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Dadam FM, Caeiro XE, Cisternas CD, Macchione AF, Cambiasso
MJ, Vivas L. Effect of sex chromosome complement on sodium appetite
and Fos-immunoreactivity induced by sodium depletion. Am J Physiol
Regul Integr Comp Physiol 306: R175–R184, 2014. First published
November 20, 2013; doi:10.1152/ajpregu.00447.2013.—Previous stud-
ies indicate a sex chromosome complement (SCC) effect on the
angiotensin II-sexually dimorphic hypertensive and bradycardic baro-
reflex responses. We sought to evaluate whether SCC may differen-
tially modulate sexually dimorphic-induced sodium appetite and spe-
cific brain activity due to physiological stimulation of the rennin
angiotensin system. For this purpose, we used the “four core geno-
type” mouse model, in which the effect of gonadal sex and SCC is
dissociated, allowing comparisons of sexually dimorphic traits be-
tween XX and XY females as well as in XX and XY males.
Gonadectomized mice were sodium depleted by furosemide (50
mg/kg) and low-sodium diet treatment; control groups were adminis-
tered with vehicle and maintained on normal sodium diet. Twenty-one
hours later, the mice were divided into two groups: one group was
submitted to the water-2% NaCl choice intake test, while the other
group was perfused and their brains subjected to the Fos-immunore-
activity (FOS-ir) procedure. Sodium depletion, regardless of SCC
(XX or XY), induced a significantly lower sodium and water intake in
females than in males, confirming the existence in mice of sexual
dimorphism in sodium appetite and the organizational involvement of
gonadal steroids. Moreover, our results demonstrate a SCC effect on
induced brain FOS-ir, showing increased brain activity in XX-SCC
mice at the paraventricular nucleus, nucleus of the solitary tract, and
lateral parabrachial nucleus, as well as an XX-SCC augmented effect
on sodium depletion-induced brain activity at two circumventricular
organs, the subfornical organ and area postrema, nuclei closely in-
volved in fluid and blood pressure homeostasis.

sex chromosome complement; sexual dimorphism; Fos immunoreac-
tivity; induced sodium intake; four core genotype mouse model

BIOLOGICAL DIFFERENCES between the sexes have long been
recognized at biochemical, cellular, and physiological levels.
Although the role of gonadal steroids in sexual dimorphism is
undeniable, a growing body of evidence indicates that some
sexually dimorphic traits cannot be explained solely as a result
of gonadal steroid action. Males and females not only differ in
their sex (males are born with testes and females with ovaries)
but also carry different sex chromosome complements (SCC).
Rapid advances in molecular biology have revealed the genetic
and molecular bases of a number of sex-based differences,
some of which are attributed to the XX-sexual genotype in the
female and XY in the male. Recent evidence in gonadecto-
mized adult mice indicates that both the sexually dimorphic

ANG II-bradycardic baroreflex and hypertensive responses
may be driven primarily by differences in SCC, which suggests
that sex differences in genes residing in the sex chromosomes
may influence these angiotensinergic sexually dimorphic traits
(6, 29). Thus the genetic and/or hormone pathways could act
independently or interact synergistically/antagonistically in
modulating sexual dimorphic development (1, 2, 7, 10, 22).

Taking into account previous studies indicating that 1) ANG
II in the central nervous system differentially modulates car-
diovascular parameters in males and females (23, 50), 2) sex
has an important influence on hydroelectrolyte and cardiovas-
cular regulation (12, 33), 3) SCC is involved in ANG II
sexually dimorphic hypertensive and bradycardic baroreflex
responses (6, 29), and 4) furosemide-low-sodium diet (Furo/
LSD) treatment leads to an increase in ANG II levels in
association with sodium intake and specific brain Fos immu-
noreactivity (FOS-ir), we sought to evaluate whether genetic
differences within the SCC may differentially modulate the
known sexually dimorphic sodium appetite as well as basal or
induced brain activity due to physiological stimulation of the
renin-angiotensin system (RAS). To this end, we evaluated
sodium-water intake and brain FOS-ir (along the forebrain and
brain stem level) induced by Furo/LSD treatment in transgenic
mice of the four core genotype (FCG). In this mouse model, the
effect of gonadal sex (testes or ovaries) and SCC (XX or XY)
is dissociated, allowing the independent assessment of sexually
dimorphic traits among XX and XY females, as well as in XX
and XY males.

