mientras que el 2 es S (φ₃ = 80,52 °), lo que se confirma cuando ambos se refinaron a nivel 6-311+G(2d,p). La diferencia de energía entre ambos mínimos fue de 1,71 kcal/mol a favor de 1, según se calculó utilizando DFT.

Fig. 5.41. Perfil de energía, obtenido a partir de la rotación del diedro \u03c63, C1-N2-S11-C14, del BSTHIQ.

Los resultados encontrados demuestran que el **BSTHiQ**, a diferencia de los demás derivados de THQ, puede interconvertirse por simple rotación del ángulo φ₃ (C₁-N₂-S₁₁-C₁₄) debido a la baja diferencia energética existente entre los isómeros y al bajo grado de piramidalización que presenta.

El p-NO₂-BSTHQ cristalizó en un grupo espacial centrosimétrico (P2₁/c) con Z = 4, por lo que dos de las cuatro moléculas en la celda unidad tienen una configuración en el N, mientras que las otras dos tienen la opuesta. Los ángulos de torsión poseen iguales magnitudes pero signos opuestos, lo que caracterizaría al sólido como un racemato.

En el estudio de QC, cuando se realizó la rotación del ángulo φ₃ (C₂-N₁-S₁₁-C₁₄) se encontraron resultados similares a los obtenidos para el **BSTHQ**. Esto confirmaría que el sustituyente en posición *para*, no influyó sobre las barreras energéticas de interconversión de los isómeros conformacionales y configuracionales.

Los dos polimorfos del TM-BSTHQ (Sección 4.4.4) cristalizaron en grupos espaciales centrosimétricos (P2₁/c la Forma I y P2₁/n la Forma II), por lo que presentaron las dos configuraciones del N en la celda unidad y se clasificarían como racematos.

El estudio conformacional por cálculos teóricos a través de la rotación del diedro φ₃ (C₂-N₁-S₁₁-C₁₄), a nivel 6-311G(d,p) mostró cuatro mínimos no equivalentes (1a, 1b, 1c y 1d) que tienen la misma configuración (*R*) sobre el N (Fig. 5.42). La diferencia de energía entre los distintos mínimos se muestra en la Tabla 5.16.

Capítulo 5

Fig. 5.42. Rotación del ángulo diedro φ₃, C₂-N₁-S₁₁-C₁₄ del TM-BSTHQ.

Tabla 5.16. Valor de ángulos diedros y energías relativas de los diferentes conformeros del	I TM-BSTHO.
---	-------------

Punto estacionario	Diedro φ ₃ C ₁ -N ₂ -S ₁₁ -C ₁₄ (")	AE (kcal/mol)
1a	-148,86	0,00
1b	-61,91	1,09
1c	56,75	1,75
1d	136,34	1,63
2a	148,92	0,00

Además, se realizó una caracterización de los ET[‡] y de las barreras energéticas entre los cuatro confórmeros, 1a-d, y se incluyó a 2a (enantiómero de 1a), isómero que también estuvo presente en el cristal. Para esto, se usaron los métodos QST2 y QST3. Los ET[‡] obtenidos, fueron refinados a nivel 6-311+G(2d,p) en vacío. A partir de esto, se confirmó que 1a y 2a son estructuras isoenergéticas, y presentaron una barrera de interconversión baja de 2,09 kcal/mol. Los confórmeros mostraron diferencias de ~ 1 kcal/mol con respecto a 1a (mínimo absoluto) y barreras de interconversión de alrededor de 6 kcal/mol. En la Tabla 5.17 y en la Fig. 5.43 se resumen los resultados obtenidos.

Capítulo 5

Tabla 5.17. Valor de ángulos diedros y energías relativas de las diferentes conformaciones y configuraciones del TM-BSTHQ.

Puntos estacionarios	AG (kcal/mol)	AE (kcal/mol)
1b - 1a	1,40	1,09
ET ⁴ te-te- 1b	6,28	5,23
ET ^f _{ta-to} - 1a	7,68	6,32
1c - 1a	1,55	1,75
ET ¹ 10-10- 1C	6,11	4,56
ET ⁴ ta-te - 1a	7,66	6,31
1d - 1a	1,66	1,63
ET ^t ta-td* 1d	5,12	3,92
ET [‡] ta-td - 1a	6,78	5,55
2a - 1a	-0,01	0,00
ET ¹ 10-2a - 2a	3,43	2,09
FT ¹ and 18	3.42	2.09

Fig. 5.43. Contormaciones de mínima energia y ET[‡] sobre la superficie de energia potencial del TM-BSTHQ y las energias relativas con respecto al mínimo absoluto 1a (refinadas con 6-311+G(2d,p)).

Es importante destacar que, la conformación observada en las estructuras cristalinas de las Formas I y II del **TM-BSTHQ** coinciden con el mínimo absoluto encontrado por QC, es decir, con 1a y con su isómero configuracional 2a. Esto confirma que, en vacio y en estado sólido, las conformaciones fueron similares. Aunque, ninguno de los demás confórmeros (1b, 1c y 1d) se encontró en el estado sólido.

Investigaciones estructurales de polimorfismo en compuestos orgánicos muestran consistentemente que las longitudes de enlace y los ángulos de enlace no difieren significativamente entre los polimorfos de un compuesto.²⁰⁰ La constancia de estos parámetros geométricos no es sorprendente, debido a las energías relativamente grandes que involucran estos cambios. Este no es el caso de los parámetros de torsión sobre enlaces simples, donde las energías involucradas suelen ser comparables a las diferencias energéticas entre las distintas fases cristalinas de un compuesto. Puesto que los parámetros torsionales definen la conformación molecular, es evidente que en aquellas moléculas que poseen grados de libertad de torsión, sus polimorfos pueden exhibir diferencias significativas en sus conformaciones moleculares.²⁰⁰ Esto se conoce como polimorfismo conformacional.

Como se observó mediante el análisis conformacional del **TM-BSTHQ**, la molécula posee varios confórmeros, que surgen a partir de la rotación del enlace N-S. A pesar de ello, dicho derivado no se caracterizó por presentar polimorfismo conformacional. Los cambios que llevaron a producir las dos fases polimórficas (Formas I y II) están dados a nivel de las interacciones intermoleculares y del empaquetamiento cristalino, y no en la conformación adoptada por el compuesto. Esto podría tener su origen en el hecho de que, en el cristal, las interacciones intramoleculares (3 C-H--O y 1 C-H--N) superarian a las intermoleculares (1 C-H--O en Forma I y solo interacciones de van der Walls en Forma II), llevando a mantener una misma conformación, la de mínima energía obtenida por cálculos teóricos en vacío.

5.5. Conclusiones

Se lograron resolver las estructuras cristalinas de cinco de los seis derivados, utilizando DRXM. En el caso del **TM-BSTHQ**, se confirmaron, además, las geometrías cristalinas de dos polimorfos.

Se llevaron a cabo estudios de QC y se obtuvieron las estructuras de mínima energía de todos los derivados en estudio, en fase gaseosa y en agua. Por ambas metodologías, se observó el plegamiento de las moléculas en forma de V o mariposa (originada por la geometría del grupo sulfonilo), la conformación más favorable energéticamente para los compuestos del tipo sulfonamida.

Al comparar las conformaciones obtenidas por DRXM y por QC (en agua y en vacío) se vio que eran similares entre sí. Cuando se compararon las conformaciones en estado sólido y en vacío, para los derivados BSTHQ, BSTHQa, BSBZT, p-NO₂-BSTHQ, TM-BSTHQ Formas I y II, respectivamente, se demostró que casi todas, a excepción del BSBZT, se consideran conformaciones aproximadamente idénticas (RMSD fueron menores a 0,3 Å).²⁸

El estudio de los EPH intramoleculares en los derivados estudiados (a excepción del BSBZT) puede ser realizado utilizando cálculos NBO o datos cristalográficos, ya que se corroboró que conducen a resultados congruentes.

El análisis de piramidalización y de hibridización del N, permitió confirmar que cinco derivados poseen el N piramidalizado (solo el **BSBZT** mostró un N sp²). Esto llevó a que el N sp³ se comporte como centro estereogénico, dando la posibilidad de isómeros conformacionales y configuracionales.

El **BSTHQ**, cristalizó como el isómero1*R*, a pesar de la barrera de energía de interconversión relativamente baja que poseen los isómeros 1*R* y 1*S* (2,12 kcal/mol) tanto en vacío como en solución. Este comportamiento no se halló en los restantes derivados estudiados ni en otros estructuralmente similares registrados en la CSD.¹⁹¹ La barrera energética baja, que explicó el hecho que en solución y a temperatura ambiente estos

estereoisómeros no se logren separar, permitió inferir que la obtención de un solo estereoisómero por cristalización, fue un hallazgo muy interesante.

El BSTHQa cristalizó en un grupo espacial centrosimétrico, estando presentes los isómeros 1*S*,2*R* y 1*R*,2*S*, pero no los 1*R*,2*R* y 1*S*,2*S*. Entre las configuraciones 1*R*,2*S* y 1*S*,2*R* la barrera calculada fue de 11,8 kcal/mol, aunque habria una población igualitaria de ambas, ya que sus estructuras están en equilibrio y son isoenergéticas. Los isómeros con el metilo ecuatorial resultaron menos estable que los de posición axial, existiendo un 99% a favor de esta última conformación.²²⁰ Esto explicaría que ambos isómeros presentes en el cristal, tengan el metilo en esa ubicación.

Tanto el *p*-NO₂-BSTHQ como el TM-BSTHQ (en sus dos modificaciones cristalinas), cristalizaron en grupos espaciales centrosimétricos, por lo que presentan las dos configuraciones en el N en la celda unidad (racematos).

A partir del estudio conformacional del TM-BSTHQ se hallaron cuatro confórmeros próximos en energía. El mínimo absoluto obtenido en vacío, coincide con la conformación hallada en estado sólido de los dos polimorlos identificados. Ninguno de los demás confórmeros se encontró en las estructuras cristalinas.

6. ESTUDIOS DE SOLUBILIDAD

En el descubrimiento de nuevos fármacos, la Química Combinatoria y el cribado de alto rendimiento llevaron a un gran incremento en la cantidad de compuestos utilizados en ensayos biológicos. Sin embargo, el número de nuevos fármacos aprobados anualmente no ha cambiado significativamente en las últimas dos décadas.³⁰ En 1990, el 40 % de los fracasos en la I+D de nuevos IFA se debía a problemas en la farmacocinética y en la BD de las NEQ. En 2005, el porcentaje de fracasos se redujo al 10 %, debido a la incorporación en etapas tempranas del descubrimiento.²²²

En la primera parte del presente capítulo, se describen los resultados obtenidos en la determinación experimental de la solubilidad cinética (S_c) del **BSTHQ** y del *p*-NO₂-BSTHQ y de la solubilidad termodinámica en agua (S_{ac}) de los seis derivados NBS-Het en estudio. En una segunda parte, se muestran los resultados obtenidos al intentar mejorar la solubilidad aparente (S_{ap}). Con este fin, y para evidenciar el efecto cosolvente del etanol sobre la S_{ap}, se llevó a cabo la determinación experimental de la solubilidad termodinámica en mezclas agua:etanol para dos derivados, el **BSTHQ** y el **BSBZT**. También, se calcularon las solubilidades termodinámicas en mezclas agua:etanol, utilizando dos modelos matemáticos de predicción. Finalmente, se muestran los resultados obtenidos en la preparación y caracterización de complejos de β-CD con el **BSTHQ** y el **BSBZT**, los cuales se obtuvieron con el fin de optimizar su S_{ap} y su estabilidad FQ.

6.1. Introducción

6.1.1. Modelos para la predicción de solubilidad

La solubilidad de un compuesto depende de las características FQ del soluto y del solvente y de factores tales como la temperatura, la presión o el pH.²²³ Además, obedece a un balance entre interacciones soluto-soluto, solvente-solvente y soluto-solvente. Esto la transforma en una propiedad física sumamente compleja a la hora de determinarla y explicarla.

A pesar de que los ensayos de HTS para la determinación de la solubilidad han llevado a obtener resultados confiables, la generación de datos de alta calidad sigue siendo una actividad relativamente costosa, la cual demanda mucho tiempo. Por lo tanto, el desarrollo de modelos para la predicción de la S_{ac} de NEQ, a partir de la estructura química, ha atraído considerable atención. Las aproximaciones para la estimación de la S_{ac} basadas en descriptores moleculares también ayudan a entender qué características estructurales limitan la S_{ac} y, por lo tanto, pueden proporcionar información útil para los químicos medicinales y farmacéuticos.³⁴

Capítulo 6

Como se expuso en el Capítulo 1, es crucial determinar y evaluar la S_{ac} y la S_c de las NEQ, lo más temprano posible en el proceso de I+D. Una baja solubilidad puede traer complicaciones importantes en varias de las etapas posteriores. Por ejemplo, en las determinaciones de bioactividad una nueva molécula puede ser considerada no activa y descartada, siendo en realidad un falso negativo, a raíz de su precipitación en el medio acuoso donde se realiza el bioensayo.

Cuando se suscitan problemas de limitada solubilidad en un compuesto líder prometedor, es necesario recurrir a varios métodos para optimizar su S_{ap}. De todos los métodos posibles, la **cosolvencia** es uno de los más utilizados para incrementar la S_{ap} de compuestos no polares en vehículos acuosos. La determinación experimental de dicha solubilidad es una de las opciones a las que se recurre para evaluar el efecto del cosolvente, aunque también se usan los métodos de predicción. En estos últimos años, se han propuesto varios modelos para estimar la solubilidad en mezclas de solventes, lo que resulta muy útil en los estudios de cosolvencia.

De los modelos existentes, uno de los más importantes es el modelo logaritmico-lineal (LL) desarrollado por Yalkowsky y col.²²⁴ Éste describe un incremento exponencial en la solubilidad de moléculas no-polares con el incremento lineal de la concentración de cosolventes.²²⁵ Además, proporciona una buena estimación de la solubilidad termodinámica en mezclas agua:cosolvente, empleando sólo el dato de la S_{ec} del compuesto (Ec. 6.1).²²⁶

$$\log S_{\omega} = f_c \log S_{cp} + f_{w} \log S_{w}$$
 Ec. 6.1

donde S_m es la solubilidad del soluto en la mezcla agua:cosolvente, f_c y f_{ac} son las fracciones de volumen de cosolvente y agua, respectivamente; S_{cp} y S_{ac} son las solubilidades en el cosolvente puro y en agua, respectivamente. El valor de solubilidades expresado en M, mg/mL, fracción molar, etc.

Si remplazamos fac, por 1-fc, se obtiene la Ec. 6.2:

$$\log S_{ac} = \log S_{ac} + (\log S_{cr} - \log S_{ac}) f_c$$
 Ec. 6.2

La relación entre las solubilidades del soluto orgánico en el cosolvente puro (S_{cp}) y en el agua pura (S_{ac}) , expresada como log S_{cp} - log S_{ac} , es el poder o fuerza solubilizante del cosolvente, también conocida como σ . Remplazando σ en la Ec. 6.2, surge la Ec. 6.3.a.

$$\log S_{ac} = \log S_{ac} + \sigma f_{c}$$
 Ec. 6.3.a

A su vez, es importante rescatar que los perfiles de solubilidad de muchos compuestos son a menudo lineales hasta una (¿ de 0,5, por lo que se ha demostrado que el modelo LL puede ser modificado como se muestra en la Ec. 6.3.b.

$$\log S_{ac} = \log S_{ac} + \sigma_{0.5} f_c \qquad \qquad \text{Ec. 6.3.b}$$

donde $\sigma_{0.5}$ es el poder solubilizante hasta una fracción de cosolvente de 0.5. Esto proporciona predicciones más precisas y es más práctico en el área farmacéutica, ya que la mayoría de los cosolventes se emplean en $f_c < 0.5$.

Los cosolventes son muy utilizados en las mediciones de bioactividad, con el fin de superar las dificultades de una limitada S_{ac}. En dichos ensayos, el compuesto se disuelve en algún cosolvente y, luego, se diluye en un medio acuoso, lo que suele producir precipitación. Es

Capítulo 6

importante realizar determinaciones iniciales de solubilidad, probando varios cosolventes o mezclas, para seleccionar los más aptos, lo cual puede resultar muy costoso en recursos y tiempo.²²⁷ En este sentido, el modelo LL permite prever el valor de σ que va a tener un determinado cosolvente sobre un compuesto en particular. Una forma de obtener experimentalmente dicho valor es a través de la determinación de la solubilidad de cada derivado en un sistema agua:cosolvente particular. Finalmente, se calcula σ a partir de la pendiente de un gráfico de log (S_m/S_{ac}) en función de la f_c.

$$\log S_m - \log S_m = \sigma f_c \qquad \qquad \text{Ec. 6.4}$$

Valvani y col. reportaron una relación lineal entre σ y el log del coeficiente de partición octanol/agua (log P) y/o el log del factor capacidad cromatrográfica a 0 % de modificador orgánico (log k_w),²²⁸ la que fue expresada como se muestra en la Ec. 6.5.

$$\sigma = s \log k_w + t$$
 Ec. 6.5

donde s y t son constantes propias del cosolvente, independientes de la naturaleza del soluto. También existe una relación lineal entre σ_{0.5} y log k_w (Ec. 6.6).

$$\sigma_{0.5} = s_{0.5} \log k_w + t_{0.5}$$
 Ec. 6.6

Yalkowsky y col. cuantificaron las dos constantes s y t del modelo LL para cuatro cosolventes usados comúnmente: etanol, PEG 400, propilenglicol (PG) y glicerina (G). A partir de 251 pares de solutos-cosolventes, con amplio rango de polaridades y estructuras, obtenidos experimentalmente y de bibliografía, calcularon los σ.²²⁵ Jouyban, también, recopiló los valores de s y t para σ y de s_{0,5} y t_{0,5} para σ_{0,5} para un número mayor de cosolventes, incluyendo, los cuatro anteriores más acetona, acetonitrilo, butilamina, DMSO, DMF⁷⁵ (Tabla 6.1).

	σ		đ	0,5
	s	t	S _{0,5}	to.s
Acetona	1,14	-0,10	1,25	0,21
Acetonitrilo	1,16	-0,49	1,04	0,44
Butilamina	0,64	1,86	0,67	3,83
DMF	0,83	0,92	0,65	1,70
DMSO	0,79	0,95	0,72	0,78
Etanol	0,95	0,30	0,81	1,14
PEG 400	0,88	0,68	0,78	1,27
PG	0,78	0,37	0,55	0,87
G	0,35	0.28	0.38	0,14

Tabla 6.1. Constantes s y t y so.5 y to.5 de diferentes cosolventes.75

Por otro lado, Jouyban y Acree desarrollaron un modelo (el modelo **Jouyban-Acree, JA**) el cual predice la solubilidad termodinámica en mezclas de solventes con un error aceptable, y es válido para ser utilizado en el área farmacéutica.²²⁹ Este modelo necesita de un dato experimental extra con respecto al modelo LL, la solubilidad termodinámica del derivado en el cosolvente puro. Por lo tanto, se deben conocer los dos valores experimentales extremos de solubilidad, lo cual lo transforma en uno de los modelos de correlación más precisos.^{75, 226, 229} ²³¹ La Ec. 6.7 muestra la forma de calcular la solubilidad de un soluto en una mezcla agua:cosolvente.

Capítulo 6

$$\log S_{in} = f_c \log S_{cp} + f_{ac} \log S_{ac} + f_c f_{ac} \sum_{i=0}^{2} A_i (f_c - f_{ac})^i$$
 Ec. 6.7

donde A, son los términos de interacción solvente-solvente y soluto-solvente calculados utilizando un análisis de mínimos cuadrados. El modelo de JA, escrito como en la Ec. 6.8, permite calcular la solubilidad termodinámica de compuestos en solventes binarios y a diversas temperaturas:

$$\log S_{\alpha,T} = f_c \log S_{cp,T} + f_{w} \log S_{ar,T} + f_c f_{w} \sum_{i=0}^{2} \frac{J_i (f_c - f_{ac})^i}{T}$$
 Ec. 6.8

donde S_{m.7}, S_{cp.7} y S_{ac.7} son las solubilidades del soluto en la mezcla de solventes, en el cosolvente puro y en agua pura a la temperatura T (en K) y J es la constante del modelo.

6.1.2. Formación de complejos de inclusión

Una de las aproximaciones experimentales propuestas para superar problemas de S_{ac} durante los ensayos de bioactividad, es la formación de **complejos de inclusión con CD**. La preparación y utilización de dichos complejos se fundamenta en que el acomplejamiento puede mejorar la S_{ap} del compuesto, evitando su precipitación en el medio donde se realiza el bioensayo. Además, los derivados mantendrían su actividad biológica intrínseca y la CD no afectaría a la medición.²³²

Las CD son oligosacáridos cíclicos que contienen por lo menos 6 unidades de D-(+)glucopiranosa unidas entre sí por medio de enlaces glicosídicos α -(1,4). Esta estructura química adopta espacialmente la forma de un cono truncado (Fig. 6.1), cuyos hidroxilos externos le dan características hidrofílicas y son responsables de su solubilidad; mientras que hacia el interior de la cavidad quedan expuestos los protones 3, 5 y 6 del azúcar, junto con los O de los enlaces α -(1,4), generando una cavidad hidrofóbica. Esta región es la responsable de la principal aplicación de estos compuestos como formadores de complejos de inclusión.⁸⁶

Fig.6.1. Esquema de la estructura de cono truncado de las CD. A la derecha se muestra la D-(+)glucopiranosa y se indica la numeración de los protones.²³³

La IUPAC define un complejo o un compuesto de inclusión como aquel en que un componente (el ligando) genera una cavidad, dentro de la cual se localiza una segunda especie (el huésped o sustrato).²³⁴ Las CD serían el ligando que en su interior hospeda moléculas con características FQ adecuadas.²³³ La fuerzas de atracción entre el ligando y el huésped son, generalmente, interacciones hidrofóbicas, electrostáticas, fuerzas de van der Waals y la pérdida de tensión de los anillos que se incluyen.²³³

Capítulo 6

Según el número de unidades de D-(+)-glucopiranosa, las CD de origen natural se clasifican en α-, β- y γ-CD con 6, 7 y 8 unidades, respectivamente. También, se han sintetizado numerosos derivados, tal como la δ-CD. Sin embargo, no todas presentan las mismas capacidades para la formación de complejos de inclusión. Usualmente, la cavidad de la α-CD es de un tamaño insuficiente para hospedar en su interior moléculas, mientras que la δ-CD por su gran tamaño forma complejos de inclusión con baja estabilidad. Por otro lado, la γ-CD y los derivados sustituidos son reactivos relativamente caros. La β-CD es la de mayor aplicación, ya que ha demostrado tener capacidad para hospedar una amplia gama de moléculas y resulta la más económica. También, se ha observado su mayor preferencia para incluir preferentemente estructuras aromáticas.^{86, 285}

Uno de los métodos más usados para investigar el efecto de un agente solubilizador o ligando frente a un sustrato es el **análisis de solubilidad de fase** (ASF). Esta metodología, consiste en agregar cantidades del sustrato en exceso sobre soluciones de concentración creciente del ligando. Finalmente, se grafica la concentración total del sustrato en solución (S_{ap}) en función de la concentración del ligando o CD (Fig. 6.2).

Fig. 6.2. Diagrama teórico de S_{ap} (concentración del complejo huésped:ligando) en función de concentración de CD.

En la Fig. 6.2 se muestran gráficos de S_{no} (concentración del complejo compuesto:CD) en función de la concentración de CD, en los cuales aparecen los diferentes perfiles que se pueden obtener en estos experimentos. A grandes rasgos, existen dos tipos de perfiles: los de tipo A, que son aquellos en los que la S_{ap} aumenta, y los del tipo B, característicos de complejos que tienen baja S_{np}. Un perfil B_S caracteriza a un complejo que tiene una S_{ap} máxima (a una concentración de ligando específica) y un perfil B_i indica que el complejo es insoluble. Por otro lado, los que se comportan como se muestra en A_L, presentan un incremento de la S_{ap}, con un comportamiento lineal conforme aumenta la concentración de CD. Uno A_P, indica que el incremento se desvía positivamente de la linealidad y uno A_N lo hace negativamente. A_L supone un complejo de primer orden respecto del ligando, mientras que un complejo A_P corresponde a un orden superior. El tipo A_N puede ser explicado por las alteraciones del solvente a altas concentraciones del ligando, o porque el ligando se asocia consigo mismo a concentraciones elevadas.²³⁶

Independiente del sistema que formen el sustrato con la CD, la ecuación de equilibro para un complejo en el que se desconoce la estequiometria, es la siguiente:

Capítulo 6

donde la constante de asociación K_{min} queda determinada por la expresión:

Para complejos con estequiometria 1:1, se puede obtener la constante de asociación a partir de la Ec. 6.11.

$$K_{t1} = \frac{pendiente}{S_{iv}(1 - pendiente)}$$
 Ec. 6.11

Los valores de K_{1:1}, a menudo se encuentran entre 50 y 2000 M⁻¹, con promedios de 130, 490 y 350 M⁻¹ para α-CD, β-CD y γ-CD, respectivamente.³² Sin embargo, Gibaud y col.²³⁷ reportaron valores de K_{1:1} tan altos como 57143 y 50761 M⁻¹ para algunos complejos.

6.2. Objetivos

Los objetivos del estudio descripto en el presente capítulo fueron:

- Determinar la S_c del BSTHQ y del p-NO₂-BSTHQ y la S_{ac} de los seis derivados en estudio.
- Optimizar la S_{ap} de los derivados NBS-Het mediante las técnicas de cosolvencia y acomplejamiento con ciclodextrinas.

6.3. Materiales y metodologías

Para la determinación experimental de las S_c y S_{ac} se utilizaron las MT del **BSTHQ**, del **BSTHQa**, del **BSBZT**, del **BSTHiQ**, del *p*-NO₂-BSTHQ y del **TM-BSTHQ**. Para la obtención de las curvas de calibrado se utilizaron los ET de cada uno de ellos. Los solventes usados (agua purificada Milli Q, etanol, DMSO, PEG 400, *n*-hexano, acetona, diclorometano, cloroformo) fueron todos de grado analítico o HPLC y de marcas disponibles en el mercado local.

El equipamiento utilizado fue: balanza analítica digital Mettler® AE100 (Suiza); agitador mecánico Vortex Precytec® (Buenos Aires, Argentina); baño sonicador LC30H ELMA® (Alemania); baño termostatizado Vicking® modelo Dubnoff (Buenos Aires, Argentina); espectrofotómetro UV/Vis Thermo Electron Corp. UV-Visible Evolution 300 (EEUU) y micropipetas P200 y P1000 HTL.

6.3.1. Solubilidad cinética (Sc)

Se consideró importante determinar la S_c a través del protocolo de ensayos turbidimétricos, ya que, metodológicamente, es el análisis que más se asemeja a los bioensayos.³⁷ Se determinó, así, la S_c, a 25 °C, de dos derivados seleccionados, el **BSTHQ** y el *p*-NO₂·BSTHQ, utilizando como técnica analítica la Espectrofotometria UV-Visible. Se siguió la metodología descripta por Lipinski.³⁷ Para ello, se prepararon tres SM del compuesto a ensayar en DMSO (10 mg/mL). A 2,5 mL de agua Milli Q colocados en la cubeta del espectrofotómetro, se le

agregaron en forma consecutiva 2 µL de la SM (a intervalos de 2 min). Luego de cada adición, se midió la A a 600 nm. Las mediciones se realizaron por triplicado. Con los agregados consecutivos de SM se observó la aparición de turbidez, la cual es detectada por el cambio de A producido por la dispersión de la luz de las partículas precipitadas.³⁷ Al graficar la A en función del volumen de SM agregado (µL), se obtuvo una curva bilineal. La S_e se estimó a partir del inicio de la precipitación sobre la base del aumento en la A. Este ensayo no proporciona una medida precisa, sino que los resultados se presentan como un rango de precipitación estimado (es decir, entre un límite inferior y superior).²³⁸ Se supone que en algún punto dentro de este rango el compuesto precipita. Para propósitos comparativos, se utiliza el valor límite inferior.²³⁹

La concentración de DMSO es un parámetro importante, ya que a altas proporciones puede operar como cosolvente, lo cual cambia la constante dieléctrica de la solución y ayuda a solvatar a los compuestos lipofílicos.

6.3.2. Solubilidad termodinámica acuosa (Sac)

LD

Primero, se determinó la λ_{max} del espectro UV-visible de cada uno de los seis compuestos en una solución de agua:etanol 0,5:0,5. Luego, se obtuvo la **curva de calibrado** de cada uno de ellos. Los resultados obtenidos se evaluaron mediante análisis de regresión lineal y ANOVA. Se aplicó, además, el test *t* de Student para el intercepto y la pendiente utilizando el programa InfoStat¹⁵⁸ y cuadrados mínimos. En la construcción de las curvas, se incluyó la respuesta correspondiente al punto de concentración cero, por tratarse de una técnica espectrofotométrica de análisis.²⁴⁰

El límite de detección (LD) y el de cuantificación (LC) se calcularon a través de la desviación estándar de la respuesta y la pendiente, según las siguientes expresiones:

donde σ es la desviación estándar de la respuesta y b es la pendiente de la curva de calibración. El valor de σ se determinó con la desviación estándar del y-intercepto de la línea de regresión.^{118,241}

Por otro lado, se llevó a cabo una prueba de adsorción sobre membranas HVLP 04700 Millipore[®] con uno de los compuestos seleccionados, el **BSTHQ**. Para ello, se preparó una solución de concentración conocida y se la filtró tres veces consecutivas (1F, 2F y 3F, respectivamente). La determinación de la A a la λ_{max} de las tres soluciones se realizó por cuadruplicado, corroborando que las A no variaron significativamente entre sí (RSD = 0,3 %, Tabla S.6.1, Anexos 6.1).

Las determinaciones de S_{ac} se realizaron por triplicado para los seis derivados en estudio, siguiendo la siguiente metodología: se prepararon 3 tubos con tapa hermética para cada compuesto. Se agregó a cada uno, un exceso de soluto y 18 mL de agua Milli Q. Los tubos se sonicaron inicialmente por 30 min y, luego, se mantuvieron sumergidos en un baño termostatizado (25 °C) con agitación continua (50 o.p.m.), con sonicando diario de 1 h. Se verificó que siempre permaneciera exceso del sustrato. Para cada muestra, se tomó una alicuota (2,5 mL) del sobrenadante y se filtró con membranas HVLP 04700 Millipore[®] de 0,45 µm. Las jeringas y filtros se termostatizaron para evitar la precipitación de compuesto. El primer mL de filtrado se descartó para eliminar cualquier efecto de adsorción en la membrana. Se realizó el blanco y se midieron las soluciones problemas por Espectrofotometría UV-Visible. Se aseguró que la A estuviera en la zona de linealidad de la curva de calibrado obtenida para cada derivado. Las determinaciones se efectuaron cada 24 h y se verificó que el equilibrio se alcanzara por la constancia del valor de la concentración (RSD ≤ 4 %) en función del tiempo.²⁴²
Al finalizar, se analizó el sólido remanente de los diferentes tubos por TLC y MPC, para comprobar la estabilidad química y física de la fase cristalina a lo largo del ensayo.

6.3.3. Solubilidad termodinámica en mezclas agua:etanol

A fin de determinar la solubilidad termodinámica del **BSTHQ** y el **BSBZT**, en primer lugar, se estableció el **tiempo de equilibrado** en siete proporciones de agua:etanol. Para ello, se colocaron porciones en exceso de cada uno de los analitos en siete tubos de vidrio y se les agregaron 20 mL de las siguientes proporciones agua:etanol: 1:0; 0,9:0,1; 0,8:0,2; 0,7:0,3; 1:1; 0,25:0,75; 0:1. A tiempos predeterminados (24; 48; 72; 84; 96 y 108 h) se tomaron alícuotas y se determinó espectrofotométricamente la cantidad de analito disuelto, con el objetivo de comprobar el tiempo necesario para que el sistema llegue al equilibrio. El tiempo de equilibrado (72 h, Tabla S.6.3.1, Anexos 6.3) se estableció aplicando el mismo criterio propuesto para la determinación de la S_{ac} (RSD \leq 4 %).²⁴²

La cuantificación del **BSBZT** en las mezclas agua:etanol se realizó por espectrofotometría UV-Visible. En cambio, para el **BSTHQ**, se usó la HPLC (cromatógrafo Waters[®] Milford, EEUU, con una bomba Waters 1525 Binary, una detector Waters 2996 Photodiode Array y un inyector Waters 717 Plus Autosampler). La fase móvil utilizada fue metanol:agua (80:20 V/V), en modo isocrático. Se utilizó una columna X-Bridge[™] Shield RP18 con partículas de relleno con un diàmetro de 3,5 µm (4,6 x 50 mm). Las mediciones se realizaron a 25 °C, con un flujo de 1 mL/min e inyecciones de 20 µL, a una *λ* de detección de 254 nm. Se calcularon y analizaron los parámetros de picos de HPLC según FA VII Ed.¹³ y USP24-NF19,¹¹⁶ los cuales resultaron aptos para el análisis cuantitativo, ya que fueron estrechos y simétricos. El pico del analito se logró resolver (R = 1,66) del pico de THQ (posible impureza y/o producto de degradación), demostrando la especificidad del método (Tabla S.6.3.2 y Figs. S.6.3.1-2, Anexos 6.3).

Para cada derivado se construyó la respectiva curva de calibrado. Para esto, se prepararon tres SM independientes en mezclas agua:etanol 1:1,²⁴³ y a partir de cada una, se realizaron las diluciones. Las ecuaciones de regresión lineal y las representaciones gráficas de las curvas de calibrado, se llevaron a cabo determinando las áreas o A de las diluciones de concentración conocida, y graficando área o A *versus* concentración, con sus respectivos parámetros estadísticos.²⁴⁴ Los resultados de las curvas de calibrado y sus parámetros estadísticos, indicaron buena linealidad en los intervalos 0,001-0,15 mg/mL para el **BSTHQ** y 0,0-0,028 mg/mL para el **BSBZT**, siendo aptas para la cuantificación de ambos derivados (Anexos 6.3).

Para las determinaciones de solubilidad se ensayaron por triplicado las siete mezclas de agua:etanol señaladas anteriormente. Para ello, se adicionó una cantidad conocida del analito a 20 mL de cada mezcla de solventes, hasta observar un exceso de sólido no disuelto. Las muestras se sometieron a agitación mecánica y a sonicado, a una temperatura constante de 25 °C, durante el tiempo necesario para alcanzar el equilibrio. Una vez alcanzado, se extrajo una alicuota de cada sobrenadante y se filtró a través de membranas de 0,45 µm. Las jeringas y los filtros se termostatizaron a una temperatura superior, para evitar la precipitación de compuesto. Luego de filtrar, se determinaron las áreas por HPLC para el **BSTHQ** y las A para el **BSBZT**. Las soluciones y los sólidos remanentes se analizaron por TLC y MPC, para constatar la estabilidad química y física, respectivamente, durante la determinación.

Para predecir la solubilidad del BSTHQ y del BSBZT en mezclas agua:etanol se probaron dos modelos, el LL (Ec. 6.12 para las f_c entre 0 y 1, donde s = 0,95 y t = 0,30 y la Ec. 6.13 para

Capítulo 6

las f_c de 0 a 0,5, donde s_{0.5} = 0.81 y t_{0.5} = 1,14)²²⁴ y el de JA (Ec. 6.14).²²⁹ Para el modelo LL se usaron los log k_w experimentales determinados por Pagliero.²⁰

$$\log S_{\alpha} = \log S_{\alpha} + (0.30 + 0.95 \log k_{\alpha}) f_{c}$$
 Ec. 6.12

$$\log S_m = \log S_m + (1.14 + 0.81 \log k_m) f_c$$
 Ec. 6.13

$$\log S_{\alpha,T} = f_c \log S_{c,T} + f_{\alpha c} \log S_{\alpha,T} + f_c f_{\alpha c} \left[\frac{724,21}{T} + \frac{485,17(f_c - f_{\alpha c})}{T} + \frac{194,41(f_c - f_{\alpha c})^2}{T} \right]$$
 Ec. 6.14

Se evaluó la exactitud de los valores de solubilidad calculados para diferenciar entre modelos predictivos y poco predictivos y, también, para conocer el rango de error esperado de un determinado modelo. Cabe señalar que en la literatura se emplean, para los valores de solubilidad, diferentes criterios de exactitud.

Así, Yalkowsky, el pionero en la investigación de modelos de predicción de solubilidad, usa el error absoluto promedio (AAE, del inglés Average Absolute Error), mostrado en la Ec. 6.15; como así también el error cuadrático medio (RMSE, del inglés Root Mean Square Error), detallado en la Ec. 6.16.

$$AAE = \frac{\sum \left| \log S(predicha) - \log S(observada) \right|}{N}$$
 Ec. 6.15
$$BMSE = \sqrt{\frac{\sum \left(\log S(predicha) - \log S(observada) \right)^2}{N}}$$
 Ec. 6.16

donde log S (predicha) y log S (observada) son los log de las solubilidades molares calculadas y experimentales, respectivamente y N es el número de compuestos usados. Los valores de AAE y de RMSE podrían ser definidos en forma logarítmica (log S o In S) o aritmética (S). Por esta razón, se debe tener en cuenta la escala utilizada, cuando se comparan los valores informados en diferentes reportes.

