
Fault Manifestability Verification
for Discrete Event Systems

Lina Ye 1 and Philippe Dague 2 and Delphine Longuet 3 and Laura Brandán Briones 4 and Agnes Madalinski5

Abstract. Fault diagnosis is a crucial and challenging task in the
automatic control of complex systems, whose efficiency depends on
the diagnosability property of a system. Diagnosability describes the
system ability to determine whether a given fault has effectively oc-
curred based on the observations. However, this is a very strong prop-
erty that requires generally high number of sensors to be satisfied.
Consequently, it is not rare that developing a diagnosable system is
too expensive. To solve this problem, in this paper, we first define a
new system property called manifestability that represents the weak-
est requirement on faults and observations for having a chance to
identify on line fault occurrences and can be verified at design stage.
Then, we propose an algorithm with PSPACE complexity to auto-
matically verify it.

1 Introduction

The diagnosability problem has received considerable attention in
the literature. Diagnosability describes the system ability to deter-
mine with certainty whether a given fault has effectively occurred
based on the observations. In a given system, the existence of two in-
finite behaviors, with the same observations but exactly one contain-
ing the considered fault, violates diagnosability. The existing works
search for such ambiguous behaviors both in centralized [5, 3] and
distributed [4, 7] ways. The most classical method is to construct a
structure called twin plant that captures all pairs of observable equiv-
alent behaviors to directly check the existence of such ambiguous
pairs. However, in reality, diagnosability is a very strong property
that requires generally high number of sensors. Consequently, it is
often too expensive to develop a diagnosable system.

To achieve a trade-off between the cost, i.e., the reasonable number
of sensors, and the possibility to observe a fault manifestation, we
define in this paper a new property called manifestability. This is a
property describing the capability of a system to manifest (i.e., be
distinguishable from any non faulty behavior) a fault occurrence in
at least one context, i.e., one future behavior. This should be analyzed
at design stage on the system model. Manifestability is the weakest
property to require from the system to have a chance to identify the
fault occurrence.

Our contributions in this paper are described as follows: Firstly, we
define formally the new manifestability property. Then, we provide
a sufficient and necessary condition for manifestability. Finally, we
propose an algorithm based on equivalence checking of Finite State
Machines (FSMs) with PSPACE complexity.
1 LRI, CentraleSupélec, France, email: lina.ye@lri.fr
2 LRI, Univ. Paris-Sud, CNRS, France, email: philippe.dague@lri.fr
3 LRI, Univ. Paris-Sud, CNRS, France, email: Delphine.Longuet@lri.fr
4 Universidad Nacional de Córdoba, Argentina
5 Otto-von-Guericke-University Magdeburg, Germany

2 Manifestability for DESs

We model a Discrete Event System (DES) as a FSM, denoted by
G = (Q,Σ, δ, q0), where Q is the finite set of states, Σ is the finite
set of events, δ ⊆ Q × Σ × Q is the set of transitions (the same
notation will be kept for its natural extension to words of Σ∗), and q0

is the initial state. The set of events Σ is divided into three disjoint
parts: Σo is the set of observable events, Σu the set of unobservable
normal events and Σf the set of unobservable fault events. Similar to
diagnosability, the manifestability algorithm that we will propose has
exponential complexity in the number of fault types. For the sake of
reducing this complexity to linear, as in [4, 6], we consider only one
fault type at a time but multiple occurrences of faults are allowed.

Given a system model G, its prefix-closed language L(G), which
describes both normal and faulty behaviors of the system, is the set
of words produced by G: L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}.
Those words containing (resp. not containing) F will be denoted by
LF (G) (resp. LN (G)). In the following, we call a word from L(G)
a trajectory in the system G and a sequence q0σ0q1σ1... a path in G,
where σ0σ1... is a trajectory in G and we have ∀i, (qi, σi, qi+1) ∈ δ.
Given s ∈ L(G), we denote the post-language of L(G) after s by
L(G)/s, formally defined as: L(G)/s = {t ∈ Σ∗|s.t ∈ L(G)}.
The projection of the trajectory s to observable events of G is de-
noted by P (s). This projection can be extended to a language L(G),
i.e., P (L(G)) = {P (s)|s ∈ L(G)}. Traditionally, we assume that
the system language is always live (any trajectory has a continua-
tion, i.e., is a strict prefix of another trajectory) without unobserv-
able cycle. We will need some infinite objects. So, inspired from
the notation of Büchi automata [1], we denote by Σω the set of
infinite words on Σ and by Σ∞ = Σ∗ ∪ Σω the set of words
on Σ, finite or infinite. We define in an obvious way Lω(G) (infi-
nite words whose all finite prefixes belong to L(G)) and L∞(G)
and thus infinite trajectories and infinite paths. Particularly, we use
Lω

