



# UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE ODONTOLOGÍA ESCUELA DE POSGRADO

### "LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO"

TESISTA:

OD. LAURA C. BRAIN LASCANO.

DIRECTOR:

DR. GUSTAVO F. MOLINA



Esta obra está bajo una <u>Licencia Creative Commons Atribución-</u>
<u>NoComercial-Compartirlgual 4.0 Internacional.</u>





#### Universidad Nacional de Córdoba Facultad de Odontología Escuela de Posgrado

Trabajo de Tesis para optar al título de Doctor en Odontología

## LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO

TESISTA:

**OD. LAURA C. BRAIN LASCANO** 

DIRECTOR:

DR. GUSTAVO F. MOLINA





#### COMISIÓN DE SEGUIMIENTO DE TESIS RESOLUCIÓN Nº: 284/11

#### **COMISIÓN DE TESIS**

Prof. Dr Gustavo F. Molina

Prof. Dr. Jorge Uribe Echavarría

Prof. Dra. Ana Maria Littvik

#### **JURADO DE TESIS**

Prof. Dr. Jorge Uribe Echavarría

Prof. Dra. Ana Maria Littvik

Prof. Dra. Andrea Kaplan

#### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO



A todos los que de una forma u otra formaron parte de este camíno dejando una huella ímborrable en mi vida...



### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO



#### AGRADECIMIENTOS:

A mi Director de Tesis, Prof. Dr. Gustavo Molina, por su enorme generosidad y guía constante para llevar a cabo el presente trabajo.

A la Comisión de Seguimiento de Tesis, Prof. Dres. Jorge Uribe Echavarría y Ana Maria Littvik, por el asesoramiento brindado en el desarrollo del trabajo, y a la evaluadora externa Prof. Dra. Andrea Kaplan, por sus sugerencias y aportes. Les agradezco a ellos junto a mi Director y Profesores porque además de ser grandes maestros con alto nivel científico, son grandes personas siempre dispuestas a enseñar y comprender.

A todos mis compañeros y amigos de la Cátedra de Materiales Dentales por su colaboración. En especial al Prof. Titular Dr. Ricardo Cabral y al Od. Ignacio Mazzola por la ayuda y colaboración incondicional y por ser excelentes personas.

A la Facultad de Odontología de la UNC y sus autoridades: Prof. Dra. Mirta Mónica Spadiliero de Lutri y Prof. Dra. Alfonsina Lescano de Ferrer. A la Escuela de Postgrado de la Facultad de Odontología de la UNC, a la Directora de la Carrera Dra. Mº Elsa Gomez de Ferraris, a Liliana y Sofía.

A todas las personas que colaboraron en la desarrollo de esta investigación: Ing. Luis Croharé por los trabajos estadísticos, al personal del LAMARX, especialmente a Jorge Vilches, Dra. Mariana Cid del Depto. de Química FCEFyN UNC, al Ing. Carlos Oldani, Luciano Grinschpun y Alejandro García del Depto de Materiales FCEFyN UNC, al Tco. Alejandro Minguetti del INTI Córdoba, Mariana Nievas de SBZ, Dra. Ana Azcurra Cátedra de Química Biológica "A" FO UNC, Fernando Bazán de la Biblioteca de la UCC, Lic. Mercedes Brain Lascano y Magdalena Vélez por el diseño.

Finalmente gracias a mis padres, hermanas y mi familia por la paciencia que me tuvieron durante estos años y por su apoyo incondicional, especialmente a mi mamá quien me enseñó "que todo sueño se puede lograr en la vida si uno se lo propone". A mi esposo Ignacio, colega y socio de nuestra empresa que es la familia, a mis hijos Paz, Nachi y Agustín que son el regalo más lindo que Dios me ha dado. Sin ustedes, no hubiera sido posible llegar hasta aquí.

Muchas Gracias!!!