Por otro lado, el grupo de Jouyban y col.,⁷⁵ quienes trabajaron exhaustivamente en el desarrollo de modelos de cosolvencia, usan como criterio de exactitud a la desviación media porcentual, MPD (del inglés *Mean Percentage Deviation*):

$$MPD = \frac{100}{N} \sum_{i=1}^{N} \left(\frac{\left| S(predicha) - S(observada) \right|}{S(observada)} \right)$$
 Ec. 6.17

La misma definición ha sido usada por varios investigadores, si bien con diferentes terminologías entre ellos, porcentaje de error promedio,²⁴⁵ desviación porcentual promedio²⁴⁶ y desviación porcentual.²³¹ Dickhut y col.,²⁴⁷ Jouyban y col.,⁷⁶ y Ruckenstein y Shulgin²⁴⁸ propusieron que un método de estimación de solubilidad en mezclas de solventes es aceptable si sus valores calculados están en promedio, dentro del 30 % (MPD) de los valores experimentales.

Cuando se utilizó el modelo LL (Ec. 6.6) para algunos derivados de la quimioteca, se calculó el poder solubilizante ($\sigma_{0,5}$) de cinco cosolventes de interés, empleando las constantes s_{0,5} y t_{0,5} reportadas por Jouyban⁷⁵ y los log k_w obtenidos experimentalmente por Pagliero.²⁰ Luego, se

estudió la relación existente entre la polaridad de los derivados y la fuerza solubilizante de cada cosolvente, con el fin de elegir los más aptos para cada compuesto.

6.3.4. Complejos de inclusión con β-CD

Para la preparación de los complejos con β-CD se utilizaron las MT del **BSTHQ** y el **BSBZT**, β-CD y agua purificada (Milli Q). La β-CD empleada contenía 9,5 mol de agua por cada mol de β-CD, determinación realizada por TG, y se obtuvo por donación de Ferromet S.A. representante de Roquette en Argentina.

Para la obtención de los complejos del **BSTHQ** se usó la técnica de suspensión, mientras que para el **BSBZT** se utilizaron dos técnicas de acomplejamiento (suspensión y amasado). Para ambos, se ensayaron dos relaciones de sustrato:β-CD, a saber 1:1 y 1:2 (lo cual no hace referencia a la estequiometria del complejo formado).

Método de suspensión: se agregaron 0,077 mmol de sustrato (el **BSTHQ** o el **BSBZT**) a 8 mL de una solución acuosa de β-CD preparada con 0,077 mmol (complejo 1:1) o 0,154 mmol (complejo 1:2). La mezcla resultante se dejó bajo agitación constante por 20 h, a 50 °C, obteniéndose una suspensión lechosa, la cual se filtró en caliente.

Método de amasado: se mezclaron proporciones 1:1 y 1:2 del BSBZT:β-CD con agua MilliQ, en un mortero, y la pasta homogénea obtenida se amasó por 35 min. La pasta se depositó sobre papel de filtro y se dejó secar a temperatura ambiente.

Mezcla física (MF): se mezclaron suavemente por 5 min, porciones 1:1 y 1:2 de sustrato:β-CD en viales de vidrio.

La caracterización de las muestras sólidas obtenidas se llevó a cabo utilizando MPC, TG, DSC, IR, DRIFT y DRXP, con los equipos descriptos en el Capítulo 4.

Para estudiar el efecto de la β-CD sobre la solubilidad de cada derivado se llevaron a cabo análisis de solubilidad de fase (ASF), utilizando la Espectrofotometria UV-Visible como técnica analítica de cuantificación. Para ello, primero, se obtuvieron las curvas espectrales del BSTHQ y el BSBZT en solución acuosa de β-CD y, luego, las curvas de calibrado correspondientes (n = 3), determinando las A de soluciones de concentración conocida (0,0-0,038 mg/mL para el BSTHQ y 0,0-0,02 mg/mL para el BSBZT). Finalmente, se graficó la A en función de la concentración, con sus respectivos parámetros estadísticos.

Las determinaciones del **tiempo de equilibrado** del **BSTHQ** y del **BSBZT**, se efectuaron colocando un exceso del analito en agua, conteniendo cantidades crecientes de β -CD (0-13 mM). Se midieron las A de los sobrenadantes cada 24 h y se consideró alcanzado el equilibrio cuando estas no difirieron significativamente (RSD ≤ 4%). Luego de establecer el tiempo de equilibrado, se realizaron **determinaciones por triplicado** a dicho tiempo. Los tubos conteniendo las muestras se sonicaron, inicialmente por 30 min y luego se mantuvieron sumergidos en un baño termostatizado (25 °C) con agitación continua a 50 o.p.m., y con sonicados de 1 h por día. Siempre se verificó que hubiera exceso del sustrato. Se tomó una alícuota (2,5 mL) de la muestra problema y del blanco (solución de β -CD de igual concentración que la muestra problema, pero sin sustrato) y se filtró con membranas HVLP04700 Millipore[®]. Las jeringas y filtros se termostatizaron para evitar la precipitación del analito.

Al finalizar los ensayos, se analizaron los precipitados de los diferentes tubos por MPC, DRIFT y/o DSC, para constatar que los compuestos se mantuvieron estables a lo largo del experimento. En todos los casos, se confirmó por MPC que las fases cristalinas no habían

sufrido cambios polimórficos ni degradación (comparando el Tí_{MPC} del sólido remanente, con el del ET).

6.3.5. Formación de cocristales

Con el objetivo de mejorar la S_{sp} del derivado **BSBZT**, se intentó la formación de cocristales entre dicho sustrato y cuatro coformadores reconocidos generalmente como seguros, GRAS (del inglés *Generally Recognized As Safe*) seleccionados: ácido benzoico, nicotinamida, ácido succínico y sacarina. En general, se probaron proporciones 1:1 y en el caso del ácido succinico fueron 1:2 y 2:1. La metodología utilizada fue mortereado de cada componente individual en seco por 20 min y, luego, en forma conjunta, por 20 min más, con asistencia de solvente (etanol y acetonitrilo). Las muestras obtenidas fueron caracterizadas por MPC, *pf*, TLC, TG, DSC, DRIFT y DRXP.

6.4. Resultados y Discusión

6.4.1. Solubilidad cinética (S_c)

Se determinaron las S_c del **BSTHQ** y del **p-NO₂-BSTHQ**, utilizando el método turbidimétrico,³⁷ a 25 °C. La Fig. 6.3, muestra las curvas obtenidas al graficar las A en función del volumen de SM de cada analito.

Capítulo 6

Estudios de Solubilidad

Fig. 6.3. Curvas de absorbancia versus volumen (µL) de SM preparada en DMSO del: A) BSTHQ y del B) p-NO₂-BSTHQ. La línea roja horizontal representa el rango de inflexión, donde se produce el cambio de pendiente.

Los valores de S_c (µg/mL)²³⁸ se calcularon a partir del rango de inflexión (línea roja) y se expresaron como límite inferior y superior (Tabla 6.2). El **BSTHQ** resultó ser el más soluble de los dos derivados aunque, si se tienen en cuenta los criterios de clasificación de solubilidad propuestos por Tong,⁵⁰ ambos derivados se considerarían prácticamente insolubles (solubilidad < 100 µg/mL).

Además, se calculó el % final de DMSO agregado en cada determinación (Tabla 6.2), siendo importante destacar que bajo las condiciones ensayadas, éste no superó el 0,48 % (condición necesaria para que no se produzca efecto cosolvente).^{37,249}

Tabla 6.2. Solubilidad cinética (Se	del BSTHQ y del p-NO2-BSTHQ a 25 °C.	

		Limite inferior	Limite superior
BSTHO	S _z (µg/mL) DMSO (%)	40,8 ± 0,3 0.40	48,9 ± 0,3 0.48
p-NO2-BSTHQ	S _c (µg/mL)	8,1 ± 0,2	16,2 ± 0,3
	DMSO (%)	0,08	0,16

Los resultados obtenidos anteriormente demostraron que estos derivados poseen S_e bajas, lo cual debe ser tenido en cuenta en las mediciones de actividad biológica, teniendo la precaución de que el compuesto no precipite en dicho medio.

6.4.2. Solubilidad termodinámica acuosa (Sac)

La Tabla 6.3 presenta los valores de S_{ac} (µg/mL) a 25 °C de los seis derivados NBS-Het estudiados. En la misma se consignan además los valores de log S (M), los tiempos de equilibrado (T_e) y los puntos de fusión de los sólidos remanentes (como T/_{MPC}) los cuales se comparan con los puntos de fusión de los ET.

Los resultados de las curvas de calibrado, sus respectivos análisis estadísticos y los valores de S_{ac} a diferentes tiempos se presentan en los Anexos 6.2. Los datos de S_{ac} del **BSTHQ** y del **BSBZT** provienen de la determinación de solubilidad en cosolventes a partir de la proporción agua:etanol 1:0 (Sección 6.4.3).

	BSTHQ	BSTHQa	BSBZT	BSTHIQ	P-NO2- BSTHQ	TM-BSTHQ
Sac (µg/mL)	4,3 ± 0,2	1,6±0,3	3,0 ± 0,1	0,3 ± 0,1	1,7 ± 0,3	1,0 ± 0,2
log S (M)	-4,8	-5,3	-4,9	-6,0	-5,3	-5,5
$T_{e}(h)^{a}$	72	20	12	92	92	92
T/ _{MPC} (°C) de SR ^b	65	114	132	161	119	91
TIMPC de ET (°C) °	66	114	132	161	119	91

Tabla 6.3. Datos de Sat a 25 °C de los seis derivados NBS-Het estudiados.

^a T_e = Tiempo de equilibrado, ^b Tl_{MPC} de SR = Temperaturas de fusión obtenidas por MPC para los sólidos remanentes luego de la determinación de S_{ac}. ^c Tl_{MPC} de ET = Temperaturas de fusión obtenidas por MPC para los seis estándares de trabajo.

Como se puede apreciar en la Tabla 6.3, los derivados se caracterizaron por poseer una baja S_{ac} , según la clasificación de Tong (< 100 µg/mL).⁵⁰ El **BSTHQ** y el **BSBZT** (4,3 ± 0,2 µg/mL y 3,0 ± 0,1 µg/mL, respectivamente) resultaron ser los más solubles. El **BSTHQa** (1,6 ± 0,3 µg/mL) y el **p-NO₂-BSTHQ** (1,7 ± 0,3 µg/mL) presentaron S_{ac} del mismo orden entre si y menor que las anteriores. La S_{ac} del **TM-BSTHQ** fue de 1,0 ± 0,2 µg/mL, siendo el **BSTHIQ** el menos soluble de todos los derivados, con un valor de $S_{ac} = 0,3 \pm 0,1$ µg/mL.

Es de destacar que los Tf_{MPC} de cada sólido remanente fueron coincidentes con los de los respectivos ET, confirmando la estabilidad física y química de todos los compuestos durante el tiempo de ensayo (Tabla 6.3). También por TLC, se constató que todos ellos se mantuvieron estables químicamente.

Si se analizan comparativamente las S_c y S_{ac} resulta evidente que las primeras fueron significativamente mayores que las segundas en los dos derivados estudiados. Para el

Capítulo 6

BSTHQ, la S_c fue 40,8 μg/mL y la S_{ac} fue 4,3 μg/mL. Para el *p*-NO₂-BSTHQ la S_c fue 8,1 μg/mL y la S_{ac} fue 1,7 μg/mL. Estos resultados indican que los compuestos precipitaron desde una solución sobresaturada cuando se determinó su S_c. Es posible conocer la relación de supersaturación haciendo el cociente entre S_c/S_{ac}, el que fue de 9,5 para el BSTHQ y de 4,8 para el *p*-NO₂-BSTHQ. Hallazgos similares fueron encontrados por otros investigadores,²⁵⁰ quienes explicaron la diferencia sugiriendo tres razones: el efecto solubilizante del DMSO, el tiempo corto de incubación y el efecto del estado sólido.²⁵¹

6.4.3. Solubilidad aparente en mezclas agua:etanol

Los datos de S_{np} del **BSTHQ** a 25 °C en siete mezclas de agua:etanol, se presentan en la Tabla 6.4 (Tabla completa S.6.3.4, Anexos 6.3.1). A su vez en la Fig. 6.4.A, se muestra el gráfico de solubilidad (mg/mL) en función de la fracción de etanol (f_0) y en la Fig. 6.4.B el del log decimal de solubilidad, log *S*, (mg/mL) en función de la f_0 , donde se aprecia su linealización ($R^2 = 0.97$). A partir de los resultados obtenidos, es evidente que la S_{np} del **BSTHQ** aumenta a medida que incrementa la f_0 . Inicialmente el aumento es lento, hasta una f_0 critica (0,5), luego de la cual se produce un incremento de solubilidad pronunciado. Este compuesto fue aproximadamente 12000 veces más soluble en etanol absoluto que en agua pura.

Tabla 6.4. Solubilidad aparente promedio (n = 3) del BSTHQ en función de la fracción de etanol (la).

Fig. 6.4. A) Gráfico de la solubilidad aparente (S_{ap}) del BSTHQ (mg/mL) en función de la fracción de etanol (f_e). B) Gráfico del logaritmo decimal de la solubilidad aparente (log S) del BSTHQ (mg/mL) en función de la fracción de etanol (f_e).

Los datos de S_{ao} promedio (n = 3) del **BSBZT** a 25 °C, en siete mezclas de agua:etanol, se muestran en la Tabla 6.5 (Tabla completa S.6.3.6, Anexos 6.3.2). Mientras que en la Fig. 6.5.A, se presenta el gráfico de solubilidad (mg/mL) en función de la fracción de etanol (f_0) y en la Fig. 6.5.B el del log S en función de la f_0 , donde se aprecia su linealización (R² = 0,97). Al igual que con el **BSTHQ**, la S_{ap} del **BSBZT** muestra un aumento en forma lenta hasta una f_0 = 0,5, a partir de la cual el incremento en mucho más significativo. Este compuesto fue aproximadamente 2600 veces más soluble en etanol absoluto que en agua pura.

Capítulo 6

Cabe destacar que las mediciones de solubilidad del **BSBZT** se debieron llevar a cabo a las 12 h de comenzado el ensayo, en todas las mezclas agua:etanol (no así en agua pura), dado que a las 24 h se detectó la presencia de impurezas por TLC, y la velocidad de degradación aumentó con el aumento de la *f*_e. La descomposición en solución ya fue reportada por Hergert⁹⁶ y posiblemente el sonicado y la agitación de las muestras contribuya a facilitarla. En casos de inestabilidad química, como éste, se acepta que las mediciones de solubilidad termodinámica se realicen a menor tiempo.

Tabla 6.5. Solubilidad aparente	promedio (n = 3) de	BSBZT en función	de la fracción de etanol (f _e).
---------------------------------	---------------------	------------------	---

f.	Solubilidad ± SD (mg/mL)					
0	0,0030 ± 0,0001					
0,1	0,0064 ± 0,0003					
0,2	0,0143 ± 0,0004					
0,3	0,054 ± 0,001					
0,5	0,453 ± 0,002					
0,75	4,4 ± 0,1					
1	8,0 ± 0,2					

Fig. 6.5.A) Gráfico de la solubilidad aparente (S_{ap}) del BSBZT (mg/mL) en función de la fracción de etanol (f_e). B) Gráfico del logaritmo decimal de la solubilidad aparente (log S) del BSBZT (mg/mL) en función de la fracción de etanol (f_e).

Además de la determinación experimental, se estimó la solubilidad termodinámica del BSTHQ y del BSBZT en diferentes proporciones de agua:etanol, usando el modelo LL y el de JA. Los resultados se presentan en la Tabla 6.6, la cual incluye los valores de S_{ap} experimentales a los fines de la comparación.

Capítulo 6

Tabla 6.6. Solubilidad aparente (mg/mL) a 25 °C estimada (modelos LL y JA) y experimental en función de la fracción de etanol (/e), para el BSTHQ y el BSBZT.

		BSTHO	ľ.	BSBZT				
t.	Sap experim ± SD	Sup LL o	Sap LL ot.5 b	Sap JA	Sap experim ± SD	Sapil. "	Sap LL 00,5 b	Sap.u °
0	0.0043 ± 0,0002	0,0043	0,0043	0,0043	0,0030 ± 0,0001	0,0030	0.0030	0.0030
0,1	0,0106 ± 0,0007	0,0101	0,0109	0,0151	0,0064 ± 0,0003	0,0068	0,0074	0,0092
0.2	0.030 ± 0,004	0.024	0,028	0,052	0,0143 ± 0,0004	0,0150	0,0183	0,0273
0,3	0,1184 ± 0,0003	0,0571	0,0723	0,1784	0,054 ± 0.001	0,033	0,045	0.080
0,5	2,62 ± 0,05	0.32	0,48	1,91	0,453 ± 0,002	0,166	0.271	0,629
0,75	19,8 ± 0,2	2,8		21,6	4.4 ± 0,1	1,2		4,8
1	52±1	24		52	8.0 ± 0.2	9,1		7,9

^a LL con σ = Modelo logaritmico lineal para las fracciones de etanol 0-1, usando el poder solubilizante σ. ^b LL con σ_{0,5} = Modelo logaritmico lineal para las fracciones de etanol 0-0,5, usando el poder solubilizante σ_{0,5}. ^c JA = Modelo de Jouyban-Acree.

Las representaciones gráficas (log S versus f_e) de las S_{ap} estimadas usando el modelo LL con σ (para f_e = 0-1) y el JA, se muestran comparadas con las determinaciones experimentales en la Fig. 6.6.

Fig. 6.6. Gráficos de log S (mg/mL) en función de la fracción de etanol (ζ), para A) BSTHQ y B) BSBZT, con el modelo LL con σ. Los valores experimentales aparecen como ••; los valores calculados con el modelo LL con σ como •• y los predichos con el modelo JA como ••.

A su vez en la Fig. 6.7 se exhiben las S_{ap} estimadas usando el modelo LL con σ_{0.5} (para f_e = 0-0,5).

Capítulo 6

Fig. 6.7. Gráficos de log S (mg/mL) versus la fracción de etanol (f₀) para: A) el BSTHQ y B) el BSBZT, con el modelo LL con σ_{0,5}. Los valores experimentales aparecen como - y los valores calculados con el modelo LL con σ_{0,5} como - y.

A partir de los gráficos semi-logarítmicos (log S versus f_e) de las Figs. 6.6, se observa una desviación de la solubilidad experimental, con respecto a la linealidad que plantea el modelo LL. Este fenómeno ha sido reportado por varios autores en mezclas agua:cosolventes apróticos y en mezclas agua:alcoholes de cadena corta.252,253 Rubino y Obeng encontraron cierta similitud en las desviaciones de diferentes solutos y sugirieron que las interacciones cosolvente-agua son las principales responsables de estos comportamientos.252 Dichos autores hallaron desviaciones negativas a bajas fracciones de cosolvente (f_), y positivas a altas f_. Este mismo efecto se observó para el BSTHQ y el BSBZT en agua:etanol, en especial, a altas fe. Mientras que a bajas fe, el agua mantendría su habilidad de formar estructuras altamente ordenadas, debido a que la naturaleza orgánica de los cosolventes conduce a un tipo particular de interacción con el agua. Esta ha sido descrita como la formación de "icebergs", "clusters" o "témpanos" de agua alrededor de las porciones apolares del cosolvente, es decir, el efecto de la hidratación hidrofóbica.252 Puesto que este fenómeno depende de la capacidad de las moléculas de agua de formar uniones cohesivas entre sí, es de esperar que este tipo de interacción sea predominante a bajas le. Además, los grupos hidroxilo del etanol pueden interactuar con el agua mediante EPH, por lo que a bajas fe, aumentaría la estructuración del agua, por la formación de dichos enlaces. Tal comportamiento reforzaría lo ya conseguido por el efecto hidrofóbico.

Por lo tanto, los dos tipos de interacciones que llevan a un aumento en la estructuración del agua, conducen, a su vez, a una disminución en las interacciones soluto-solvente, resultando en una solubilidad menor a la esperada, basándose en la Ec. 6.4 del modelo LL.²⁵² A altas *f*_o, la estructura tridimensional del agua ha disminuido significativamente o ha desaparecido y las moléculas de agua y cosolvente se encuentran más disponibles para interaccionar con las moléculas de soluto, esto conduce a estimaciones de solubilidad mayores a las esperadas, según el modelo de aditividad logarítmica.^{252, 230}

La exactitud entre la solubilidad experimental y la estimada (que mide la "calidad" de la predicción), se obtuvo a través del AAE (Ec. 6.15), del RMSE (Ec. 6.16) y del MPD (Ec. 6.17) y se presenta en la Tabla 6.7.

		BSTHQ	BSBZT			
	LL σ	LL G _{0,5}	JA	LLO	LL 00,5	JA
AAE (escala log) "	0,4	0,2	0,1	0,2	0,1	0,1
RMSE (escala log) ^b	0,5	0.3	0,1	0,3	0,1	0,2
MPD (%) °	43,2	25,8	29,3	28,2	20,3	33,6

Tabla 6.7. Errores de predicción para cada modelo de estimación de Sap para el BSTHQ y el BSBZT.

^a Error Absoluto Promedio calculado en escala logaritmica mediante la Ec. 6.15. ^o Error Cuadrático Medio calculado en escala logaritmica a través de la Ec. 6.16. ⁶ Desviación Media Porcentual calculada en escala porcentual mediante la Ec. 6.17.

Al analizar los datos presentados en la Tabla 6.7, se puede concluir que:

El modelo LL σ_{0.5}, presentó mejor exactitud de predicción comparado con el modelo LL σ, confirmando el comportamiento lineal del sistema hasta una f_e de 0,5. Más allá de este valor, el comportamiento se aleja levemente de la linealidad, lo que se correlaciona con el aumento más pronunciado que se observó experimentalmente a partir de la f_e crítica de 0,5.

 El modelo de JA tuvo una capacidad predictiva ligeramente menor para el BSBZT, que para el BSTHQ (33,6 % y 29,3 %, respectivamente).

 Para el BSTHQ, el modelo de JA proporcionó predicciones más precisas (29,3 %), comparado con el modelo LL σ (43,2 %). En cambio, para el BSBZT, ocurrió lo contrario (28,2 % para LL y 33,6 % para JA).

✓ Si se considera que los modelos con MPD < 30 % son aceptables,²⁴⁷⁻²⁴⁸ la mayoría de los estudiados fueron aptos, a excepción del LL σ para el BSTHQ (43,2 %) y del JA para el BSBZT (33,6 %).

Por las consideraciones antes expuestas, y a los fines del diseño y desarrollo de los compuestos de la quimioteca de NBS-Het, se propuso la utilización del modelo LL $\sigma_{0.5}$, el cual resultó tener la mayor capacidad predictiva. Este modelo resultó interesante, por su simplicidad (siendo fácil de interpretar) y por el hecho de requerir un solo valor experimental como *input*, a diferencia del modelo de JA que necesita los dos extremos. Además, posee buen poder predictivo, para los requisitos que se exigen en esta etapa del diseño. Por otro lado, en la práctica farmacéutica, se utilizan normalmente fracciones de cosolventes menores a 0,5.

Otro aspecto importante que puede ser analizado con los datos obtenidos, se relaciona con la fuerza solubilizante de diferentes cosolventes para los derivados NBS-Het, con el fin de establecer cuáles son los más efectivos para aplicarlos en los bioensayos. Por ello, se calcularon los σ_{0.5} de cinco cosolventes comúnmente utilizados en Farmacia (DMSO, etanol, PEG 400, PG y G), para 16 derivados de cuatro familias de la quimioteca, entre ellas THQ, THQa, BZT y THiQ. Con este fin se usó la Ec. 6.6, los parámetros s_{0.5} y t_{0.5} de cada cosolvente (Tabla 6.1), y los log k_w experimentales.²⁰ A partir de los resultados obtenidos (Tabla S.6.4.1, Anexos), se pudo concluir que:

En general, PEG 400 (σ_{0,5} promedio de 67 derivados = 4,3), etanol (σ_{0,5} promedio de 67 derivados = 4,3) y DMSO (σ_{0,5} promedio de 67 derivados = 3,6) son los que presentan mayores poderes solubilizantes para derivados de la quimioteca, mientras que PG posee un poder medio (σ_{0,5} promedio de 67 derivados = 3,0) y G tiene una fuerza solubilizante pobre (σ_{0,5} promedio de 67 derivados = 1,6).

Los derivados p-t-Butilo y TM de los cuatro heterociclos (los más lipofílicos de cada familia) presentan una mayor solubilidad en PEG 400 (σ_{0,5} promedio de 8 derivados = 5,4),

etanol ($\sigma_{0.5}$ promedio de 8 derivados = 5,4) y DMSO ($\sigma_{0.5}$ promedio de 8 derivados = 4,6), y no así en G ($\sigma_{0.5}$ promedio de 8 derivados = 2,1).

Si bien los derivados p-NHCOCH₃, p-NH₂ y el propio heterociclo de cada familia, son los más hidrofílicos, siguen presentando una mayor solubilidad en PEG 400 (σ_{0.5} promedio de 11 derivados = 3,5), etanol (σ_{0.5} promedio de 11 derivados = 3,4) y DMSO (σ_{0.5} promedio de 11 derivados = 2,8).

Ni y col. al estudíar la solubilidad de carbendazim reportaron resultados similares con respecto al orden del poder solubilizante de los solventes (PEG 400 > etanol > PG > G).²⁵⁴ Dicho orden coincide con el de las polaridades de los cosolventes, según reflejan sus constantes dieléctricas o parámetros de solubilidad.

De esta manera, queda demostrado que para realizar ensayos de bioactividad sobre los derivados de la quimioteca de NBS-Het, es importante considerar la utilización de cosolventes como PEG 400, etanol y DMSO (en concentraciones apropiadas, según el ensayo a realizarse). En efecto, Becerra y col.⁹² demostraron la actividad *in vitro* del **BSBZT** sobre *T. cruzi* (epimastigotes y tripomastigotes) usando una mezcla PEG 400:etanol (7:3) como cosolvente. Este sistema de cosolventes se descubrió después de muchas pruebas, tratando de conseguir, por un lado, que la mezcla de solventes fuera compatible con el medio biológico (no influyera en el crecimiento de los parásitos) y que el **BSBZT** se mantuviera soluble y estable en las concentraciones requeridas por el bioensayo (medición confiable).⁹⁶ Además, para las determinaciones de actividad antibacteriana *in vitro* sobre varios compuestos de la quimoteca se usaron DMSO (hasta un 10 % de concentración),²⁵⁶ PEG 400 y/o etanol con resultados satisfactorios.^{96, 97, 110}

6.4.4. Complejos de inclusión con β-CD

6.4.4.1. BSTHQ:8-CD

Mediante la técnica de suspensión, mezclando proporciones 1:1 (C1:1) y 1:2 (C1:2) del BSTHQ:β-CD, se obtuvieron diferentes muestras sólidas, las cuales se analizaron por MPC, DSC, TG, DRIFT y DRXP. En el análisis por MPC, el BSTHQ presentó una *Tl*_{MPC} = 66 °C y lo mismo se observó con la MF correspondiente. En cambio, para los complejos C1:1 y C1:2 no se detectó fusión en ese rango de temperatura. Con respecto a los hábitos cristalinos, el BSTHQ se caracterizó por poseer un hábito laminar, mientras que los complejos fueron todos sólidos pulverulentos.

Por DSC, tanto el **BSTHQ** como la MF mostraron una endoterma a $T_{orset} = 66,01 \, ^{\circ}C (\Delta H_f = 79,42 J/g)$ correspondiente a la fusión del sustrato (Fig. 6.8). En el C1:1 se observó, en cambio, una pequeña endoterma a 65,8 $^{\circ}C$ (T_{onset}) correspondiente a la fusión del **BSTHQ** (Fig. no mostrada), indicando la presencia de una pequeña cantidad de sustrato sin reaccionar. Por el contrario, en la curva DSC del C1:2 (Fig. 6.8) no se observó ningún pico endotérmico atribuible a la fusión del compuesto, sugiriendo la formación de un complejo. Por ello, el C1:2 se analizó por DRIFT y DRXP.

Por TG también se comprobó que el comportamiento térmico del C1:2 fue diferente al de la MF y el precursor (Fig. 6.8.B) indicando una interacción entre el **BSTHQ** y la CD. Es posible observar en la curva TG del complejo la ausencia del agua de hidratación de la CD (ya que no se verifica ninguna pérdida de masa entre 25 y 140 °C) la cual sí se halla presente en la MF.

Capítulo 6

Estudios de Solubilidad

Otro argumento en este mismo sentido es la disminución de la pérdida de masa entre 130 y 190 °C (asociada a la descomposición del sustrato, conforme a lo indicado por la curva TG de la MF) ya que solo se visualiza un pequeño salto en dicho rango de temperaturas. La descomposición del sustrato, podría deberse a su desacomplejamiento por efecto de la temperatura tal como reporta Szejtli.³⁶

Fig. 6.8. Curvas DSC (A) y TG (B) del BSTHQ, β-CD, MF 1:2 y del C1:2.

En la Fig. 6.9, se presentan los espectros DRIFT del **BSTHQ**, de la β-CD, y del C1:2. Para resaltar los cambios, éstos se marcan con líneas, círculos o flechas y se especifican al pie de dicha Fig. El análisis comparativo reveló que, en el complejo, resultaron desplazadas o desaparecieron algunas bandas de absorción del **BSTHQ**. Las bandas correspondientes a los estiramientos vSO₂ asim. y sim. (1344 cm⁻¹ y 1167 cm⁻¹) resultaron desplazadas hacia frecuencias menores en el espectro de C1:2 (líneas violeta y naranja en la Fig. 6.9). La banda de vC-N, la cual aparece a 1230 cm⁻¹ en el **BSTHQ**, se desplazó a frecuencias mayores (1240 cm⁻¹) y se ensanchó en el complejo (línea y flecha fucsia en la Fig. 6.9). Los sobretonos de los C-C aromáticos, presentes en el sustrato a 1991-1681 cm⁻¹, desaparecen en el complejo (círculo rojo en la Fig. 6.9). Esto indicaría que la fracción heterocíclica y el grupo sulfonilo del

Capítulo 6

sustrato presentan una mayor interacción con la β-CD y, por lo tanto, serían las partes de las moléculas incluidas en la cavidad.

Fig. 6.9. Espectros DRIFT de BSTHQ, β-CD y C1:2.

Por DRXP se confirmó la formación del complejo **BSTHQ:β-CD** en estado sólido, ya que el patrón de polvo del mismo no fue coincidente con los del **BSTHQ** y β-CD (Fig. 6.10). Como rasgo distintivo, puede señalarse que las reflexiones del patrón del C1:2 fueron anchas, de poca intensidad y poco resueltas, sugiriendo que contenía partículas muy pequeñas o bien que poseía baja cristalinidad, lo cual fue consistente con el DSC.

El análisis integrado de todas las determinaciones arriba descriptas permitiría confirmar la formación de un complejo de inclusión BSTHQ:β-CD en el estado sólido.

Para completar su caracterización, se consideró importante estudiar su comportamiento en solución. Con este fin, se seleccionó el método de ASF, que permitiría cuantificar el efecto de la β-CD sobre la S_{ap} del **BSTHQ**. Una vez obtenida la curva de calibrado (Figs. S.6.5.1-2 y Tabla S.6.5.1, Anexos 6.5), se determinó el tiempo de equilibración (Tablas S.6.5.2.A y B, Anexos 6.5) el cual fue de 93 h (RSD < 4 %).

Finalmente, se realizó la determinación de la S_{ap} (µg/mL), a 25 °C, y a las 120 h. En la Tabla 6.8 (Tabla completa S.6.5.3, Anexos 6.5), se detallan los valores promedios de tres mediciones, a diferentes concentraciones de β-CD ([β-CD]).

Nº de muestra	[β-CD] (mM)	Sap promedio ± SD (µg/mL)
1	0	6,34 ± 0,04
2	0,032	$6,5 \pm 0,2$
3*	0.05	3,90 ± 0,08
4	0,25	11,09 ± 0,02
5	0,5	18,5 ± 0,5
6	1	18,4 ± 0,2
7	2	16,38 ± 0,03
8	5	17,70 ± 0,06
9	10	23,9 ± 0,3
10	13	22,37 ± 0,21
11	14,5	22,94 ± 0,03
12	16	19,08 ± 0,28

Tabla 6.8. Solubilidades aparentes (S_{ap}) promedios (n = 3) de los complejos BSTHQ:β-CD, obtenidas a 120 h y a 25 °C.

La determinación a [β-CD] = 0,05 mM (M3) mostró una disminución de la S_{ip}, comparada con sus vecinos y con la misma medición realizada para el tiempo de equilibrado.

En la Fig. 6.11 se muestra la S_{ap} del **BSTHQ** en función de la concentración de β-CD. Como se aprecia, el perfil obtenido es de tipo B_S, lo que indicaría la formación de complejos con distinta estequiometría.²⁵⁶

A partir de los resultados obtenidos, se pudo comprobar que para concentraciones de β-CD entre 0 y 0,5 mM ocurre un aumento lineal de la S_{ap} en función del incremento de la [β-CD] y que a 0,5 mM de β-CD se produce un cambio en la pendiente, alcanzándose una meseta de S_{ap} (con algunos incrementos y descensos). Este comportamiento indica que las velocidades de formación y de precipitación del complejo han alcanzado el equilibrio.⁴⁰

A una concentración de β -CD de 10 mM se alcanzó la máxima S_{ap} (23,9 ± 0,3 µg/mL), lo que representa un aumento de 3,8 veces con respecto a la S_{ac} del **BSTHQ** (6,34 ± 0,04 µg/mL). Esto es acorde con lo reportado por otros autores para complejos con β -CD, como por ejemplo Zoppi y col.²⁵⁷ que lograron aumentos de 4, 3,2, y 2,2 veces para sulfadiazina, sulfamerazina y sulfametazina, respectivamente.

Capítulo 6

Fig. 6.11. Solubilidad aparente (Sap) promedio (n = 3) del BSTHQ en función de la [β-CD].

Los sólidos remanentes luego de finalizado el ASF se caracterizaron por MPC, DSC y DRIFT. En todas las muestras, se pudo comprobar la presencia del **BSTHQ** (Tablas S.6.5.4 y S.6.5.5 y Fig. S.6.5.3, Anexos 6.5). En la parte inicial de la curva de S_{ap} versus [β -CD] (Fig. 6.11), comprendida entre 0 y 0,5 mM de β -CD, solo permaneció sustrato precipitado (dos fases en total, solución y sustrato sólido). Esto se confirmó por MPC, ya que el sólido en exceso fundió completamente a $T_{MPC} = 65$ °C. Por encima de [β -CD] = 0,5 mM, en la región de la meseta, estaban presentes en el precipitado tanto el sustrato como el complejo (tres fases en total, solución, sustrato sólido y complejo sólido). Esto también se corroboró mediante MPC, ya que se observó una fusión parcial a $T_{MPC} \sim 65$ °C, correspondiente al **BSTHQ** y una fusión total a ~ 275 °C, asociada al complejo precipitado (Tablas S.6.5.4 y S.6.5.5). Por DRIFT, se confirmó que los sólidos precipitados de las muestras de [β -CD] = 0,25 y 0,5 mM corresponderian al **BSTHQ**, mientras que el sólido remanente a la [β -CD] = 10 mM, tiene un espectro similar al complejo, reafirmando que, a dicha concentración, parte del complejo precipita (Fig. S.6.5.4, Anexos 6.5).

A partir de la porción inicial ascendente del perfil (Fig. 6.11), se pudo estimar una de las estequiometrías del complejo. Este segmento fue lineal, con una pendiente de 0,10 ± 0,01 y un coeficiente R² de 0,99 (Fig. 6.11 y 6.12), lo cual indicaría que en solución se formó, al menos, un complejo de estequiometría 1:1. La constante de estabilidad aparente del complejo 1:1 (K_{1:1}), calculada a partir de la Ec. 6.11, fue de 4789 M⁻¹ (S_{ac} = 2,32 x 10⁻⁶ M).²⁵⁶

6.4.4.2. BSBZT:8-CD

Por amasado y suspensión de mezclas del **BSBZT** y β -**CD**, en proporciones 1:1 y 1:2, se obtuvieron muestras sólidas que se caracterizaron en primer lugar por MPC. La Tabla 6.10 resume los resultados obtenidos mediante MPC para las muestras sólidas preparadas, las que se compararon con el sustrato puro (**BSBZT**), con la β -CD y con la MF. El **BSBZT** y la MF presentaron una $T_{MPC} = 133$ °C; en cambio, para el C1:1 y el C1:2 no se detectó fusión en ese rango de temperatura. Además, se observaron diferencias en las características morfológicas del sustrato, la β -CD y los C1:1 y C1:2, sugiriendo la complejación del **BSBZT** con β -CD (Tabla 6.10).

Tabla 6.10. Datos de puntos de fusión (T/_{MPC}) y hábitos cristalinos, determinados por MPC, del BSBZT, la β-CD, la MF 1:2, el C1:1 y el C1:2 obtenidos por suspensión y el C1:2 conseguido por amasado.