METHODS

Animals

The FCG mouse model combines a deletion of the testis-determin-
ing gene Sry from the Y chromosome (Y�) with the subsequent
insertion of a Sry transgene onto an autosome (36, 37). Sry gene
deletion in XY mice (XY�) yields a female phenotype (ovaries).
When the Sry transgene is inserted into an autosome of these mice
they have testes and are fully fertile (XY�Sry). The Y� chromosome
and the Sry transgene segregate independently, and thus four types of
offspring are produced by breeding XY�Sry males with XX
females: XX and XY� females (without Sry on the Y chromo-
some) and XXSry and XY�Sry male mice (both with Sry in an
autosome). All individuals possessing the Sry transgene develop
testes and have a male external phenotype, regardless of their SCC,
whereas individuals lacking the transgene have ovaries and exter-
nal female secondary sex characteristics. Male and female are
defined here according to the gonadal phenotype. Throughout the
text, we will refer to XX and XY� as XX and XY females and to
XXSry and XY�Sry as XX and XY male mice, respectively.
Comparing these genotypes makes it possible to segregate the roles
of 1) SCC (comparing mice with the same gonadal type but with
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different SCC: XX vs. XY) 2) gonadal sex (males vs. females
regardless of SCC) and 3) their interaction (1).

MF1 transgenic mice, kindly provided by Dr. Paul Burgoyne, were
born and reared in the breeding facilities at the Instituto de Investi-
gación Médica M. y M. Ferreyra (Córdoba, Argentina). They were
housed in groups of 5 to 8 per cage in a temperature-controlled
environment, maintained on a 12-h light/dark cycle, and fed and
watered ad libitum. All experimental protocols were approved by the
appropriate animal care and use committees at our institute following
the National Institutes of Health guidelines for the care and use of
laboratory animals.

Genotyping

Genotyping was performed on genomic DNA samples obtained
from mouse tails by polymerase chain reaction (PCR). DNA extrac-
tion procedures and genotype-PCR analysis have been previously
described in Caeiro et al. (6).

Gonadectomy: Surgical Procedures

To remove any activational effect of sex hormones that might mask
both the modulatory action of sex chromosomes and the organiza-
tional hormonal effects, adult mice were anesthetized with ketamine-
xilazine mixture, and a bilateral incision was made in the scrotum
region for male mice and just below the rib cage in the female mice,
to be able to perform bilateral gonadectomy. Then the vascular supply
was ligated, the gonads (either testes or ovaries) were removed, and
the muscle layer and incisions were sutured in place.

Urinary Osmolality and Electrolyte Analysis

Urinary concentrations of Na�, K�, and Cl� were determined by
an ion analyzer (Beckman), whereas osmolarity was established by a
vapor pressure osmometer (VAPRO 5520).

Fos Immunohistochemistry

FOS-ir procedures have been previously described (5). Briefly,
mice were transcardially perfused with isotonic saline solution fol-
lowed by 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.2.
The brains were then removed, fixed overnight in the fixative solution,
and stored at 4°C in 30% sucrose until processing and coronal sections
of 50 �m were cut using a freezing microtome. The Fos antibody used
in this study was raised in rabbits against a synthetic 14-amino acid
sequence corresponding to residues 4–17 of human Fos (Ab-5, batch
no. 60950101; Oncogene Science, Manhasset, NY).

The brain nuclei exhibiting FOS-ir were identified and delimited
according to the mouse brain atlas of Paxinos and Franklin (42). The
distance from the bregma of the corresponding plates is as follows:
organum vasculosum of the lamina terminalis (OVLT) 0.50 mm,
median preoptic nucleus (MnPO) 0.14 mm, subfornical organ (SFO)
�0.58 mm, paraventricular nucleus (PVN) �0.82 mm, supraoptic
nucleus (SON) �0.82 mm, lateral parabrachial nucleus (LPB) �5.20
mm, nucleus of the solitary tract (NTS) and adjacent area postrema
(AP) (NTS/AP) �7.48 mm. FOS-ir nuclei were quantified with a
computerized system that included a Zeiss microscope equipped with
a DC 200 Leica digital camera attached to a contrast enhancement
device. Images were digitalized and analyzed using Image J PC
software (version 1.42q). FOS-ir cells in each section were counted by
setting a size range for cellular nuclei (in pixels) and a threshold level
for staining intensity. Representative sections in each group were
acquired at exactly the same level, with the aid of the Adobe
Photoshop Image Analysis Program CS2 (version 9). Sections were
analyzed by an experimenter blinded to the experimental groups.