#### CERTIFICADO DEL COMITÉ DE ÉTICA





COMITE DE ETICA

Hospital Nacional de Clínicas Registro Nº 139/12

Comité de ética

#### 1. Datos y características del estudio

| 1 | Titulo de la investigación                                                      | El aporte de los cementos de ionómero vitreo de alta densidad para el éxito del tratamiento restaurador atraumático. |
|---|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2 | Institución donde se llevara a cabo el estudio                                  | Facultad de odontología                                                                                              |
| 3 | Autoridad responsable de la institución o Director de tesis (según corresponda) | Prof. Dra. Maria del Carmen Visvisian                                                                                |
| 4 | Investigador responsable                                                        | Laura Brain Lascano                                                                                                  |
| 5 | Tipo de investigación                                                           | Experimental in vitro                                                                                                |

#### 2. Resolución final

El CEHNC, en reunión plenaria, ha decidido aprobar el protocolo de referencia, según consta en el Libro de Actas I, Nº 120 con fecha 20 de diciembre de 2012. La investigación cumple con las disposiciones y regulaciones provinciales y nacionales que salvaguardan los derechos de los participantes en investigación clínica.

- Se comunica al investigador principal deberá notificar a este Comité:

  o El inicio de la ejecución del estudio dentro de las 72 horas (mediante el formulario correspondiente).
  - La suspensión o cancelación del estudio de manera inmediata.
  - o El reporte de avance anualmente donde incluirá el estado de progreso del protocolo y cualquier otra situación que modifique el curso de la investigación
  - Las enmiendas al protocolo de manera oportuna y para su aprobación.



Firma del Presidente / Coordinador

Prof. Dra. HILDA L. MONTRULL Coordinadora del Comité de litice CIEIS-HNC

#### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO



#### ÍNDICE

| I. INTRODUCCIÓN                                                | 10  |
|----------------------------------------------------------------|-----|
| II. MARCO TEÓRICO                                              | 15  |
| II. 1. La OMI como marco conceptual del TRA                    | 16  |
| II. 2. Evolución de la sobrevida de las restauraciones TRA     | 18  |
| II. 3. Materiales Dentales usados en el TRA                    | 19  |
| II. 4. Importancia de la evaluación de las propiedades         |     |
| físicas/biológicas de los materiales usados en el TRA          | 23  |
| III. HIPÓTESIS                                                 | 32  |
| IV. OBJETIVOS                                                  | 34  |
| IV. 1. Objetivo General                                        | 35  |
| IV. 2. Objetivos Específicos                                   | 35  |
| V. MATERIALES Y MÉTODOS                                        | 36  |
| V. 1. Resistencia Compresiva                                   | 40  |
| V. 2. Resistencia Flexural                                     | 42  |
| V. 3. Resistencia al Desgaste por cepillado dental             | 46  |
| V. 4. Rugosidad Superficial                                    | 50  |
| V. 5. Dureza Vickers                                           | 52  |
| V. 6. Remineralización de los tejidos adyacentes               | 54  |
| V. 7. Análisis Estadístico                                     | 58  |
| VI. RESULTADOS                                                 | 59  |
| VII. DISCUSIÓN                                                 | 168 |
| VIII. CONCLUSIONES                                             | 180 |
| IX. REFERENCIAS BIBLIOGRÁFICAS                                 | 183 |
| X. ANEXOS                                                      | 193 |
| X. 1. Instrumentos usados en cada Ensayo                       | 193 |
| X. 2. Planilla Modelo del Consentimiento Informado             | 197 |
| X. 3. Publicaciones vinculadas con las presente Tesis Doctoral | 201 |



#### **ABREVIATURAS**

CIV: Cemento de Ionómero Vítreo

TRA: Técnica de Restauración Atraumática OMS: Organización Mundial de la Salud OMI: Odontología Mínimamente Invasiva FDI: Federación Dental Internacional

Rc: Resinas compuestas

CIVH: Cementos de Ionómero Vítreo Híbridos o Modificados con Resinas

EF: EQUIA FIL FIX: Fuji IX

KM: Ketac Molar EasyMix

V: Vitremer

RC: Resistencia Compresiva RF: Resistencia Flexural RD: Resistencia al Desgaste RS: Rugosidad Superficial

HV: Dureza Vickers

RTA: Remineralización de los tejidos adyacentes

PMMA: Resina acrílica

ADA: Asociación Dental Americana UNC: Universidad Nacional de Córdoba

Ra: Rugosidad media aritmética

Rz: Rugosidad parcial Rsk: Sesgo o asimetría

**Rku: Curtosis** 

Rt: Rugosidad total

Rp: Rugosidad de cresta o de pico

Rv: Rugosidad de valle

SEM: Microscopio Electrónico de Barrido

MPa: Megapascales

F: Flúor Sr: Estroncio



#### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO



#### **RESUMEN**

**Objetivo**: Evaluar mediante un estudio in vitro las propiedades: Resistencia Compresiva (RC), Resistencia Flexural (RF), Resistencia al Desgaste (RD), Rugosidad Superficial (RS), Dureza Vickers (HV) y Remineralización de los Tejidos Adyacentes (RTA), de diversos CIV de alta viscosidad usados en el TRA con diversos materiales de recubrimiento superficial.