	BSBZT	β-CD	MF 1:2	C1:1 suspensión	C1:2 suspensión	C1:2 amasado
Hábito	prismático	pulverulento	pulverulento	pulverulento	pulverulento	laminar
Fusión (130-133 °C)	SI	NO	SI	NO	NO	NO
Cambio de color por calentamiento (descomposición)	SI (150 °C)	Si (270 *C)	SI (150 °C)	SI (200 °C)	SI (200 °C)	SI (200 °C)

Por DSC, el **BSBZT** (Fig. 6.13.A) mostró un pico endotérmico de fusión a T_{onset} = 126,9 °C (ΔH_f = 114,3 J/g). En las MF, en el C1:1 y en el C1:2 (preparado por amasado) se observó el mismo evento, aunque de menor intensidad, lo que indicaría la presencia de una pequeña cantidad del **BSBZT** sin reaccionar. En cambio, en el C1:2 (obtenido por suspensión) el pico de fusión del sustrato desapareció completamente sugiriendo la formación de un complejo de inclusión. La diferencia en el comportamiento frente al calentamiento de los C1:2 obtenidos por amasado y suspensión, se podría atribuir a que la primera técnica no fue tan eficiente como la segunda, o a que se debería haber usado más tiempo (> 35 min) para permitir el acomplejamiento total (lo cual es poco práctico si se realiza de forma manual).

Los datos obtenidos por TG también confirman los resultados del análisis por MPC y DSC. Por ejemplo la curva TG del **BSBZT** (Fig. 6.13.B) presenta una pérdida de masa, atribuida a su descomposición térmica, a 154,35 °C (T_{onset}). En cambio, en la curva TG del C1:2 suspensión no se detectaron pérdidas de masa hasta aproximadamente 185 °C (T_{onset}). Ello sustentaría las interacciones entre el **BSBZT** y la β-CD y además indicaría que el complejamiento con la CD aumenta la estabilidad térmica del **BSBZT** en aproximadamente 30 °C.

Fig. 6.13. Curvas DSC (A) y TG (B) del BSBZT, la β-CD, el C1:1 suspensión y el C1:2 suspensión y amasado.

El análisis por IR del **BSBZT** también reveló diferencias con respecto al sustrato puro y la β -CD. Para resaltar los cambios, éstos se marcan con líneas, círculos o flechas y se especifican al pie de la Fig. 6.14. Las diferencias más notables se registraron en la zona comprendida entre 2100-400 cm⁻¹ (Fig. 6.14). Así, la banda correspondiente al vSO₂ asim. (1384 cm⁻¹) resultó desplazada hacia frecuencias mayores (1390 cm⁻¹) en el espectro de C1:2 (línea violeta en la Fig. 6.14). Las bandas de vC-N, las cuales aparecen a 1311 y 1230 cm⁻¹ en el **BSBZT**, se modificaron en intensidad y en número en el complejo (línea y círculo fucsia en la Fig. 6.14). La señal correspondiente al vSO₂ sim., situada a 1177 cm⁻¹ en el **BSBZT**, desaparece en el C1:2 (línea y flecha naranja en la Fig. 6.14). Las bandas de deformación del heterociclo, ubicadas a 958 cm⁻¹, desaparecen en el complejo (línea y flecha amarilla en la Fig. 6.14). Los sobretonos de los C-C aromáticos, presentes en el sustrato a 1960-1675 cm⁻¹, también desaparecen en el complejo (rectángulo rojo en la Fig. 6.149). Considerando los resultados encontrados, se podría postular que la porción heterocícica y el sulfonilo del **BSBZT** presentan una mayor interacción con la β -CD y, por lo tanto, sería la parte de la molécula que se incluiría en la cavidad.

Capítulo 6

Estudios de Solubilidad

Fig. 6.14. Espectro de IR del BSBZT, β-CD y C1:2 suspensión.

Los patrones de DRXP del **BSBZT**, la β-CD y el C1:2 suspensión se exhiben en la Fig. 6.15. Como se aprecia, el patrón de DRXP del C1:2 suspensión no es la suma aritmética de los difractogramas de sus precursores, confirmando la interacción entre el BSBZT y la β-CD en estado sólido, y la reducción en la cristalinidad del sustrato. En efecto, el difractograma del C1:2 exhibe solo tres picos principales, anchos y de baja intensidad, y un halo a partir de 13 ° 2θ, rasgos característicos de sólidos parcialmente cristalinos (Fig. 6.15).

El comportamiento del complejo **BSBZT:β-CD** en solución y la influencia de la β-CD sobre la S_{ap} del **BSBZT**, se estudiaron por ASF. Previo a dicho análisis y a la medición experimental de la S_{ap} de los complejos, se determinaron la curva espectral, la de calibrado (Figs. S.6.5.5-6 y en la Tabla S.6.5.6, Anexos 6.5) y el tiempo de equilibración del sistema (Tablas S.6.5.7, Anexos 6.5). Este último se estableció a las 37 h (RSD < 4 %).

Las S_{ap} (µg/mL) medias (n = 3) a 25 °C y a las 37 h, se muestran en Tabla 6.11 (Tabla completa S.6.5.8, Anexos 6.5). El gráfico de la S_{ap} en función de [β-CD] (Fig. 6.16) mostró un perfil de tipo B_S, al igual que para el **BSTHQ**.

Nº de muestra	[β-CD] (mM)	Sap promedio ± SD(µg/mL)
1	0	3,15 ± 0,02
2	0,032	3,56 ± 0,06
3	0,05	3,9 ± 0,2
4	0,25	7,7 ± 0,2
5	0,5	12,3 ± 0,1
6	1	18,84 ± 0,02
7	2	19,14 ± 0,02
8	5	12,47 ± 0,02
9	10	9,8 ± 0,1
10	13	9,58 ± 0,02
11	14,5	10,9 ± 0,3
12	16	12,4 ± 0,4

Tabla 6.11. Solubilidades aparentes (S_{ip}) promedios(n = 3) para el BSBZT:β-CD, obtenidas a 40 h y a 25 °C.

La Fig. 6.16 muestra que entre 0 y 1 mM de β -CD ocurrió un aumento lineal de la S_{ap} en función del incremento de la [β -CD] y que a la [β -CD] = 1 mM se produjo un cambio en la pendiente, alcanzándose una meseta de S_{ap} entre 1 y 2 mM de β -CD. La máxima S_{ap} fue de 19,14 ± 0,02 µg/mL, la cual representa un aumento de 6 veces con respecto a la S_{ac} del **BSBZT** (3,15 ± 0,02 µg/mL). Luego de alcanzar la meseta, se observó una disminución de la S_{ap} , producida por la precipitación del complejo. Este hecho indicaría la formación de complejos con distinta estequiometría.

Capítulo 6

Los sólidos remanentes al final del ASF se analizaron por TLC, DSC y MPC. Por TLC se detecto, tanto para los residuos sólidos como para los sobrenadantes de las muestras, una única mancha correspondiente al sustrato, confirmando en todos los casos la estabilidad del compuesto a lo largo del ensayo (40 h). Resultados similares se obtuvieron por DSC a 10 °C/min para los sólidos remanentes de las muestras 1 ([β-CD] = 0 mM), 4 ([β-CD] = 0,25 mM) y 9 ([β-CD] = 10 mM), Fig. S.6.5.7, Anexos 6.5. En los tres casos, solo se observó la endoterma de fusión del derivado BSBZT (T_{prest} ~ 128 °C) y no se evidenciaron picos endotérmicos adicionales atribuibles a la presencia de BZT (uno de los productos de descomposición) a 100 °C. Por un lado, esto demostró que el exceso de compuesto se mantuvo a lo largo del experimento y, por otro, que fue estable hasta 40 h de ensayo, tanto en agua pura, como en presencia de β-CD.

Los resultados obtenidos por MPC, para todos los sólidos remanentes, también confirmaron que siempre hubo exceso del **BSBZT** y que éste se mantuvo estable químicamente durante el experimento (Tablas S.6.5.9 y S.6.5.10, Anexos 6.5). En la parte inicial de la curva de S₈₀ en función de [β-CD] (Fig. 6.16), comprendida entre 0 y 1 mM de β-CD, solo permanece sustrato precipitado (dos fases en total, solución y sustrato sólido), ya que el sólido remanente fundió completamente a $T_{MPC} \sim 132$ °C. En la región de la meseta, por encima de [β-CD] = 1 mM, se encontró sustrato y complejo precipitado (tres fases en total, solución, sustrato sólido y complejo sólido), ya que se observó una fusión parcial a $T_{MPC} \sim 132$ °C, correspondiente al **BSBZT** y una fusión total a ~ 280 °C, asociada al complejo precipitado (Tablas S.6.5.9 y S.6.5.10). Un comportamiento similar se observó para el **BSTHQ**.

A partir de la porción inicial ascendente del perfil de tipo B_s se pudo estimar una de las estequiometrías del complejo (Fig. 6.16).²⁵⁶ El valor de la pendiente fue de 0,060 ± 0,003 con un coeficiente R² de 0,99 (Fig. 6.16 y 6.17), lo cual indicaría que en la solución se formó al menos un complejo con estequiometría 1:1. La constante de estabilidad aparente K_{1:1}, calculada a partir de la Ec. 6.11, fue de 4986 M⁻¹ (S_{ac} = 1,28 x 10⁻⁵ M).²⁵⁶

Fig. 6.17. Porción lineal ascendente del gráfico de ASF del BSBZT:β-CD (S_{ap} versus (β-CD), ambos en concentración M).

6.4.5. Formación de cocristales

A partir del mortereado con asistencia de solvente del BSBZT con cada uno de los cuatro coformadores seleccionados, en proporciones 1:1 (y 1:2 y 2:1 para ácido succinico) se

obtuvieron diferentes muestras sólidas. La caracterización con MPC, pf, TLC, TG, DSC, DRIFT y DRXP, permitió concluir que en todos los casos se obtuvieron mezclas físicas y no se logró la formación de cocristales.

6.5. Conclusiones

El derivado **BSTHQ** demostró una S_c moderada (40,8-48,9 μg/mL), mientras que el *p*-NO₂- **BSTHQ**, una S_c baja (8,1-16,2 μg/mL). En lo que respecta a la S_{ac}, los seis derivados se caracterizaron por presentar una baja solubilidad en agua. De los seis derivados, el **BSTHQ** y el **BSBZT** resultaron ser los más solubles, en tanto que el **TM-BSTHQ** y el **BSTHIQ** mostraron las S_{ac} más bajas. La S_{ac} resultó mucho menor que la S_c. Por ejemplo, en el caso del **BSTHQ**, la S_{ac} fue 9,5 órdenes de magnitud menor que la S_c, en tanto que, para el **p-NO₂-BSTHQ** fue 4,8 veces menor.

Las S_{ap} obtenidas para el **BSTHQ** y el **BSBZT** en siete proporciones agua:etanol, evidenciaron que a medida que aumenta la *f*_e, aumenta la S_{ap} de los compuestos. Inicialmente, la S_{ap} aumenta lentamente, hasta una *f*_e crítica (0,5), luego de la cual se produce un incremento pronunciado.

En lo que respecta a predicción de solubilidad en cosolventes, el modelo LL $\sigma_{0,5}$ presentó mejor exactitud de predicción que el LL σ . Esto confirma que estos sistemas se comportan de forma lineal hasta una f_0 de 0,5. La mayoría de los modelos aplicados para estimar la solubilidad fueron considerados aceptables (MPD < 30 %)²⁴⁷⁻²⁴⁸ a excepción del LL σ para el **BSTHQ** (43,2 %) y el de JA para el **BSBZT** (33,6 %). Por esta razón, se propuso la utilización del modelo LL $\sigma_{0,5}$. Con éste se calcularon los poderes solubilizantes ($\sigma_{0,5}$) de cinco cosolventes sobre los compuestos de la quimioteca NBS-Het. Se concluyó que todos presentan una mayor solubilidad en PEG 400, etanol y DMSO.

Se prepararon y caracterizaron **complejos de** β -CD con el **BSTHQ** y el **BSBZT** en estado sólido y en solución, utilizando las técnicas de suspensión y amasado. Los complejos sólidos obtenidos se caracterizaron con MPC, DRIFT, IR, TG, DSC, DRXP y se estudió su comportamiento en solución por ASF. Estos últimos resultados mostraron que ambos complejos presentan perfiles de tipo $B_{so}^{32,258}$ lo que supone complejos donde el aumento de S_{ap} es limitado. En el **BSTHQ**, se alcanzó la máxima S_{ap} (23,9 ± 0,3 µg/mL) a 10 mM de β -CD, que corresponde a 3,8 veces su S_{ac} (6,34 ± 0,04 µg/mL). En el **BSBZT**, entre 1 y 2 mM de β -CD se logró la máxima S_{ap} (19,14 ± 0,02µg/mL), siendo 6 veces su S_{ac} (3,15 ± 0,02µg/mL).

7. RELACIONES ESTRUCTURA-SOLUBILIDAD

VII

La quimioteca de NBS-Het está integrada actualmente por 145 compuestos y se caracteriza por ser dinámica, ya que crece en forma rápida año a año. Debido a esto, es importante conocer qué propiedades FQ están contribuyendo a la baja S_{ac} de los derivados ya sintetizados.

En este capítulo se presentarán los resultados correspondientes a los estudios de relaciones estructura-solubilidad cualitativas y cuantitativas (QSSR, del inglés *Quantitative Structure-Solubility Relationship*). Para esto, se integraron y relacionaron los datos obtenidos en los estudios del estado sólido (Capítulo 4) y de las propiedades estructurales tridimensionales (Capítulo 5) con los de evaluación y mejora de la solubilidad (Capítulo 6). Se analizaron, además, diferentes modelos de predicción desarrollados por otros autores y se los aplicó en la estimación de la solubilidad (S_{cale}) de los derivados NBS-Het.

Es de esperar que el conocimiento generado pueda contribuir al diseño de nuevos NBS-Het que presenten S_{ac} más altas.

7.1. Introducción

Con el objetivo de llevar a cabo estudios de QSS_{ac}R es necesario recurrir a la quimiometría^{±±±±}.^{22, 259} Para ello, se utilizan modelos correlativos que permiten relacionar una determinada variable dependiente o respuesta, con otras independientes (descriptores, regresores o predictores). El estudio de las correlaciones entre la estructura química y alguna propiedad molecular ha hecho aportes significativos al diseño y desarrollo de NEQ. Las propiedades pueden ser divididas en tres grupos: intrínsecas, químicas y biológicas (Fig. 7.1). Cuando la actividad biológica o toxicológica es la variable dependiente, el análisis se conoce como relaciones cuantitativas estructura-actividad (QSAR)²⁶⁰ o relaciones cuantitativas estructura-toxicidad (QSTR), mientras que, la predicción de propiedades químicas o físicas es llamada relaciones cuantitativas estructura-propiedad (QSPR).²⁸¹

¹¹¹¹ Disciplina que aplica la estadística y la matemática a la química.

Capítulo 7

Fig. 7.1. Propiedades intrinsecas, químicas y biológicas utilizadas en los estudios de relaciones con la estructura molecular.²⁶¹

En el presente capítulo se expone el desarrollo de modelos de QSS_{ac}R, en donde la S_{ac} es la variable respuesta y diferentes descriptores moleculares son las variables independientes. El esquema de trabajo utilizado para generar dichos modelos se muestra en la Fig. 7.2.

Fig. 7.2. Esquema de trabajo aplicado en esta tesis para la generación de modelos QSS_{ac}R (Adaptado de Delaney²⁶²)

Los modelos de correlación necesitan de un conjunto de datos experimentales de S_{ac}. Una parte de ellos origina el conjunto de entrenamiento y, otra, el de prueba o testeo. Con el primero se construye el modelo y, una vez alcanzado el mejor, se lo valida usando el segundo,²⁵⁹ cuyos datos no deben formar parte del de entrenamiento.³³ Luego de obtenido el modelo final, entrenado y testeado, puede usarse con fines explicativos y predictivos.

7.1.1. Fuentes de datos experimentales

Existen dos estrategias para la construcción de modelos de relaciones estructura-propiedad. Una plantea la utilización de grandes bases de datos como conjunto de entrenamiento (n_{entrenamiento} > 400), con compuestos de gran variabilidad estructural, para cubrir un amplio espectro químico. La otra posibilidad es la construcción de modelos más específicos, utilizando conjuntos de entrenamientos integrados por compuestos relacionados estructuralmente o con propiedades FQ similares a las de los que se quieren predecir.

En los últimos años, se han generado y utilizado varias bases de datos para el modelado de la S_{ac}. Entre las de libre acceso, podemos mencionar la de Huuskonen (~ 1300 entradas) que es probablemente la más conocida;²⁶³ la de Delaney, que contiene alrededor de 1100 compuestos de bajo PM;²⁶⁴ la de Jain y Yalkowsky, integrada por 580 moléculas no electrolitos (extraídos de la base de datos AQUASOL²⁶⁵) para las que están disponibles, también, los *pf* experimentales;²⁶⁵ la de Yalkowsky y col., con 1642 compuestos orgánicos, los cuales fueron recogidos de las bases de datos WATER NT^{MR} v1.0 EPA y AQUASOL²⁶⁶ y la de Wang y col. (1708 moléculas),⁷³ que combina las bases de datos de Huuskonen y Delaney, eliminando errores y entradas duplicadas. Por otro lado, existen dos bases de datos comerciales, AQUASOL²⁶⁷ y PHYSPROP,²⁶⁸ que contienen aproximadamente 6000 compuestos cada una. Debe tenerse en cuenta que los datos de literatura no siempre pueden combinarse para formar una base de datos grande, dadas las diversas técnicas experimentales de medición de solubilidades reportadas en la literatura científica.

En este sentido, Weaver y Gleeson propusieron el concepto conocido como "dominio de aplicabilidad", una herramienta para mejorar la capacidad predictiva de los modelos.²⁶⁹ Este concepto se utiliza para estimar la incertidumbre en la predicción de la S_{cale} de una molécula, en base a su similitud con los compuestos utilizados para construir el modelo. Para lograr una predicción más precisa de las moléculas del conjunto de prueba, se utilizan en el entrenamiento compuestos similares estructuralmente. En algunos casos, la similitud de los dominios se mide utilizando algún descriptor molecular, en lugar de la semejanza estructural (Fig. 7.3).²⁷⁰

Fig. 7.3. Ilustración gráfica del dominio de aplicabilidad en el espacio de las componentes principales. El conjunto de entrenamiento del modelo QSS_{ac}R se representa por un circulo amarillo. Las moléculas, cuyas S_{ac} serán estimadas, se representan en verde cuando se encuentran dentro, en naranja cuando están cerca y en rojo cuando se ubican lejos del espacio de entrenamiento.²⁶⁹

7.1.2. Descriptores moleculares

Teniendo en cuenta que la S_{ac} depende principalmente de la cristalinidad del soluto y de su habilidad para interactuar con el agua,²⁶⁵ surge la pregunta, ¿cuáles son los descriptores o variables moleculares apropiados para explicarla? Para responder a ella, se deben considerar las interacciones involucradas en el proceso de disolución de un compuesto en un solvente. Es así que las variables que describan la energía de red cristalina, la de cavitación y la de solvatación, serán los tres términos energéticos adecuados para modelar la solubilidad. La lista de descriptores utilizados en los modelos de S_{cale} es casi ilimitada, aunque los más ampliamente usados en estudios de QSS_{ac}R son el ASPT, el PM y el volumen, los enlaces rotables (ER), la polarizabilidad (Pol), la proporción aromática y el número de anillos, los indices topológicos (describiendo la forma de la molécula), el log P, el *pf*, los enlaces intermoleculares presentes en el cristal, los tipos o grupos de átomos, los números de donores y aceptores de H, entre otros.

Los descriptores calculados por métodos cuánticos también han proporcionado una buena correlación con los valores de la S_{sc} experimental en fármacos y pesticidas, siendo una de sus principales limitaciones la alta demanda de tiempo computacional.³⁴ Para generar descriptores moleculares en QSS_{ac}R se han desarrollado varios programas,entre ellos Dragon,²⁷¹ MOE (www.chemcomp.com), Cerius 2 (www.accelrys.com) y Molconn-Z (www.tripos.com), entre otros.³³ De las propiedades moleculares mencionadas, el log P suele poseer la mayor correlación con la S_{ac} en muchos de los modelos estudiados, dado que es una medida de la interacción del soluto con el agua.³³

Los descriptores moleculares 3D no son comúnmente utilizados para la predicción de la solubilidad, aunque proporcionarían información más acorde a la realidad física. Su utilización añade complejidad a los cálculos y, hasta ahora, no proporcionaron ninguna mejora destacable en comparación con las variables 2D.

7.1.3. Métodos estadísticos aplicados en el modelado

Existe una amplia gama de técnicas estadísticas y de *data-mining* (minería de datos)⁵⁹⁵⁵ que se pueden aplicar para la construcción de modelos de QSS_{ac}R con fines explicativos o predictivos. Estos van de los análisis de regresión lineal simple hasta aquellos basados en redes neuronales (ANN, del inglés *Artificial Neural Network*). Particularmente, el análisis de regresión lineal multivariado (ARLM) es una herramienta muy útil, dado que puede proveer conocimientos de las propiedades que influencian la S_{ac}. En estudios recientes, Hewitt y col. concluyeron que el ARLM fue superior, sobre otros métodos complejos.²⁷²

Es importante tener en cuenta, que el desarrollo de buenos modelos necesita de una meticulosa selección de los descriptores moleculares a ser utilizados. Para esto, el Análisis de Componentes Principales (ACP) o el de Mínimos Cuadrados Parciales (PLS, del inglés *Partial Least Squares*) son aproximaciones muy útiles para la reducción de dimensiones.³³

Los métodos estadísticos más comúnmente usados pueden ser divididos en dos clases:

⁵⁵⁵⁵ Es un campo de las ciencias de la computación, referido al proceso que intenta descubrir patrones en grandes volúmenes de conjuntos de datos. Utiliza los métodos de inteligencia artificial, aprendizaje automático, estadística y sistemas de bases de datos. El objetivo general consiste en extraer información de un conjunto de datos y transformarla en una estructura comprensible para su uso posterior.

Los de reconocimiento de patrones: se usan para explorar la distribución de un grupo de compuestos en un espacio de propiedades o la intercorrelación entre descriptores. Entre ellos, se pueden citar el ACP, los árboles de regresión, el análisis de conglomerados y el ANN.

Los de correlación: identifican relaciones cuantitativas entre los descriptores y una variable respuesta. Los más conocidos son el ARLM, el PLS y el ANN.²⁷³

El ACP es una técnica estadística de reducción del número de descriptores (n_{descriptores}). En el caso de contar con un banco de datos con muchas variables, el desafío será disminuir su número sin perder información importante. Se utiliza para situaciones donde se presentan muchos descriptores de naturaleza cuantitativa y en donde se hace difícil visualizar relaciones entre ellos. Otro problema que suele presentarse, es la fuerte correlación entre las variables (multicolinealidad), es decir, que miden lo mismo, bajo distintos puntos de vista.²⁷⁴

Para estudiar las relaciones que se presentan entre descriptores correlacionados, se puede transformar el conjunto original en otro nuevo, que no tenga repetición o redundancia en la información, llamado conjunto de componentes principales (CP). Estos serán una combinación lineal de las variables originales y, además, independientes entre sí.^{275, 276} El ACP permite obtener gráficos *biplots* donde se visualizan en un mismo espacio las observaciones, como puntos, y las variables, como vectores. De esta forma, es posible identificar asociaciones entre ambas y entre cada una de ellas individualmente. Los ángulos entre los vectores pueden ser interpretados en términos de sus correlaciones. Los ángulos de 90 ° entre dos descriptores indican que no están correlacionados, en cambio, ángulos de 0 ° o 180 ° implican una fuerte correlación, en forma positiva o negativa, respectivamente. Por otro lado, las longitudes similares de los vectores, se explicarían como contribuciones equivalentes de cada descriptor.

El análisis de conglomerados, análisis de *cluster*, taxonomía numérica o reconocimiento de patrones, es una técnica estadística multivariada, cuya finalidad es dividir un conjunto de objetos en grupos, que son representados como un dendrograma.²⁷⁷ Los perfiles de los objetos en un mismo grupo, deben ser similares entre sí (cohesión interna) mientras que, los de diferentes *clusters* deben ser distintos (aislamiento externo).²⁷⁸

Los árboles de regresión son una técnica de análisis discriminante, que permite la asignación de muestras a grupos predefinidos en función de variables predictoras.²⁷⁹ La información se representa en un diagrama en forma de árbol invertido. Comienza con un nodo raíz, que es dividido en subgrupos (determinados por la partición de una variable predictora) y luego se generan nodos hijos. Estos son particionados usando una nueva variable, lo que se repite sucesivamente para los nuevos nodos hijos. Algunos de los nodos resultantes son terminales, mientras que otros continúan dividiéndose. En cada árbol se cumple la propiedad de tener un camino único entre el nodo raíz y cada uno de los demás.²⁸⁰

El análisis de correlación es un método estadístico que permite correlacionar variables cuantitativas entre sí, a través del coeficiente de correlación intervariable o *de Pearson* (*p*). Este es un estadístico que varía entre -1 y 1, extremos que indican que la correlación es máxima pero en sentidos opuestos. Si su valor es 0 no hay asociación entre las variables. Los resultados se presentan, generalmente, como una matriz, donde el número de filas, de columnas y de variables seleccionadas es el mismo. Los elementos de la diagonal principal son iguales a 1 ya que representan la correlación de una variable con sí misma. Por debajo de la diagonal principal y en la posición i,j se encuentra el coeficiente de correlación entre la i-ésima y j-ésima variables de la lista.²⁷⁴

Capítulo 7

El ARLM es una extensión natural de la regresión lineal simple. La variable respuesta o dependiente cambia con cada una de las regresoras, según una tasa constante llamada pendiente parcial o coeficiente de regresión parcial. El procedimiento para ajustar estos modelos se realiza, usualmente, por mínimos cuadrados y conduce a la solución de un sistema de ecuaciones lineales. La ventaja de utilizar ARLM es la posibilidad de estudiar el efecto de varias regresoras simultáneamente.274 Es importante tener en cuenta ciertos reguisitos para la formulación correcta de las ecuaciones multiparamétricas. Las variables seleccionadas para el análisis deben ser esencialmente independientes (ortogonalidad), por lo que solo se utilizan las que tengan un coeficiente de correlación menor a 0,6 en la matriz de Pearson.²⁸⁰ Cada variable debe estar justificada por una prueba t o por límites de confianza y la inclusión de la última debe ser chequeada por el valor F. Si ecuaciones diferentes conducen a resultados comparables, se debe elegir el modelo más simple (principio de parsimonia). Para correlacionar cuantitativamente un conjunto de datos, éste debe tener un tamaño mínimo (cinco compuestos por variable). La inclusión de muchos descriptores y pocos datos puede afectar la capacidad predictiva y producir modelos sobreajustados y complejos.277 Por el contrario, cuando éste es demasiado simple se produce el subajuste.259 En ambos casos, los modelos tendrán limitada aplicabilidad a otras moléculas fuera del conjunto de entrenamiento. Cuando ecuaciones con variables diferentes dan resultados comparables, se selecciona a aquella que presente concordancia con las relaciones cualitativas y el comportamiento químico inherente a los datos.281

Conceptualmente, la única forma de asegurar que se ha encontrado el mejor modelo, consiste en calcular todas las posibles regresiones, lo cual solo es factible cuando el número total de variables es relativamente pequeño. Esto rápidamente se convierte en un problema importante al aumentar su número; por ejemplo, para 10 variables independientes, hay 2¹⁰ - 1 = 1023 ecuaciones posibles. Afortunadamente, muchos programas de estadística ofrecen la posibilidad de seleccionar los mejores modelos.²⁸²

Los modelos no lineales son mejor explorados con los siguientes métodos: algoritmos genéticos,²⁸⁹ maquinas de vectores de soporte, procesos gaussianos³⁰ y autómatas celulares, entre otros.²⁸⁴ Descripciones detalladas de cada uno de ellos, junto a otros métodos, se pueden consultar en revisiones bibliográficas realizadas por van der Waterbeemd y col.^{22, 280} y Kubinyi y col.²⁴⁶

7.1.4. Prueba de modelos

La prueba de los modelos (Fig. 7.2) se lleva a cabo comparando diferentes estadísticos, siendo los más frecuentes los que se detallan a continuación:

 El coeficiente de determinación (R²): mide la proporción de variabilidad de la variable dependiente explicada por la independiente o por la recta de regresión, por lo que se lo utiliza como medida de ajuste. Su principal limitación, en este sentido, es la de sobrestimar el verdadero R de la población, ya que a medida que se incrementa el número de variables que participan en el modelo (será el caso propio del análisis multivariable) mayor es su valor. Debido a esto, algunos autores recomiendan utilizar el coeficiente de determinación ajustado (R²_{aj}). Este estadístico queda ajustado por el número de observaciones y de variables independientes incluidas.²⁸⁵

 El error cuadrático medio de predicción (MSPE, del inglés Mean Squared Prediction Error): se reporta como función de pérdida, es decir, permite describir cuán costoso resultaría que el pronóstico se aleje una cierta magnitud o distancia del verdadero valor. Es una forma de

validación cruzada (cross-validation) que se utiliza en el análisis de regresión para proporcionar una medida resumen del ajuste de un modelo.

 El cuadrado medio del error (MSE, del inglés Mean Squared Error): es una forma de evaluar la diferencia entre un estimador y el valor real de la cantidad que se quiere calcular. Mide el promedio del cuadrado del "error"; siendo éste, el valor que el estimador difiere de la cantidad a ser estimada.

 Los criterios de información de Akaike (AIC) y Bayesiano (BIC): estos penalizan el potencial de incurrir en sobreajustes (el BIC en mayor medida), a modelos sobreparametrizados o a aquellos poco parsimoniosos. Cuanto menor sean los valores de AIC y BIC, mejor será el modelo.

 El valor F: es una relación de varianzas y su valor debe ser mayor que el valor tabulado para un nivel de significancia preestablecido (90 %, 95 % o 99 %). Esta prueba estadística depende de n y del número de variables incluidas en el modelo.

 El Cp de Mallows (Cp): representa la importancia predictiva que posee cada regresora sobre la variable respuesta.

 El Error Absoluto Promedio (AAE, del inglés Absolute Average Error) y el Error Cuadrático Medio (RMSE, del inglés Root Mean Square Error): permiten comparar los valores estimados y los experimentales entre si.

7.1.5. Modelos de solubilidad

A continuación, se ofrece una revisión general de los diferentes enfoques conceptuales para predecir y explicar la S_{ac} en función de propiedades moleculares. Se presentan las ventajas y desventajas de las distintas perspectivas, aplicadas en particular al descubrimiento y diseño de fármacos.^{34, 282, 286, 286}

7.1.5.1. Modelos basados en log P

La lipofilicidad es una de las propiedades FQ de mayor interés para el desarrollo de NEQ, debido a su relación directa con la habilidad de atravesar membranas biológicas por difusión pasiva. En un principio, se reportaron relaciones empiricas entre el log *S* y la lipofilicidad, expresada como log P, mostrando la relación inversa entre ellas (Ec. 7.1 y Ec. 7.2). Si bien se usaron log P experimentales, las correlaciones con log P calculado (Clog P) proporcionaron resultados igualmente válidos.²⁸⁷

$$\log S_{sr} = 0.978 - 1.339 \log P$$
 Ec. 7.1
n = 156, R² = 0.874 para solutos líquidos²⁸⁷

$$\log S_{ar} = 1.17 - 1.38 \log P$$
 Ec. 7.2
n = 300, R² = 0.931 para solutos sólidos²⁰⁸

Sin embargo, la relación se deterioró cuando se añadieron moléculas más complejas, haciéndose evidente la necesidad de variables adicionales, junto con métodos estadísticos más sofisticados.³⁴

7.1.5.2. Ecuaciones Generales de Solubilidad (EGS)

En las EGS, la correlación con el log P es mejorada por la adición del pf experimental. De esta manera, las interacciones soluto-solvente son descriptas por el log P, mientras que, las del

Capítulo 7

estado sólido, lo hacen a través del pf. La primera EGS fue propuesta por Yalkowsky y Valvani,²⁸⁹ revisada por Jain y Yalkowsky²⁶⁵ y validada por Ran, Jain y Yalkowsky²⁹⁰ (Ec. 7.3).

$$\log S = -0.01(pf - 25) - \log P + 0.5$$
 Ec. 7.3

Wang y col.⁷³ propusieron una nueva EGS (Ec. 7.4), mejorando la de Jain y Yalkowsky, al eliminar las entradas erróneas y duplicadas y remplazar log P experimental por el Clog P.

> $\log S = 3,513 - 0,010 pf - 1,112 C \log P$ Ec. 7.4 Error estándar (EE) = 0,72 y R² = 0,937

Ran y Yalkowsky²⁶⁷ derivaron otra EGS (Ec. 7.5) para compuestos orgánicos no electrolitos.

$$\log S = 0.3814 - 1.0223 \log P - 0.00961(pf - 25)$$

AAE = 0.38, RMSE = 0.53 y R² de 0.96
Ec. 7.5

7.1.5.3. EGS Extendida (EGSE)

Una dificultad en el uso de las EGS es la necesidad de determinaciones experimentales del pl, ya que, desafortunadamente, la mayoría de las moléculas utilizadas en el screening virtual no tienen disponibles estos valores. Una solución al problema fue remplazarlos datos experimentales por calculados, tal como propusieron recientemente Hughes y col.²⁹¹ Otro recurso fue usar variables moleculares diferentes al *pl*, que dan lugar a las EGSE, tal como la ecuación desarrollada por Meylan y Howard, usando log P y PM como descriptores (Ec. 7.6).²⁹²

$$\log S = 0.80 - 0.85 \log P - 0.073 PM + \sum_{15} f_i$$
 Ec. 7.6
AAE = 0.7 y n = 3000

donde fi es el factor de corrección de una serie de compuestos específicos, por ejemplo alcoholes alifáticos, sulfonamidas, etc.

Delaney reportó otra EGSE (Ec. 7.7), usando como descriptores el Clog P, el PM, el ER y la PA (definida como la proporción de átomos aromáticos en la molécula).²⁶⁴

$$\log S = 0.16 - 0.63C \log P - 0.0062PM + 0.0066ER - 0.74PA$$
 Ec. 7.7

Wang y col.⁷³ usaron el Clog P y remplazaron el *pl* por la polarizabilidad molecular, que es fácilmente predicha mediante modelos empíricos. Resultó alentador que la ecuación construida usando dos variables calculadas condujera solo a un ligero empeoramiento del EE y el R² (Ec. 7.8).

$$\log S = 1,095 - 0,008Pol - 1,078C \log P$$

EE = 0,887 y R² = 0,905

Capítulo 7

7.1.5.4. Modelos basados en propiedades de solvatación

Abraham y Le²⁸³ propusieron un método elegante para predecir la solubilidad, considerando las interacciones soluto-solvente (Ec. 7.9).

$$\log S = 0.52 - 1.00R_2 + 0.77\pi'' + 2.17\sum \alpha'' - 4.24\sum \beta'' - 3.36\sum \alpha'' \sum \beta'' - 3.99V_{\chi}$$
 Ec. 7.9

donde R_2 es la refracción molar, π^H es la polarizabilidad, α^H y β^H son la acidez y la basicidad de los EPH, respectivamente y V, es el volumen molecular de Mc Gowan (que también caracteriza la hidrofobicidad del soluto). La ventaja de la Ec. 7.9 es que la significancia física de cada variable facilita su interpretación. La desventaja es su limitada aplicabilidad a moléculas complejas similares a fármacos. Sin embargo, puede ser superada usando el módulo ABSOLV (ADME Boxes)²⁹⁴ que calcula dichos parámetros desde contribuciones de fragmentos.

7.1.5.5. Modelo basado en la aproximación de Hildebrand

El enfoque de Hildebrand²⁹⁵ permite predecir la solubilidad con un error aceptable, utilizando un único dato experimental (a 25 °C) de un derivado químico relacionado estructuralmente. Dicha aproximación, propone dos modelos alternativos, que se expresan en las Ec. 7.10 y Ec. 7.11.

$$-\ln S = -\ln S' + \ln \left[\frac{V_2 \phi_1^2 (\delta_1 - \delta_2)^2}{RT} \right] + F$$
 Ec. 7.10
$$-\ln S = -\ln S' + \left[\frac{V_2 \phi_1^2 (\delta_1 - \delta_2)^2}{RT} \right]^6$$
 Ec. 7.11

donde R es la constante de los gases (1,9872 cal mol⁻¹ K⁻¹), T es la temperatura en K a la que se desea estimar la solubilidad, V₂ y δ_2 son el volumen molar y el parámetro de solubilidad del soluto, ϕ_1 y δ_1 denotan la fracción de volumen y el parámetro de solubilidad del solvente (que representa la constante dieléctrica). El valor de ϕ_1 es igual a 1,²⁹⁶ el δ_1 para el agua es igual a 24,52 y el δ_2 se asume igual a 10,3.²⁹⁷ Los términos F y G (constantes del modelo que incluyen la determinación experimental de solubilidad) pueden ser calculados mediante las Ec. 7.12 y 7.13, respectivamente.

$$F = -\ln S + \ln S^{2} - \ln \left[\frac{V_{2} \phi_{1}^{2} (\delta_{1} - \delta_{2})^{2}}{RT} \right]$$
 Ec. 7.12

$$G = \frac{\ln\left(\ln\frac{S^{\prime}}{S}\right)}{\ln\left[\frac{V_{2}\phi_{1}^{2}(\delta_{1}-\delta_{2})^{2}}{RT}\right]}$$
 Ec. 7.13

Capítulo 7

La S' (solubilidad ideal del soluto en fracción molar) se calcula como lo expresa la Ec. 7.14. Cuando no se cuenta con la ΔH_l (entalpia de fusión del soluto), puede calcularse usando la Ec. 7.15.

$$-\ln S' = \frac{-\Delta H_f (pf - T)}{RTpf}$$
 Ec. 7.14
$$-\ln S' = \frac{0.02303(pf - T)^2}{T \ln(\frac{pf}{T})}$$
 Ec. 7.15

7.1.5.6. Programas de cálculo de solubilidad

Es posible predecir la solubilidad *in silico*, ya que se encuentran disponibles varios programas de cálculo, tales como ACD/Percepta Platform, EPI-Suite, ChemSilico, COSMOlogic, OSIRIS Property Explorer y Pharma Algorithms, entre otros.⁸⁸ El programa **ACD/Percepta Platform**, ³⁹⁶ desarrollado por Advanced Chemistry Development (ACD) provee un número de propiedades FQ de compuestos, incluyendo la solubilidad, cálculo basado en la utilización de diferentes algoritmos. El **Estimation Program Interface (EPI-Suite)**, ²⁹⁹ desarrollado por la EPA's Office of Pollution Prevention Toxics y Syracuse Research Corporation es de libre acceso y permite calcular distintas propiedades de un soluto, entre ellas la solubilidad. Además, brinda la posibilidad de incorporar previamente, variables empíricas como *pl* y log P, que mejoran la estimación realizada por el programa.