Statistical Analysis

Induced water and sodium intake data were subjected to a three-
way mixed ANOVA analysis with repeated measures. Treatment

(depleted: DEP, control: CON), gonadal sex (male/female), and SCC
(XY/XX) were considered as independent factors, and time intervals
of evaluation (15, 30, 45, 60, 90, 120 min) were included as repeated
measurements. Sodium balance data were subjected to a two-way
mixed ANOVA with repeated measurements (gonadal sex and SCC
were considered as independent factors and time intervals of evalua-
tion were taken as repeated measurements). Urinary and FOS-ir data
were subjected to a three-way ANOVA analysis with treatment, sex,
and SCC as independent factors. The loci of significant interactions or
significant main effects were further analyzed using the Tukey test
(type I error probability was set at 0.05). Results were expressed as
group means � SE.

Experimental Design

Experiment 1: effect of SCC on sodium and water intake induced by
Furo/LSD treatment. To evaluate whether SCC modulates sexually
dimorphic-induced water and sodium intake, mice of the FCG mouse
model aged 45–50 days were gonadectomized and, after a 15-day
recovery period, were weighed, placed in individual metabolic cages,
and submitted to acute sodium depletion by a combined treatment of
Furo/LSD (DEP group). Diuretic-natriuretic drug furosemide (50
mg/kg) was administered subcutaneously in two consecutive doses 5
min apart. Mice were immediately placed in clean individual meta-
bolic cages with access to a low-sodium diet (ICN, Costa Mesa, CA)
and distilled water. Control groups were administered vehicle solution
and maintained with ad libitum access to distilled water and normal
sodium diet content (CON groups). Twenty-one hours later, mice
were weighed, food was removed from the cages, and the urine voided
during this period was collected for balance study, electrolytes, and
osmolality analysis. The mice were immediately submitted to a
two-bottle choice test (distilled water/2% NaCl solution), and intake
scores were recorded every 15 min during the first hour and every 30
min during the second hour. Data are expressed as milliliters per 10 g
of body weight. All experiments were carried out between 8:00 AM
and 2:00 PM.

Experiment 2: effect of SCC on sodium depletion-induced brain
FOS-ir. To assess whether SCC may differentially modulate basal or
induced cell activity in response to acute sodium depletion, in a
separate group of mice, we determined the number of FOS-ir cells in
brain areas involved in hydroelectrolyte and cardiovascular homeo-
stasis. Twenty-one hours after the administration of furosemide or
vehicle solution, and immediately before the intake test took place, the
animals were perfused and the brains stored until further FOS-ir
processing.

RESULTS

Experiment 1: Effect of SCC on Sodium and Water Intake
Induced by Furo/LSD Treatment

The statistical analysis of induced water and sodium intake
showed an effect of the interaction of sex, treatment, and time
[2% NaCl: F(5,22) � 3.16 P � 0.01; H2O: F(5,22) � 2.89,
P � 0.01] while no SCC factor effect was observed. As
expected, DEP treatment induced an increase in sodium appe-
tite compared with intake scores reported for CON groups.
Irrespective of SCC (XX or XY), female mice showed an
attenuated induced 2% NaCl intake than that reported for male
mice (Fig. 1A, time course of cumulative NaCl intake in mice
of the four genotypes, and Fig. 1C, representation of the
significant triple interaction: sex � treatment � time in DEP
and CON groups). Matching the sodium intake scores, for
drinking response, DEP male mice showed an increase in water
consumption, whereas DEP female mice showed the same

R176 SEX CHROMOSOME COMPLEMENT ON SODIUM DEPLETION BRAIN ACTIVITY

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00447.2013 • www.ajpregu.org

 by 10.220.33.6 on July 27, 2017
http://ajpregu.physiology.org/

D
ow

nloaded from
 

http://ajpregu.physiology.org/


dipsogenic response as that of the CON groups (Fig. 1B, time
course of cumulative water intake in mice of the four geno-
types, and Fig. 1D, representation of the significant triple
interaction of water intake: sex � treatment � time in DEP and
CON groups).

Urinary Data and Sodium Balance Analysis After Acute
Sodium Depletion

The statistical analysis of total urinary excretion of Na�,
K�, and Cl� showed a significant effect of treatment factor
[F(1,41) � 28.98, P � 0.01; F(1,41) � 36.79, P � 0.01 and
F(1,41) � 10.56, P � 0.01, respectively], with neither the sex

nor SCC factors affecting urinary electrolyte excretion. As
shown in Table 1, the total urinary excretion of electrolytes
increased in mice treated with Furo/LSD. Moreover, as ex-
pected, the analysis of urine output defined as urine volume per
10 g of body weight showed a significant treatment effect
[F(1,52) � 95.95, P � 0.01], with mice of the DEP group
showing a higher urine output than that of the CON groups. A
significant increase in urinary osmolality was observed in CON
versus DEP groups [F(1,40) � 655.61, P � 0.01]. All together,
these data indicate that, as expected, DEP treatment induces
diuresis and natriuresis with no significant treatment sex dif-
ferences among groups.