Materiales y Métodos: Se analizaron 5 CIV: EQUIA FIL, Fuji IX, Ketac Molar Easymix, Ionofil Molar, Vitremer, combinados con diferentes recubrimientos superficiales: G-Coat Plus, Adper Single Bond y vaselina sólida. Las muestras se prepararon según instrucciones del fabricante. La superficie expuesta del CIV se protegió con materiales de recubrimiento según cada grupo y cada ensayo y se almacenaron en agua desionizada a 37ºC. La RC y RF se midieron con una maquina universal de ensayos (Diggimes). La RD se realizó con un simulador (CFW-07 Software: versión 3.XX 0899.3360 S/4). La RS fue evaluada con microscopio Laser Confocal (Olympus LEXT4000). Se midió HV con Microindentador LECO Corporation, Modelo LM-247AT. Para la RTA se utilizó el SEM (Carl Zeizz). Los resultados fueron sometidos a pruebas de ANOVA y Tukey para comparar las diferencias entre grupos.

**Resultados**: Los valores más altos para RC se registraron para V y KM con vaselina (95,43MPa y 78,15 MPa respectivamente); para RF, V (80,75MPa) seguido de los materiales con recubrimientos superficiales G-Coat Plus y Adper Single Bond (entre 54,19 y 64,71 MPa); el menor desgaste fue el EF (0,34mg); la menor Ra fue para KM, IM, EF (0.16, 0.23 y 0.29μm respectivamente) ; la mayor HV fue para EF (110,6 HV) seguido por KM con Adper Single Bond (104,2 HV); los materiales que liberaron mayor cantidad de F y Sr fueron respectivamente: EF (media: 342,9) y KM (media: 394,5).

**Conclusión**: El efecto del recubrimiento superficial no mostró diferencia significativa para la RC ni para la RD pero sí para la RF, HV donde los valores más altos se registraron en los grupos con protección. No existe un solo material que reúna las mejores propiedades para aplicarlo en TRA, pero EF y KM fueron los cementos que alcanzaron el mejor desempeño en este estudio en concordancia con los reportes de estudios clínicos recientes.

Palabras Claves: cementos de ionómeros vítreo, TRA, propiedades, recubrimiento superficial.

#### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO

#### **ABSTRACT**

**Objective**: To assess different HVGIC and coating agents used with the ART the following properties: Compressive Strength (CS) Flexural Strength (FS), wear resistance (WR), surface roughness (SR), Vickers hardness (VH) and remineralization of adjacent tissues (RTA).

Materials and Methods: EQUIA FIL, Fuji IX, Ketac Molar Easymix, Ionofil Molar, Vitremer combined with different surface coatings: G-Coat Plus, with Adper Single Bond and solid vaseline, were analyzed. Samples were produced according to manufacturer's instructions, protecting each exposed surface of the CIVs with different coating materials and stored in deionized water at 37C. The CS and FS were measured using a universal testing machine (Digimess). The WR was performed using a simulator (CFW-07 Software: version 3.XX 0899.3360 S / 4). The SR was evaluated by means of confocal laser microscopy (Olympus LEXT4000). VH was measured with Microindentator LECO Corporation, Model LM-247AT. SEM (Carl Zeiss) was used for the RTA. Results were analyzed using ANOVA and Tukey tests to compare differences between groups.

Results: Highest CS values were obtained with V and KM coated with vaseline (95,43MPa and 78.15 MPa respectively); For FS, V (80,75MPa) obtained the highest values followed by materials coated with G-Coat Plus and Adper Single Bond (54.19 and 64.71 MPa respectively); least wear was recorded for the EF (0,34mg); Ra was lower for KM, MI, EF (0.16, 0.23 and 0.29 microns, respectively); highest VH values corresponded to EF (VH 110.6) followed by KM/Adper Single Bond (104.2 HV); the highest F and Sr release was recorded in EF (mean: 342.9) and KM (mean: 394.5).