7.1.5.7. Otros modelos desarrollados

Además de los modelos de solubilidad descriptos en la Tabla 7.1 se resumen otros desarrollados recientemente.

Año	Autor y Bel.	Método	Descriptores	Bertenasteria	Bini	Bibberipheret	AAE	RMSE	R.	AAE _{bd}	RMSE
2006	Hansen ²⁰⁰	ANN	MOE 2D/3D	4548	21	9		0,7	0.94	1.0	0,97
2007	Schwaighofer ^{ia}	GP	Dragon	3952	645	30					0,55
2007	Wang ^{ies}	ARLM	3D, tipo de átomos según área superficial,	1708	170	54	0,51	0.66	0.90	0,57	0,74
2008	Obrezanova ¹⁰⁵	GP	ClogP, PM Tipo de diumos, log P, volumen, PM	474	118	66		0,49	0,88		0.71
2008	Duchowicz ¹⁰¹	ARLM	Índice de Desour + Dragon	100		6		0,86	0,77		
2009	Duchowicz ³⁰	ARLM	Dragon.	97	-48	3.		0.90	0.76		0.90
2008	Du-Cunny ³⁰⁶	PLS	log P, Fragm. estroct.	1515	958	257	0.51		0.84		0,42
2008	Houskonen ^{ser}	ARLM	Clog P. EPH, N° anillos arom. ER	191	174	5	0.51		0.87	9.68	
2008	Zhou ^{sus}	PLS	ECFP	1000	302	9		0,71	0.85		0.71
2008	Hughes ²⁰	SVM	MOE 2D/3D	150	87	42	0.23	0.30	0.96		0.9
2008	Hughes 201	ARLM	Clog P y of	150	87	2	0.66	0.89	0,63	0.82	1.03
2009	Wang ⁷⁵	ARLM	Tipo de atomos, Clog P, PM	3664	1210	58	0.63	0.85	0.83	0.75	0.98
2009	Hewitt ⁹⁸	ARLM	log P. Pe. Rr	104	32	3			0.74		9,95
2009	Hewitt ³⁸⁹	ANN	log P. Pe. R:	104	32	3			0.79		1.51
2010	Kramer'n	RF	Huellas dactilares del farmacóforo, Volsurlf, MOE	842	747		71,5%			65%	
2010	Kramer ¹¹⁰	BRNN	"	842	747		72,6%				

Tabla 7.1. Algunos de los modelos usados para la predicción de solubilidad termodinámica publicados en años recientes.³³

n_{entrenamiento}: número de datos en el conjunto de entrenamiento, n_{test}: número de datos en el conjunto de testeo, n_{descriptores}: número de descriptores.

Cabe señalar que la mayoría de los modelos se construyeron con ARLM y ANN. En general, presentan un RMSE entre 0,7 a 1,0 unidades logarítmicas. Para conjuntos con pequeña cantidad de datos se consiguieron, de manera relativamente fácil, buenos rendimientos, pero para conjuntos con muchos datos ello fue más difícil. Resulta alentador que se haya obtenido un buen rendimiento (RMSE_{test} < 0,85) para modelos que utilizan grandes conjuntos de datos, tales como el ARLM de Wang y col.⁷³

7.1.5.8. Rangos de error aceptados en los cálculos de solubilidad

La predicción del conjunto de testeo es comparada con los datos experimentales, utilizando criterios de exactitud, tales como AAE y RMSE, entre otros. Las capacidades predictivas entre los modelos conocidos presentan diferencias que podrían asociarse a tres factores. El primero, se refiere a la *falla en los datos.* La magnitud del error experimental proporciona un límite en la exactitud del modelo empírico. Además, si el conjunto de datos tiene poca diversidad química, el modelo será incapaz de predecir moléculas fuera de esta región. El segundo, se denomina *falla en los descriptores* y ocurre cuando estos explican las propiedades de las moléculas de forma insuficiente. Finalmente, el tercero se debe a la *falla en los métodos*, que al tomar información de los datos experimentales en defecto o en exceso originarían un subajuste o sobreajuste del modelo, respectivamente.²⁹¹

Capítulo 7

La primera de las fallas se centra en la dificultad de obtener resultados experimentales reproducibles. Por ejemplo, el dato de la S_{ac} reportada para un dado soluto puede variar de laboratorio en laboratorio, encontrándose diferencias entre dos determinaciones mayores al 900 %.⁷⁵ De acuerdo a Jorgensen y Duffy² y Katritzky y col.³¹¹ la incertidumbre en las mediciones experimentales de S_{ac} no es menor a 0,6 unidades logarítmicas. Por lo tanto, no se pueden esperar modelos *in silico* más precisos que 0,5.³⁴

En 2002, Jorgensen y Duffy² postularon que no existían métodos viables para la predicción con menos de 1 unidad logarítmica de incerteza. A pesar de estas dificultades, estos modelos se consideraron adecuados para el pre-*screening* de síntesis y para el diseño de quimiotecas de compuestos. La situación actual ha mejorado, aunque se siguen encontrando métodos con RMSE mayores a 1.^{291, 309} En general, diferentes autores consideran como aceptables valores RMSE menores a 0,85³³ o de AAE de alrededor de 0,4.²⁸⁹

7.2. Objetivos e hipótesis

Los objetivos propuestos para este estudio fueron:

 Establecer relaciones estructura-solubilidad de tipo cuali- y cuantitativas de los derivados de la quimioteca NBS-Het, para determinar cuáles propiedades son más influyentes o explicativas de su S_{ac-}

 Estudiar la correlación entre la variable respuesta log S y variables o descriptores moleculares independientes.

 Desarrollar modelos cuantitativos propios, para explicar y predecir la S_{calc} de los derivados de la quimioteca. Ellos deben reunir las siguientes condiciones:

- 1. Ser lo suficientemente simples para poder aplicarlos sobre un gran conjunto de datos.
- Poseer exactitudes semejantes a las obtenidas por otros autores.³¹²
- Que puedan aplicarse en diferentes etapas del diseño de fármacos, es decir, en fases tempranas donde sólo se cuenta con variables calculadas y en las del desarrollo donde se puede disponer de una amplia variedad de datos experimentales.

Se planteó como hipótesis que para lograr un buen modelo predictivo, se puede partir de un conjunto de entrenamiento integrado por derivados con propiedades FQ similares a las de los NBS-Het.

7.3. Metodologías

7.3.1. Relaciones estructura-solubilidad

El estudio de las **relaciones cualitativas estructura-solubilidad** se llevó a cabo sobre los seis derivados NBS-Het seleccionados para este trabajo de tesis. Se integraron los datos del estado sólido (Capítulo 4), las propiedades estructurales tridimensionales (Capítulo 5) y los valores de S_{ac} (Capítulo 6). Se tuvieron en cuenta para el análisis comparativo, propiedades intrínsecas tales como el tamaño molecular, la polaridad, la polarizabilidad y la flexibilidad. Además, como propiedades FQ se consideraron la energía de la red cristalina y la lipofilicidad. Con este fin se recurrió a los descriptores que se detallan a continuación:

- El PM y el volumen (en Å³), que representan el tamaño de la molécula.
- Los Donores H, que representan el número de átomos donores de EPH (O-H y N-H).

- Los Aceptores H, que representan el número de átomos aceptores de EPH (O y N).
- Los enlaces intermoleculares en el cristal, que fueron obtenidos a partir de las estructuras cristalinas resueltas por DRXM.
- El ASPT (en Å²), que caracteriza la polaridad molecular y los tipos de EPH y se define como la suma de las superficies de átomos polares.³¹³
- La polarizabilidad (Pol) molecular estática, que indica cómo una molécula responde a un campo eléctrico externo. Es una medida de las interacciones inductivas y el coeficiente de dispersión dentro de una molécula o sistema molecular.³⁰²
- 7. La cantidad de ER, que representa la flexibilidad molecular.
- El número de anillos aromáticos totales (Nº anillos), que informa el grado de aromaticidad de la molécula, por lo que afectaría en forma directa a la Sac.
- La PA, que representa el grado relativo de carácter aromático.³¹⁴ Es definida como la relación entre el número de átornos aromáticos y el número total de átornos pesados.³¹⁵ y se determinó en forma manual.
- El log P, que es el índice de polaridad molecular, describe la hidrofobicidad de la molécula y se relaciona directamente con la energía de solvatación en el proceso de disolución. Esta variable se calculó con el programa Bio-Loom[®] para Windows v1,5 BioByte Corp.³¹⁶
- El log k_w que fue determinado por Pagliero mediante HPLC,⁹⁰ a partir del factor de capacidad cromatográfico.
- 12. El pf (determinado experimentalmente con el fusiómetro de bloque de acero en tubo capilar), representa las interacciones implícitas en el estado sólido, relacionándose, por lo tanto, con la energía de red cristalina. Su predicción es muy dificultosa,²⁹¹ en cambio, su determinación forma parte de la caracterización de todos los compuestos NBS-Het sintetizados.

Los descriptores 1-7 se calcularon para los seis derivados a partir del modulo ACD/Percepta, mediante la plataforma de ChemSpider (<u>www.chemspider.com</u>).³¹⁷ a excepción del volumen, para el que se usó el programa Molinspiration (<u>http://www.molinspiration.com/cgibin/properties</u>).

7.3.2. Relaciones cuantitativas estructura-solubilidad

El análisis de las QSS_{ac}R se llevó a cabo a través de la utilización de modelos explicativos y predictivos propuestos por otros autores. Además, se desarrollaron modelos propios, adecuados para explicar y predecir la solubilidad de los derivados NBS-Het ya obtenidos y los nuevos a diseñar (Fig. 7.2).

7.3.2.1. Relaciones cuantitativas estructura-solubilidad conocidas

Se utilizaron ocho modelos de relaciones estructura-solubilidad, desarrollados por diferentes autores, para calcular la solubilidad de los seis compuestos NBS-Het.

- EGS de Yalkowsky (Ec. 7.3).²⁹⁰
- EGS de Wang y col. (Ec. 7.4).⁷³
- 3. EGS de Ran y Yalkowsky (Ec. 7.5).267
- 4. EGS Extendida de Delaney (Ec. 7.7).264
- Ecuación de Abraham y Le²⁹³ (Ec. 7.9), calculada usando el módulo ABSOLV del software ADME Boxes.²⁹⁴

- Modelos de Hildebrand. Se utilizaron las Ec. 7.10 y 7.11. El log Sⁱ se calculó utilizando el valor de ΔH_i experimental obtenida por DSC (Ec. 7.14) y la ΔH_i calculada (Ec. 7.15). Se obtuvieron, por lo tanto, cuatro valores de S_{sc}:
 - a. Modelo a de Hildebrand, usando (Ec. 7.10) y pf DSC y ∆H_i experimental (Ec. 7.14).
 - b. Modelo b de Hildebrand, usando (Ec. 7.10) y pf DSC y ∆H, calculada (Ec. 7.15).
 - c. Modelo c de Hildebrand, usando (Ec. 7.11) y pf DSC y ∆H_l experimental (Ec. 7.14).
 - d. Modelo d de Hildebrand, usando (Ec. 7.11) y pf DSC y ΔH_l calculada (Ec. 7.15).
- 7. Módulo del programa ACD/Percepta Platform v2012, bajo licencia temporaria.294, 298
- Programa EPI Suite v4.11 (<u>http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm</u>).²⁹⁹ Este último con y sin la incorporación previa del *pl* y del log P. Los *pl* se determinaron mediante DSC y los log P se remplazaron por los log k_w obtenidos experimentalmente por HPLC.²⁰

Los diferentes modelos cuantitativos de solubilidad se evaluaron y compararon con la S_{ac} obtenida experimentalmente, utilizando los indicadores estadísticos AAE (Ec. 6.15) y RMSE (Ec. 6.16), ambos en escala logaritmica (desarrollados en el Capítulo 6).

7.3.2.2. Desarrollos propios de relaciones cuantitativas estructura-solubilidad

En el presente trabajo, para el análisis estadístico de las QSS_{ac}R, se creó una base de datos conformada por compuestos externos a la quimioteca (n_{externo}) cuyas S_{ac} se hubieran determinado experimentalmente, en el equilibrio, a 25 ± 3 °C y al menos por duplicado. Para esto, se procedió a una cuidadosa recopilación, cuyos criterios de inclusión se detallan a continuación. Primero, se estudió el espacio químico donde se ubican los derivados que forman parte de la quimioteca NBS-Het, en total 145 (n_{quimioteca}). Luego, se seleccionaron compuestos no electrolitos, a partir de bases de datos publicadas, entre ellas, la de Jain y Yalkowsky²⁶⁵ y la de Yalkowsky y col.²⁶⁶ Los compuestos seleccionados fueron, en general, fármacos, moléculas *druglike* y algunos de uso en agricultura y en la industria. El siguiente criterio impuesto fue el de incluir derivados cuyos Clog P, *pf* y PM se encontraran dentro del universo de valores de los de la quimioteca NBS-Het. Se consideró, así, el espacio delimitado por:

- el rango de PM de la quimioteca, 257,31-366,27 ± 100,
- el rango de Clog P de la quimioteca, 0,92-5,88 ± 0,5,
- el rango de pf de la quimioteca, 25,0-223,0 considerando el mismo límite inferior y + 17 °C del superior.

Estas variables se seleccionaron por ser físico- y químicamente representativas. Los otros 8 descriptores utilizados (que se mencionarán más adelante) no se los usó como filtro, ya que sus variaciones permitieron ampliar la diversidad de propiedades moleculares, dentro del espacio químico estudiado. Es importante contar con dicha variabilidad y, también, con una distribución uniforme de los datos para que la correlación que surja permita generar modelos explicativos confiables y de alta capacidad predictiva.²⁷³

El total de derivados seleccionados (n_{externo} = 301), se dividieron al azar entre aquellos que conformaron el conjunto de entrenamiento (n_{entrenamiento} = 246, 81,7 % del total, Tabla S.7.2, Anexos 7.2) y el conjunto de prueba o testeo (n_{test} = 55, 18,3 % del total), que contienen también a los 6 compuestos NBS-Het (Tabla S.7.3, Anexos 7.2).²⁵²
Las variables independientes utilizadas (n_{descriptores} = 11) fueron las mismas que se describieron en la Sección 7.3.1, con excepción de los enlaces intermoleculares en el cristal.

Todos los desarrollos estadísticos se llevaron a cabo con el programa Infostat12,¹⁵⁸ a excepción de los gráficos 3D que se realizaron con Origin8.0.³¹⁸ Se utilizó estadística descriptiva (medidas resumen), gráficos 3D y análisis de conglomerados para visualizar apropladamente el espacio químico que ocupan los compuestos de la quimioteca NBS-Het y los de la base de datos externa.

Para evitar la obtención de modelos sobreajustados, se tuvo en cuenta que la relación entre el número de datos del conjunto de entrenamiento (n_{entrenamiento} = 246) y el número de descriptores (n_{descriptores} = 11) sea mayor a cinco.^{273, 277}

Para lograr modelos simples y parsimoniosos, fue importante utilizar métodos de reducción de dimensiones, ya que los descriptores podrían estar correlacionados entre sí. Para esto, se recurrió a los análisis de ACP, de árboles de regresión, de correlación de Pearson y de regresión líneal simple.

Las ecuaciones de QSS_{ac}R se construyeron utilizando el ARLM. El programa Infostat proporciona una herramienta que permite elegir los mejores resultados de una serie de ecuaciones de ARLM, mediante el algoritmo de selección de modelos. Para ello, los ordena de acuerdo a estadísticos tales como el R²_{ab}, el MSPE, el MSE, el AIC y el BIC.¹⁵⁸ Luego, las ecuaciones seleccionadas se utilizaron para predecir las S_{cale} de los derivados que forman parte del conjunto de entrenamiento y del conjunto de prueba o testeo (Fig. 7.2). Los valores estimados y los experimentales de dichos conjuntos de datos, se compararon mediante el AAE (Ec. 6.15) y el RMSE (Ec. 6.16), ambos en escala logarítmica (Sección 6.3.3). Desde el conjunto de entrenamiento se obtuvieron el AAE_{ent} y el RMSE_{ent} y desde el conjunto de testeo el AAE_{test} y el RMSE_{mes}.

A partir de los mejores modelos obtenidos se seleccionaron dos ecuaciones. La primera, más exacta, surgió del análisis de las 11 variables; en tanto que la segunda, excluyó al p/, dado que su predicción resulta complicada y solo se puede obtener de datos experimentales.²⁹¹

7.4. Resultados y Discusión

7.4.1. Relaciones estructura-solubilidad

Los descriptores de las propiedades intrinsecas y FQ más explicativos de la S_{ac} de los seis derivados estudiados en este trabajo, se presentan en la Tabla 7.2. Es importante destacar que algunas propiedades están referidas a la molécula en su conjunto y otras a la contribución de fragmentos estructurales.

	BSTHQ	BSTHQa	BSBZT	BSTHIQ	P-NO2- BSTHQ	TM- BSTHQ
PM (g/mol) *	273,35	287,38	259,29	273,35	318,35	329,46
pf(°C) ^b	61	99	123	150	115	89
Enlaces intermoleculares en el cristal	1 C-HO	1 C-HO	2 C-HO 3 ππ	ND "	1 C-HΟ 1 ππ	1 C-HO
Clog P ^c	3,46	3,98	1,74	3,39	3,20	5,36
log k _w ^d	3,65	4,01	3,35	3,62	3,72	5,17
Donores H *	0	0	0	0	0	0
Aceptores H *	3	3	5	3	6	3
ASPT (Å ²) *	45,76	45,76	73,23	45,76	94,59	45,76
PA °	0,63	0,6	0,83	0,63	0,68	0,52
N° de anillos aromáticos *	2	2	3	2	2	2
ER *	2	2	2	2	3	2
Volumen (Å ³) [†]	239,23	255,82	207,93	239,23	262,57	305,48
Pol (x10 ⁻²³) *	3,01	3,2	2,78	3,01	3,25	3,75
log S (M) °	-4,8	-5,3	-4,9	-6,0	-5,3	-5,5

Tabla 7.2. Descriptores moleculares de los seis derivados NBS-Het estudiados.

⁴ Calculado a partir del modulo ACD/Percepta a través de la plataforma de ChemSpider (www.chemspider.com).³¹⁷ ^b Determinado con fusiómetro de bloque de acero en tubo capilar. ^c Calculados con el programa Bio-Loom[®] para Windows v1,5 BioByte Corp.³¹⁶ ^d Determinados por HPLC por Pagliero,⁹⁶ a partir del factor de capacidad cromatográfico. [®] Definida como la proporción de átomos aromáticos en la molécula. ¹ Calculado con Mollinspiration Program Predictions (http://www.molinspiration.com/cgi-bin/properties). [®] Según se expuso en la Tabla 6.3 (Capítulo 6). ^h Estructura no resuelta.

El análisis integral y comparativo de los datos mostrados en la Tabla 7.2 permitió establecer una serie de observaciones que ameritan ser destacadas.

✓ El PM de los compuestos estudiados se encuentra entre 250 y 330 g/mol, valores que se corresponden con propiedades druglike (PM menores a 500) según lo postulado por Lipinski³⁷ y Vieth.¹⁰⁷ En forma similar, un análisis de los fármacos usados actualmente en clínica, mostró que el 80 % poseen PM menores a 450 (<u>http://www.organic-chemistry.org/prog/peo/</u>), característica asociada a una mayor probabilidad de ser absorbido y, por lo tanto, de llegar a su sitio de acción. Por esta razón, las NEQ no deberían superar dichos límites.

Los pf de los seis NBS-Het estudiados fueron menores a 150 °C. Estos valores relativamente bajos se deberían a la existencia en el cristal de interacciones intermoleculares débiles. Según se describió en el Capítulo 5, solo se encontraron EPH de tipo C-H···O para el BSTHQ, el BSTHQa, el BSBZT, el p-NO₂-BSTHQ y el TM-BSTHQ e interacciones π···π stacking para el BSBZT y el p-NO₂-BSTHQ. La mayoría de los compuestos druglike tienen pf en el rango 75-200 °C y raramente superan los 250 °C.³¹⁹ Los seis derivados NBS-Het se encuentran dentro de estos límites, a excepción del BSTHQ, que está por debajo.

Capítulo 7

✓ Tanto el Clog P como el log k_w (con valores comparables entre sí) se usaron como medidas de la lipofilicidad y describieron de manera similar dicha propiedad. La excepción fue el BSBZT cuyo Clog P = 1,74 fue subestimado (log k_w = 3,35). Los compuestos estudiados presentaron lipofilicidades con valores experimentales y calculados mayores a 3, sin considerar el Clog P del BSBZT, y menores a 5,36. Lipinski propuso que los mejores candidatos a tener buena BD oral, serían compuestos con Clog P menores a 5.³⁷ En consecuencia, la mayoría de los derivados estudiados poseen valores de lipofilicidad que los favorecerían en los procesos de absorción y permeación a través de membranas por difusión pasiva. Sin embargo, la misma propiedad podría afectar a su S_{ac}. Esta relativamente alta lipofilicidad, también explica el efecto positivo que produjo la utilización de etanol en el aumento de la S_{ap} del BSTHQ y del BSBZT (Capítulo 6).²⁴³

✓ Los derivados no poseen átomos donores de H; en cambio, presentan entre 3 y 6 aceptores. Nuevamente, los valores de estas propiedades se encuentran comprendidas dentro de los criterios favorables, propuesto por Lipinski, para moléculas druglike (donores H y aceptores de H menores a 5 y 10, respectivamente).

Los derivados poseen una PA alta, mayor a 0,5, originada por la existencia de anillos aromáticos, tanto en la porción heterocíclica como en el bencenosulfonilo.

✓ En lo que respecta a los ER, los seis derivados presentaron entre 2 y 3 enlaces, lo cual está de acuerdo con el límite establecido por Veber, quien estudió una serie de derivados de los cuales el 75 % de los analizados presentaban mala BD (< 20 %) y también más de 10 ER.</p>

El ASPT, altamente relacionado al número de grupos formadores de EPH, debería ser menor a 140 para que pueda esperarse una BD oral aceptable. Todos los derivados poseen valores de ASPT por debajo de este límite.

En general, a partir de los descriptores de las propiedades globales de las moléculas y de la contribución de fragmentos estructurales analizadas (Tabla 7.2), es posible inferir que las bajas S_{ac} reportadas para los derivados estudiados, estarian explicadas por sus altas lipofilicidades (3.3-5,2), sus altas PA (> 0,5), sus pocos donores (0) y aceptores de H (3-6). Por el contrario, las bajas energías de la red cristalina (*pf* < 150 °C y la existencia de pocos enlaces intermoleculares a nivel del cristal, además de débiles) contribuirían en menor proporción. Por ejemplo, el **BSTHQa** posee un Clog P de 3,98, una PA de 0,6, sus Donores y Aceptores de EPH son 0 y 3, respectivamente, y un *pf* de 99 °C.

Otras veces puede observarse una tendencia contraria a la analizada con los NBS-Het. Por ejemplo, el carbendazim, posee un *pf* alto (305 °C) y un bajo Clog P (1,71) y es su alta cristalinidad la que contribuye más significativamente a su insolubilidad en agua, y en menor medida lo hace su polaridad.²⁵⁴

Una situación ligeramente diferente a la del resto de los compuestos estudiados se presenta para el **BSBZT**, siendo que posee un heterociclo totalmente aromático, establece, además de dos EPH (C-H···O) y tres interacciones $\pi \cdot \cdot \pi$ stacking. Su energía de red cristalina sería mayor que la de los demás, lo que contribuiría a la baja solubilidad observada, a pesar de ser el más hidrofilico de todos los derivados estudiados (log $k_w = 3,35$).

Por estas razones, y analizando los tres términos energéticos que gobiernan la disolución de un soluto, se postula que una alta energía de solvatación sería el paso limitante en el proceso termodinámico de disolución de los derivados de la quimioteca de NBS-Het. Además, la energía de red cristalina contribuiría, generalmente, en mayor medida, cuando la lipofilicidad sea baja.

7.4.2. Predicción con modelos de solubilidad existentes

Se recurrió al uso de algunos de los métodos predictivos de S_{calo}. Los resultados se muestran en la Tabla 7.3. Todas las variables utilizadas en estos cálculos se detallan en la Tabla S.7.1, Anexos.

Tabla 7.3. Determinación y predicción de log S (M), junto al AAE y RMSE de cada modelo predictivo, para los seis derivados. Los resultados de predicción se disponen ordenando los modelos de mayor a menor según su capacidad predictiva, comparando con la S_{ac} experimental.

log S (M)	BSTHQ	BSTHQa	BSBZT	BSTHIQ	p-NO2-BSTHQ	TM-BSTHQ	AAE	RMSE
Experimental	-4,8	-5,3	-4,9	-6,0	-5,3	-5,5		
Ran y Yalkowsky	-3,5	-1,4	0,7	-1,2	-0,7	-2,6	3,84	4,10
Wang ^b	-1,0	-2,0	0,3	-1,8	-1,2	-3,4	3,77	3,88
Yalkowsky °	-3,4	-4,3	-2,3	-4,2	-3,6	-5,5	1,40	1,62
ACD ^d	-3,7	-4,0	-3,8	-3,4	-4,2	-5,0	1,26	1,41
EPI-S"	-4,7	-5,2	-2,7	-3,9	-5,3	-7,0	0,99	1,37
Delaney ¹	-4,2	-4,6	-3,1	-4,1	-4,3	-5,6	1,00	1,18
Abraham y Le ⁹	-4,0	-4,5	-3,9	-4,1	-4,6	-5,5	0,86	1,01
EPI-C h	-4,0	-4,8	-4,2	-4,8	-4,7	-5,7	0,66	0,72
Hildebrand c	-4,8	-5,7	-5,1	-6,5	-5,7	-6,3	0,40	0,47
Hildebrand a ¹	-4,8	-5,5	-5,6	-6,5	-5,4	-5,3	0,29	0,37
Hildebrand b ^k	-4,8	-5,2	-5,3	-5,8	-5,0	-5,1	0,21	0,26
Hildebrand d ¹	-4,8	-5,4	-4,8	-5,8	-5,3	-6,1	0,18	0,26

^a Ecuación General de Solubilidad (EGS) de Ran y Yalkowsky.²⁹⁰ ^b EGS de Wang. ^c EGS de Yalkowsky.²⁸⁷ ^d ACD/Percepta Platform, Módulo ABSOLV del programa ADME Boxes,²⁹⁴ (desarrollado por Advanced Chemistry Development). ^e Modulo Estimation Program Interface (EPI) Suite, sin *pl* y log P experimentales (desarrollado por EPA's Office of Pollution Prevention Toxics and Syracuse Research Corp.). ¹ EGS Extendida de Delaney.²⁶⁴ ^g Ecuación de Abraham y Le, calculada usando el módulo ABSOLV del programa ADME Boxes.²⁹⁴ ^h Modulo Estimation Program Interface (EPI) Suite, con *pl* y log P (como *log k_w*) experimentales. ¹ Modelo *c* de Hildebrand (Ec. 7.11), usando *pl* DSC y Δ*H_l* experimental (Ec. 7.14). ^k Modelo *b* de Hildebrand (Ec. 7.15). ¹ Modelo *d* de Hildebrand (Ec. 7.

Los tres modelos basados en la EGS no mostraron buena exactitud en la predicción, poseyendo valores de AAE y RMSE por encima de 1,4 unidades logarítmicas. En general, estos métodos sobrestimaron los valores de S_{ac}. Cuando se analiza la EGS extendida de Delaney,²⁹⁴ como así también, el modelo basado en la solvatación (Abraham y Le²⁹³), los resultados tampoco mejoraron. En cuanto a los programas predictivos de solubilidad, se observó que la mejor predicción se logró con el EPI-Suite considerando los *pf* y log *k*_w

experimentales (EPI-C), aunque se vio, una tendencia a la sobreestimación de las solubilidades. Los demás programas (ACD y EPI-S) arrojaron resultados menos satisfactorios. En general, se consideró que aquellos modelos con AAE mayores a 0,8 no serían recomendables para ser utilizados en la predicción de los compuestos de la quimioteca.

Las discrepancias observadas, entre los valores calculados y los experimentales, se podrían deber a que los compuestos utilizados en el entrenamiento de los modelos, poseen una naturaleza química diferente a la de los NBS-Het. A una conclusión similar llegó Remko¹⁷⁸ en la predicción de log P, donde muchos de los métodos utilizados funcionaron bien para una determinada clase de compuestos, pero se obtuvieron grandes errores en otras series de derivados con características estructurales diferenciadas. Varios autores postulan que se lograrían mayores progresos en los modelos predictivos, utilizando bases de datos de gran tamaño y diversidad, que cubran amplios rangos de solubilidades,⁷⁰ aunque la utilización de datos específicos, con derivados relacionados estructuralmente, podrían arrojar buenos resultados. Además, seria indispensable el uso de conjuntos de datos con solubilidades experimentales de alta precisión.²

El método basado en la aproximación de Hildebrand resultó alentador, logrando buenas exactitudes en general. Sin embargo, la mejor predicción se consiguió al utilizar el modelo *d*, obteniendo valores de AAE y RMSE de 0,18 y 0,26, respectivamente. Es claro que la inclusión de datos experimentales en las ecuaciones, mejora significativamente la capacidad predictiva. Así, se pudo aplicar este método de forma segura, en la predicción de la solubilidad de otros derivados de la quimioteca. Para ello, se incluyó el volumen molar (el cual se obtuvo a partir del programa Molinspiration) y el *pf* del compuesto. También, se analizó la capacidad predictiva del modelo de Hildebrand, graficando las solubilidades estimadas en función de las experimentales (µg/mL) de los seis derivados (Fig. 7.4). Se obtuvo una pendiente cercana a 1 (1,18) y un coeficiente R² = 0,90, lo que da idea de la buena capacidad predictiva que tiene este modelo.

Fig. 7.4. Solubilidad calculada usando el modelo de Hildebrand (d) versus la solubilidad experimental (en µg/mL).

7.4.3. Relaciones cuantitativas estructura-solubilidad

Para comenzar con el estudio cuantitativo, se analizaron las características de la quimioteca de NBS-Het, sobre la cual se quiere predecir la Sac. Para esto, se recurrió a un análisis

Capítulo 7

estadístico descriptivo a partir del cual se obtuvieron las medidas resumen expuestas en la Tabla 7.4, que permiten describir en forma resumida dicho conjunto de datos.

Variable	R quimioteca	Media	SD	Min	Max
PM	145	309,81	23,29	257,31	366,27
pf ("C)	145	125,02	36,71	25,00	223.00
Clog P (Bio-Loom®)	145	3,52	1,00	0,92	5,88
log k _w (HPLC)	76	4,10	0,69	2,87	5,69
Donores H	145	0,16	0,46	0,00	2,00
Aceptores H	145	4,36	1,40	3,00	8,00
ASPT (Å ²)	145	68,67	24,00	45,76	136,96
PA	145	0,67	0,10	0.50	0,83
Nº anillos aromáticos	145	2,41	0,49	2,00	3,00
ER	145	2,57	0,50	2.00	3,00
Volumen (Å ³)	145	254,50	23,83	207,93	322,06

Las moléculas se seleccionaron de las bases de datos de Jain y Yalkowsky265 y de Yalkowsky y col.266 considerando los criterios de inclusión expuestos en la Sección 7.3.2.2 y se eliminaron las entradas que estuvieran repetidas. Así, se obtuvo un conjunto de 301 moléculas (nesterno), cuyas medidas resumen se muestran en la Tabla 7.5. El conjunto de datos seleccionados cubre un rango de solubilidad relevante en el proceso de descubrimiento de fármacos (-8,5 a -0,45) lo que respalda, también, la propuesta de selección.3

Tabla 7.5 Medidas resumen de la base de datos externa (n...... = 301)

Variable	N externo	Media	SD	Min	Max
PM	301	260,78	70,10	150,13	428,12
pf (°C)	301	100,29	59,97	25,00	240,00
Clog P	301	3,81	1,53	0,54	6,85
Donores H	301	0,35	0,67	0,00	3,00
Aceptores H	301	2,19	2,09	0,00	9,00
ASPT	301	33,52	32,95	0,00	137,40
PA	301	0,45	0,33	0,00	1,00
Nº anillos aromáticos	301	1,27	1,09	0,00	5,00
ER	301	2,45	2,40	0,00	11,00
Volumen (Å ³)	301	211,94	68,45	65,21	381,43
Pol (x 10 ⁻²³ cm ³)	301	2,61	0,77	0,88	4,23
log S (experimental)	301	-4,41	1,72	-8,49	-0,45

Con el fin de evaluar la diversidad existente dentro de este conjunto de compuestos, se realizó un gráfico de dispersión 3D, del espacio químico definido por Clog P, pf y PM.302 El método del espacio químico es muy utilizado, ya que plantea que un compuesto tenderá a poseer valores distintivos para ciertas propiedades, lo que se ve reflejado en su distribución en un espacio multidimensional.320 La Fig. 7.5 muestra la representación 3D de los espacios químicos de la quimioteca (A) y de la base de datos externa (B), y sugiere que el conjunto de datos seleccionados posee gran diversidad.

Capítulo 7

Los gráficos 3D (Fig. 7.5) muestran que la mayoría de los datos (tanto de la quimioteca como de la base de datos) están uniformemente distribuidos en el espacio químico definido para moléculas con características *druglike* (zona *druglike*) tal como lo identifican las propiedades de Lipinski.³¹⁵ El estudio anterior se complementó con un análisis de conglomerados, el cual se realizó teniendo como criterio de clasificación a los 301 compuestos y analizando las 11 variables seleccionadas. Se utilizó la distancia Euclidea para calcular la matriz de distancias y se compararon cuatro algoritmos de conglomeración jerárquicos: promedio, encadenamiento simple, encadenamiento completo y ward (Tabla 7.6). El dendrograma del método con mayor correlación cofenética se expone en la Fig. 7.6.¹⁵⁸

Tabla 7.6. Correlaciones cofenéticas de los diferentes métodos de análisis de cor	nglomerados (promedio,
encadenamiento simple, encadenamiento completo y ward) teniendo como criter	rio de clasificación a los
301 compuestos de la base de datos externa.	

Métodos								
Promedio (Average linkage)	Encadenamiento Simple (Single linkage)	Encadenamiento Completo (Complete linkage)	Ward					
0,702	0,542	0,623	0,515					

Capítulo 7

Fig. 7.6. Dendrograma del método con mayor correlación cofenética (promedio).

Con el algoritmo jerárquico promedio (average linkage) se obtuvo la mejor correlación cofenética. En el dendrograma de la Fig. 7.6 se observa como los compuestos se agrupan según su similitud en cuanto a las variables analizadas. En el gráfico no se pretende analizar cada compuesto en forma específica, sino la tendencia general. Las muestras que se unen más cerca de la izquierda del dendrograma son más similares que aquellas que se unen en la parte derecha.³²¹ En dicho dendrograma, se fijó un criterio de corte arbitrario a la distancia 3,8, dado que se suele trazar una línea de referencia a una distancia igual al 50 % del máximo (cercana a 7,5).²⁷⁴ A partir de esto, se pudo corroborar que los derivados se encuentran distribuidos uniformemente, porque se presentan muchos agrupamientos diferentes antes del valor de corte fijado.

Como primera aproximación, se analizaron las 11 variables y su contribución sobre el log *S*, estudiando el conjunto de entrenamiento (n_{entrenamiento} = 246). Para ello, se llevó adelante un ACP, como método de reducción de dimensiones y para determinar qué variables estaban correlacionadas entre sí y cuales tenían mayor peso. En la Fig. 7.7, se observa el gráfico *biplot* obtenido para las 11 variables, donde solo se muestra el construido con los dos primeros componentes principales (CP1 y CP2) que lograron explicar el 67 % de la variabilidad total. A través de la Tabla 7.7-Autovalores, se vio que los tres ejes explican un 78 % de la variabilidad. El peso de las variables se analizó a partir de la Tabla 7.7-Autovectores.

Capítulo 7

Fig. 7.7. Biplot del ACP, CP1 versus CP2 (se representan los vectores de cada variable y la distribución de los 246 derivados en estudio).