*
&*

* * *
*

# # #

&
&

^
^

^
^

^

A B

C D

Fig. 1. Time course of cumulative 2% NaCl
and H2O intake of mice subjected to furosemide-
low-sodium diet treatment. A: cumulative in-
take of 2% NaCl every 10 g body wt in XY
male, XX male, XY female, and XX female
mice that were subjected to acute sodium
depletion (DEP). B: cumulative intake of H2O
every 10 g body wt in mice XY males, XX
males, XY females, and XX females subjected
to DEP treatment. Dotted line indicates the
average intake of the control animals (CON).
C and D: representation of the significant triple
interaction (sex � treatment � time): cumula-
tive 2% NaCl and H2O intake of male and
female corresponding to DEP and CON groups.
*P � 0.01 Male-DEP vs. CON groups, #P �
0.01 female-DEP vs CON groups, ^P � 0.01
male-DEP vs. female-DEP. Values are means �
SE, n � 4–9/group.

Table 1. Osmolality, diuresis, electrolyte excretion, and body weights (initial and 21 h after DEP treatment) in mice of the
four core genotype model subjected to furosemide and low sodium diet treatment

DEP CON

Male Female Male Female

XY XX XY XX XY XX XY XX

Osmolality, mosmol/kg H2O
(t) 531.4 � 35.7 488.3 � 35.0 552.2 � 66.2 545.6 � 63.4 2149.6 � 58.5 2265.2 � 186.8 2325.2 � 174.9 2448.5 � 184.1

Na�, meq/10 g body wt
(t) 0.10 � 0.01 0.11 � 0.00 0.10 � 0.01 0.10 � 0.01 0.06 � 0.02 0.06 � 0.02 0.06 � 0.02 0.04 � 0.01

K�, meq/10 g body wt
(t) 0.07 � 0.01 0.07 � 0.00 0.05 � 0.00 0.06 � 0.01 0.03 � 0.01 0.04 � 0.01 0.03 � 0.01 0.02 � 0.01

Cl�, meq/10 g body wt
(t) 0.11 � 0.01 0.12 � 0.01 0.10 � 0.01 0.10 � 0.01 0.08 � 0.03 0.08 � 0.02 0.09 � 0.03 0.05 � 0.02

Diuresis, ml/10 g body wt
(t) 1.40 � 0.20 1.30 � 0.15 1.16 � 0.11 1.35 � 0.16 0.23 � 0.10 0.40 � 0.09 0.30 � 0.13 0.16 � 0.05

Initial body wt, g
(s) 34.95 � 0.81 35.83 � 0.73 29.98 � 1.15 28.29 � 0.90 32.37 � 1.13 35.11 � 0.75 28.73 � 0.89 30.15 � 1.59

Post Furo/LSD body wt, g
(s,t) 29.49 � 0.77 29.97 � 0.64 25.05 � 1.16 23.24 � 0.76 32.97 � 1.05 34.43 � 0.71 28.77 � 0.70 30.05 � 0.90

Values are means � SE, n � 4–9/group. DEP, sodium-depleted groups; CON, control groups; LSD, low-sodium diet;Furo, furosemide; t, main effect of
treatment; s, main effect of sex.
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As shown in Table 1, the statistical analysis of initial body
weight showed, as expected, a significant effect of sex factor
[F(1.79) � 56.24 P � 0.01]; males were heavier than female
mice irrespective of SCC (XX or XY), indicating an organi-
zational hormonal effect. With regard to body weight after 21
h of sodium depletion, ANOVA analysis showed a significant
main effect of sex [F(1.79) � 58.16 P � 0.01] and treatment
[F(1.79) � 50.88 P � 0.01] factors. As described for initial
body weight male mice were heavier than female and DEP
mice showed (irrespectively of sex and SCC) lower body
weights than those reported for CON groups. Moreover, the
analysis of the percentage of mean weight loss (21 h after
Furo/LSD treatment) showed, irrespective of sex and SCC, a
significant main effect of treatment factor [F(1,79) � 241.87;
P � 0.001]. The percentages of mean weight loss were as
follows: 19.94% � 0.84 in DEP groups and 0.28% � 0.72 in
CON groups.

With regard to sodium balance, ANOVA revealed a signif-
icant effect for time and sex factors [F(6,15) � 25.17, P � 0.01
and F(1,25) � 4.68, P � 0.05, respectively] as well as a
significant interaction of sex and time [F(6,15) � 6,98 P � 0.01],
whereas no SCC factor effect was seen. As shown in Fig. 2, the
expected negative sodium balance was evident before the onset
of the test in both male and female DEP groups. Moreover, just
as with water and sodium intake profiles, irrespective of SCC
(XX or XY), a differential response was observed between
male and female mice, with females showing a more negative
balance than males.