**Conclusion**: The effect of surface coating showed no significant difference for CS and WR although it positively affected FS and VH, where highest values were recorded in groups with coating agents. There is no one such material that achieves best properties in every variable for its application with the ART approach. However, EF and KM were likely to perform better than the other groups in this study, in agreement with recently published clinical studies.

**Keywords:** glass ionomer cements, ART, properties, surface coating.





## CAPÍTULO I INTRODUCCIÓN



#### I. INTRODUCCIÓN

Los cementos de ionómero vítreo (CIV) fueron sintetizados en 1969 por Wilson y Kent, (Wilson 1972) a partir de la combinación del ácido poliacrílico del cemento de policarboxilato y del vidrio del cemento de silicato. Este último, introducido hace más de 100 años en Odontología como material de restauración, tenía propiedades cariopreventivas debido a la liberación de fluoruros. Sin embargo, como su solubilidad era alta, se desarrollaron los cementos de policarboxilato y posteriormente los CIV (Ngo HC 2011). El primer ionómero vítreo de la historia se conoció por el nombre de una sigla que indicaba su composición principal: ASPA (alúmino-silicato-poli-acrilato); que además de su opacidad presentaba algunos inconvenientes como fraguado lento, difícil manipulación y sensibilidad a la humedad. Desde ese momento hasta la fecha, los cementos de ionómero vítreo han sido objeto de mejoras continuas para mantenerse en el mercado cumpliendo los requerimientos funcionales y estéticos (Mount 1998, Imparato 2007).

En 1972, Crisp y col. adicionaron ácido tartárico para mejorar su manipulación, ya que prolongaba el tiempo de trabajo y aumentaba la velocidad de fraguado. Esto dio origen al cemento ASPA II. En 1973, Crisp y Wilson sintetizaron un copolímero del ácido acrílico e itacónico que se utilizó en el ASPA IV y fue la base del primer cemento comercial ASPA De Trey. El primer material comercializado nació en Europa en 1975 y luego en Australia y EEUU en 1976 y 1977. A partir de entonces, los fabricantes han introducido numerosas modificaciones en la composición y reacción de fraguado de los CIV lo que ha dado lugar a una gran familia de materiales de indicaciones clínicas diversas (Arte y Ciencia de los Materiales Odontológicos 2003).

Dentro de los cementos usados para restauración podemos mencionar algunas variantes:

- Presentación Anhidra: se incorporan los poliácidos desecados en el polvo y el líquido es agua.
- 2 La incorporación de metales en el polvo dio origen a los Cerments y Miracle Mix.
- La adición de monómeros de metacrilato (HEMA) al líquido dio origen a los CIV Híbridos o Modificados con Resina cuya polimerización pudo ser controlada con luz.(1988 1989)





A fines del año 1990 surgen los CIV de Alta Viscosidad que prometen superar a los de media viscosidad, ya que presentan propiedades mejoradas, mayor liberación- absorción de flúor y un tiempo de fraguado más corto. (van Duinen 2005).

El Tratamiento Restaurador Atraumático, por definición, utiliza materiales adhesivos para obturar la cavidad resultante luego de la eliminación manual de tejido cariado y sellar los surcos, fosas y fisuras en riesgo de caries. Preferentemente, el cemento de ionómero vítreo es el material de elección debido a sus propiedades como: adhesión específica a las estructuras dentarias, liberación/absorción de flúor, módulo de resiliencia semejante a la dentina y biocompatibilidad. (Marquezan M, 2009, Amaral MT 2006). Sin embargo, las propiedades físicas-mecánicas y estéticas de estos cementos en su variante convencional tipo II para restauración, llevaron al Cemento de Ionómero Vítreo de Alta Viscosidad a un lugar preponderante frente a sus antecesores en relación a su aplicación en el Tratamiento de Restauración Atraumático (TRA) (Frencken, 1999; Ewoldsen, 1999; Massara, 2002) en virtud de los buenos resultados clínicos expresados en las últimas investigaciones: altas tasas de sobrevida en restauraciones TRA en cavidades de una superficie (del 95 al 97% a los 3 años) y una mejoría de las propiedades con el paso del tiempo (maduración) (Scholtanus, 2007; Hof 2006; Xie, 2000), sugiriendo el uso de los CIV de alta densidad sobre los de media viscosidad, tanto en dentición temporaria como permanente (Van't Hof 2006).