Tabla 7.7. Análisis	e componentes	principales, ACF	(fildescriptores = 1	1). Autovalores
---------------------	---------------	------------------	----------------------	-----------------

Lambda	Valor	Proporción	Prop Acum
1	4,43	0,40	0,40
2	2,96	0,27	0,67
3	1,24	0,11	0,78

Autovectores

Variables	e1	e2
Clog P	-0,07	0,48
pl	0,27	0,16
PM	0,34	0,24
Donores H	0,30	-0,16
Aceptores H	0,37	-0,20
ASPT	0,39	-0,21
PA	-0,12	0,43
Nº de anillos	-0,03	0,47
ER	0,31	-0,10
Volumen	0,42	0,21
Pol	0,37	0,34

Los autovectores reportados (e1 y e2) muestran los coeficientes con que cada variable original fue ponderada para conformar las CP1 y CP2. En este caso, fue evidente que, al construir la CP1, las variables PM, *pl*, Donores H, Aceptores H, ASPT, ER, volumen y Pol reciben los pesos más altos (todos positivos). El mismo análisis puede realizarse sobre CP2.

De acuerdo a los resultados obtenidos en el ACP, se observó que las variables se agrupan en tres sectores:

 Sector 1, integrado por Clog P, PA y N° anillos. Estas variables presentan leve correlación (ángulo entre los vectores menores a 90 °); teniendo alto peso en CP2.

Capítulo 7

 Sector 2, integrado por PM, volumen, Pol y pf. Estas poseen leve correlación y tienen alto peso en CP1.

 Sector 3, formado por Donores H, Aceptores H, ER y ASPT. Estas tienen cierta correlación entre si; siendo variables de alto peso en CP1.

 A su vez las variables que integran los sectores 1 y 3, estarían algo correlacionadas en forma negativa (ángulo entre vectores ~ 180 °).

 Las variables de los sectores 1 y 2 presentarian baja correlación (ángulo entre vectores ~ 90 °).

El análisis de la influencia de las 11 variables en estudio también se llevó a cabo mediante un árbol de regresión (Fig. 7.8). Los resultados obtenidos demuestran que los descriptores más importantes (con mayor peso) para explicar la S_{ac} fueron Clog P, PM, Pol, *pf* y N° anillos, ya que ocupan los nodos principales. Es de destacar la congruencia entre este hallazgo y los encontrados mediante el ACP, ya que son las mismas que mostraron un alto peso en CP1 y CP2.

Fig. 7.8. Árbol de regresión a partir de las 11 variables estudiadas.

Luego de realizar una revisión general del comportamiento entre las 11 variables estudiadas y su relación con la variable dependiente, log *S*, a través de las dos técnicas anteriores de análisis multivariado, se prosiguió con el estudio de la correlación de Pearson entre la variable respuesta y las 11 variables restantes (Tabla 7.8).

Capítulo 7

Variable(1)	Variable(2)	R entrenamiento	ρ
log S	Clog P	246	-0,88
log S	pf	246	0,32
log S	PM	246	-0,50
log S	Donores H	246	0,27
log S	Aceptores H	246	0,24
log S	ASPT	246	0,21
log S	PA	246	-0,48
log S	Nº anillos	246	-0,53
log S	ER	246	0,02
log S	Volumen	246	-0,38
log S	Pol	246	-0,56

Tabla 7.8. Coeficientes de correlación de Pearson (p) entre la variable respuesta, log S, y el resto de las variables independientes.

A partir de este análisis podemos concluir que Clog P presenta la más alta correlación negativa con log S (ρ = -0,88). ER presentó la correlación de Pearson más baja (ρ = 0,02).

Se realizó un análisis de regresión lineal simple, entre el log *S* y cada una de las variables independientes en estudio (Tabla 7.9). Este resultó congruente con el análisis de correlación de Pearson realizado. La variable Clog P presenta los mejores estadísticos y es la más explicativa del log *S* (*Cp* de *Mallows* más grande), conclusión a la que también arribaron otros investigadores.²⁶⁷ El resto de las variables presentaron estadísticos menos prometedores, entre ellos $R^2_{ell} \leq 0.31$; MSPE, AIC y BIC mayores a los obtenidos con el modelo 7.1 y valores F menores. Aunque los valores de significación *p* para la prueba de hipótesis de regresión indicaron que todos (a excepción de ER) poseen una regresión lineal significativa (*p* < *α* = 0.05) con el log *S*.

Capítulo 7

Modelo	log S =	R ² al	MSPE	MSE	AIC	BIC	p	Cp	F
7.1	-0,99 (± 0,03) Clog P -0,62 (± 0,14)	0,78	0,70	0,68	608,83	619,35	<0,0001	874,59	877,17
7.2	-0,01 (± 0,0018) pf - 3,76 (± 0,21)	0,05	3,04	2,99	971,33	981,84	0,0004	13,82	12,87
7.3	-0,01 (± 0,0014) PM - 1,17 (± 0,37)	0,25	2,38	2,35	912,13	922,65	<0,0001	83,41	82,75
7.4	0,73 (± 0,16) Donores H - 4,66 (± 0,12)	0,07	2,95	2,91	965,01	975,52	<0,0001	20,48	19,55
7.5	0,20 (± 0,05) Aceptores H - 4,84 (± 0,16)	0,05	3,02	2,97	969,89	960,40	0,0002	15,32	14,37
7.6	0,01 (± 0,0033) ASPT - 4,77 (± 0,16)	0.04	3,06	3,01	973,21	983,73	0.0011	11,87	10,91
7.7	0,01 (± 0,05) ER - 4,44 (± 0,16)	0,0003	3,19	3,14	983,89	994,40	0,7761	1,08	0,08
7.8	-0,85 (± 0,09) N° anillos - 3,35 (± 0,15)	0,28	2,3	2,26	903,21	913,73	<0,0001	95,43	94,81
7.9	-2,53 (± 0,30) PA - 3,29 (± 0,16)	0,23	2,47	2,43	920,14	930,65	<0,0001	72,99	72,29
7.10	-0,01 (± 0,0015) Volumen - 2,33 (± 0,34)	0,14	2,72	2,68	944,64	955,15	<0,0001	43,13	42,30
7.11	-1,25 (± 0,12) Pol - 1,16 (± 0,32)	0,31	2,20	2,16	892,08	902,59	<0,0001	111,06	110,50

Tabla 7.9. Análisis de regresión líneal simple entre el log S y cada una de las variables independientes en estudio (n_{entrenamiento} = 246).

Para obtener conclusiones cuantitativas acerca de las correlaciones entre las regresoras y complementar los resultados obtenidos por el ACP, se recurrió al análisis de correlación intervariables de Pearson. La variable ER fue excluida en este análisis, dada su baja correlación con el log *S*. Los resultados obtenidos se muestran en la Tabla 7.10. Se halló una alta correlación positiva (ρ remarcado en rojo) entre PA y N° anillos ($\rho = 0.88$), entre Pol, PM y volumen ($\rho > 0.6$) y entre Aceptores H y ASPT ($\rho = 0.93$). Esto indicó que dichas variables no debían ser consideradas en un mismo modelo, para cumplir con el criterio de ortogonalidad y evitar la multicolinealidad. Entre las demás variables, el ρ fue menor a 0.6, por lo que no se las consideró correlacionadas.²⁸⁰

Capítulo 7

	Clog P	pf	PM	Donores H	Aceptores H	ASPT (Å2)	PA	N* anillos	s VM (Å ³	Pol
Clog P	1,00									
pf	0,10	1,00								
PM	0,30	0,45	1,00							
Donores H	-0,44	-0,47	0,24	1,00						
Aceptores H	-0,46	0,29	0,37	0,45	1,00					
ASPT (Å2)	-0,43	0,28	0,42	0,48	0,93	1,00				
PA	0,46	-0,10	-0,14	-0,24	-0,26	-0,31	1,00			
N° anillos	0,46	0,10	-7,4x104	-0,19	-0,14	-0,20	0,88	1,00		
VM (Å ³)	0,17	0,56	0,78	0,41	0,52	0,54	-0,14	0,06	1,00	
Pol	0,34	0,57	0.80	0.32	0,38	0,41	0.07	0,28	0,96	1.00

Tabla 7.10. Matriz de correlación intervariable (ndescriptores = 10, nentrenamiento = 246).

Con la información obtenida a partir de los análisis estadísticos descriptos anteriormente y teniendo en cuenta criterios FQ, se realizó un primer ARLM, con el fin de desarrollar nuestro primer modelo, al que denominamos **Modelo I**, utilizando las 10 variables independientes seleccionadas. Se recurrió al algoritmo de selección de modelos que posee Infostat, para estudios donde se cuenta con muchas variables. El programa permitió calcular los mejores 100 modelos de predicción, para cada estadístico: R^2_{aj} , MSPE, MSE, AIC y BIC (cada uno por separado).²⁸² A partir de ello, se obtuvieron los resultados expuestos en las Tablas S.7.4-8 (Anexos 7.2). Se consiguieron modelos con 4 a 10 variables independientes. Por lo que se consideró como criterio de inclusión un n_{descriptores} \leq 5. Esto se estableció para cumplir con el principio de parsimonia, dado que los diferentes modelos conducían a resultados comparables. De los modelos, que se muestran en la Tabla 7.11 (se omiten los coeficientes y sus estadísticos). Luego, se corroboró que las variables independientes de los diferentes modelos no estuvieran intercorrelacionadas entre sí lo que permitió desestimar los modelos 3-9 (en rojo). Finalmente, se obtuvo un total de 8 modelos, con 4 o 5 variables (n_{descriptores}) cada uno.

Capítulo 7

Modelo	R descriptores	Descript	ores			
1	4	Clog P	pf	PM	PA	
2	4	Clog P	pf	PM	N° anillos	
3	5	Clog P	pl	PM	PA	Nº anillos
4	5	Clog P	pf	PM	PA	Pol
5	5	Clog P	pf	PM	PA	VM
6	5	Clog P	pt	PM	Nº aniilos	Pol
7	5	Clog P	pt	PM	Nº anillos	VM
8	5	Clog P	pf	Aceptores H	VM	Pol
9	5	Clog P	pl	ASPT	VM	Pol
10	5	Clog P	pt	PM	Donores H	PA
11	5	Clog P	pf	PM	Donores H	Nº anillos
12	5	Clog P	pf	PM	Aceptores H	PA
13	5	Clog P	pt	PM	Aceptores H	Nº anillos
14	5	Clog P	pt	PM	ASPT	PA
15	5	Clog P	pt	PM	ASPT	Nº anillos

Tabla 7.11. Modelos con n_{descriptores} ≤ 5 seleccionados desde el total de modelos obtenidos.

Con el fin de obtener un modelo que pueda ser aplicado en etapas de diseño (previo a la síntesis del derivado) se desarrolló el **Modelo II**. Para ello, se realizó un segundo ARLM con las 10 variables anteriores, pero excluyendo al *pf*. La racionalidad de este criterio de exclusión estriba en el hecho de que el *pf* es la única variable que debería ser determinada experimentalmente, dada la dificultad de su predicción.²⁹¹ También, se utilizó el algoritmo de selección de Infostat, a partir del cual se calcularon los mejores 100 modelos de predicción para cada estadístico (Tablas S.7.9-13, Anexos). Se hallaron modelos con 3 a 9 descriptores. Se consideró como criterio de inclusión un n_{descriptores} \leq 4 y se eliminaron aquellas entradas repetidas. Esto redujo las ecuaciones a 18 (Tabla 7.12). Además, una vez descartados los modelos 3-8 y 15-18 (en rojo en la Tabla 7.12) debido a que las variables independientes estaban intercorrelacionadas, se obtuvo un total de 8 modelos con 3 o 4 variables (n_{descriptores}).

Tabla 7.12. Modelos con n_{descriptores} ≤ 4 seleccionados desde el total de modelos (n_{descriptores} = 9, sin considerar *pl*).

N°	R descr	iptores Descriptor	es		
1	3	Clog P	PM	PA	
2	з	Clog P	PM	Nº anillos	
3	з	Clog P	VM	Pol	
4	4	Clog P	PM	Nanillos	Pol
5	4	Clog P	PM	Nanillos	VM
6	4	Clog P	PM	PA	Pol
7	4	Clog P	PM	PA	VM
8	4	Clog P	PM	PA	N ^e anillos
9	4	Clog P	PM	Donores H	PA
10	4	Clog P	PM	Donores H	Nº anillos
11	4	Clog P	PM	Aceptores H	PA
12	4	Clog P	PM	Aceptores H	N ^e anillos
13	4	Clog P	PM	ASPT	PA
14	4	Clog P	PM	ASPT	Nº anillos
15	4	Clog P	Aceptores H	VM	Pol
16	4	Clog P	ASPT	VM	Pol
17	4	Clog P	PM	VM	Poi
18	4	Clog P	PA	VM	Pol

Los 8 modelos provenientes desde ambos ARLM se presentan en las Tablas 7.13 y 7.14 con todos sus estadísticos. A partir de los resultados mostrados, se concluyó que los modelos de regresión multivariable mejoraron significativamente con respecto a los modelos de regresión simple. Por ejemplo, el Modelo 7.1, en el cual solo se utilizó al Clog P como regresora, posee un R²_{aj} de 0,78 (Ec. 7.1, Tabla 7.9) mientras que los que utilizan varias regresoras poseen R²_{aj} > 0,87 (Tablas 7.13 y 7.14). Por lo tanto, agregar más variables aportó nueva información importante.

Tabla 7.13. Modelos de regresión multivariable seleccionados (se muestran las variables, sin coeficientes y estadísticos) a partir del primer ARLM.

Modelo	N descriptores	Variables	R ² _{aj}	MSPE	MSE	AIC	BIC	F	AAE ant	RMSEent	AAE	RMSE
7.17	4	Clog P, pf, PM y PA	0,91	0,31	0,30	406,30	427,34	585,96	0,52	0,68	0,55	0,72
7.18	4	Clog P, pf, PM y Nº anillos	0,90	0,31	0,30	407,00	428,03	584,13	0,54	0,71	0,57	0,75
7.19	5	Clog P, pl, PM, Donores H y PA	0,91	0,30	0,29	398,58	423,11	487,59	1,54	1,68	1,59	1,74
7.20	5	Clog P, pf, PM, Donores H y N° anillos	0,91	0,31	0,29	400,34	424,87	483,77	0,47	0,64	0,49	0,67
7.21	5	Clog P, pl, PM, Aceptores H y PA	0,91	0,31	0,29	404,31	428,84	475,25	0,52	0,69	0,55	0,71
7.22	5	Clog P, pf, PM, Aceptores H y N° anillos	0,91	0,32	0,30	406,26	430,80	471,11	0,51	0,69	0,54	0,72
7.23	5	Clog P, pf, PM, ASPT y PA	0,91	0,31	0,29	402,02	426,56	480,14	0,52	0,69	0,55	0,71
7.24	5	Clog P, pf, PM, ASPT y N* anillos	0,91	0,31	0,29	403,96	428,49	476,00	0,50	0,68	0,53	0,70

* AAE_{ert}: Error Absoluto Promedio del conjunto de entrenamiento * RMSE_{ert}: Error Cuadrático Medio del conjunto de entrenamiento.

Modelo	N descriptores	Variables	R ² aj	MSPE	MSE	AIC	BIC	F	AAE and	RMSE.	AAEtest	RMSE
7.25	3	Clog P, PM y PA	0,87	0,41	0,40	476,79	494,32	563,71	0,68	0,83	0,71	0,90
7.26	3	Clog P, PM y Nº anillos	0,88	0,41	0,39	472,66	490,18	574,63	0,81	0,98	0,86	1,04
7.27	4	Clog P, PM, Donores H y PA	0,87	0,42	0,40	478,79	499,82	421,04	0,68	0,83	0,70	0,89
7.28	4	Clog P, PM, Donores H y N° anillos	0,87	0.41	0,39	474,65	495,68	429,20	0,82	0,99	0,86	1,05
7.29	4	Clog P, PM, Aceptores H y PA	0,87	0,42	0,40	477,86	498,89	422,86	0,76	0,92	0,79	0,97
7.30	4	Clog P, PM, Aceptores H y Nº anillos	0,87	0,41	0,39	474,40	495,43	429,70	0,85	1,02	0,90	1,08
7.31	4	Clog P, PM, ASPT y PA	0,87	0,41	0,40	476,98	498,01	424,60	0.80	0,96	0,83	1,00
7.32	4	Clog P, PM, ASPT y N° anillos	0,88	0,41	0,39	473,58	494,61	431,34	0,91	1,08	0,95	1,13

Tabla 7.14. Modelos de regresión seleccionados (se muestran las variables, sin coeficientes y estadísticos) a partir del segundo ARLM, sin considerar el pl.

* AAEent: Error Absoluto Promedio del conjunto de entrenamiento * RMSEent: Error Cuadrático Medio del conjunto de entrenamiento.

A partir de la Tabla 7.13, se puede concluir que el Modelo 7.20 posee los mejores estadísticos, entre ellos mayor R²_{aj}, menores MSPE y MSE, menores AIC y BIC y mayor F. Además, presentó los más bajos AAE y RMSE, tanto en el conjunto de entrenamiento, como en el de testeo. Además, se trata de un modelo simple y parsimonioso. Por lo que se lo seleccionó como el Modelo I de predicción, de mayor exactitud, para cuando se cuenta con el *pf* experimental del compuesto. Los coeficientes de regresión y estadísticos correspondientes al **Modelo I** (7.20 de la Tabla 7.13) se exponen en las Tablas 7.15.

Coeficiente	Estimador	E.E. *	LI (95%) ^b	LS (95%) ^b	T	p°	Cp "	VIF
constante	0,94	0,14	0,66	1,21	6,69	<0,0001		
Clog P	-0,84	0,03	-0,90	-0,78	-26,91	<0,0001	726,17	2,06
pf	-0,01	7,3 x 10 ⁻⁴	-0,01	-0,01	-9,34	<0,0001	91,94	1,65
PM	-0,0047	6,3 x 10 ⁻⁴	-0,01	-0,0035	-7,56	<0,0001	61,90	1,71
Donores H	0,20	0,07	0,07	0,33	2,93	0,0037	13,57	1,71
N° anillos	-0,24	0,04	-0,31	-0,16	-6,41	<0,0001	45,92	1,42

Tabla 7.15.A. Resultados del Modelo I: coeficientes de regresión y estadísticos asociados.

* E.E.: Error estándar de estimación ° LI y LS (95 %): Límites de intervalo de confianza al 95 % ° T: Estadístico T de contraste para probar la hipótesis que el parámetro vale cero ° p: El valor de significación p para la prueba de hipótesis basada en T. ° Cp: Cp de Mallows. ¹ VIF: Factor de inflación de la varianza (del inglés Variance Inflation Factor), medida para identificar multicolinealidad.

Tabla 7.15.B. Cuadro de Análisis de la Varianza (SC tipo III).

F.V. ^a	SC ^b	gl°	CM °	F	p
Modelo	698,08	5	139,62	483,77	<0,0001
Clog P	209,00	1	209,00	724,18	<0,0001
pf	25,19	1	25,19	87,29	<0,0001
PM	16,49	1	16,49	57,14	<0,0001
Donores H	2,48	1	2,48	8,60	0,0037
Nº anillos	11,86	1	11,86	41,09	<0,0001
Error	69,26	240	0,29		
Total	767,35	245	100000		

* F.V.: Fuentes de variación. * SC: Suma de cuadrados. * gl: Grados de libertad. * CM: Cuadrados minimos. * F: El valor F, que representa una relación de varianzas. * p: El valor de significación p para la prueba de hipótesis basada en T.

Las 5 regresoras tuvieron un valor p < 0.05, es decir, que presentan relación lineal significativa con el log S, lo cual justifica la utilización de cada una de ellas (Tabla 7.15.A). Como se vio anteriormente, la regresora Clog P es la que tiene mayor importancia predictiva en este modelo (mayor peso sobre el log S), dado que posee el mayor Cp de Mallows. A la misma conclusión se arribó en el análisis cualitativo, ya que a partir de los seis compuestos seleccionados se alcanzó el mismo resultado, indicando que ellos son buenos representantes del total de compuestos de la quimioteca.

Tomando la información sobre los coeficientes de regresión de la Tabla 7.15.a, se puede escribir la ecuación de regresión del Modelo I:

log S = -0.84 (± 0.03) Clog P - 0.01 (± 7.3 x 10⁴) pl - 0.0047 (± 6.3 x 10⁴) PM + 0.20 (± 0.07) Donores H - 0.24 (± 0.04) N° anillos + 0.94 (± 0.14)

Capítulo 7

Relaciones Estructura-Solubilidad

Para verificar la adecuación del modelo y lograr un mejor análisis de las relaciones, se hicieron los gráficos de residuos parciales en función de cada una de la regresoras (Figs. 7.9-13). A partir de esto, y de los resultados de la Tabla 7.15, se observó que las variables seleccionadas se relacionan linealmente y de forma negativa con el log *S*, a excepción de los Donores H.

Para conocer algunos elementos de diagnóstico del ARLM, se obtuvieron los gráficos de residuos estudentizados versus predichos y la distancia de Cook (Figs. 7.14 y 7.15). En el primer gráfico, se ve que el modelo está bien ajustado y los supuestos del modelo (normalidad, homocedasticidad¹¹¹¹ e independencia) se cumplen, ya que el 95 % de los residuos estudentizados están entre -2 y 2, y los puntos se distribuyen aleatoriamente. En la Fig. 7.15, si bien una observación se separa del resto (#245), su distancia de Cook es menor a 1, por lo cual no se considera una observación anómala.

Un modelo predictivo presenta homocedasticidad cuando la varianza del error de la variable endógena se mantiene a lo largo de las observaciones. En otras palabras, la varianza de los errores es constante.

Capítulo 7

Fig. 7.15. Distancia de Cook.

Considerando la ecuación obtenida para el **Modelo I**, se calculó la S_{calo} de los 246 derivados que integran el conjunto de entrenamiento (Tabla S.7.2, Anexos 7.2). La capacidad predictiva del modelo se evaluó con el AAE_{ent} y el RMSE_{ent}, que resultó de 0,47 y 0,64 respectivamente. Resultados similares fueron obtenidos por Jain y Yalkowsky.²⁶⁵ Analizando los residuales entre valores de log *S* experimentales y calculados (log *S* experimental - log *S* calculada), el 89,4 % de los valores predichos se encuentran por debajo de la unidad comparados con los valores observados experimentalmente.

La validación del modelo se realizó mediante la exploración del conjunto de testeo (n_{test} = 55). Todos los derivados y sus valores de S_{ac} se presentan en la Tabla S.7.3, Anexos 7.2. La capacidad predictiva de dicho modelo se evaluó con AAE_{test} y RMSE_{lest}, obteniéndose valores de 0,49 y 0,67, respectivamente. Ellos están en el mismo orden que los errores expuestos en la Tabla 7.1 e incluso, en algunos casos, poseen mejor capacidad predictiva. Si se analizan los residuales entre los valores de log *S* experimentales y los calculados, el 87,3 % de los log *S* predichos con este modelo caen por debajo de 1 con respecto a los valores experimentales. Otros modelos desarrollados, entre ellos el de Yalkowsky y col. reportan valores de 83 %.²⁶⁶

Al analizar los resultados mostrados en la Tabla 7.14, se puede concluir que el Modelo 7.25 posee buenos estadísticos (entre los mejores de esa selección) y es simple y parsimonioso (n_{descriptores} = 3). En consecuencia, se lo seleccionó como el **Modelo II** de predicción, para cuando se desea incorporar un nuevo compuesto a la quimioteca y no se cuenta con el *pf*

Capítulo 7

experimental. Los coeficientes de regresión y estadísticos correspondientes al Modelo II (7.25 en la Tabla 7.14) se exponen en la Tabla 7.16.

Tabla 7.16.A. Resultados del Modelo II: coeficie	ntes de regresión y estadísticos asociados
--	--

Coeficiente	Estimador	E.E. ª	LI (95%) ^b	LS (95%) b	Te	p	Cp°	VIF
constante	1,13	0,17	0.80	1,47	6,66	<0,0001		
Clog P	-0,78	0,03	-0,84	-0,71	-24,56	<0,0001	603,83	1,53
PM	-0,01	6,2 x 10 ⁻⁴	-0,01	-0,01	-12,86	<0,0001	167,82	1,24
PA	-1,10	0,14	-1,39	-0,82	-7,70	<0,0001	62,02	1,42

* E.E.: Error estándar de estimación ° LI y LS (95 %): Límites de intervalo de confianza al 95 % ° T: Estadístico T de contraste para probar la hipótesis que el parámetro vale cero ^d p: El valor de significación p para la prueba de hipótesis basada en T. * Cp: Cp de Mallows. ¹ VIF: Factor de inflación de la varianza (del inglés Variance Inflation Factor), medida para identificar multicolinealidad.

Tabla 7.16.B. Cuadro de Análisis de la Varianza (SC tipo III).

F.V. 4	SC ^b	gl°	CM d	E,	p
Modelo	671,28	3	223,76	563,71	<0,0001
Clog P	239,48	1	239,48	603,31	<0,0001
PM	65,69	1	65,69	165,50	<0,0001
PA	23,54	1	23,54	59,30	< 0,0001
Error	96,06	242	0,40		
Total	767,35	245	14100350		

* F.V.: Fuentes de variación. * SC: Suma de cuadrados. * gl: Grados de libertad. * CM: Cuadrados mínimos. * F: El valor F, que representa una relación de varianzas. * p: El valor de significación p para la prueba de hipótesis basada en T.

Las 3 regresoras presentaron un valor p < 0,05, es decir que tienen relación líneal significativa con el log S, lo cual justifica la utilización de cada una de ellas (Tabla 7.16.A). Tomando la información sobre los coeficientes de regresión se puede escribir la ecuación de regresión del **Modelo II**:

log S = -0,78 (±0,03) Clog P - 0,01 (±6,2 x 10⁻⁴) PM - 1,10 (±0,14) PA + 1,13 (±0,17)

Para verificar la adecuación del modelo, se realizaron los gráficos de residuos parciales versus cada una de la regresoras (Figs. 7.16-18). A partir de esto, y de los resultados de la Tabla 7.16, se observa que las variables seleccionadas se relacionaron linealmente y de forma negativa con el log S.

Fig. 7.18. Residuos parciales versus PA.

A partir del gráfico de residuos estudentizados versus predichos (Fig. 7.19), se ve que el modelo está bien ajustado y los supuestos del modelo se cumplen. Con la Fig. 7.20, si bien una observación se separa del resto (#88), su distancia de Cook es menor a 1, por lo cual no se considera una observación anómala.

Utilizando la ecuación obtenida para el **Modelo II**, se calculó la S_{calc} de los 246 derivados que integran el conjunto de entrenamiento (Tabla S.7.2, Anexos 7.2). La capacidad predictiva del modelo se evaluó con el AAE_{ent} y el RMSE_{ent}, que resultó de 0,68 y 0,83, respectivamente. Analizando los residuales entre valores de log *S* experimentales y calculados (log *S* experimental - log *S* calculada), el 78,9 % de los valores predichos se encuentran por debajo de la unidad, comparados con los valores observados experimentalmente. En cuanto al conjunto de testeo (n_{test} = 55), el AAE_{test} y el RMSE_{test}, resultaron ser 0,71 y 0,90, respectivamente. Al analizar los residuales entre valores de log *S* experimentales y calculados, el 76,4 % de los log *S* predichos con el **Modelo II** caen por debajo de 1 con respecto a los valores experimentales. El **Modelo II** resultó menos exacto que el **Modelo I** (lo que indica la clara e importante contribución del *pf*), pero, aun así, sigue siendo satisfactorio.

En las Fig. 7.21 y 7.22 se muestran los gráficos del log S calculado con el **Modelo I** versus el log S experimental y con el **Modelo II** versus el log S experimental, respectivamente, para la totalidad de los compuestos que conforman los conjuntos de entrenamiento y de testeo (n_{exemo} = 301). A partir de las ecuaciones de regresión lineal se obtuvo que las pendientes fueron cercanas a la unidad (0,93 y 0,90, respectivamente), en tanto que los R²_m fueron 0,89 y 0,86.

Fig. 7.21. Gráfico de log S calculado con el Modelo I (7.20) versus el log S experimental y sus parámetros de regresión.

Fig. 7.22. Gráfico de log S calculado con el Modelo II (7.25) versus el log S experimental y sus parámetros de regresión.

En la Fig. 7.23 se expone la relación entre los dos modelos desarrollados (I y II) para los compuestos de los conjuntos de entrenamiento y de testeo (n_{externo} = 301). A partir de la ecuación de regresión lineal se obtuvo una pendiente de 0,94, en tanto que el R²_{el} fue igual a 0,91.

Capítulo 7

Varios autores postularon que el log P es probablemente el parámetro más influyente sobre la solubilidad.²⁸⁷ Además, como se propuso anteriormente en las relaciones cualitativas, la alta lipofilicidad de estos derivados llevaría a que el proceso de solvatación sea poco favorable y, por lo tanto, que se caractericen por poseer una alta energía de solvatación. Esto explicaría la relación negativa observada anteriormente entre log P y log S.

Por otro lado, para que un soluto se disuelva, sus moléculas deben liberarse desde la red cristalina del sólido. El pf representa la energía de esa red, la que debe superarse para que el proceso de disolución transcurra. Esto explicaría la relación negativa observada anteriormente entre pf y log S.

Para que un soluto entre en la solución, debe formarse una cavidad en el seno del solvente. Por lo tanto, cuanto mayor tamaño tenga el soluto (representado, en este caso, por el PM), mayor tamaño deberá tener la cavidad. Así, para formar una cavidad más grande, será necesario que se rompan más EPH agua-agua.²⁷² Esto explicaría la relación negativa observada entre PM y log S.

Las moléculas planas, rígidas o con sistemas de anillos π conjugados están correlacionadas con el incremento de la estabilidad del estado sólido y tienen una alta probabilidad de poseer baja solubilidad.³²² Esto explicaría la relación negativa observada entre aromaticidad (ya sea como N° anillos o PA) y log S.

La formación de EPH, entre las moléculas de soluto (en la interacción soluto-soluto) o entre las de soluto y el agua (en la interacción soluto-solvente) afecta su solubilidad.

Las ecuaciones obtenidas poseen cierta similitud a las EGS (Ec. 7.3, 7.4 y 7.5): los coeficientes de log P y de pf son cercanos a -1 y -0,01, respectivamente. Meylan y Howard (Ec. 7.6) obtuvieron un modelo de solubilidad similar, al utilizar los descriptores log P y PM.²⁹² Sin embargo, como se expuso anteriormente, estas ecuaciones no tuvieron buenas capacidades predictivas sobre los derivados NBS-Het de la quimioteca. Esto mejoró radicalmente con los **Modelos I y II** desarrollados en este trabajo, donde se agregan más descriptores, con mayor información y con diferentes coeficientes en cada variable en estudio.

7.4.3.1. Relación entre Clog P y log k_w para el BSBZT

Como se mencionó anteriormente, sólo el **BSBZT**, mostró discrepancia entre su Clog P (calculado por Bio-Loom[®]) y el log k_w (determinado por HPLC). Esta diferencia fue reportada por Pagliero²⁰ quien, además, demostró que todos los derivados de la familia BZT se alejan en igual medida. Esto se puede observar en el diagrama de dispersión entre Clog P (Bio-Loom[®]) en función del log k_w (HPLC) en la Fig. 7.24, para un n = 76 (derivados a los cuales se les determinó el log k_w). En general, los compuestos pertenecientes a las familias de THQ, THQa, THiQ e INDOL se ubican sobre la diagonal. En tanto que, los derivados de la familia BZT se alejan de la diagonal, tendiendo a ser subestimados por parte del programa Bio-Loom[®].

Fig. 7.24. Diagrama de dispersión entre el Clog P (Bio-Loom®) versus log k_w (HPLC).

En cuanto al log k_w, Pagliero postuló que el BZT al poseer dos N extras respecto a los heterociclos de las otras familias, podría originar, a nivel cromatográfico, un balance de interacciones soluto-fase móvil y soluto-fase estacionaria diferente a los demás.

De esta forma, Pagliero propuso una ecuación de regresión lineal entre Clog P y log k_w (Ec. 7.33) para la serie BZT (n = 15), que funcionaria como factor de corrección del Clog P calculado.

Las diferencias a nivel del log P van a incidir sobre la predicción del log *S*, dada la estrecha relación entre ambas variables en los Modelos I y II. Por lo tanto, la Ec. 7.33 fue considerada como factor de corrección para calcular el log *S* del **BSBZT** (Tabla 7.17). Se observó que los Modelos I y II predicen muy bien cuando se utiliza el log *k*_w (valores residuales absolutos de 0,1). En tanto que, la predicción es menos exacta y sobreestimada, al usar el Clog P obtenido por Bio-Loom[®] (residuales de 1,2). La situación se volvió favorable al aplicar el factor de corrección sobre el Clog P, obteniendo residuales de 0,2. Por lo tanto, la predicción de S_{calc} de derivados pertenecientes a la familia BZT debe ser realizada aplicando el factor de corrección de la Ec. 7.33 sobre el Clog P Bio-Loom[®]. Mientras que, en los demás integrantes de la quimioteca se podría utilizar el Clog P sin corrección.

log S (M)	BSBZT	RES (Experimental - Predicho)
Experimental	-4,9	
Hildebrand d*	-4,8	0,1
Modelo I (con Clog P Bio-Loom®)	-3,7	1,2
Modelo II (con Clog P Bio-Loom ⁶)	-3,7	1,2
Modelo I (con log k, HPLC)	-5,0	0,1
Modelo II (con log k, HPLC)	-5,0	0,1
Modelo I (con Clog P corregido con Ec. 7.33)	-5,1	0,2
Modelo II (con Clog P corregido con Ec. 7.33)	-5,1	0,2

Tabla 7.17. Comparación entre las predicciones de log S (M) del BSBZT.

^a Modelo d de Hildebrand (Ec. 7.11), usando pf DSC y ∆H_f calculada (Ec. 7.15).

7.4.3.2. Comparación entre el modelo de Hildebrand y los modelos I y II

El Modelo I presentó valores de AAE y RMSE de 0,48 y 0,59, respectivamente, (Tabla 7.18) para los seis derivados NBS-Het en estudio. Al analizar los residuales entre los log *S* experimentales y calculados, se observó que todos presentaron valores por debajo de la unidad. En tanto que, el Modelo II tuvo valores de AAE y RMSE de 0,51 y 0,73, respectivamente. Sus residuales estuvieron por debajo de 1, a excepción del BSTHIQ y del TM-BSTHQ que presentaron una diferencia de 1,06 y 1,40, respectivamente, entre el log *S* estimado y el experimental.

Anteriormente, se vio que, utilizando el modelo d de Hildebrand (Ecs. 7.11-7.15) se podía calcular la S_{calc} de los seis derivados con buena exactitud, con valores de AAE y RMSE de 0,18 y 0,26, respectivamente. Esta mejor predicción alcanzada podría explicarse por la inclusión de un valor experimental de ajuste.

log S(M)	BSTHQ	BSTHQa	BSBZT ^b	BSTHIQ	P-NOT BSTHQ	TM- BSTHQ	AAE	RMSE
Experimental	-4,8	-5,3	-4,9	-6,0	-5,3	-5,5		
Hildebrand d*	-4,8	-5,4	-4,8	-5,8	-5,3	-6,1	0,18	0,26
Modelo I	-4,3	-5,2	-5,1	-5,2	-4,9	-6,5	0,48	0,59
Modelo II	-5,0	-5,5	-5,1	-4,9	-5,3	-6,9	0,51	0,73

Tabla 7.18. Determinación y predicción de log S (M), junto al AAE y RMSE de cada modelo predictivo, para los seis derivados NBS-Het.

[®] Modelo d de Hildebrand usando valores de pf obtenidos por DSC y △H₆ calculada (Ec. 7.15).[®] Utilizando Clog P con el factor de corrección (Ec. 7.33).

Se llevó a cabo, además, la predicción de S_{calo} del resto de los derivados de la quimioteca NBS-Het con los Modelos I y II (Tabla S.7.14, Anexos). Luego, se comparó esta predicción con la del modelo d de Hildebrand, a través de un análisis de regresión lineal. Los resultados gráficos de dichos análisis, junto con las ecuaciones de regresión y sus estadísticos se muestran en las Figs. 7.25 y 7.26. En ellas se observa claramente que los Modelos I y II tienden a arrojar estimaciones de S_{calo} más altas que las del modelo de Hildebrand, ya que la mayoría de los puntos se ubican por encima de la linea diagonal con pendiente 1. Las relaciones lineales entre ambas predicciones fueron estadísticamente significativas (p < 0.05),

Capítulo 7

con pendientes de 0.64 y 0.25, respectivamente, aunque presentaron R²_{aj} muy bajos (0,26 y 0,04, respectivamente).

Fig. 7.25. Análisis de regresión lineal simple entre el log S Modelo I versus el log S Hildebrand (la línea delgada es la línea de tendencia del análisis de regresión, mientras que la gruesa constituye la línea diagonal con pendiente de 1).

Fig. 7.26. Análisis de regresión lineal simple entre el log S Modelo II versus el log S Hildebrand (la linea delgada es la linea de tendencia del análisis de regresión, mientras que la gruesa constituye la linea diagonal con pendiente de 1).

El análisis de regresión entre los dos modelos desarrollados, y aplicados sobre los 145 derivados de la quimioteca, produjo un R²_{al} de 0,84 y una relación lineal estadisticamente significativa (p < 0,0001), lo que se muestra en la Fig. 7.27.

Capítulo 7

Fig. 7.27. Análisis de regresión lineal simple entre el log S Modelo I versus el log S Modelo II.