Experiment 2: Effect of SCC on Sodium Depletion-Induced
Brain FOS-ir

Sensory circumventricular organs. FOS-ir data analysis
along the sensory circumventricular organs (CVOS) revealed
differential patterns of cell activation. As shown in Fig. 3, a
significant effect of SCC and treatment factors was observed at
the SFO [F(1,21) � 8.33, P � 0.01 and F(1,21) � 34.08, P �
0.01, respectively]. The statistical analysis also showed a
significant effect of the interaction of SCC � treatment
[F(1,21) � 4.51, P � 0.05] and, in the follow-up Tukey test,
XX-DEP mice, irrespective of the gonadal sex, showed a
significant increase in the number of FOS-ir cells compared
with XY-DEP as well as to CON groups (XX and XY).

The analysis of brain activity in the AP showed an indepen-
dent main effect of three factors: SCC, sex and treatment
[F(1,21) � 15.46, P � 0.01; F(1,21) � 5.06, P � 0.05; and
F(1,21) � 8.73, P � 0.01, respectively]. Moreover, the

ANOVA analysis also showed a significant effect of the triple
interaction of SCC � sex � treatment [F(1,21) � 4.83, P �
0.05] and, in a Tukey post hoc analysis, the XX male-DEP
group showed a higher FOS-ir than the other DEP and CON
groups (Fig. 4).

With regard to the OVLT, a significant effect of treatment
factor [F(1,22) � 52.28, P � 0.01] indicated that DEP treat-
ment, irrespective of sex and SCC, resulted in increased brain
FOS-ir compared with CON groups.

Hypothalamic nuclei. The analysis of brain activity in the
MnPO showed a significant main effect for the treatment factor
[F(1,21) � 8.47, P � 0.01] with a similar pattern of neural
activity to that reported for the OVLT nuclei, since DEP
treatment was associated with increased neural activity in both
brain areas (Fig. 5A).

The analysis of FOS-ir data at the PVN showed a significant
main effect for the SCC factor [F(1,23) � 9.50, P � 0.01].
Regardless of treatment or sex, XX mice were associated with
increased neural activity compared with XY mice (Fig. 5B).
However, the brain activity analysis showed no significant
differences at the SON.

Brain stem nuclei. At the LPB, the statistical analysis
showed a significant main effect for the three analyzed factors.
Treatment main effect analysis [F(1,21) � 9.17, P � 0.01]
showed a decrease in brain activity in DEP compared with
CON groups. With regard to sex, males showed greater immu-
noreactivity [F(1,21) � 6.16, P � 0.05] whereas post hoc
analysis of the SCC main factor [F(1,21) � 21.47, P � 0.01]
showed that mice with XX SCC, compared with XY, presented
an increased number of FOS-ir cells (Fig. 6A).

The statistical analysis of FOS-ir cells at the NTS showed a
significant effect due to SCC [F(1,21) � 5.69, P � 0.05],
indicating that, regardless of treatment (DEP or CON) or sex
(male/female), XX-SCC mice had an increased FOS-ir pattern
compared with XY mice (Fig. 6B).

DISCUSSION

The results of this study indicate that sex differences in mice
in terms of induced water and sodium intake may be due to
organizational hormonal effects rather than to intrinsic differ-
ences in the SCC factor (XX and XY) or their interaction.
Moreover, our results demonstrate a modulatory action of SCC
on diencephalic (PVN) and brain stem (NTS and LPBN) cell
activity as well as on sodium depletion-induced activity in two
of the sensory CVOs (SFO and AP), nuclei closely involved in
fluid and blood pressure homeostasis.
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Fig. 2. Time course of cumulative sodium
balance of mice subjected to furosemide-
low-sodium diet treatment. A: cumulative
sodium balance every 10 g body wt in XY
male, XX male, XY female, and XX female
mice subjected to acute sodium depletion
(DEP). B: representation of the significant dou-
ble interaction of sex and time factors. Signif-
icant sex main effect: �P � 0.05 male-DEP
vs. female-DEP groups. Values are means �
SE, n � 4–9/group.
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Although previous studies have already evaluated the impact
of activational and organizational effects of gonadal steroids on
sodium appetite in rats (12, 33, 46, 52), in the present study we
evaluated in mice the effect of SCC on induced sodium and
water intake in dissociation of the organizational and activa-
tional hormonal effects. MF1 gonadectomized male mice,
regardless of the SCC, consumed a greater amount of saline
than females. However, in terms of the drinking response,
while DEP male mice showed the increased water consumption
normally associated with enhanced sodium intake, DEP-female
mice showed the same water intake as CON groups. As
predicted, Furo/LSD treatment resulted in a significant increase
in both electrolyte excretion and diuresis, with a consequent
decrease in urinary osmolarity. As no sex differences were
observed in diuretic/natriuretic effect between male and female
mice, it follows that sexually dimorphic-induced water and
sodium intake could not be attributed to sex differences in DEP
treatment. The drinking shown by depleted females in the
present study are in agreement with Rowland and Fregly (44)
results where adult intact female mice subjected to Furo/LSD
treatment showed an increased sodium appetite and almost no
water intake during the 2-h drinking test. Moreover, the urinary
output of sodium after this treatment was 0.35 � 0.02 meq/21
h, and the mean sodium intake was about 60% of the urinary
sodium loss. Thus Rowland and Fregly (44) postulated that
mice may require a longer period of time to replace their
sodium losses. Data from our work indicate that although this
assumption may be accurate for DEP-female mice, in which
sodium intake represents 42.02 � 15.66% of the urine sodium
loss, DEP-male mice consume, irrespectively of SCC, NaCl
equal to or in excess of their furosemide induced-sodium
deficit (111.10 � 17.96%) in association to water intake.