F (G) = Lω(G)∩Σ∗FΣω for the set of infinite faulty trajectories,
and Lω

N (G) = Lω(G) ∩ (Σ \ {F})ω for the set of infinite normal
trajectories, where \ denotes set subtraction. We will use the classi-
cal synchronization of two FSMs for which only synchronized events
should occur simultaneously, denoted by G1‖ΣsG2, where Σs is the
set of synchronized events.

Definition 1 (Delay Closure). Given a FSM G = (Q,Σ, δ, q0), its
delay closure with respect to Σd, where Σd ⊆ Σ, is �Σd(G) =
(Qd,Σd, δd, q

0), where Qd = {q0} ∪ {q ∈ Q | ∃s ∈
Σ∗,∃σ ∈ Σd, (q

0, sσ, q) ∈ δ} and (q, σ, q′) ∈ δd if ∃s ∈
(Σ\Σd)

∗, (q, sσ, q′) ∈ δ.

Delay closure is to keep all information about events in Σd, delet-
ing those not in Σd, while keeping the same structure. It will be used
to simplify the system model without affecting the result.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1718

1718

Informally speaking, a fault F is diagnosable in a system G if and
only if (iff) it can be determined without ambiguity when enough
events are observed from G after its occurrence.

Definition 2 (Critical Pair). A pair of trajectories s, s′ is called
a critical pair with respect to F , denoted by s � s′, iff s ∈
Lω

N (G), s′ ∈ Lω
F (G) and P (s) = P (s′).

The existence of a critical pair w.r.t. F violates diagnosability and
thus diagnosability verification consists in checking the nonexistence
of such a pair. To design a diagnosable system, each faulty trajectory
should be distinguished from all normal trajectories, which is most
often expensive in terms of sensors required. To reduce such a cost
and still make possible to show the fault after enough runs of the sys-
tem, we now define another much weaker property, manifestability,
as follows, where sF denotes a trajectory ending with F .

Definition 3 (Manifestability). A fault F is manifestable in G iff

∃sF ∈ L(G),∃t ∈ L(G)/sF ,
∀p ∈ L(G), P (p) = P (sF t) ⇒ F ∈ p.

F is manifestable iff there exists at least one occurrence sF in
G, there exists at least one extension t of sF in G, such that every
trajectory p that is observable equivalent to sF t should contain F .

Theorem 1 A fault F is manifestable in G iff the following condition

 is satisfied: ∃s ∈ Lω

F (G), �s′ ∈ Lω
N (G), such that s � s′.

3 Manifestability Verification

Given a system, manifestability verification consists in checking
whether the condition
 in Theorem 1 is satisfied. Next we show,
given a system model, how to construct different structures to ob-
tain Lω

F (G), Lω
N (G), and critical pairs set. The condition
 can be

checked by using equivalence techniques based on these structures.
Given a system model, the first step that we propose is to construct

a structure showing fault information for each state, i.e., whether the
fault has effectively occurred up to this state from the initial state.

Definition 4 (Diagnoser). Given a system G, its diagnoser with re-
spect to a considered fault F is the FSM DG = (QD,ΣD, δD, q0D),
where: 1) QD ⊆ Q× {N,F} is the set of states; 2) ΣD = Σ is the
set of events; 3) δD ⊆ QD × ΣD × QD is the set of transitions; 4)
q0D = (q0, N) is the initial state.

The transitions of δD are those ((q, �), e, (q′, �′)), with (q, �)
reachable from the initial state q0D , such that there is a transition
(q, e, q′) ∈ δ, and �′ = F if � = F ∨ e = F , otherwise �′ = N .

Based on a diagnoser, we define the following two structures to
obtain the subparts with only faulty or only normal trajectories.

Definition 5 (Fault (Refined) Diagnoser). Given a diagnoser DG,
its fault diagnoser is the FSM DF

G = (QDF ,ΣDF , δDF , q0DF),
where: 1) q0DF = q0D; 2) QDF = {qD ∈ QD | ∃q′D = (q, F) ∈
QD, ∃s, s′ ∈ Σ∗

D, (q0D, s, qD) ∈ δ∗D, (qD, s′, q′D) ∈ δ∗D}; 3)
δDF = {(q1D, σ, q2D) ∈ δD | q1D, q2D ∈ QDF }; 4) ΣDF = {σ ∈
ΣD | ∃(q1D, σ, q2D) ∈ δDF }. Now the fault refined diagnoser, de-
noted by DFR

G , is obtained by DFR
G = �Σo(D

F
G).