Para explicar las diferencias observadas entre las predicciones de Hildebrand (Modelo d) y la de los modelos locales, se realizaron diagramas de dispersión entre el log S Modelo I y el log S Hildebrand, en las cuales los elementos gráficos varían en tamaño según sus pf (Fig. 7.28) y según sus Clog P (Fig. 7.29). En el gráfico de la Fig. 7.28, no se observa una tendencia de dispersión en función del tamaño de los elementos, lo que indicaría que el pf no está influyendo en gran medida sobre la regresión del log S Modelo I versus el log S Hildebrand. En cambio, en la Fig. 7.29, claramente se presenta una dispersión de puntos más pequeños (menores Clog P) en la parte superior, en tanto que, los elementos más grandes (mayores Clog P) se ubican más cerca de la línea diagonal. Se observó que los compuestos con Clog P entre 3 y 5 aproximadamente, resultan ser mejor predichos por ambos modelos (1 y Hildebrand), lo cual quedó demostrado a partir del análisis de regresión lineal simple entre los log S predichos por ambos. Para ello, se filtraron los compuestos de la quimioteca NBS-Het, con Clog P < 3 (lo que representa un 28 % de total de derivados). Luego, se realizó dicho análisis y los resultados se muestran en la Fig. 7.30, donde se puede ver que la relación lineal fue significativa (p < 0.0001), y la pendiente resultó más cercana a 1 (0.79) y el R² de 0.49. Una tendencia similar se observó para los modelos II y de Hildebrand.

Fig. 7.28. Gráfico de dispersión de log S Modelo I versus el log S Hildebrand. Tamaño de los elementos como función del pf.

Fig. 7.29. Grático de dispersión de log S Modelo I versus el log S Hildebrand. Tamaño de los elementos como función del Clog P. Los elementos más cercanos a la diagonal se rotulan con sus Clog P.

Capítulo 7

Fig. 7.30. Análisis de regresión lineal simple entre el log S Modelo I versus el log S Hildebrand para derivados de la quimioteca NBS-Het con Clog P > 3.

Las diferencias discutidas anteriormente probablemente se deban a que el modelo de Hildebrand posee como valor *input* de S_{se} experimental, el proveniente del **BSTHQ**, cuyo Clog P es 3,46. Esto probablemente permita obtener buenas estimaciones de S_{calo} para derivados con Clog P similares (como sucedió con los seis compuestos NBS-Het en estudio, en donde sólo el **TM-BSTHQ** se alejó a 5,17). El modelo podría fallar cuando se intenten predecir derivados con valores de lipofilicidad distintos al del **BSTHQ**. Para consolidar este postulado, se analizó la capacidad predictiva del modelo de Hildebrand (Modelo *d*), sobre compuestos de la base de datos externa (n_{externo} = 301). Se realizó un diagrama de dispersión entre el log *S* experimental y el predicho por el modelo *d* de Hildebrand. Los resultados se muestran en la Fig. 7.31. Allí se aprecia cómo los derivados con Clog P cercanos a ~ 3,5 se ubican cerca de la diagonal. En tanto que, los más hidrofílicos tienden a ser sobreestimados (ubicándose por encima de la diagonal) y los más lipofílicos, subestimados (por debajo de la diagonal).

Fig. 7.31. Gráfico de dispersión de log S experimental versus el log S Hildebrand. Tamaño de los elementos en función del Clog P. Los elementos más cercanos a la diagonal se rotulan con sus Clog P.

Esto demuestra que el modelo de Hildebrand responde bien para compuestos con Clog P cercanos a 3,5, en un rango aproximado de ± 0,5. Mientras que los Modelos I y II desarrollados

VIII

8. CONCLUSIONES GENERALES

Se consideró importante estudiar las propiedades del estado sólido de seis derivados NBS-Het, para contribuir al diseño racional de NEQ dentro del marco metodológico y conceptual de la QM. A través de la utilización de técnicas experimentales y computacionales, se planteó analizar sus propiedades FQ (solubilidad, Clog P, pf, donores y aceptores de H, ASPT, proporción aromática) y estructurales (conformaciones en el estado sólido y en el vacío) y analizar las relaciones estructura-S_{ac}.

Para cumplir con dichos objetivos, se prepararon 166 muestras sólidas correspondientes a los seis compuestos en estudio, aplicando siete métodos de cristalización distintos. La caracterización de las propiedades del estado sólido de las muestras del BSTHQ, BSTHQa, BSBZT, BSTHiQ y p-NO2-BSTHQ permitió establecer que cada uno de ellas presentaría una única fase cristalina, la cual sería la estable a temperatura ambiente. Por el contrario, el TM-BSTHQ presentó, al menos, dos polimorfos, aunque las evidencias obtenidas sugieren que existirían fases adicionales. Las estructuras cristalinas de los polimorfos I y II del TM-BSTHQ se lograron resolver exitosamente, mediante DRXM, y se comprobó que ambas fases exhibieron una conformación similar (ausencia de polimorfismo conformacional) presentando diferencias a nivel del empaquetamiento cristalino. Además, de las dos estructuras cristalinas mencionadas, se lograron resolver las del BSTHQ, BSTHQa, BSBZT y p-NO2-BSTHQ, utilizando DRXM. A su vez, con modelado molecular, se obtuvieron las estructuras de mínima. energía de todos los derivados, en fase gaseosa y en agua. Por ambas metodologías experimentales y computacionales, se observó el plegamiento de las moléculas en forma de V o mariposa, la conformación más favorable energéticamente para los compuestos del tipo sulfonamida. Al comparar las conformaciones obtenidas por DRXM y por QC (en agua y en vacío) se vio que eran similares entre sí. Cuando se compararon las conformaciones en estado sólido y en vacío, para cada uno de los derivados analizados, se demostró que casi todas, a excepción del BSBZT, se consideran conformaciones aproximadamente idénticas.28 El mínimo absoluto del TM-BSTHQ obtenido en vacío, coincide con la conformación hallada en estado sólido de los dos polimorfos identificados.

El análisis de piramidalización y de hibridización del N, permitió confirmar que cinco derivados poseen el N piramidalizado (solo el **BSBZT** mostró un N sp²). Esto llevó a que el N sp³ se comporte como centro estereogénico, dando la posibilidad de isómeros conformacionales y configuracionales.

El BSTHQ, cristalizó como 1*R*, a pesar de la barrera de interconversión relativamente baja que poseen los isómeros 1*R* y 1*S* (2,12 kcal/mol) tanto en vacío como en solución. Este comportamiento no se halló en los restantes derivados estudiados ni en otros estructuralmente similares registrados en la CSD.¹⁹¹ La barrera energética baja, que explicó el hecho de que, en solución y a temperatura ambiente, estos estereoisómeros no se logren separar, permitió inferir

Capítulo 7

Continución Tabla 7.19. Compuestos seleccionados de la quimioteca NBS-Het (n = 47) con log S ≥ -5 (M) ordenados de mayor a menos solubilidad.

Compuesto	Clog P*	pf ^b	PM [*]	Don H ⁴	Acept H ^c	ASPT *	ER ¢	N" anillos	PA	Volumen ^d	log \$ (1)
p-NH2-BSTHQa	3,25	154,0	302,39	2	4	71,78	2	2	0,57	267,11	-4,83
p-COCH _a -BSTHQ	3,03	127,4	315,39	0	4	62,83	3	2	0,83	274,78	-4,84
o-NO2-BSAZI	2,42	160,0	303,29	0	7	109,17	3	3	0,71	235,42	-4,84
p-CI-BSINDOLINA	3,76	78,0	293,77	0	3	45,76	2	2	0,79	235,97	-4,86
p-NO2-BSTHQ	3,20	115,0	318,35	0	6	94,59	3	2	0,68	262,57	-4,88
p-F-858ZD	3,22	113.0	276,29	0	4	60,34	.2	3	0,79	217,02	-4,91
p-CH ₁ -BSMeINDOUNA	4,07	64,0	287,38	0	3	45,76	2	2	0,60	255,58	-4,95
o-NO2-BSTHIQ	3,13	128,5	318,35	0	6	94,59	3	2	0,55	262,57	-4,95
o-NO2-BSINDOL	3,37	94,5	302,31	0	6	96,28	3	3	0,71	239,58	-4,98
p-OCH ₃ -BSAZI	2,75	154,0	288,32	0	5	69,57	3	3	0,75	237,63	-4,99
m-NO2-BSMeINDOLINA	3,31	120,0	318,35	0	6	94,59	3	2	0,55	262,35	-5,02
p-NHCOCH3-858ZD	2,50	186,0	315,35	1	6	89,44	3	з	0,68	260,03	-5,02
p-COCH ₂ -BS8ZT	1,18	125,0	301,32	0	6	90,3	3	3	0,71	243,47	-5,03
o-NO2-BSTHQ	3,20	131,5	318,35	0	6	94,59	3	2	0,83	262,57	-5,04

Calculado con el programa Bio-Loom[®] para Windows v1,5 BioByte Corp.³¹⁶

^a Determinado experimentalmente y expresado en °C.

^c Calculado a partir del módulo ACD/Percepta a través de la plataforma de ChemSpider (www.chemspider.com).³¹⁷

^o Calculado con Molinspiration (http://www.molinspiration.com/cgi-bin/properties) y expresado en Å³.

7.5. Conclusiones

Se analizaron las **relaciones estructura-solubilidad cualitativas** para los seis derivados estudiados. En general, a partir de los descriptores de las propiedades globales de las moléculas y de la contribución de fragmentos estructurales analizadas se pudo inferir que la baja S_{ac} de los derivados estudiados estaría explicada por sus altas lipofilicidades (3,3-5,2), sus altas PA (> 0,5), sus pocos donores (0) y aceptores de H (3-6). Por el contrario, las bajas energías de la red cristalina (*pf* menores a 150 °C y la existencia de pocos enlaces intermoleculares a nivel del cristal, además de débiles) contribuirían en menor proporción. Analizando los tres términos energéticos que gobiernan la disolución de un soluto, postulamos que una alta energía de solvatación sería el paso limitante en el proceso termodinámico de disolución de estos derivados (y no las energías de red cristalina y de cavitación).

En cuanto a los modelos de predicción de S_{calo} propuestos en la literatura, la mayoría presentaron bajas exactitudes de predicción. La situación más alentadora se logró con el modelo basado en la aproximación de Hildebrand. Utilizando la Ec. *d*, se obtuvo muy buena exactitud, con valores de AAE y RMSE de 0,18 y 0,26, respectivamente.

Por análisis de correlación, se vio que 10 de las 11 variables estudiadas (ER quedó excluido) estaban correlacionadas con la variable respuesta. Se llevaron adelante dos ARLM, para desarrollar los Modelos I y II. Para ello, se utilizaron las 10 variables en estudio en el Modelo I, y 9 de ellas (excluyendo al *pt*) para el II. Analizando y comparando distintos modelos, que surgieron desde el algoritmo de selección de Infostat, se demostró que el Modelo 7.20 (I) resultó el más exacto. En tanto que, el Modelo 7.25 (II) fue el más aceptable y parsimonioso

para predecir la S_{can} en etapas de diseño. La capacidad predictiva de los dos modelos, evaluada mediante el AAE_{test} y el RMSE_{test}, resultó satisfactoria y sus errores comparables con los de modelos desarrollados por otros autores.

La predicción de S_{cale} de derivados de la familia BZT debió ser realizada aplicando el factor de corrección de la Ec. 7.33 sobre el Clog P Bio-Loom[®], ya que este programa tiende a subestimarlo. Mientras que, en los demás integrantes de la quimioteca se pudo utilizar el Clog P sin corrección.

Los Modelos I y II propuestos podrían tener, en forma complementaria, grandes aplicaciones en el diseño de nuevos compuestos de la quimioteca. Podrían ser utilizados para predecir la S_{calc} de una molécula antes de su síntesis; también podrían aplicarse como una regla o criterio para definir moléculas *druglike*; y servirian como un filtro para priorizar moléculas a ser medidas en ensayos de bioactividad. Además, estos modelos demostraron mayor robustez y capacidad predictiva para el resto de los derivados de la quimioteca que el modelo *d* de Hildebrand.

Con la selección de los derivados más solubles, se pudo contribuir al diseño racional de nuevos análogos, siendo indispensable incluir heterociclos y sustituyentes en la porción del bencenosulfonilo más hidrofílicos, entre ellos -NH₂, -NO₂, -H, -COCH₃ y NHCOCH₃ y más donores de EPH.

VIII

8. CONCLUSIONES GENERALES

Se consideró importante estudiar las propiedades del estado sólido de seis derivados NBS-Het, para contribuir al diseño racional de NEQ dentro del marco metodológico y conceptual de la QM. A través de la utilización de técnicas experimentales y computacionales, se planteó analizar sus propiedades FQ (solubilidad, Clog P, *pf*, donores y aceptores de H, ASPT, proporción aromática) y estructurales (conformaciones en el estado sólido y en el vacío) y analizar las relaciones estructura-S_{ac}-

Para cumplir con dichos objetivos, se prepararon 166 muestras sólidas correspondientes a los seis compuestos en estudio, aplicando siete métodos de cristalización distintos. La caracterización de las propiedades del estado sólido de las muestras del BSTHQ. BSTHQa. BSBZT, BSTHiQ y p-NO2-BSTHQ permitió establecer que cada uno de ellas presentaría una única fase cristalina, la cual sería la estable a temperatura ambiente. Por el contrario, el TM-BSTHQ presentó, al menos, dos polimorfos, aunque las evidencias obtenidas sugieren que existirían fases adicionales. Las estructuras cristalinas de los polimorfos I y II del TM-BSTHQ se lograron resolver exitosamente, mediante DRXM, y se comprobó que ambas fases exhibieron una conformación similar (ausencia de polimorfismo conformacional) presentando diferencias a nivel del empaquetamiento cristalino. Además, de las dos estructuras cristalinas mencionadas, se lograron resolver las del BSTHQ, BSTHQa, BSBZT y p-NO2-BSTHQ, utilizando DRXM. A su vez, con modelado molecular, se obtuvieron las estructuras de mínima energía de todos los derivados, en fase gaseosa y en agua. Por ambas metodologías experimentales y computacionales, se observó el plegamiento de las moléculas en forma de V o mariposa, la conformación más favorable energéticamente para los compuestos del tipo sulfonamida. Al comparar las conformaciones obtenidas por DRXM y por QC (en agua y en vacío) se vio que eran similares entre sí. Cuando se compararon las conformaciones en estado sólido y en vacío, para cada uno de los derivados analizados, se demostró que casi todas, a excepción del BSBZT, se consideran conformaciones aproximadamente idénticas.28 El mínimo absoluto del TM-BSTHQ obtenido en vacio, coincide con la conformación hallada en estado sólido de los dos polimorfos identificados.

El análisis de piramidalización y de hibridización del N, permitió confirmar que cinco derivados poseen el N piramidalizado (solo el **BSBZT** mostró un N sp²). Esto llevó a que el N sp³ se comporte como centro estereogénico, dando la posibilidad de isómeros conformacionales y configuracionales.

El BSTHQ, cristalizó como 1*R*, a pesar de la barrera de interconversión relativamente baja que poseen los isómeros 1*R* y 1*S* (2,12 kcal/mol) tanto en vacío como en solución. Este comportamiento no se halló en los restantes derivados estudiados ni en otros estructuralmente similares registrados en la CSD.¹⁹¹ La barrera energética baja, que explicó el hecho de que, en solución y a temperatura ambiente, estos estereoisómeros no se logren separar, permitió inferir

Conclusiones Generales

que la obtención, por cristalización, de un solo estereoisómero, fue un hallazgo muy interesante. El **BSTHQa** cristalizó en un grupo espacial centrosimétrico, estando presentes los isómeros 1*S*,2*R* y 1*R*,2*S*, pero no los 1*R*,2*R* y 1*S*,2*S*. Entre las configuraciones 1*R*,2*S* y 1*S*,2*R* la barrera calculada fue de 11,8 kcal/mol, aunque habría una población igualitaria de ambas, ya que sus estructuras están en equilibrio y son isoenergéticas. Los isómeros con el metilo ecuatorial resultaron menos estable que los de posición axial, existiendo un 99% a favor de esta última conformación.²²⁰ Esto explicaría que ambos isómeros presentes en el cristal, tengan el metilo en esa ubicación. Tanto el *p*-NO₂-BSTHQ como el TM-BSTHQ (en sus dos fases cristalinas), cristalizaron en grupos espaciales centrosimétricos, por lo que presentan las dos configuraciones en el N en la celda unidad (racematos).

En lo que respecta a la S_{ac}, los seis derivados se caracterizaron por poseer una baja solubilidad en agua. El BSTHQ y el BSBZT resultaron ser los más solubles, en tanto que, el BSTHQa y el *p*-NO₂-BSTHQ presentaron una menor solubilidad (encontrándose en el mismo orden) y el TM-BSTHQ y el BSTHiQ mostraron las S_{ac} más bajas de los seis.

Las solubilidades obtenidas para el **BSTHQ** y el **BSBZT** en siete proporciones agua:etanol, evidenciaron que a medida que aumenta la *f*_e, aumenta la S_{ap} de los compuestos. Inicialmente, la S_{ap} aumenta lentamente, hasta una *f*_e crítica (0,5), luego de la cual se produce un incremento pronunciado.

La mayoría de los modelos aplicados para estimar o predecir la solubilidad en **cosolventes**, fueron considerados aceptables (MPD < 30 %).²⁴⁷⁻²⁴⁶ El modelo LL $\sigma_{0,5}$, presentó una mejor exactitud de predicción en comparación con el LL σ . Esto confirma que estos sistemas se comportan de forma lineal hasta una I_0 de 0,5. Por esta razón, se propuso la utilización del modelo LL $\sigma_{0,5}$, con el cual se calcularon los poderes solubilizantes ($\sigma_{0,5}$) de cinco cosolventes sobre los compuestos de la quimioteca NBS-Het. Se concluyó que todos presentan una mayor solubilidad en PEG 400, etanol y DMSO.

Se prepararon y caracterizaron **complejos de** β -CD con el **BSTHQ** y el **BSBZT** en estado sólido y en solución, utilizando las técnicas de suspensión y amasado. Los complejos sólidos obtenidos se caracterizaron con MPC, DRIFT, IR, TG, DSC, DRXP y se estudió su comportamiento en solución por ASF. Estos últimos resultados mostraron que ambos complejos presentan perfiles de tipo B_s,^{32,259} lo que supone complejos donde el aumento de S_{ap} es limitado. En el **BSTHQ**, se alcanzó la máxima S_{ap} (23,9 ± 0,3 µg/mL) a 10 mM de β -CD, que corresponde a 3,8 veces su S_{iec} (6,34 ± 0,04 µg/mL). En el **BSBZT**, entre 1 y 2 mM de β -CD se logró la máxima S_{ap} (19,14 ± 0,02µg/mL), siendo 6 veces su S_{ac} (3,15 ± 0,02µg/mL).

Se analizaron las **relaciones estructura-solubilidad cualitativas** sobre los seis derivados estudiados. En general, a partir de los descriptores de las propiedades globales de las moléculas y de la contribución de fragmentos estructurales analizadas se pudo inferir que la baja S_{ac} de los derivados estudiados, estaría explicada por sus altas lipofilicidades (3,3-5,2), sus altas PA (> 0,5), sus pocos donores (0) y aceptores de H (3-6). Por el contrario, las bajas energías de la red cristalina (*pf* menores a 150 °C y la existencia de pocos enlaces intermoleculares a nivel del cristal, además de débiles) contribuirían en menor proporción. Analizando los tres términos energéticos que gobiernan la disolución de un soluto, postulamos que una alta energía de solvatación sería el paso limitante en el proceso termodinámico de disolución de estos derivados, y no las energías de red cristalina y de cavitación.

En cuanto a los modelos de predicción de S_{calo} propuestos en la literatura, la mayoría presentaron bajas exactitudes de predicción. La situación más alentadora se logró con el
Conclusiones Generales

modelo basado en la aproximación de Hildebrand (Ec. d) obteniéndose una muy buena exactitud, con valores de AAE y RMSE de 0,18 y 0,26, respectivamente. Aunque dicho modelo sólo respondió bien para compuestos con Clog P cercanos a 3,5 ± 0,5.

En lo que respecta a **relaciones estructura-solubilidad cuantitativas**, se llevaron adelante dos ARLM, para desarrollar los Modelos I y II. Para ello, se utilizaron las 10 variables en estudio en el Modelo I, y 9 de ellas (excluyendo al *pf*) para el II. Analizando y comparando distintos modelos, se demostró que el Modelo I (7.20) resultó el más exacto. En tanto que, el Modelo II (7.25) fue el más aceptable y parsimonioso para predecir la S_{cale} en etapas de diseño, donde no se cuenta con los *pf*. La capacidad predictiva de los modelos, evaluada mediante el AAE_{Wel} y el RMSE_{Hell}, resultó satisfactoria y sus errores comparables con los de modelos desarrollados por otros autores. Además, los dos modelos desarrollados demostraron mayor robustez y capacidad predictiva, para el resto de los derivados de la quimioteca, que el modelo *d* de Hildebrand. Los Modelos I y II podrían tener, en forma complementaria, grandes aplicaciones en el diseño de nuevos compuestos de la quimioteca. Podrían ser utilizados para predecir la S_{cale} de una molécula antes de su síntesis; también podrían aplicarse como una regla o criterio para definir moléculas *druglike*; y servirian como un filtro para priorizar moléculas a ser medidas en ensayos de bioactividad.

Hann y Osprea³²³ propusieron que compuestos con log $S \ge -5$, sean considerados "elegibles", en las etapas del descubrimiento, para continuar con su desarrollo. Es así que, de los 145 compuestos que integran la quimioteca NBS-Het, 47 se encuentran en esta categoría. Además, entre los 47 compuestos se hallan dos (*p*-NO₂-BSTHQ y *m*-NO₂-BSTHQ) que ya habían sido seleccionados por su actividad frente al parásito *P. falciparum* (IC₅₀ ≤ 10 µM), un tercero (BSBZT) cuya actividad frente a *T. cruzi* ha sido ampliamente demostrada⁹² y cuya solubilidad (log *S* experimental = -4,9 y log *S* calculado = -5,12) está dentro del límite aceptable y un cuarto (BSTHQ) con una actividad antibacteriana muy promisoria. Por lo tanto, podemos considerar a dichos derivados como verdaderos prototipos o líderes.

Con la selección de los derivados más solubles, se pudo contribuir al diseño racional de nuevos análogos, siendo indispensable incluir heterociclos y sustituyentes en la porción del bencenoul!onilo más hidrofílicos, entre ellos -NH₂, -NO₂, -H, -COCH₃ y NHCOCH₃ y más donores de EPH.

9. APÉNDICE DEL CAPÍTULO 5

El fragmento sulfonamida, es un grupo funcional extremadamente importante a nivel biológico, por encontrarse presente en una gran variedad de fármacos. Por ello, entender las conformaciones adoptadas por este fragmento es esencial para comprender la forma en que actúa *in vivo.*^{323, 321}

En el presente capítulo suplementario se estudian las conformaciones exhibidas por diferentes sulfonamidas en el estado sólido y en el ambiente de una enzima, a nivel de la *Cambridge Structural Database*, CSD y de la *Protein Data Bank*, PDB, respectivamente.³²⁴ Se analiza, además, el efecto de dichos entornos sobre la piramidalización del N.

9.1. Introducción

La conformación de mínima energía obtenida en vacío o la de estado sólido conseguida por rayos X, no necesariamente se corresponden con la de solución o la del ambiente de un receptor proteico, pero toda esta información resulta útil en un estudio global.

Las interacciones intermoleculares, podrían influir fuertemente en las conformaciones adoptadas en el estado sólido o en solución y a nivel de las afinidades ligando-receptor, mientras que las intramoleculares dominarían las conformaciones adoptadas en el vacío.³²¹ Cuando los cálculos son realizados en el vacío, las interacciones electrostáticas internas se magnifican en relación con lo que ocurre en solución. Las conformaciones en fase gaseosa, caracterizadas por interacciones intramoleculares entre átomos topológicamente distantes, son mucho menos pobladas en solución, donde los grupos polares o cargados deben desolvatarse en orden a interactuar unos con otros.³²⁵ Aunque estas estructuras o conformaciones no necesariamente se asemejan a la que está presente en el medio biológico,²⁰⁰ los datos procedentes de estos estudios se consideran como una información muy útil en QM y en el diseño de fármacos. Se debe tener cuidado con el uso de los resultados derivados exclusivamente de cálculos teóricos o de estructuras cristalinas para explicar las interacciones en solución o estimar posibles uniones con receptores biológicos. Aportes complementarios y comparaciones de ambas metodologías pueden resultar una buena aproximación.

En general, las fuerzas que median el reconocimiento molecular a nivel ligando-receptor, son similares en todos los sistemas: los EPH fuertes (O-H…O, N-H…O y O-H…N), los EPH débiles (C-H…O, C-H…N, C-H… π), las interacciones entre heteroátomos, las π … π stacking y las de van der Waal. De todas ellas, las de puente de H son las más fuertes y direccionales y, generalmente, determinan la unión de los ligados al receptor.³²⁵

El conocimiento alcanzado sobre los EPH está siendo utilizado en el screening virtual de fármacos, tanto en su aproximación directa (diseño basado en la estructura) como indirecta

Capítulo 9

(diseño basado en el ligando).³²⁷ El diseño basado en la estructura se fundamenta en el estudio de la estructura 3D del blanco biológico, obtenida por DRX o RMN o desde modelos de homología de proteínas.³²⁸ Esta metodología busca identificar y optimizar interacciones entre ligandos y receptores moleculares, generalmente proteínas, dadas sus estructuras tridimensionales. El proceso de optimización requiere el conocimiento sobre geometrías, afinidades e interacciones atractivas que se pueden extraer desde las estructuras cristalinas.³²⁹ Es importante considerar que la unión entre el ligando y el blanco biológico es un proceso sumamente complejo, en donde se ven involucrados muchos factores (energías de enlace, complementariedades, grados de libertad, etc.).³³⁰

Por otro lado, el estudio de piramidalización del N es sumamente importante en los derivados sulfonamidas y se debería tener en cuenta en *screening virtuales* y estudios 3D-QSAR, donde se necesita contar con estructuras de inicio fiables. Lo cual es sumamente importante ya que la interacción ligando-receptor es estereoselectiva. Por lo tanto, para plantear estudios de *docking* debería considerarse el efecto de la piramidalización del N. Así, Eastman y col.¹⁷⁹ trabajaron con la proteína farnesiltransferasa (PFT) presente en el *P falciparum* y propusieron analizar los cuatro isómeros del derivado BMS-388891 (Fig. 9.1.A), que tiene como estereocentros a un C quiral y un N piramidalizado. De esta forma, encontraron diferencias entre los modos de unión de estos isómeros a dicha proteína. El mismo comportamiento se observó en el compuesto BMS-214662 (Fig. 9.1.B), que cristalizó estereoselectivamente en el sitio activo de la PFT.³³¹

Fig. 9.1. Estructuras del BMS-388891 (A), del BMS-214662 (B) y conformación bioactiva del ligando BMS-214662 cristalizado con la enzima (C).

9.2. Objetivo

El objetivo propuesto para este capítulo fue integrar los conocimientos alcanzados a nivel conformacional de los NBS-Het, con los datos cristalográficos experimentales de la CSD y la PDB.

9.3. Metodologías

Se realizó la búsqueda de estructuras cristalinas a partir de la base de datos de la CSD (http://www.codc.cam.ac.uk/Solutions/CSDSystem/Pages/CSD.aspx) y de la PDB (http://www.rcsb.org/pdb/home/home.do).

La base de datos de la CSD fue fundada en 1965 y se ha convertido en un recurso esencial para los científicos de todo el mundo. Allí se depositan las estructuras cristalinas de pequeñas moléculas orgánicas y organometálicas. Contiene los resultados de más de 600000 rayos X y de difracción de neutrones. Cuenta con una amplia variedad de recursos informáticos, los cuales son útiles en QM y se utilizaron en este capítulo:

 Mercury, que ofrece una amplia gama de herramientas para la visualización 3D de estructuras y la exploración del empaquetamiento cristalino.

 ConQuest, es el programa principal para buscar y recuperar información desde la base de datos de la CSD.

Mogul, que proporciona información precisa sobre geometrías moleculares preferidas. Permite el acceso a millones de estructuras cristalinas derivadas de la CSD, las cuales se clasifican químicamente según enlaces, ángulos de valencia, ángulos de torsión y conformaciones de anillos cíclicos.

Isostar es una aplicación que proporciona miles de diagramas de dispersión 3D interactivos que muestran la probabilidad de ocurrencia y las características espaciales de las interacciones entre pares de grupos funcionales químicos. Isostar contiene información sobre los enlaces moleculares derivados de las estructuras cristalinas de moléculas pequeñas de la CSD y de las interacciones proteína-ligando observadas en la PDB (donde no se muestran los H). Este programa requiere que se proponga un fragmento de interés (grupo central), a partir del cual se realiza la búsqueda de interacciones intermoleculares con grupos denominados contactos. Un contacto en Isostar es definido como un enlace intermolecular entre cualquier par de átomos A y B, cuya distancia es menor que las distancias de van der Waals + 0,5 Å.³³² Los diagramas de dispersión dan información acerca de las frecuencias y direccionalidades de los contactos no enlazantes de tipo intermolecular. Estos gráficos son presentados simetrizados, dado que solo un cuarto de los grupos contactos son mostrados.

Superstar es un programa que permite generar mapas de puntos de interacción a nivel de los sitios de unión a proteínas o alrededor de pequeñas moléculas, utilizando información de los enlaces intermoleculares cristalográficos.³³² Estos mapas son basados, por lo tanto, en información cristalográfica experimental de la base de datos CSD.

La base de datos de la **PDB**, que reúne las estructuras de macromoléculas biológicas (incluyendo proteínas y ácidos nucleícos), se estableció en 1971 en el Laboratorio Nacional de Brookhaven y originalmente contenía 7 estructuras. En 1998, el *Research Collaboratory for Structural Bioinformatics* (RCSB) se convirtió en el responsable de la gestión de la PDB. En 2003 se formó la wwPDB para mantener un único archivo PDB de datos estructurales de macromoleculares que esté a disposición de la comunidad global de forma gratuita. Actualmente, presenta 92304 estructuras depositadas (acceso: 22-7-13).

La información precisa de una molécula es proporcionada por el análisis de su estructura cristalina. Aunque, los datos obtenidos sólo describen una conformación, se puede sacar información del comportamiento dinámico, de la flexibilidad y reactividad desde el análisis de estructuras cristalinas. Sin embargo, la pregunta sigue siendo: ¿cómo extraer esta información desde una sola conformación de la molécula, representada en su estructura cristalina? El primer método consiste en el análisis comparativo de estructuras disponibles, por ejemplo, en la CSD o en la PDB, de un número de cristales estrechamente relacionados, de moléculas, o de sus fragmentos y la determinación de sus diferencias. El segundo método no sólo se limita a la información cristalográfica. Este asume que los datos cristalográficos 3D son el punto de partida del análisis conformacional, utilizando cálculos teóricos.³³³ La segunda metodología fue aplicada en el transcurso del Capítulo 5. En tanto que, el primero (método de correlación de

datos cristalinos) fue utilizado a lo largo del presente, lo cual se hace factible gracias al programa Isostar, Superstar y a búsquedas bibliográficas relacionadas.

9.4. Resultados

Como se vio, el reconocimiento molecular entre un ligando y su receptor biológico está principalmente guiado por las interacciones intermoleculares que puedan establecerse entre ambas moléculas. Los derivados NBS-Het presentan **heterociclos**, los cuales en general, poseen una estructura privilegiada. Esto se debe, esencialmente, a la presencia de átomos como N, S y O con amplias posibilidades de establecer interacciones dipolares, incluidas las de tipo puente H.³³⁴ Además, estos compuestos poseen el grupo -SO₂, que presenta una alta polaridad en el enlace S→O, lo que le permite establecer interacciones dipolares con facilidad. Cada oxígeno del -SO₂ puede actuar como aceptor en EPH, de manera similar al de un grupo carbonilo (C=O). De hecho, el grupo -SO₂ y el C=O son considerados bioisósteros no clásicos por presentar, principalmente, similitudes electrónicas.^{335, 336} Estos derivados NBS-Het se caracterizan, también, por contener la porción fenilo, que ofrece numerosas posibilidades de interacción, a través de fuerzas de van der Waals, enlaces C-H···π, anclaje π···π o formación de complejos de transferencia de carga.

9.4.1. Conformaciones de sulfonamidas

El primer estudio acerca de arilsulfonamidas, publicado en la CSD, fue en 1986 y fue realizado por Beddoes y col.³³⁷ Dichos autores resolvieron las estructuras de rayos X de 49 sulfonamidas acíclicas. Actualmente, el número de estructuras arilsulfonamidas presentes en la CSD aumento en dos órdenes de magnitud comparado con 27 años atrás. Pero, las conformaciones encontradas no han cambiado desde 1986 a la actualidad. En este sentido, si se analiza a lo largo del enlace N-S y C-S, tanto el par de electrones libres del N como el orbital p del carbono aromático dividen en dos al enlace O=S=O (Fig. 9.2). Se ha sugerido que estos rotámeros se estabilizan por interacciones de los electrones libres con los orbitales *d* del S.

Stahl y col.²⁰⁹ analizaron la tendencia del ángulo φ₄, C-C-S-N, en estructuras cristalinas de compuestos sulfonamidas y sulfonas presentes en la CSD. En ausencia de sustituyentes *orto* (s/o), los autores reportan un pico máximo a 90 °. Los átomos de O del sulfonilo están situados a un lado y otro del anillo fenilo (con ángulos de torsión entre 60 ° y 120 °). Mientras que con sustituyentes *orto* no H (c/o), el pico máximo se desplaza a alrededor de 70 ° (Fig. 9.3), es decir, el grupo sulfonilo gira lejos del sustituyente hasta posicionar al enlace S=O casi coplanar con el fenilo.

Capítulo 9

Fig. 9.3. Histograma de distribución del ángulo φ₆, C-C-S-N, (en negro se presentan los compuestos sin sustituyentes orto y en celeste los que posee un sustituyente orto).

Para un estudio general de las conformaciones de sulfonamidas se requiere también un análisis del ángulo de torsión φ_3 , C-S-N-C, como así mismo de la hibridización del átomo de N. Stahl y col.²⁰⁹ también realizaron un análisis al respecto, sobre sulfonamidas de la CSD. Dichos autores utilizaron la distancia N-plano (D N-plano) como una medida de piramidalización. En la Fig. 9.4.A se presenta el gráfico entre la D N-plano en función del ángulo de torsión φ_3 , C-S-N-C, para sulfonamidas 3rias. El ángulo C-S-N-C es, generalmente, menor a 90 ° y disminuye con el aumento de la piramidalización del N. Un segundo grupo, mucho menos poblado de estructuras, está relacionado con el primero por la inversión del N, mediante el cual uno de los sustituyentes del N y el par de electrones libres cambian de posición. En este caso, existe una correlación positiva entre el aumento de la piramidalidad y la torsión del ángulo. Un examen más detallado revela que esta segunda conformación sólo es adoptada por estructuras con sustituyentes del N ramificados, que sufrirían significativo impedimento estérico, como es, por ejemplo, el derivado de la Fig. 9.4.B.

Fig. 9.4. A) Gráfico de la D N-plano versus el ángulo φ₃, C-S-N-C, para sulfonamidas de la CSD. B) Derivado arilsulfonamida con sustituyentes del N ramificados.

En forma complementaria a los estudios realizados por Stahl y col.,²⁰⁹ se utilizó el programa Mogul para comparar los ángulos de torsión φ₃ y φ₄, entre los NBS-Het cristalizados y los fragmentos estructuralmente similares de la CSD. El programa graficó un histograma de frecuencias y señaló en rojo el ángulo de torsión del compuesto analizado. Así, para el p-NO₂-

Capítulo 9

BSTHQ, por ejemplo, se obtuvieron los gráficos mostrados en la Fig. 9.5. Alli se observa que, tanto el ángulo ϕ_3 (Fig. 9.5.A) como el ϕ_4 (Fig. 9.5.B), poseen valores usuales, ya que se ubican en el centro del histograma. Un comportamiento similar se obtiene para los derivados **BSTHQ** y **BSTHQa**, con valores de ϕ_3 de 65,8 ° y 77,4 °, respectivamente; y de ϕ_4 , de 77,4 ° y 77,6 °.

Fig. 9.5. Histograma de distribución del ángulo φ₃ (A) y de φ₄ (B) para el p-NO₂-BSTHQ.

En cuanto al **TM-BSTHQ**, el ángulo φ₃ presentó un valor inusual para este tipo de fragmentos, que se aleja del área del histograma (Fig. 9.6.A). En cambio el valor de φ₄ resultó ser habitual (Fig. 9.6.B).

Capítulo 9

Fig. 9.6. Histograma de distribución del ángulo q3 (A) y de q4 (B), para el TM-BSTHQ.

Algunos autores propusieron la utilización de la CSD, para estudiar las conformaciones más habituales presentadas por determinados fragmentos estructurales. La presencia de conformaciones inusuales, podría advertir la predisposición a polimorfismo. Por ejemplo, Goldbeck y col. postularon que el fármaco antiparkinsoniano rotigotina, poseyó conformaciones inusuales en la Forma I, que hubiera proporcionado una advertencia de polimorfos.³³⁸ Esto podría suponer la predisposición a polimorfismo por parte del **TM-BSTHQ**, que aunque se vio que las Formas I y II no eran polimorfos conformacionales, el compuesto tiene propensión a exhibir múltiples polimorfos.