Concerning this observed diminished mean sodium intake in
DEP female mice related to Furo/LSD-induced urinary sodium
loss, reported by both Rowland and Fregly (44) and our study,
it is important to highlight that the onset of specific sodium
appetite as a result of body sodium loss is a slow and complex
process. In rats it has been shown that acute sodium depletion
by peritoneal dialysis produces a rapid and significant decrease
in both serum and CSF sodium concentration, followed by a
relative slow recovery. However, sodium appetite appears only
20–24 h after sodium depletion when serum and CSF sodium
concentration and blood volume have already returned to
normal values, even though the rats did not have access to
sodium salts, supporting the hypothesis of the sodium “reser-
voir” (11, 24). Likewise, studies conducted in patients to whom
furosemide was intravenously administered, showed that, de-
spite the urinary losses, no significant changes in serum osmo-
lality or electrolytes values occurred at any sampling time (14,

N
um

be
r 

of
 F

os
-ir

 c
el

ls

0

20

40

60

80

100

CON
DEP

 SFO

XY               XX               XY                XX

Male Female

XY           XX
0

20

40

60

80

100

*

N
um

be
r o

f F
os

-ir
 c

el
ls

Fig. 3. Brain pattern of Fos-immunoreactivity (FOS-ir) following acute sodium
depletion in subfornical organ (SFO). Mean number of FOS-ir cells in XY
male, XX male, XY female, and XX female mice corresponding to sodium-
depleted (DEP) and control (CON) groups (black and white bars, respectively).
Inset: significant interaction of sex chromosome complement (SCC) � treat-
ment factors, *P � 0.01 XX-DEP vs. XY-DEP, XY-CON and XX-CON
groups. Values are means � SE, n � 3–5/group. Photomicrographs of coronal
sections showing the pattern of FOS-ir cells within the SFO in CON and DEP
groups (right and left panels, respectively). A: XY male-CON, B: XY male-
DEP, C: XX male-CON, D: XX male-DEP, E: XY female-CON, F: XY
female-DEP, G: XX female-CON and H: XX female-DEP. Scale bar 50 �m.
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16). Thus the peritoneal dialysis and furosemide electrolyte
data might indicate that, although female sodium intake is
about half of that required in relation with urinary sodium loss,
this does not indicate that female mice have decreased plasma
and CSF water and sodium concentration, but instead it could
be read as female mice may still have to recover their total
body water and sodium content. Moreover, as we did not
collect the urine volume after the intake test, we cannot assure
there were not differences between males and females in the
renal reabsorption of water and sodium after sodium-water
ingestion. This may explain otherwise why the females are
drinking presumably less than they seem to need. We may also
assume that the female vasopressinergic and angiotensinergic
systems, acting in the kidney are more effective, compensating
in this way the lower consumption during the intake test.

There is considerable evidence of sexual dimorphism in both
need-free and need-induced sodium intake (12, 33, 46, 52).
Studies have addressed large variations in need-free salt and
water intake in females according to the circulating levels of
estrogen and sodium intake is seen to fluctuate during different
stages of the estrous cycle and during pregnancy and lactation
(12, 13, 25, 43). Moreover, additional data supports the idea
that the sexual dimorphism of rat sodium appetite may be
influenced by testosterone in particular modulating the need-
free sodium intake of males and females during the organiza-
tional period and need induced intake of ovariectomized fe-
males during adulthood (activational effect) (12, 34). The
present study did not explore the specific effect of testosterone
on sodium need-free/induced sodium intake or either the acti-
vational effects of gonadal steroids, since we worked with
gonadectomized mice; however, they confirm and extend these
previous works in rats (12, 34) establishing the organizational
effects of gonadal steroids on sexually dimorphic induced
sodium appetite.