Definition 6 (Normal (Refined) Diagnoser). Given a diagnoser DG,
its normal diagnoser is the FSM DN

G = (QDN ,ΣDN , δDN , q0DN),
where: 1) q0DN = q0D; 2) QDN = {(q,N) ∈ QD}; 3) δDN =
{(q1D, σ, q2D) ∈ δD | q1D, q2D ∈ QDN }; 4) ΣDN = {σ ∈ ΣD |
∃(q1D, σ, q2D) ∈ δDN }. Now the normal refined diagnoser, denoted
by DNR

G , is obtained by DNR
G = �Σo(D

N
G).

Now we propose another structure that can capture the set of criti-
cal pairs, which can then be used for equivalence checking to exam-
ine the manifestability condition
.

Definition 7 (Pair Verifier). Given a system G, its pair verifier VG

is obtained by synchronizing the corresponding fault refined diag-
noser DFR

G and normal refined diagnoser DNR
G based on the set of

observable events, i.e., VG = DFR
G ‖Σo DNR

G .

To construct a pair verifier, we impose that the synchronized events
are the whole set of observable events. Only in this way, we can guar-
antee that the language of the pair verifier is the intersection of the
languages of the fault refined diagnoser and that of the normal re-
fined diagnoser. In the pair verifier, each state is composed of two di-
agnoser states, indicating whether the fault has effectively occurred
in the first of the two corresponding trajectories.

Once constructed the pair verifier VG, we now give our major re-
sult as follows, whose proof with associated lemmas are omitted here
due to lack of space.

Theorem 2 Given a system G and its pair verifier VG, a fault F is
manifestable iff Lω(VG) �= P (Lω

F (G)).

To check manifestability, the complexity of different diagnosers
constructions is linear. For the pair verifier, we have to synchronize
the fault refined diagnoser and the normal refined diagnoser, which
is obviously polynomial with the number of system states. To finally
check the manifestability, the equivalence checking should be per-
formed, which is already demonstrated to be PSPACE in the litera-
ture [2]. Thus, the total complexity of this algorithm is PSPACE.

4 Conclusion and future work

In this paper we addressed the formal verification of manifestabil-
ity for DESs, inspired from diagnosability checking largely studied
in the literature. To bring an alternative to diagnosability analysis,
whose satisfaction is very demanding in terms of sensors placement,
we defined a new weaker property, manifestability, with a sufficient
and necessary condition. Then, we constructed different structures
from the system model to be able to check this manifestability con-
dition by using equivalence techniques. One future work is to extend
our approach to fault manifestability in at most a fixed number of
transitions after the fault occurrence, such as I-diagnosability in [5].

REFERENCES

[1] J.R. Büchi, ‘On a decision method in restricted second order arithmetic’,
Z. Math. Logik Grundlag. Math, 6, 66–92, (1960).

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction To Automata
Theory, Languages, and Computation, Pearson Education, 1979.

[3] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, ‘A Polynomial Time Al-
gorithm for Testing Diagnosability of Discrete Event Systems’, Transac-
tions on Automatic Control, 46(8), 1318–1321, (2001).

[4] Y. Pencolé, ‘Diagnosability Analysis of Distributed Discrete Event Sys-
tems’, in Proceedings of the 16th European Conference on Articifial In-
telligent (ECAI04), pp. 43–47. Nieuwe Hemweg: IOS Press., (2004).

[5] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, ‘Diagnosability of Discrete Event System’, Transactions
on Automatic Control, 40(9), 1555–1575, (1995).

[6] A. Schumann and J. Huang, ‘A Scalable Jointree Algorithm for Diag-
nosability’, in Proceedings of the 23rd American National Conference
on Artificial Intelligence (AAAI-08), pp. 535–540. Menlo Park, Calif.:
AAAI Press., (2008).

[7] L. Ye and P. Dague, ‘Diagnosability Analysis of Discrete Event Systems
with Autonomous Components’, in Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI-10), pp. 105–110. Nieuwe
Hemweg: IOS Press., (2010).

L. Ye et al. / Fault Manifestability Verification for Discrete Event Systems 1719