Con fines comparativos, se llevó a cabo una búsqueda en la PDB,³²⁴ de ligandos con el fragmento sulfonamida, cristalizados con diferentes receptores. Dicha búsqueda, utilizando la palabra clave sulfonamida, arrojó 258 resultados de los cuales 229 (88,8 %) correspondían a sulfonamidas con el N primario (sulfas 1rias) y secundario (2rias), en tanto que 29 (11,2 %) de ellas poseían el N terciario (3rias). En este sentido, resultó interesante analizar la preferencia del ángulo ϕ_4 , C-C-S-N, de estas estructuras cristalizadas con receptores biológicos, es decir en sus conformaciones bioactivas. Cuando se analizó la tendencia de este ángulo en dichos ligandos, no se observó un comportamiento específico como en las sulfas que fueron cristalizadas solas (Fig. 9.3). Los ángulos se presentaron más dispersos y las frecuencias relativas difirieron, según la presencia o no de sustituyentes *orto* y, también, según se trate de sulfonamidas 1rias, 2rias o 3rias (Fig. 9.7). Esto explicaría que la conformación bioactiva está

Capítulo 9

Apéndice del Capítulo 5

influenciada por el entorno del receptor, llevando a producir diferentes ángulos de torsión sobre el ligando interactuante.

в

Fig. 9.7. Frecuencia del ángulo φ₄, C-C-S-N, en sulfonamidas de la PDB sin sustituyentes orto, s/o (A) y con sustituyentes orto, c/o (B).

Cuando analizamos el perfil entre la D N-plano y el ángulo φ₃, C-S-N-C, para sulfonamidas cristalizadas con receptores biológicos (Fig. 9.8) se obtiene, en la primera porción, un comportamiento similar al observado para las estructuras de la CSD (Fig. 9.4.A). Es decir, que cuando el ángulo φ₃ es menor a 90 °, se observa su disminución con el aumento de la piramidalización del N. El segundo grupo se muestra más disperso y menos poblado de estructuras en relación con lo observado por Stahl y col.²⁰⁹ para sulfonamidas presentes en la CSD, además no se presenta la tendencia reportada por dichos autores.

Capítulo 9

Fig. 9.8. Gráfico de la D N-plano versus el ángulo φ₃, C-S-N-C, para sulfonamidas de la PDB.

Las diferencias observadas anteriormente, tendrían su origen en las interacciones intermoleculares que establece un compuesto, en forma diferencial, a nivel de una red de empaquetamiento cristalino de moléculas de su mismo tipo o a nivel de un receptor biológico.

9.4.2. Interacciones intermoleculares de sulfonamidas

A partir del programa Isostar, se estudiaron las interacciones intermoleculares que presenta el grupo sulfonamida, a nivel de la CSD y de la PDB. Dado que, como se estudió en el Capítulo 5, las estructuras de los compuestos NBS-Het presentaron el N piramidal y planar, las dos conformaciones fueron analizadas. Ambas fueron elegidas como grupos centrales y el programa arrojó todos los grupos contactos con los que interaccionan dentro del rango de sus radios de van der Walls + 0,5 Å.

Si se analiza como grupo central a la sulfonamida con N piramidal, el programa Isostar arrojó los grupos contactos presentados en la Tabla 9.1. Allí se observa, que dicho grupo posee la capacidad de interaccionar con una amplia variedad de fragmentos, entre ellos C-H, N-H, O-H, con átomos de N, O, S y halógenos y con aminoácidos. En general, en la CSD se presentan mayores cantidades de interacciones, lo cual es lógico dado que dicha base de datos posee una mayor cantidad de depósitos (más de 6 veces la PDB). Aunque, una tendencia diferentes se observó en la PDB, para las interacciones del grupo sulfonamida con los fragmentos N-H y C=O de amida y O-H de agua, que superaron en cantidad a las de la CSD. Esto podría deberse a que dichos fragmentos son muy comunes en las macromoléculas biológicas, mientras que a nivel de la CSD solo se observan en compuestos peptidicos específicos y en hídratos.

Tabla 9.1. Grupos contactos que presentó el grupo central sulfonamida con el N piramidal (http://isostar.ccdc.cam.ac.uk/html/0116/frame_2.html).

This and a second	Treenstree schoning.		
	General	1962230	822036
		CSD	PDB
Cualquier C, N, O, S o H		9940	380
Cualquier enlace polar X-H (X = N, 0	D o S)	207	11
	C-H solamente		
	o in solution to	CSD	PDB
Cualquier C-H alguilico		4958	246
Metileno		889	39
Metilo		1930	104
Cualquier C-H aromático		4654	13
Carbono aromático sustituido		336	0
Fenilo		923	5
	N-H colamenta		
	14-11 Soldineitte	CSD	PDB
Cualquier N-H		84	20
Cualquier N-H no cargado		50	
Cualquier N-H cationico		15	1
N-H de amida		6	12
C(sp ²)/C(ar)-NH ₂ no cargado		9	•
RNH ₃ catiónico		0	1
	O H colomente		
	O-H solamente	CSD	PDB
Cualquier O-H		123	56
O-H de alcoholes		85	3
O-H de fenoles		14	2
Agua		13	51
	Ofree Nu O		
	outsituo	CSD	PDB
N sp ² o aromáticos		21	0
Ciano		6	o
R ₃ N piramidal		8	
R ₃ N planar no cargado		11	0
Cualquier O terminal		271	30
Cualquier C=O		119	30
C=O de amidas		1	19
C=O de esteres		42	0
Carboxilatos		0	1
Eteres alifaticos		4	0
Uniones O en esteres		39	0
O aromaticos		4	0
O de sulloxidos o sullonas		32	
NUO		36	
	Azufre		
6,211.01.71.210.0229		CSD	PDB
Cualquier S		41	9
Cualquier C=S		0	0
Tioéteres alifáticos		4	1
s aromaticos		Б	0
	Halógenos/Haluros		
	122	CSD	PDB
Cualquier C-F		13	0
Cualquier C-CI		106	0

Capítulo 9

	40 1	0
Aminoácidos		
	CSD	PDB
	2	6
		0
	•	2
	Aminoácidos	40 1 Aminoácidos CSD 2 *

CSD no presentó los resultados de la búsqueda.

Los gráficos de dispersión (*scatterplot*) más relevantes se muestran en la Tabla 9.2. A partir de ellos se observa claramente que la mayoría de las interacciones se establecen con los O del -SO₂ y en menor medida con el N.

Tabla 9.2. Diagramas de dispersión entre la sulfonamida piramidal y sus grupos contactos.

Grupo contacto	CSD	PDB
Cualquier C, N, O, S o H		
Cualquier enlace polar X-H (X = N, O o S)		

Si se analiza como grupo central a la sulfonamida con N planar, el programa Isostar arrojó los grupos contactos expuestos en la Tabla 9.3. Se obtuvo una tendencia similar a la observada con el N piramidal, con respecto a la cantidad de interacciones descriptas en una y otra base de datos.

Tabla 9.3. Grupos contactos que presentó el grupo central sulfonamida con el N planar (http://isostar.ccdc.cam.ac.uk/html/0116/frame_1.html).

(http://www.wart.do.artific.ortering.freeholder		
Gene	rai	000
Ordenia O N O S a H	0050	FUB
Cualquier C, N, O, S O H	9900	519
Cualquier enlace polar X-H (X = N, O o S)	136	182
C-H sola	mente	
0113010	CSD	PDB
Cualquier C-H alguilico	4996	254
Metilenn	694	62
Metilo	1282	54
Cualquier C-H aromático	3503	17
Carbono aromático sustituido	212	1
Fenilo	797	5
N-H sola	mente	
	CSD	PDB
Cualquier N-H	77	113
Cualquier N-H no cargado	43	
Cualquier N-H cationico	0	1
N-H de amida	9	76
C(sp ²)/C(ar)-NH ₂ no cargado	1	
RNH ₃ catiónico	0	1
O-H sola	mente	
	CSD	PDB
Cualquier O-H	58	69
O-H de alcoholes	42	18
O-H de fenoles	6	1
Agua	2	50
Otros	Nu O	
	CSD	PDB
N sp ² o aromáticos	17	0
Ciano	22	0
R _s N planar no cargado	12	0
Cualquier O terminal	374	45
Cualquier C=O	147	45
C=O de amidas	7	22
C=O de esteres	53	0
Éteres alifáticos	3	0
Uniones O en esteres	38	0
O aromáticos	2	0
O de sulfóxidos o sulfonas	2	0
Nitro	43	•
Azut	fre	
	CSD	PDB
Cualquier S	66	8
Cualquier C=S	4	0
Tioeteres alifáticos	4	4
S aromáticos	5	0
Halógenos	/Haluros	
	CSD	PDB
Cualquier C-F	74	0
Cualquier C-Cl	53	0
Cualquier C-Br	41	0

Capítulo 9

	Aminoácidos		
		CSD	PDB
CONH ₂		1	18
Imidazol			2
Guanidinio			14

* CSD no presentó los resultados de la búsqueda.

Los gráficos de dispersión (scatterplot) más relevantes se muestran en la Tabla 9.4. Al igual que en la CSD, la mayoría de los contactos intermoleculares se establecen con los O del sulfonilo y no con el N.

Tabla 9.4. Diagramas de dispersión entre la sulfonamida planar y sus grupos contactos.

Grupo contacto	CSD	PDB
Cualquier C, N, O, S o H		
Cualquier enlace polar X-H (X = N, O o S)		

Además, se analizó al anillo fenilo, como grupo central y su capacidad de interaccionar con diferentes grupos contactos, entre los cuales se destacan las interacciones C-H--- π , que se localizan por encima y por debajo del plano del anillo (Fig. 9.9.A). También interviene en interacciones N-H--- π y C-O--- π e incluso como donor de H en enlaces C-H---O y C-H---N (Fig. 9.9.B).

Capítulo 9

Apéndice del Capítulo 5

Fig. 9.9. A) Gráfico de dispersión (mostrado como superficie de contorno) de la interacción C-H--π. B) Gráfico de dispersión de la interacción entre cualquier enlace polar X-H (X = N, S o O) y el anillo fenilo.

A partir del programa Superstar se generaron mapas de puntos de interacción alrededor de los seis derivados NBS-Het, utilizando información de las interacciones intermoleculares cristalográficas.³³² Los grupos funcionales estudiados fueron los O alcohólicos, los O de agua, los O carbonílicos, los N no cargados, los C metílicos y los C aromáticos.

Para los seis derivados se observó que la interacción principal de los O alcóholicos y los de agua (O-H actuando como donores de puente de H) se da con los O de los -SO₂ (como aceptores). En menor medida se produjeron contactos con los C-H alifáticos y en el caso puntual del *p*-NO₂-BSTHQ, con el grupo -NO₂ (Fig. 9.10.A). Los O carbonílicos, se disponen rodeando a los anillos fenilos e interaccionando, como aceptores, con los enlaces C-H. Además, se contactan con los C-H alifáticos (Fig. 9.10.B). Los N no cargados se ubican cerca de los -SO₂ en los seis derivados estudiados, contactándose en la forma de N-H como donores de EPH. En el derivado *p*-NO₂-BSTHQ también se observa uniones puntuales con el grupo - NO₂ (Fig. 9.10.C). Los C metilicos y aromáticos interaccionan principalmente con los -SO₂, a través de EPH débiles y con C-H, mediante enlaces de van der Walls (Fig. 9.10.D).

Fig. 9.10. Mapas de interacciones entre: A) p-NO₂-BSTHQ y los O alcohólicos, B) BSBZT y los O carbonílicos, C) p-NO₂-BSTHQ y los N no cargados y D) TM-BSTHQ y los C metílicos.

9.4.3. Interacciones ligando-receptor

Por otro lado, se seleccionaron algunos ligandos con N terciarios, que fueron cristalizados con diferentes proteínas y se analizaron que tipos de interacciones se presentan en cada caso. Además, se midió la D N-plano, para inspeccionar si se presenta alguna tendencia en este sentido (Tabla 9.5). Se observó que, en general, los O del -SO₂ actúan como aceptores de H, interaccionando con aminoácidos donores como Leu, Gly, Tyr, lle y Ala, aunque en otros casos no se establecen interacciones con este grupo. El fenilo unido al -SO₂ se ha identificado en uniones con restos hidrotóbicos de Ile, Ala, Gly, Phe, Leu e His. Además, se establecen interacciones $\pi - \pi$ stacking con Phe, como sucede en 8 (Tabla 9.5). Este enlace también se observó en el fenilo del heterociclo de THQ y de benzodiacepinas con los aminoácidos Phe y Tyr. En cuanto al grado de piramidalización adoptado por el N del ligando, el comportamiento es muy variado, con casos donde el N es prácticamente planar (5, 6, 11 y 12) y en otros donde se presenta alta piramidalización (1 y 7).

Capítulo 9

Tabla 9.5. Resumen de interacciones ligando-receptor (L-R).

Capítulo 9

* Enzima convertidora de α-FNT (Factor de necrosis tumoral). La inhibición de TACE es considerado un mecanismo atractivo para controlar la liberación de α-FNT y una terapia viable para el tratamiento de artritis rematoidea y de enfermedad de Crohn (causadas por la sobreexpresión de α-FNT, una citoquina pro-inflamatoria). El sitio activo es homólogo al de las MMP, por lo que un gran número de inhibidores de MMP, mostraron buena inhibición de TACE. El diseño de ligandos selectivos es un gran desafio.³³⁹ Sulfonamidas se hallan relacionadas a ambos receptores.

⁶ Proteína farnesiltransferasa. Inhibidores de PFT han mostrado eficacia como agentes antitumorales y también como agentes antiparasitarios.

⁶ Geranilgeraniltransferasa. La farnesiltransferasa y la geranilgeraniltransferasa I son proteínas muy similares. Están formadas por dos subunidades, la subunidad alfa, que es común para ambas enzimas, y la subunidad beta, cuya identidad de secuencias es tan solo del 25 %.

^d Quinasas dependientes de ciclina. Inhibidores de la CDK2, evitan la progresión del ciclo celular, pudiendo reducir la sensibilidad del epitelio de muchos agentes antitumorales y, por ello, representa una estrategia como prevención de la alopecia inducida por quimioterapia.

^e Receptores X del hígado. El antagonismo de las dos isoformas altamente similares de LRX-α y β, se plantea como tratamiento de hipertrigliceridemia, un factor de riesgo de la ateroesclerosis cardiovarcular.³⁴⁴

¹ Metalloproteinasas de matriz. Las MMP son una familia de proteasas extracelulares, que se convirtieron en un *target* prometedor en la búsqueda de terapias antitumorales. Una gran variedad de aductos MMPinhibidor han sido cristalizados, muchos de los cuales contienen al grupo sulfonamida (17 de un total de 64).³²³

9.5. Conclusiones

A partir del análisis de las sulfonamidas presentes en la CSD, Stahl y col.²⁰⁹ reportaron que en el enlace N-S y C-S, tanto el par de electrones libres del N como el orbital p del carbono

aromático, dividen en dos al enlace O=S=O. Al analizar la tendencia del ángulo φ₄, C-C-S-N, en ausencia de sustituyentes *orto* (s/o), se observó un pico máximo a 90 °. Los átomos de O del sulfonilo se situaron a un lado y otro del anillo fenilo (con ángulos de torsión entre 60 ° y 120 °). Mientras que con sustituyentes *orto* no H (c/o), el pico máximo se desplazó a alrededor de 70 °. Stahl y col.²⁰⁹ también estudiaron el ángulo de torsión φ₃, C-S-N-C, y la hibridización del átomo de N. El ángulo C-S-N-C fue, generalmente, menor a 90 ° y disminuyó con el aumento de la piramidalización del N (como D N-plano).

La tendencia del ángulo ϕ_4 , C-C-S-N en las conformaciones bioactivas de sulfonamidas, no presentó un comportamiento específico como en la CSD. Los ángulos se presentaron más dispersos y las frecuencias relativas difirieron, según la presencia o no de sustituyentes *orto* y, también, según se trate de sulfonamidas 1rias, 2rias o 3rias.La relación entre el ángulo ϕ_3 , C-S-N-C y la D N-plano presenta, en la primera porción, un comportamiento similar al observado para las estructuras de la CSD. Es decir, que cuando el ángulo ϕ_3 es menor a 90 °, se observa su disminución con el aumento de la piramidalización del N.Las diferencias observadas anteriormente, tendrían su origen en las interacciones intermoleculares que establece un compuesto, en forma diferencial, a nivel de una red de empaquetamiento cristalino de moléculas de su mismo tipo o a nivel de un receptor biológico.

Con el programa **Mogul** se observó que el *p*-NO₂-BSTHQ presentó valores usuales, tanto en el ángulo ϕ_3 (81,9 °) como en el ϕ_4 (91,6 °), ya que se ubican en el centro del histograma. Un comportamiento similar se obtiene para los derivados **BSTHQ** y **BSTHQa**, con valores de ϕ_3 de 65,8 ° y 77,4 ° y de ϕ_4 , de 77,4 ° y 77,6 °, respectivamente. En cuanto al **TM-BSTHQ**, el ángulo ϕ_3 (141,4 °) presentó un valor inusual para este tipo de fragmentos, que se alejó del área del histograma. En cambio el valor de ϕ_4 (69,7 °) resultó ser habitual.

Con el **Isostar**, se concluyó que las sulfonamidas con N piramidal y planar interaccionan con una amplia variedad de fragmentos, entre ellos C-H, N-H, O-H, con átomos de N, O, S y halógenos y con aminoácidos. La mayoría de las interacciones se establecen con los O del -SO₂ y en menor medida con el N de la sulfonamida. A su vez el anillo fenilo, como grupo central, demostró capacidad de interaccionar con diferentes grupos contactos, entre los cuales se destacan las interacciones C-H···π, N-H···π y C-O···π e incluso como donor de H en enlaces C-H···O y C-H···N.

Con el programa Superstar, se vio que la principal interacción de los O alcóholicos y los de agua (O-H actuando como donores de puente de H) se dio con los O de los -SO₂ (como aceptores).Los O carbonílicos, se dispusieron rodeando a los anillos fenilos e interaccionando, como aceptores, con los enlaces C-H. Los N no cargados se ubicaron cerca de los -SO₂ en los seis derivados estudiados, contactándose como N-H donores de EPH. Los C metilicos y aromáticos interaccionaron principalmente con los -SO₂, a través de EPH débiles y con C-H, mediante interacciones de van der Walls.

En losligandos con N terciarios cristalizados con proteínas se vio que los O del -SO₂ actuaron como aceptores de H, interaccionando con aminoácidos donores como Leu, Gly, Tyr, lle y Ala. Por otro lado, el fenilo unido al -SO₂ se ha identificado en interacciones con restos hidrofóbicos de Ile, Ala, Gly, Phe, Leu e His. Además, es capaz de establecer interacciones $\pi \cdots \pi$ stacking con Phe. Las conformaciones bioactivas exhibieron disposiciones donde el N es prácticamente planar y en otros donde se presenta alta piramidalización.

10. BIBLIOGRAFÍA

 Huang LF, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004;56:321-34.

 Jorgensen WL, Duffy EM. Prediction of drug solubility from structure. Adv Drug Deliv Rev. 2002;54:355-66.

 Wassvik CM, Holmen AG, Bergstrom CA, Zamora I, Artursson P. Contribution of solid-state properties to the aqueous solubility of drugs. Eur J Pharm Sci. 2006;29:294-305.

 Fontana D, Uema SN, Mazzieri MR. Medicamentos huérfanos: una definición. Acta Farm Bon. 2005;24:449-52.

 Fontana D. Estudios Farmacoepidemiológicos de Medicamentos No Disponibles en Argentina. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral disponible en la FCQ-UNC; 2011.

 Office of Rare Diseases, National Institute of Health [database on the Internet]. Available from: http://rarediseases.info.nih.gov/ord.

 Wermuth CG. The Practice of the Medicinal Chemistry. 3era ed. Wermuth CG, editor. New York: Academic Press; 2008.

 Fontana D, Uema SN, Mazzieri MR. Medicamentos Huérfanos: Una Revisión Necesaria Para Un Problema Sanitario No Resuelto. Acta Farm Bon. 2005;24:123-9.

 Wilson LS, Strosberg AM, Barrio K. Cost-effectiveness of Chagas disease interventions in Latin America and the Caribbean: Markov models. Am J Trop Med Hyg. 2005;73:901-10.

 Silber AM, Colli W, Ulrich H, Manso Alves MJ, Pereira CA. Amino acid metabolic routes in Trypanosoma cruzi: possible therapeutic targets against Chagas' Disease. Curr Drug Targets Infect Disord. 2000;5:53-64.

 Werbovetz KA. Target-based drug discovery for malaria, Ieishmaniasis, and trypanosomiasis. Curr Med Chem. 2000;7:835-60.

 Barry CE, Slayden RA, Sampson AE, Lee RE. Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem Pharmacol. 2000;59:221-31.

13. Farmacopea Argentina, Codex Medicamentarius Argentino, 2003.

 Arnon SS. Creation and development of the public service orphan drug Human Botulism Immune Globulin. Pediatrics. 2007;119:785-9.

 Rang HP. The drug discovery process: general principles and some case histories. In: Chorghade MS, editor. Drug Discovery and Development: John Wiley & Sons, Inc.; 2006.

 Cabieses B, Espinoza MA. La investigación traslacional y su aporte para la toma de decisiones en políticas de salud. Rev Peru Med Exp Salud Publica. 2011;28:288-97.

17. Pardridge WM. Translational science: what is it and why is it so important? DDT. 2003;8:813-5.

 Lander B, Atkinson-Grosjean J. Translational science and the hidden research system in universities and academic hospitals: A case study. Soc Sci Med. 2011;72:537-44.

Jorgensen WL. The Many Roles of Computation in Drug Discovery. Science. 2004;303:1813-8.

 Pagliero RJ. El grupo bencenosulfonilo en el diseño racional de drogas. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral disponible en la FCQ-UNC; 2010.

 Bürger's Medicinal Chemistry and Drug Discovery. Fifth ed. Wolff ME, editor. New York: Wiley Interscience; 1995-1997.

 van der Waterbeemd H. Structure-Property Correlations in Drug Research: Academic Press; 1996.

 Duchowicz PR, Talevi A, Castro EA, Bruno Blanch LE, editors. Nuevo modelo QSPR para la predicción de solubilidad acuosa de compuestos drug-like. Congreso XXVII Congreso Argentino de Química; 2008; San Miguel de Tucumán, Argentina.

 Caldwell GW, Ritchie DM, Masucci JA, Hageman W, Yan Z. The New Pre-Preclinical Paradigm: Compound Optimization in Early and Late Phase Drug Discovery Curr Med Chem. 2001;1:353-66.

Kerns EH, Di L. Pharmaceutical profiling in drug discovery. Drug Discov Today. 2003;8:316-23.

 Han C, Wang B. Drug Delivery: Principles and applications. Wang B, Siahaan T, Soltero RJ, editors: Wiley & Sons, Inc; 2005.

 Kerns EH, Di L. Drug-like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization 2008.

 Mannhold R, Kubinyi H, Folkers G. Molecular Drug Properties Measurement and Prediction. Mannhold R, Kubinyi H, Folkers G, editors: Wiley-VCH; 2008.

 Kassuha D. Formas Amorfas y cristalinas de compuesto de interes farmacéutico: Caracterización del Estado Sólido y Relevancia Biofarmacéutica. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral disponible en la FCQ-UNC; 2011.

 Wang JM, Hou TJ. Recent advances on in silico ADME modeling. Annu Rep Comput Chem. 2009;5:101-27.

 Duchowicz PR, Castro EA. QSPR studies on aqueous solubilities of drug-like compounds. Int J Mol Sci. 2009;10:2558-77.

 Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

 Wang J, Hou TJ. Recent Advances on Aqueous Solubility Prediction. Comb Chem High Throughput Screen. 2011;14:1-11.

 Faller B, Ertl P. Computational approaches to determine drug solubility. Adv Drug Deliv Rev. 2007;59:533-45.

 Bergstrom C, Luthman K, Artursson P. Accuracy of calculated pH dependent aqueous drug solubility. Eur J Pharm Sci. 2004;22:388-98.

 Bhattachar SN, Deschenes LA, Wesley JA. Solubility: it's not just for physical chemists. Drug Discov Today. 2006;11:1012-8.

 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3-26.

 Herrera MO. Sistemas dispersos homogéneos: Soluciones. Pharmaceutical Technology Department, Faculty of Pharmacy, Barcelona.

 Babu NJ, Nangia A. Solubility Advantage of Amorphous Drugs and Pharmaceutical Cocrystals. Cryst Growth Des. 2011;11:2662-79.

 Grant DJW, Higuchi T. Solubility Behavior of Organic Compounds. Wiley, editor. New York 1990.

41. James KC. Solubility and related properties. New York: Marcel Deekker, Inc.; 1986.

 Yalkowsky SH. Techniques of Solubilization of Drugs. Yalkowsky SH, editor. New York: Marcel Dekker; 1981.

 Yalkowsky SH, Theodore JR. Techniques solubilization of drugs. Marcel Dekker I, editor. New York 1981.

 Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development Adv Drug Deliv Rev. 2007;59:546–55.

 Bhattachar SN, Deschenes LA, Wesley JA. Solubility: it's not just for physical chemists. Drug Discovery Today. 2006;11:1012-8.

 Li S, He H, Parthiban L, Yin H, Serajuddin ATM. IV-IVC considerations in the development of immediate-release oral dosage form. J Pharm Sci. 2005;94:1396-417.

 Arnidon GL, Lennemäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413-20.

 FDA/CDER. Guidance for Industry: Waiver of in vivo Bioavailability and Bioequivalence Sudies for Inmediate Release Solid Oral Dosage Forms Containing Certain Active Moieties/Active Ingredients Based on a Biopharmaceutics Classification System. 2000.

 Organization WH. Working Document QAS/04.109. Proposal to Waive Bioequivalence Requirements for the WHO Model List of Essential Medicines Immediate Release, Solid Oral Dosage Forms. 2005.

50. Tong W. Pharmaceutical Preformulation. In: Utah Uo, editor.: Novartis Pharmaceuticals Corporation; 2006.

 Serajuddin ATM, Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603-16.

 Lipinski CA. Solubility in water and DMSO: issues and potential solutions. In: Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, B. W, editors. Pharmaceutical Profiling in Drug Discovery for Lead Selection. Arlington, Virginia: AAPS Press; 2004. p. 93-125.

 Curatolo W. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm Sci Technol To. 1998;1:387–93.

 Stuart M, Box K. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases. Anal Chem. 2005;77:983-90.

 Rodriguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodriguez-Hornedo N. General principles of pharmaceutical solid polymorphism: A supramolecular perspective. Adv Drug Deliv Rev. 2004;56:241-74.

 Lipinski CA. Aqueous solubility in discovery, chemistry, and assay changes. Drug Bioavailability. 2003;18:215-31.

 Fini A, Fazio G, Fernandez-Hervas MJ, Holgado MA, Rabasco AM. Influence of crystallization solvent and dissolution behavior for a diclofenac salt. Int J Pharm. 1995;121:19-26.

58. Pudipeddi M, Serajuddin A. Trends in solubility of polymorphs. J Pharm Sci. 2005;94:929-39.

 Thoma K, Ziegler I. Development of an automated flow-trough dissolution system for poorly soluble drugs with poor chemical stability in dissolution media. Pharmazie. 1998;53:784-90.

 McGovern SL, Caselli E, Grigorieff N, Shoichet BK. A common mechanism underlying promiscuous inhibitors from virtual and highthroughput screening. J Med Chem. 45:1712-22.

 Taboada P, Gutierrez-Pichel M, Mosquera V. Effects of self-aggregation on the dehydration of an amphiphilic antidepressant drug in different aqueous media. J Chem Phys. 2004;298:65-74.

 Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321:1-7.

 Alsenz J, Meister E, Haenel E. Development of a partially automated solubility screening (PASS) assay for early drug development. J Pharm Sci. 2007;96:1748-62.

 Wang Z, Burrell L, Lambert W. Solubility of E2050 at various pH: a case in which apparent solubility is affected by the amount of excess solid. J Pharm Sci. 2002;91:1445-55.

 Land L, Li P, Bummer P. The influence of water content of triglyceride oils on the solubility of steroids. Pharm Res. 2005;22:784-8.

 Semin DJ, Malone TJ, Paley MT, Woods PW. A novel approach to determine water content in DMSO for a compound collection repository. J Biomol Screen. 2005;10:568–72.

 Lindenberg M, Wiegand C, Dressman JB. Comparison of the adsorption of several drugs to typical filter materials. Dissolut Technol. 2005;12:22-5.

 Pan L, Ho Q, Tsutsui k, Takahashi L. Comparison of chromatographic and spectroscopic methods used to rank compounds for aqueous solubility. J Pharm Sci. 2001;90:521-9.

 Llinas A, Glen RC, Goodman JM. Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements? J Chem Inf Model. 2008;48:1289-303.

 Jorgensen WL, Duffy EM. Prediction of drug solubility from structure. Advanced Drug Delivery Reviews. 2002;54:355-66.

 Hou TJ, Xia K, Zhang W, Xu XJ. ADME evaluation in drug discovery. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci. 2004;44:266-75.

Dearden JC. In silico prediction of aqueous solubility. Exp Opin Drug Discovery. 2006;1:31-52.

 Wang JM, Hou TJ, Xu XJ. Aqueous solubility prediction based on weighted atom type counts and solvent accessible surface areas. J Chem Inf Model. 2009;49:571-81.

 Balakin KV, Savchuk NP, Tetko IV. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions. Cur Med Chem. 2006;13:223-41.

 Jouyban A. Review of the cosolvency models for predicting solubility of drugs in watercosolvent mixtures. J Pharm Pharmaceut Sci. 2008;11:32-58.

 Stahl PH. Preparation of water-soluble compounds through salt formation. In: Wermuth C. editor. The Practice of Medicinal Chemistry. 2da ed2003.

 Cabrera S, Díez-Torrubia A. Profármacos: pasado, presente y futuro. An Quím. 2010;106:207-14.

 Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and Dissolution Profile Assessment in Drug Discovery. Drug Metab Pharmacokinet. 2007;22:225-54.

 Johnson SR, Zheng W. Recent Progress in the Computational Prediction of Aqueous Solubility and Absorption. AAPS. 2006;8:27-40.

 Hancock BC, Parks M. What is the True Solubility Advantage for Amorphous Pharmaceuticals? Pharm Res. 2000;17:397-404.

 Pose-Villarnovo B, Perdomo-López I, Echezarreta-López M, Schroth P, Estrada E, Torres-Labandeira JJ. Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxipropyl-β-cyclodextrin. Characterization of the interaction in solution and in solid state. Eur J Pharm Sci. 2001;13:325-31.

 Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007;123: 78-99.

 Espinosa BF, Hernández GJ. Formación, evaluación y caracterización del complejo de inclusión piroxicam/hidroxipropil-β-ciclodextrina. Rev Cienc Farm. 2005;36:18-24.

 Winters CS, York P, Timmins P. Solid state examination of a gliclazide:β-cyclodextrin complex. Eur J Pharm Sci. 1997;5:209-14.

 Martin Del Valle EM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033-46.

 Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem Rev. 1998;98:1743-54.

 Dressman J, Reppas C. Drug solubility: how to measure it, how to improve it. Adv Drug Deliv Rev. 2007;59 531-2.

 Jouyban A, Fakhree MAA, Shayanfar A. Solubility Prediction Methods for Drug/Drug Like Molecules. Recent Patents Chem Eng. 2008;1:220-31.

 Hecq J, Deleers M, Fanara D, Vranckx H, Boulanger P. Le Lamer S, et al. Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base. Eur J Pharm Biopharm. 2006;64:360-8.

 Pagliero RJ, Lusvarghi S, Pierini AB, Brun R, Mazzieri MR. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4tetrahydroquinolines. Bioorg Med Chem. 2010;18:142-50.

 Pagliero RJ, Pierini AB, Brun R, Mazzieri MR. Design, synthesis and 3-D characterization of 1benzenesulfonyl-1,2,3,4-tetrahydroquinolines as lead scaffold for antiparasitic drug. Lett Drug Des Discov. 2010;7:461-70.

 Becerra MC, Guiñazú N, Hergert L, Pellegrini A, Mazzieri MR, Gea S, et al. In vitro activity of N-benzenesulfonylbenzotriazole on Trypanosoma cruzi epimastigote and trypomastigote forms. Exp Parasitol. 2012;131:57-62.

 Remko M. Theoretical Study of Molecular Structure and Gas-Phase Acidity of Some Biologically actives sulfonamides. J Phys Chem A. 2003;107:720-5.

 Barczynski P, Ratajczak-Sitarz M, Katrusiak A, Szafran M. Structure of 1-methyl-6oxyquinolinium betaine dihydrate studied by X-ray diffraction, DFT calculations, vibrational and NMR spectra. J Mol Struct. 2010;976:87-96.

 Casini A, Scozzafava A, Mastrolorenzo A, Supuran CT. Sulfonamides and Sulfonylated Derivatives as Anticancer Agents. Curr Cancer Drug Targets. 2002;2:55-75.

 Hergert LY. Diseño y Desarrollo de Fármacos y Medicamentos para Enfermedades Desatendidas. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral disponible en la FCQ-UNC; 2009.

 Hergert LY, Nieto M, Becerra MC, Albesa I, Mazzieri MR. Synthesis of N-Benzenesulfonylbenzotriazole Derivatives, and Evaluation of their Antimicrobial Activity. Lett Drug Des Discov. 2008;5:313-8.

 Nieto MJ, Alovero F, R.H. M, Mazzieri MR. A new class of fluoroquinolones: benzenesulfonamidefluoroquinolones (BSFQs), antibacterial activity and SAR studies. Eur J Med Chem. 1999;34:209-14.

 Alovero F, Nieto M, Mazzieri MR, Then R, Manzo RH. Mode of Action of Sulfanilyl Fluoroquinolones. Antimicrob Ag & Chemother. 1998;42:1495-8.

100. Nieto MJ, Alovero FL, Manzo RH, Mazzieri MR. Benzenesulfonamide analogs of fluoroquinolones. Antibacterial activity and QSAR studies. Eur J Med Chem. 2005;40:361-9.

 Miana G. Búsqueda de compuestos antiparasitarios a partir de una quimioteca de N-Bencenosulfonilos de Heterociclos. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral; En ejecución.

102. Villegas Venencia N. Diseño y desarrollo de fármacos para enfermedades huérfanas. Córdoba: Universidad Nacional de Córdoba; Doctor; En ejecución.

103. Bemis GW, Murcko MA. J Med Chem. 1996;39:2887-93.

104. Bemis GW, Murcko MA. J Med Chem. 1999;42:5095-9.

 Hann M, Hudson B, Lewell X, Lifely R, Miller L, Ramsden N. J Chem Inf Comput Sci. 1999;39:897-902.

 Rishton GM. Reactive compounds and in vitro false positives in HTS. Drug Discov Today. 1997;2:382-4.

 Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, et al. J Med Chem. 2004;47:224-32.

108. Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303:1813-8.

 Pagliero RJ, Lusvarghi S, Pierini AB, Brun R, Mazzieri MR. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4tetrahydroquinolines. Bioorg Med Chem. 2010;18:142-50.

110. Martinez SR. Actividad antibacteriana y citotoxicidad de antibioticos de uso clínicos y de nuevos derivados de síntesis. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral; En ejecución.

Byrn S, Pfeifer R, Stowell JF. Solid-State Chemistry of Drugs. 2nd ed. Indiana: SSCI, Inc; 1999.
David DD, Carriero M, Carriero M, State Chemistry MCS, edited 2006.

Boyle PD. Growing X-ray Quality Crystals. In: University NCS, editor.2006.

 Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodríguez-Hornedo N. General Principles of Pharmaceutical Solid Polymorphysm; a Supramolecular Perspective. Adv Drug Deliv Rev. 2004;56:241-74.

 Ford JL, Timmins P. Pharmaceutical Thermal Analysis. Techniques and Applications. Ellis Horwood Limited CC, editor 1989.

 Clas S, C.R. D, B.C. H. Calorimetry in Pharmaceutical Research and Development. Encyclopedia of Pharmaceutical Technology: Marcel Dekker, Inc.; 2002.

116. Farmacopea USP 24-NF 19, 1999.

 Bunaciu AA, Aboul-Enein HY, Fleschin S. Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical Drugs Analysis. Appl Spectrosc Rev. 2010;45:206-19.

USP 31. Capítulo General, Pruebas Físicas, <776> Microscopía Óptica., 2008.

 Haleblian JK. Characterization of Habits and Crystalline Modifications of Solids and their Pharmaceutical Applications. J Pharm Sci. 1975;64:1269-88.

 Griesser UJ, Stowell JG. Solid State Analysis and Polymorphism. In: Lee DC, Webb M, editors. Pharmaceutical Analysis. Oxford: Blackwell; 2003. p. 240-94.

121. Bultinck P, Winter HD, Langenaeker W, Tollenaere JP. Computational Medicinal Chemistry for Drug Discovery. Bultinck P, Winter HD, Langenaeker W, Tollenaere JP, editors: Marcel Dekker; 2004.

 Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry. van de Waterbeemd H, Testa B, Folkers G, editors: Wiley-VCH; 1997.

 Oliveira AF, Seifert G, Heinec T, Duarte HA. Density-Functional Based Tight-Binding: an Approximate DFT Method. J Braz Chem Soc. 2009;20:1193-205.

 Doucet J-P, Weber J. Computer-Aided Molecular Design. Theory and Applications Elsevier; 1996.