With regard to induced sodium intake, Rowland and Fregly
(44) have demonstrated that mice are refractory to both dipso-
genic and natriorexigenic effects of peripheral RAS modula-
tion in most sodium depletion protocols; however, acute treat-
ment with Furo/LSD is the only treatment so far tested that is
capable of increasing plasma renin activity, inducing diuresis,
natriuresis, and the subsequent behavioral sodium intake in this
species. Moreover, Stricker et al. (48) have shown a significant
increase in sodium appetite in adult male and ovariectomized
female rats and a consequent decrease in sodium intake in
ovariectomized females with estrogen replacement. Laboratory
studies not only confirm the existence of rat sexual dimorphism
in induced sodium intake but also the inhibitory effect of
estrogen (activational effect) on this behavior (19, 52).

The anatomical-functional substrate, underlying the neu-
roendocrine and behavioral responses aimed at restoring body
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fluid homeostasis after sodium depletion, is composed of
several forebrain and brain stem neuronal groups. Changes in
plasma and CSF sodium concentration, osmolarity, and ANG
II concentration are sensed by the brain mainly at the level of
three circumventricular organs, termed the sensory CVOs,
which lack a blood-brain barrier and include the SFO and the
OVLT at the third brain ventricle, and the AP at the fourth
ventricle (30). The MnPO, together with the SFO and OVLT,
form the lamina terminalis (LT), which has been shown to play
a major role in many aspects of body fluid homeostasis (39).
Furo/LSD treatment in mice induces sodium appetite and
increased FOS-ir along the SFO and MnPO compared with
basal or control values (18). Moreover, in rats the same sodium
depletion treatment also induced an increase in c-fos expres-
sion along the LT (3). However, the present data not only
confirm the expected sodium depletion increase in FOS-ir
along the entire LT, but also show an interaction effect of
treatment and sex chromosome factors on SFO cell activity.
The influence of XX-SSC on SFO increased cell activity in

response to sodium depletion might reflect the influence of the
SSC on the angiotensinergic-dependent regulatory responses
involved in fluid and cardiovascular homeostasis.

Hypotension and hyponatremia induced by sodium depletion
result, among others, in the activation of the RAS. This system
manages to compensate the generated hypotension restoring the
extracellular volume space and inducing vasoconstriction. In-
creased plasma ANG II levels stimulate aldosterone secretion,
which in turn increases sodium reabsorption by the kidney and
also binds the SFO, OVLT, and AP (sensory CVOs). The lack of
blood-brain barrier allows these CVOs to be exposed to modula-
tory humoral factors, giving them the potential to integrate and
modulate the homeostatic response (40).

At the SFO and AP level, ANG II is involved in sodium
appetite, baroreceptor reflex, and blood pressure response,
modulating hydroelectrolyte and cardiovascular homeostasis.
Recent studies in our laboratory, investigating the role of SCC
in relation to ANG II-sexually dimorphic bradycardic barore-
flex response, indicate that the ANG II differences reported
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between males and females may be due to the effect of SCC
(and therefore to genes linked to sex chromosomes) and not to
the organizational effects of gonadal steroids. In particular we
found an XX-SCC ANG II-facilitatory bradycardic baroreflex
control of heart rate (6). Although the cellular and molecular
mechanisms underlying sex differences in the modulation of
sodium appetite and ANG II hypertensive and bradycardic
baroreflex response are still unknown, it is accepted that the
efficiency of the ANG II sexually dimorphic bradycardic baro-
reflex response observed in females compared with males
seems to be due to central actions of this peptide along the
CVOs and in particular within the AP and SFO. Both the SFO
and AP are subject to neural and humoral modulation and
sends projections to neural centers involved in cardiovascular
regulation, including NTS, dorsal vagal complex, the parabra-
chial nucleus, and rostral ventrolateral medulla, thereby mod-
ulating sympathetic-parasympathetic activity and baroreflex
response (4, 47). Furthermore, studies conducted by Contreras
and Stetson (15) have shown that, whereas AP lesion in male
rats leads to an increase in spontaneous sodium intake, no
differences are reported in glucose and KCl solutions con-
sumption. In addition, injury to this brain area blocks the ANG
II-hypertensive response (17, 26) and in males it prevents the
decrease in baroreflex sensitivity observed after acute admin-
istration of this peptide (17, 38, 53).

Our results also show that, at brain stem level, the LPB have
an increased basal neuronal activation in the control groups,
with a concomitant decrease in sodium-depleted mice. These
data confirm previous laboratory results indicating that this
nucleus has a tonic inhibitory action on sodium intake (27).
The present evidence also shows that mice bearing SCC-XX
have increased neuronal activity at the PVN, LPB, and NTS.
We have previously shown in male rats that the main changes
in c-fos expression along these nuclei are evident after sodium
consumption induced by sodium depletion, suggesting they
may form a circuit subserving sodium balance regulation.
These data are consistent with previous lesion, pharmacologi-
cal, and physiological studies showing these nuclei are com-
ponents of a inhibitory circuit modulating sodium intake (15,
27, 28, 41, 49). Although the present results confirm previous
data showing a sodium-depletion induced FOS-ir along these
nuclei during the appetitive phase of sodium appetite, they are
also demonstrating for the first time that XX SCC mice have
increased neural activity within these nuclei and above all a
major basal activity in XX SCC individuals. This basal and
maybe “inhibitory” activity as shown by Fos immunoreactivity
along these nuclei in XX SCC mice can be the cause of the
refractory sodium appetite response seen in females mice.
However, in the XX SCC sodium-depleted male mice, the
organizational effect of gonadal steroids may counteract the
effect of XX SCC on inhibitory areas activity, resulting in an
increased sodium appetite.

ANG II exerts its physiological action by binding to two G
protein-coupled receptor subtypes AT1 and AT2. AT1 activa-
tion leads to elevation of blood pressure due to vasocon-
striction, aldosterone, and vasopressin release, a decreased
glomerular filtration rate, sodium reabsorption, water and
sodium intake, and increased sympathetic activity. In con-
trast, binding of ANG II to AT2 receptors has the opposite
effects to those of AT1 binding, inducing natriuresis, vaso-

dilatation, and increased production of bradykinin and nitric
oxide (8, 31, 35, 45).

Exciting new data indicate that X-chromosome inactivation
is very far from the “all-or-none” phenomenon that was ini-
tially described, in which it was thought that one X-chromo-
some in somatic cells of female mammals was fully actively
transcribed whereas the other was completely inactive. Al-
though, in female mammals, most genes on one X chromosome
are silenced as a result of X-chromosome inactivation, some
genes escape X-inactivation and are expressed from both the
active and inactive X chromosome. Microarray analysis re-
vealed that the extent of sexual dimorphism in gene expression
was much greater than previously recognized and confirmed
sex-chromosome enrichment in various somatic tissues (sex-
biased genes) (9, 54).

Taking into account the following: 1) our studies indicate
a modulatory action of SCC on neuronal activation at the AP
and SFO of sodium-depleted mice, 2) previous laboratory
work that indicates that SCC modulates the ANG II-sexually
dimorphic bradycardic response (6), 3) that the CVOs play
an important role in hydroelectrolyte and cardiovascular
homeostatic regulation, 4) that ANG II binds to both AT1
and AT2 receptors (whose actions are opposite), and 5) that
the AT2 gene (AGTR2) is located on chromosome X (21,
32), while the AT1 gene (AGTR1) is located on the auto-
somal chromosome 3 (51), it is tempting to speculate that
sex chromosome genes showing sex-biased expression may
thus serve as candidate regulators of sexually dimorphic
phenotypes (20). If this is the case, the differential expres-
sion or transcription of AT1R/AT2R could be responsible
for differential neuronal activation of areas closely related
to angiotensinergic system activation, such as the SFO and
AP. Further investigation is needed, however, to assess the
contribution of SCC to AT1 and AT2 receptor expression in
these specific brain areas involved in sodium depletion and
cardiovascular homeostasis.

Perspectives and Significance

In summary, this study demonstrates a sexually dimorphic-
induced sodium intake in mice, in which the organizational
hormonal effect (but not the SCC factor) modulates the sexu-
ally dimorphic profile. Moreover we have also demonstrated
that SCC modulates brain activity in nuclei closely involved in
the regulatory response to RAS stimulation, suggesting a sex
chromosome gene participation in the modulation of neural
pathways underlying fluid and electrolyte homeostasis. Histor-
ically, most epidemiological and basic studies were performed
in male subjects and, if both sexes were included, no sex
differentiation was taken into account during data analysis,
assuming that males and females are similar, differing only in
the magnitude of the response. Nonetheless, principles learned
in male models do not necessarily apply to females. Under-
standing in more detail sex differences on the regulatory
mechanisms underlying physiological differences on water and
sodium handling between males and females (both at the
peripheral and brain levels) may offer important insights into
designing improved oriented sex-tailored therapeutic treat-
ments in the future.
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