 Patrick L. An Introduction to Medicinal Chemistry. 4º ed. N. York: Oxford University Press Inc; 2009.

 Bertran Rusca J, Branchadell Gallo V, Moreno Ferrer M, Sodupe Roure M. Química cuántica: fundamentos y aplicaciones computacionales. Madrid: Sintesis; 2000.

 Leach AR. Molecular Modelling: Principles and Applications. 2nd, editor. New York: Prentice Hall; 2001.

 Leach AR, Molecular Modeling, Principles and Applications. Inglaterra: Adison Wesley Longman Limited; 1996.

 Pinto Vitorino G. Mecanismo de acción de las Quinolonas antibacterianas. Comodoro Rivadavia: Universidad Nacional de la Patagonia San Juan Bosco; Tesis Doctoral disponible en la FCQ-UNC; 2007.

 Mirza S. Crystallization as a Tool for Controlling and Designing Properties of Pharmaceutical Solids. Finland: University of Helsinki; 2007.

 Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, Salts, and Cocrystals: What's in a Name? Cryst Growth & Des. 2012;12:2147–52.

132. Brittain HG. Polymorphism in Pharmaceutical Solids. 2nd ed. New York 2009.

 FDA/CDER. Guidance for Industry, ANDAs: Pharmaceutical Solid Polymorphism: Chemistry, Manufacturing, and Controls Information. 2007 [02/03/2013]; Available from: www.fda.gov/cder/guidance/index.htm.

 Guideline: Specifications for new drug substances and products: Chemical substances, October, 1999.

135. Bernstein J. Polymorphism in Molecular Crystals. Press C, editor. Oxford 2002.

 Keraliya RA, Soni TG, Thakkar VT, Gandhi TR. Effect of Solvent on Crystal Habit and Dissolution Behavior of Tolbutamide by Initial Solvent Screening. Dissolut Technol. 2010;17:16-21.

 Haleblian J. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J Pharm Sci. 1975;64:1269-88.

 Taylor Florence A, Attwood D. Solids. Physicochemical Principles of Pharmacy. 4th ed: Pharmaceytical Press; 2006.

139. Crystal Habits. [05/01/2013]; Available from: http://www.galleries.com/minerals/property/habits.htm#phantome.

140. Nangia A. Conformational Polymorphism in Organic Crystals. Acc Chem Res. 2008;41:595-604.

141. Haleblian J, McCrone W. Pharmaceutical applications of polymorphism. J Pharm Sci. 1969;58:911-29.

142. Threlfall TL. Analysis of organic polymorphs. A review. Analyst. 1995;120:2435-60.

 Grant DJW, Brittain HG. Solubility of pharmaceutical solids. In: Brittain HG, editor. Physical Characterization of Pharmaceutical Solids. New York: Marcel Dekker, Inc.; 1995.

 Brittain HG, Grant DJW. Effects of polymorphism and solid-state solvation on solubility and dissolution rate. In: Brittain HG, editor. Polymorphism in Pharmaceutical Solids. New York: Marcel Dekker, Inc.; 1999. p. 279-330.

 Yu L, Stephenson GA, Mitchell CA, Bunnell CA, Snorek SV, Bowyer JJ, et al. Thermochemistry and conformational polymorphism of a hexamorphic crystal system. J Am Chem Soc. 2000;122:585-91.

 Sun CC, Grant DJW. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm Res. 2001;18:274-80.

 Sun CC, Grant DJW. Improved tableting properties of phydroxybenzoic acid by water of crystallization: a molecular insight. Pharm Res. 2004;21:382-6.

 Yuan H, Chen D, Fan L. Influencing factors on chemical stability of nitrendipine polymorphs. Zhongguo Yiyuan Yaoxue Zazhi. 2004;24:691-3.

 Morissette SL, Almarsson OA, Peterson ML, Remenar JF, Read MJ, A.V. L, et al. Highthroughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56:275-300.

 Yu L. Amorphous Pharmaceutical Solids: Preparation, Characterization and Stabilization. Adv Drug Deliv Rev. 2001;48:27-42. Stahl PH, Wermuth CG. Handbook of pharmaceutical salts: properties, selection, and use. Stahl PH, Wermuth CG, editors. New York: Wiley-VCH; 2002.

152. Pudipeddi M, Serajuddin ATM, Grant DJW, Stahl PH. Solubility and dissolution of weak acids, bases, and salts. In: Stahl PH, Wermuth CG, editors. Handbook of Pharmaceutical Salts: Properties, Selection, and Use. Weinheim: Wiley-VCH; 2002. p. 19-39.

 FDA US. Regulatory Classification of Pharmaceutical Co-Crystals. 2013; Available from: http://www.fda.gov/downloads/Drugs/Guidances/UCM281764.pdf.

154. Caira MR. Sulfa Drugs as Model Cocrystal Formers. Mol Pharm. 2007;4:310-6.

155. Sekhon BS. Pharmaceutical co-crystals - a review. Ars Pharm. 2009;50:99-117.

156. Stanford B. Pharmaceutical Statistics Practical and Clinical Applications. 3rd ed.

157. FI T. Teoría estadística y aplicaciones Kapelusz, editor. Buenos Aires Argentina 1971.

158. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat12. .

2012 ed. Córdoba2012. p. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

159. salud Md. Administración Nacional de Medicamentos, Alimentos y Tecnología Médica, ANMAT. Buenos Aires Argentina2013 [cited 2013 06/01/2013]; Available from: http://www.anmat.gov.ar.

160. Yang SS, Guillory JK. Polymorphism in sulfonamides. J Pharm Sci. 1972;61:26-40.

 Lang M, Grzesiak AL, Matzger AJ. The use of polymer heteronuclei for crystalline polymorph selection. J Am Chem Soc. 2002;124:14834-5.

 Cunha S. Métodos Simples de formacao de monocristal de Substancia Organica para Estudo Estrutural por Difracao de Raios X. Química Nova. 2008;31:906-9.

 Shmeis RA, Krill SL. Weak solid-solid transitions in pharmaceutical crystalline solids detected via thermally stimulated current. Thermochim Acta. 2005;427:61-8.

 Price CP, Grzesiak AL, Matzger AJ. Crystalline Polymorph Selection and Discovery with Polymer Heteronuclei. J Am Chem Soc. 2005;127:5512-7.

 Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213-21.

 Giacovazzo C, Monaco HL, Viterbo D, Scordari F, Gilli G, Zanotti G, et al. Fundamentals of Crystallography. Giacovazzo C, editor: Oxford University Press; 1992.

167. Faudone SN. Estudio del estado sólido de fármacos escasamente solubles en agua y su impacto sobre la equivalencia in vitro. Córdoba: Universidad Nacional de Córdoba; Tesis de Maestría disponible en la FCQ-UNC; 2009.

 Glendening ED, Badenhoop JK, Reed AE, Carpenter JA, Bohmann JA, Morales CM, et al. NBO Version 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison2001.

 Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl Chem. 2011;83:1619-36.

170. Parthasarathi R, Subramanian V. Characterization of hydrogen bonding: from van der Waals interactions to covalency. In: Grabowski S, editor. Hydrogen Bonding—New Insights: Springer; 2006.

171. Martínez A. Do Anionic Gold Clusters Modify Conventional Hydrogen Bonds? ? The Interaction of Anionic Aun (n = 2-4) with the Adenine-Uracil Base Pair. J Phys Chem A. 2009;113:1134-40.

 Schwalbe C. June Sutor and the C-H ··· O hydrogen bonding controversy. Crystallogr Rev. 2012;1–16.

 Desiraju GR. C-H...O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chem Commun (Camb). 2005;2995-3001.

Desiraju GR. The C-H-O Hydrogen Bond in Crystals: What Is It? Acc Chem Res 1991;24:290 6.

 Taylor R, Kennard O. Crystallographic Evidence for the Existence of C-H-0, C-H-N, and C-,H.-Cl Hydrogen Bonds. J Am Chem Soc. 1982;104:5063-70.

 Guvench O, MacKerell J, A. D. Quantum Mechanical Analysis of 1,2-Ethanediol Conformational Energetics and Hydrogen Bonding. J Phys Chem A. 2006;110: 9934-9.

 Ohwada T, Okamoto I, Shudo K, Yamaguchi K. Intrinsic Pyramidal Nitrogen of N-sulfonamides. Tetrahedron Lett. 1998;39:7877-80.

 Remko M, von der Lieth CW. Theoretical study of gas-phase acidity, pKa, lipophilicity, and solubility of some biologically active sulfonamides. Bioorg Med Chem. 2004;12:5395-403.

 Eastman RT, White J, Hucke O, Bauer K, Yokoyama K, Nallan L, et al. Resistance to a Protein Farnesyltransferase Inhibitor in Plasmodium falciparum. J Biol Chem. 2005;280:13554–9.

 Raban M, Kenney JWJ, Moldowan JM, Jones JFB. Stereochemistry at trivalent nitrogen II. Diastereomers which differ in configuration at nitrogen. J Am Chem Soc. 1968;90:11:2985-6.

 Sadowski J. Three-dimensional Structure Generation. In: Mannhold R. Kubinyi H, Folkers G, editors. Molecular Drug Properties Measurement and Prediction: Wiley-VCH; 2008.

182. Eliel EL, Wilen SH. Stereochemistry of Organic Compounds: Wiley & Sons, Inc.; 1994.

183. Eliel EL. Elements of Stereochemistry. Sons JW, editor. New York 1969.

184. Kostyanovsky RG. Impossible things in stereochemistry. Mendeleev Commun. 2004;14:229-30.

 Otani Y, Nagae O, Naruse Y, Inagaki S, Ohno M, Yamaguchi K, et al. An Evaluation of Amide Group Planarity in 7-Azabicyclo[2.2.1]heptane Amides. Low Amide Bond Rotation Barrier in Solution. J Am Chem Soc. 2003;125:15191-9.

 Andrews PR, Munro SLA, Sadek M, Wong MG. The hybridization state of N as a conformational variable in biologically active molecules J Chem Soc Perkin Trans II. 1988;5:711-8.

 Brois SJ. Aziridines. XII. Isolation of a Stable Nitrogen Pyramid. J Am Chem Soc. 1968;90:508-9.

188. Eliel EL. Stereochemistry of carbon compounds 1962.

 Shekunov BY, York P. Crystallization processes in pharmaceutical technology and drug delivery design. J Cryst Growth. 2000;211:122-36.

 Viedma C. Cristales, quiralidad, y el origen de la vida. Departamento de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, Madrid2003 [21/02/2013]; Available from: <u>http://pendientedemigracion.ucm.es/info/investig/divulgacion/Cristales_origen_vida.htm</u>.
Cambridge, Cambridge Structural Database.

 Wong MW, Frisch MJ, Wiberg KB. Solvent Effects. 1. The Mediation of Electrostatic Effects by Solvents. J Am Chem Soc. 1991;113:4776-82.

 Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anistropic dielectrics. J Chem Phys. 1997;107:3032-41.

 Cancès E, Mennucci B. Comment on Reaction field treatment of charge penetration. J Chem Phys. 2001;114: 4744-5.

 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. GAUSSIAN 03 Revision C.02. Wallingford CT USA: Gaussian, Inc.; 2004.

 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 Revision A.1. Wallingford CT: Gaussian, Inc.; 2009.

197. Humphrey W, Dalke A, Schulten K. J Mol Graph 1996;14:27-38.

 Peng C, Schlegel HB. Combining synchronous transit and quasi-newton methods for finding transition states. Israel J Chem. 1993;33:449-54.

 De Benedetti PG. Molecular modeling and quantitative structure-activity analysis of antibacterial sulfanilamides and sulfones. Prog Drug Res. 1991;36:361-417.

 Bernstein J, Hagler AT. Conformational Polymorphism. The Influence of Crystal Structure on Molecular Conformation. J Am Chem Soc. 1978;100:673-81.

 Steiner T, Desiraju GR. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem Commun. 1998;891-2.

 Rodríguez R, Nogueras M, Cobo J, Low JN, Glidewell C. 1-(4-Methylphenylsulfonyl)-1H-1,2,3benzotriazole: sheets built from C-H---N, C-H---O and C-H---p(arene) hydrogen bonds. Acta Crystallogr E. 2005;61:2795–7.

 Abdireymov KB, Mukhamedov NS, Okmanov RY, M.J. A, Shakhidoyatov KM. 1-[(4-tert-Butylphenyl)sulfonyl]-1Hbenzimidazole. Acta Crystallogr E. 2011;E67:o709.

204. Bindal RD, Golab JT, Katzenellenbogen JA. Ab Initio Calculations on N-Methylmethanesulfonamide and Methyl Methanesulfonate for the Development of Force Field Torsional Parameters and Their Use in the Conformational Analysis of Some Novel Estrogens. J Am Chem Soc. 1990;112:7861-8.

 Leszczynski J. Hydrogen Bonding-New Insights Leszczynski J, editor: Springer Netherlands; 2006.

 Mannhold R. Methods and Priciples in Medicinal Chemistry. Drug Properties, Measurement and prediction. Mannhold R, Kubinyi H, Folkers G, editors: Wiley VCH; 2007.

207. Reed AE, Curtiss LA, Weinhold F. Chem Rev. 1988;88:899-926.

208. Winkler FK, Dunitz JD. The Non-planar Amide Group. J Mol Biol. 1971;59:169-82.

 Brameld KA, Kuhn B, Reuter DC, Stahl M. Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis. J Chem Inf Model. 2008;48:1-24.
D. Branduri DC, Martin DC, Fallin H, Focused Analysis. J Chem Inf Model. 2008;48:1-24.

210. De Benedetti PG, Iarossi D, Folli U, Frassineti C, Menziani MC, Cennamo C. Quantitative structure-activity relationships in dihydropteroate synthase inhibition by multisubstituted sulfones. Design and synthesis of some new derivatives with improved potency. J Med Chem. 1989;32:2396-9.

 Hashmi ASK, Rudolph M, Bats JW, Frey W, Rominger F, Oeser T. Gold-Catalyzed Synthesis of Chroman, Dihydrobenzofuran, Dihydroindole, and Tetrahydroquinoline Derivatives. Chem Eur J. 2008;14:6672 – 8.

 Reichardt C, Amann W, Harms K, Schafer G, Stein J. Synthesis, Absolute Configuration, UVNis Spectroscopic, and Chiroptical Properties of Chiral Tri- and Pentamethinium Cyanine Dyes with 1,2,3,4-Tetrahydro-3,6-dimethylquinolylE nd Groups. J Prak Chem-Chem Ztg. 1998;340:513-29.

 Lambert JB, B.S. P. Oliver JWL. Nitrogen Inversion in Cyclic N-Tosylamines. J Org Chem. 1971;36:1309-10.

 Heyd J, Thiel W, Weber W. Rotation and inversion barriers in N-methylmethanesulfonamide from ab initio calculations. J Mol Struct-Theochem. 1997;391:125-30.

 Rauk A, Allen LC. Electronic Structure and Inversion Barrier of Ammonia. J Chem Phys. 1970;52:4133-44.

 Halpern AM, Ramachandran BR, Glendening ED. The Inversion Potential of Ammonia: An Intrinsic Reaction Coordinate Calculation for Student Investigation. J Chem Educ. 2007;84:1067-72.

 Nicholas JB, Vance R, Martin E, Burke BJ, Hopfinger AJ. A Molecular Mechanics Valence Force Field for Sulfonamides Derived by ab Initio Met hods. J Phys Chem. 1991;95:9803-11.

 Baert F, Fouret R. Structural studies of flavan derivatives: effect of overcroeding on conformation and hydrogen bonding of cis- and trans-diphenyl flavan-3-yl-carabinols, Tetrahedron. 1980;36:2765-74.

 Speckamp WN, Pandit UK, Korver PK, van der Haak PJ, Huisman HO. Dihydroquinolones-V: Hindered inversion in dihydroquinolones and related systems. Tetrahedron. 1966;22:2413-27.

220. Atkins PW. Physical chemistry. San Francisco: W. H. Freeman; 1978.

 Stepnicka P, Solarova H, Cisarova I. 1-Methanesulfonyl-1H-1,2,3-benzotriazole. Acta Crystallogr E. 2010;E66:o2840.

 Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711-5.

 Estudio termodinamico de la solubilidad de algunas sulfonamidas sodicas en mezclas cosolventes etanol+agua, (2010).

 Yalkowsky SH, Roseman T. Solubilization of Drugs by Cosolvents. Yalkowsky, S.H., editors. New York: Marcel Dekker; 1981.

 Millard J, Alvarez-Nunez F, Yalkowsky S. Solubilization by cosolvents. Establishing useful constants for the log-linear model. Int J Pharm. 2002;245:153-66.

 Jouyban A. Solubility Prediction of Drugs in Water–Polyethylene Glycol 400 Mixtures Using Jouyban–Acree Model. Chem Pharm Bull. 2006;54:1561-6.

 Li A, Yalkowsky SH. Predicting Cosolvency. 2. Correlation with Solvent Physicochemical Properties. Ind Eng Chem Res. 1998;37:4476-80.

 Valvani SC, Yalkowsky SH, Roseman TJ. Solubility and partitioning IV: Aqueous solubility and octanol-water partition coefficients of liquid nonelectrolytes. J Pharm Sci. 1981;70:502-7.

 Jouyban A, Acree Jr. WE. In silico prediction of drug solubility in water-ethanol mixtures using Jouyban-Acree model. J Pharm Pharmaceut Sci. 2006;9:262-9.

 Gantiva M, Vargas EF, Manzur ME, Yurquina A, Martínez F. Modelos de Yalkowsky-Roseman y Jouyban-Acree en la estimación de la solubilidad del ketoprofeno en algunas mezclas cosolventes propilenoglicol + agua. Rev Colomb Cienc Quím Farm. 2009; 38:156-71.

 Jouyban-Gharamaleki A, Valaee L, Barzegar-Jalali M, Clark BJ, Acree Jr WE. Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures. Int J Pharm. 1999;177:93-101.

 Arvidsson P, Divers M, Petersen-Mahrt S, inventors; Use of cyclodextrin for protective storage of chemical compounds libraries2001.

 Morales Montesinos JO. Estudio espectroscópico de la inclusión de 5-nitroindazol en ciclodextrinas.: Universidad de Chile; 2007.

 IUPAC. Compendium of Chemical Terminology. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. 2nd ed. Oxford: Blackwell Scientific Publications; 1997.

 Ozkan Y, Atay T, Dikmen N, Isimer A, Aboul-Enein HY. Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with b-cyclodextrin. Pharm Acta Helv. 2000;74:365-70.

 Uekama K, Hirayama F, Irie T. Cyclodextrin Drug Carrier Systems. Chem Rev. 1998;98:2045-76.

 Gibaud S, Zirar SB, Mutzenhardt P, Fries I, Astier A. Melarsoprol-cyclodextrins inclusion complexes. Int J Pharm. 2005;306:107-21.

 Kerns EH, Di L, Automation in pharmaceutical profiling. J Assoc Lab Automat. 2005;10:114-23.
Cyprotex. Turbidimetric Solubility Assay. Cyprotex. The ADME-Tox specialists. 2013 [12/03/2013]; Available from: <u>http://www.cyprotex.com/admepk/physicochemical-properties/turbidimetric-solubility/.</u>

240. MORA CP, Tello ME, Martínez F. Validación de una metodología analítica para la cuantificación de naproxeno en estudios de reparto líquido/líquido mediante espectrofotometría ultravioleta. Rev Colomb Cienc Quím Farm. 2006;35:81-105.

 Validación y calificación. 2011 [05/06/2013]; Available from: http://validacionycalificacion.blogspot.com.ar/2011/05/.

 Chan HK, Venkataram S, Grant DJ, Rahman YE. Solid state properties of an oral iron chelator. 1,2-dimethyl-3-hydroxy-4-pyridone, and its acetic acid solvate. I: Physicochemical characterization, intrinsic dissolution rate, and solution thermodynamics. J Pharm Sci. 1991;80:677-85.

 Miyako Y, Khalef N, Matsuzaki K, Pinal R. Solubility enhancement of hydrophobic compounds by cosolvents: Role of solute hydrophobicity on the solubilization effect. Int J Pharm. 2010;393:48-54.

 Quattrocchi OA, Abelaira SI, Laba RF. Introducción a la HPLC Aplicación y Práctica. Iera ed. Buenos Aires, Argentina 1992.

 Jouyban-Gharamaleki A, Acree Jr WE. Comparison of models for describing multiple peaks in solubility profiles. Int J Pharm. 1998;167:177-82.

 Jouyban-Gharamaleki A, York P, Hanna M, Clark BJ. Solubility prediction of salmeterol xinafoate in water-dioxane mixtures. Int J Pharm. 2001;216:33-41.

 Dickhut RM, Armstrong DE, Andren AW. The solubility of hydrophobic aromatic chemicals in organic solvent/water mixtures: Evaluation of four mixed solvent solubility estimation methods. Environ Tox Chem. 1991;10:881-9.

 Ruckenstein E, Shulgin I. Solubility of drugs in aqueous solutions Part 1. Ideal mixed solvent approximation. Int J Pharm. 2003;258:193-201.

 Dehring KA, Workman HL, Miller KD, Mandagere A, Poole SK. Automated robotic liquid handling/laser-based nephelometry system for high throughput measurement of kinetic aqueous solubility. J Pharm Biomed Anal. 2004;36:447-56.

 Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and Dissolution Pro'le Assessment in Drug Discovery. Drug Metab Pharmacokinet. 2007;22:225-54.

 Box KJ, Comer JEA. Using Measured pKa, LogP and Solubility to Investigate Supersaturation and Predict BCS Class. Curr Drug Metab. 2008;9:869-8.

 Rubino JT, Obeng EK. Influence of solute structure on desviations from the Log-Linear solubility equation in propylene glycol:water mixtures. J Pharm Sci. 1991;80:479-83.

 Li A, Yalkowsky SH. Solubility of organic solutes in ethanol-water mixtures. J Pharm Sci. 1994;83:1735-40.

 Ni N, Sanghvi T, Yalkowsky SH. Solubilization and preformulation of carbendazim. Int J Pharm. 2002;244:99-104.

255. Dubey D, Sahu MC, Rath S, Paty BP, Debata NK, Padhy RN. Antimicrobial activity of medicinal plants used by aborigines of Kalahandi, Orissa, India against multidrug resistant bacteria. Asian Pac J Trop Biomed. 2012;846-54.

 Manolikar MK, Sawant MR. Study of solubility of isoproturon by its complexation with βcyclodextrin. Chemosphere. 2003;51:811–6.

 Zoppi A, Quevedo MA, Delrivo A, Longhi MR. Complexation of Sulfonamides With b-Cyclodextrin Studied by Experimental and Theoretical Methods. J Pharm Sci. 2010;99:3166-76.

 Ozkana Y, Ataya T, Dikmena N, Isimera A, Aboul-Enein HY. Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with b-cyclodextrin. Pharm Acta Helv. 2000;74:365-70.

 Beebe KR, Pell RJ, Seasholtz MB. Chemometrics: A practical guide: John Wiley & Sons, INC.; 1998.

260. Nieto MJ, Mazzieri MR. Diseño, preparación y estudio de las relaciones estructura-actividad de nuevos derivados fluorquinolónicos. Córdoba: Universidad Nacional de Córdoba; Tesis Doctoral disponible en la FCQ-UNC; 1999.

 van de Waterbeemd H. Structure-Property correlations in Drug Research. Austin, Texas, U.S.A.: R.G. Lander Company; 1996.

262. Delaney JS. Predicting aqueous solubility from structure. Drug Discov Today. 2005;10:289-95.

 Huuskonen J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inf Comput Sci. 2000;40:773-7.

 Delaney JS. ESOL: Estimating aqueous solubility directly from molecular structure. J Chem Inf Comp Sci. 2004;44:1000-5.

 Jain NY, Yalkowsky SH. Estimation of the aqueous solubility I: Application to organic nonelectrolytes. J Pharm Sci. 2001;90:234–52.

 Jain P, Sepassi K, Yalkowsky SH. Comparison of aqueous solubility estimation from AQUAFAC and the GSE. Int J Pharm. 2008;360:122-47.

 Ran Y, He Y, Yang G, Johnson JL, Yalkowsky SH. Estimation of aqueous solubility of organic compounds by using the general solubility equation. Chemosphere. 2002;48:487-509.

 Hansen NT, Kouskoumvekaki I, Jorgensen FS, Brunak S, Jonsdottir SO. Prediction of pHdependent aqueous solubility of druglike molecules. J Chem Inf Model. 2006;46:2601-9.

 Weaver S, Gleeson MP. The importance of the domain of applicability in QSAR modeling. J Mol Graph Model. 2008;26:1315-26.

 Konovalov DA, Coomans D, Deconinck E, Heyden YV. Benchmarking of QSAR models for blood-brain barrier permeation. J Chem Inf Model. 2007;47:1648-56.

 Helguera AM, Combes RD, Gonzalez MP, Cordeiro MN. Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem. 2008;18:1628-55.

 Hewitt M, Cronin MT, Enoch SJ, Madden JC, Roberts DW, Dearden JC. In silico prediction of aqueous solubility: the solubility challenge. J Chem Inf Model. 2009;49:2572-87.

 Davis AM. Quantitative Structure-Activity Relationships. In: king FD, editor. Medicinal Chemistry Principles and Practice: The Royal Society of Chemistry; 1994.

 Balzarini M, Di Rienzo J, Tablada M, Gonzalez L, Bruno C, Córdoba M, et al. Estadística y Biometría: Brujas; 2012.

Dunn PK. curso-R. 2013 [05/06/2013]; Available from: <u>http://curso-r-uah2009.wikispaces.com/5.+%C3%81rboles+de+regresi%C3%B3n</u>.

 Catedra de Estadística, Universidad Calos III de Madrid. Análisis de Componentes Principales. Madrid2012 [06/04/2013]; Available from: <u>http://www.uc3m.es/portal/page/portal/dpto_estadística</u>.

 Wang J, Krudy G, Xie XQ, Wu C, Holland G. Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J Chem Inf Model. 2006;46:2674-83.

 Salvador Figueras M. Análisis de conglomerados o cluster. 2001 [11/02/2013]; Available from: http://www.ciberconta.unizar.es/leccion/cluster/.

 Schiattino Lemus I, Silva Zamora C. Árboles de Clasificación y Regresión: Modelos Cart. Ciencia & Trabajo. 2008;10.

 Kubinyi H. QSAR: Hanch analysis and related approaches. Mannhold R, Krogsgaard-Lanser P, Timmerman H, editors: VCH; 1993.

 Unger SH, Hansch C. On model building in structure-activity relationships. A reexamination of adrenergic blocking activity of beta-halo-beta-arylalkylamines. J Med Chem. 1973;16:745-9.

 Rawlings JO, Pantula SG, Dickey DA. Applied Regression Analysis: A Research Tool, Second Edition. 2nd ed: Springer; 1998.

 Wegner K, Zell A. Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method. J Chem Inf Comput Sci. 2003;43:1077-84.

 Kier LB, Cheng CK. A cellular automata model of an aqueous solution. J Chem Inf Comput Sci. 1994;34:1334-7.

 Rodríguez Jaume MJ, Mora Catalá R. Análisis de Regresión Simple. Estadística informática: casos y ejemplos con el SPSS. 1era ed. Alicante: Universidad de Alicante; 2011.

 Taskinen J, Norinder U. In silico predictions of solubility. In: Taylor JB, Triggle DJ, editors. Comprehensive Medicinal Chemistry: Elsevier; 2007. p. 627-48.

287. Hansch C, Quinlan JE, Lawrence GL. Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J Org Chem. 1968;33: 347-50.

 Isnard P, Lambert S. Aqueous solubility and n-octanol/water partition coefficient correlations. Chemosphere. 1989;18:1837-53.

 Yalkowsky SH, Valvani SC. Solubility and Partitioning I: Solubility of Nonelectrolytes in Water. J Pharm Sci. 1980;69:912-9.

 Ran Y, Jain N, Yalkowski SH. Prediction of aqueous solubility of organic compounds by the General Solubility Equation (GSE). J Chem Inf Model, 2001;41:1208-17.

 Hughes LD, Palmer DS, Nigsch F, Mitchell JBO. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P. J Chem Inf Model. 2008;48:220-32.

 Meylan WM, Howard PH. Estimating log P with atom/fragments and water solubility with log P. Perspect Drug Discov. 2000;19:67-84.

 Abraham MH, Le J. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J Pharm Sci. 1999;88:868-80.

ABSOLV module of the ADME Boxes software. [03/02/2013]; Available from: <u>http://www.ap-algorithms.com/absolv.htm</u>.

295. Martin AN, Bustamante P, Chun AHC. Physical pharmacy: Physical chemistry principles in the pharmaceutical sciences. 4th ed. Philadelphia: Lea and Febiger; 1993.

 Hanaee J, Jouyban A, Dastmalchi S, Adibkia K, Mirzazadeh A, Barmegar-jajali M. Solubility prediction of sulfonamides at various temperatures using a single determination. DARU. 2005;13:37-45.

 Amidon GL, Williams NA. A solubility equation for non-electrolytes in water. Int J Pharm. 1982;11:249-56.

 ACD ACD. Modulo ACD/Percepta Platform. 2012 [06/05/2013]; Available from: http://www.acdlabs.com/products/percepta/.

299. Agency USEP. Estimation Program Interface (EPI) Suite. Washington, DC2008.

 Hansen NT, Kouskoumvekaki I, Jorgensen FS, Brunak S, Jonsdottir SO. Prediction of pHdependent aqueous solubility of druglike molecules. J Chem Inf Model. 2006;46:2601-9.

 Schwaighofer A, Schroeter T, Mika S, Laub J, ter Laak A, Sulzle D, et al. Accurate solubility prediction with error bars for electrolytes: A machine learning approach. J Chem Inf Model. 2007;47:407-24.

302. Wang JM, Krudy G, Hou TJ, Zhang W, Holland G, Xu XJ. Development of reliable aqueous solubility models and their application in druglike analysis. J Chem Inf Model. 2007;47:1395-404.

 Obrezanova O, Gola JM, Champness EJ, Segall MD. Automatic QSAR modeling of ADME properties: blood-brain barrier penetration and aqueous solubility. J Comput Aided Mol Des. 2008;22:431-40.

 Duchowicz PR, Talevi A, Bruno-Blanch LE, Castro EA. New QSPR study for the prediction of aqueous solubility of druglike compounds. Bioorgan Med Chem. 2008;16:7944-55.

 Duchowicz PR, Castro EA. QSPR studies on aqueous solubilities of drug-like compounds. . Int J Mol Sci. 2009;10:2558-77.

 Du-Cuny L, Huwyler J, Wiese M, Kansy M. Computational aqueous solubility prediction for drug-like compounds in congeneric series. Eur J Med Chem. 2008;43:501-12.

 Huuskonen J, Livingstone DJ, Manallack DT. Prediction of drug solubility from molecular structure using a drug-like training set. SAR QSAR Environ Res. 2008;19:191-212.

308. Zhou DS, Alelyunas Y, Liu RF. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility. J Chem Inf Model. 2008;48:981-7.

Capítulo 10

 Hewitt M, Cronin MTD, Enoch SJ, Madden JC, Roberts DW, Dearden JC. In silico prediction of aqueous solubility: The solubility challenge. J Chem Inf Model. 2009;49:2572-87.

 Kramer C, Beck B, Clark T. Insolubility classification with accurate prediction probabilities using a metaclassifier. J Chem Inf Model. 2010;50:404-14.

 Katritzky AR, Wang Y, Sild S, Tamm T. QSPR Studies on Vapor Pressure, Aqueous Solubility, and the Prediction of Water-Air Partition Coefficients. J Chem Inf Comput Sci. 1998;38:720-5.

 Yan A, Gasteiger J. Prediction of Aqueous Solubility of Organic Compounds Based on a 3D Structure Representation. J Chem Inf Comput Sci. 2003;43:429-34.

 Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragmentbased contributions and its application to the prediction of drug transport properties. J Med Chem. 2000;43:3714-7.

 Yan A, Gasteiger J. Prediction of Aqueous Solubility of Organic Compounds by Topological Descriptors. QSAR Comb Sci. 2003;22:821-9.

 Lamanna C, Marta Bellini M, Padova A, Westerberg G, Maccari L. Straightforward Recursive Partitioning Model for Discarding Insoluble Compounds in the Drug Discovery Process. J Med Chem. 2008;51:2891–7.

316. BioByte C. Bio-Loom. 2011.

 ChemSpider The free chemical database. 2013 [05/02/2013]; Available from: http://www.chemspider.com/.

318. OriginLab C. OriginPro 8.0.

 Klamt A, Smith BJ. Challenge of drug solubility prediction. In: Mannhold R, Kubinyi H, Folkers G, editors. Molecular Drug Properties: Measurement and Prediction2008.

320. Walters WP, Murcko MA. Prediction of 'drug-likeness'. Adv Drug Deliv Rev. 2002;54:255-71.

 Parkin A, Collins A, Gilmorea CJ, Wilson CC. Using small molecule crystal structure data to obtain information about sulfonamide conformation. Acta Crystallogr B. 2008;64:66-71.

 Elder D, Holm R. Aqueous solubility: Simple predictive methods (in silico, in vitro and biorelevant approaches). Int J Pharm. 2012;3-11.

323. Bertini I, Calderone V, Fragai M, Giachetti A, Loconte M, Luchinat C, et al. Exploring the Subtleties of Drug-Receptor Interactions: The Case of Matrix Metalloproteinases. J Am Chem Soc. 2007;129:2466-75.

Protein Data Base. 2013 [06/09/2013]; Available from: <u>http://www.rcsb.org/pdb/home/home.do</u>.

325. Perola E, Charifson PS. Conformational Analysis of Drug-Like Molecules Bound to Proteins: An Extensive Study of Ligand Reorganization upon Binding. J Med Chem. 2004;47:2499-510.

326. Gupta RR. Topics in Heterocyclic Chemistry, QSAR and Molecular Modeling Studies in Heterocyclic Drugs I

Springer Berlin / Heidelberg 2006.

327. Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, et al. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets. Acta Pharmacol Sin. 2009;30:1694-708.

328. IUPAC. Compendium of Chemical Terminology. 2.3.2 ed. Chemistry IUoPaA, editor 2012.

 Bissantz C, Kuhn B, Stahl M. A Medicinal Chemist's Guide to Molecular Interactions. J Med Chem. 2010;53:5061-84.

 Senger S, Chan C, Convery MA, Hubbard JA, Shah GP, Watson NS, et al. Sulfonamide-related conformational effects and their importance in structure-based design. Bioorg Med Chem Lett. 2007;17:2931-4.

331. Scott Reid T, Beese LS. Crystal Structures of the Anticancer Clinical Candidates R115777 (Tipifarnib) and BMS-214662 Complexed with Protein Farnesyltransferase Suggest a Mechanism of FTI Selectivity. Biochemistry. 2004;43:6877-84.

 Verdonk ML, Cole JC, Taylor R. SuperStar: A Knowledge-based Approach for Identifying Interaction Sites in Proteins. J Mol Biol. 1999;289:1093-108.

 Karolak-Wojciechowska J. From crystallographic data to the creation of a binding model with a receptor. Farmaco. 2000;55:197-9.

334. Thomas N, Donald FW. Medicinal Chemistry: A molecular and biochemical approach

3th ed. New York: Oxford University Press; 2005.

 Donald JA. Burger's Medicinal Chemsitry and Drug Discovery. sexta ed: Jhon Wiley & Sons: 2003.

 Silverman RB. The organic chemistry of drug design and drug action. second ed. San Diego: Elsevier Academic Press; 2004.

 Beddoes RL, Dalton L, Joule JA, Mills OS, Street JO, Watt CF. The Geometry at Nitrogen in N-Phenylsulphonyl-pyrroles and -indoles. The Geometry of Sulphonamides. J Chem Soc Perk T II. 1986.

338. Goldbeck G, Pidcock E, Groom C. Solid Form Informatics for pharmaceuticals and agrochemicals: Knowledge-based substance development and risk assessment. CCDC White Paper. 2011. 339. Rao BG, Bandarage UK, Wang T, Come JH, Perola E, Wei Y, et al. Novel thiol-based TACE inhibitors: Rational design. synthesis, and SAR of thiol-containing aryl sulfonamides. Bioorg Med Chem

Lett. 2007;17:2250-3.

 Bon RS, Guo Z, Stigter EA, Wetzel S, Menninger S, Wolf A, et al. Structure-Guided Development of Selective RabGGTase Inhibitors. Angew Chem. 2011;50:4957-61.

341. Jautelat R, Brumby T, Schafer M, Briem H, Eisenbrand G, Schwahn S, et al. From the insoluble dye indirubin towards highly active, soluble CDK2-inhibitors. Chembiochem. 2005;6:531-40.

342. Farnegardh M, Bonn T, Sun S, Ljunggren J, Ahola H, Wilhelmsson A, et al. The threedimensional structure of the liver X receptor beta reveals a flexible ligand-binding pocket that can accommodate fundamentally different ligands. J Biol Chem. 2003;278:38821-8.

343. Van Voorhis WC, Rivas KL, Bendale P, Nallan L, Horney C, Barrett LK, et al. Efficacy, pharmacokinetics, and metabolism of tetrahydroquinoline inhibitors of Plasmodium falciparum protein farnesyltransferase. Antimicrob Agents Chemother. 2007;51:3659-71.

344. Kopecky DJ, Jiao XY, Fisher B, McKendry S, Labelle M, Piper DE, et al. Discovery of a new binding mode for a series of liver X receptor agonists. Bioorg Med Chem Lett. 2012;22:2407-10.