Estudios realizados durante un período más amplio (Lo E 2007, Frencken 2007) señalan una tasa de supervivencia satisfactoria a los 6 años, siendo ésta mayor en cavidades clase 1 que en cavidades clase 2 en ambas denticiones. La sobrevida de las restauraciones TRA de una superficie fue mayor que de aquellas realizadas con amalgama luego de 6,3 años de seguimiento (Frencken 2007); resultados opuestos a estudios anteriores (Frencken 2004).

Los mayores inconvenientes que presenta el CIV para restauración son: la baja resistencia flexural y la alta tasa de desgaste a nivel oclusal, en comparación con las amalgamas o las resinas compuestas actuales (Yip 2001). Las causas de fracasos de los CIV se deben principalmente a la pérdida total o parcial del material de restauración, seguido por las filtraciones o defectos marginales y luego por caries secundarias (Yip 2001, Van Gemert-Schniks 2007, Taifour 2002, Yip 2002, Lo ECM 2001, Ersin 2006). Sin embargo, las últimas investigaciones realizadas por Frencken





y otros autores, indican que no hay diferencias estadísticamente significativas en el comportamiento clínico entre restauraciones de amalgama y de CIV de alta viscosidad (Frencken 2012, Mickenautsch 2010).

La sensibilidad al agua durante las primeras 24 horas de fraguado resulta crítica, ya que está asociado con estas debilidades. En la etapa inicial de fraguado (10 minutos posteriores del mezclado) el material es muy sensible a la absorción de agua, mientras que en la segunda etapa (24 horas) el material es muy susceptible a la deshidratación (McLean 1977). Por este motivo se recomienda proteger la superficie con barnices, resina, vaselina, manteca de cacao o incluso esmalte de uñas (Brito 2010) (Marquezan 2010).

En relación a un informe que publicó la OMS en el marco del Programa Mundial de Salud Bucodental en 2009, donde se busca sustituir a la amalgama por otros materiales de restauración dental que sean más ecológicos, mejoren la salud de los pacientes y el medio ambiente, se busca fortalecer la investigación y el desarrollo de materiales dentales biocompatibles, conservadores y estéticos como las resinas compuestas o los cementos de ionómeros vítreos. Las resinas compuestas, desde el punto de vista químico, presentan monómeros que, además de su citotoxicidad (del Carmen Sénchez 2008, Gupta SK 2012), provocan una contracción al polimerizar que perjudica la interfaz, lejos de lo que serían los requisitos para un material de restauración ideal según la OMS. De manera contraria, los CIV son los materiales con un futuro más prometedor porque además de ser un material bioactivo, que intercambia iones con la estructura dentaria, disminuye la microfiltración favoreciendo la remineralización, tiene un efecto cariopreventivo y no necesita aparatología compleja para su uso, pudiendo ser utilizado en cualquier ámbito clínico y nivel socio económico.

A pesar de la variedad de marcas para TRA que encontramos disponibles en el mercado, sigue imperando la necesidad de promover el desarrollo de materiales de restauración dental de calidad para su uso en los programas de salud pública. La OMS subrayó la urgencia de que la comunidad de investigadores de salud bucodental fortalezca la investigación operativa para propiciar el desarrollo y la utilización de nuevos materiales restauradores. Sumado a esto, en el 2013, la IADR y FDI publicaron un comunicado de prensa en el que se adhieren a la Convención Internacional de Minamata sobre la erradicación del mercurio y el llamado a elaborar una agenda de investigación y desarrollo para encontrar el sustituto de la amalgama. Los requisitos que se plasmaron en relación a las propiedades que debe reunir un



### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO

material de restauración "ideal" son los siguientes: debe tener propiedades minerales similares a la cavidad de un diente natural, ser económicos y no tóxicos para la salud humana y el medio ambiente. Sellar la interfaz entre el diente y la restauración, ser adhesivos al diente con poca o ninguna contracción, interactuar favorablemente con la dentina cariada y esmalte (curación/remineralización), de fácil manipulación en diferentes entornos, resistentes a la fractura y al desgaste, y que se puede reparar. Teniendo en cuenta las propuestas de dichas Instituciones y estando a favor del cuidado y desarrollo del medio ambiente y la salud humana, creemos que los cementos de ionomeros vitreos son los materiales con un futuro prometedor en virtud de lo expuesto anteriormente. Por esta razón, la presente investigación busca analizar las propiedades físicas y biológicas de los CIV que se utilizan para restauraciones dentarias (algunos recientemente incluidos en el mercado) adicionando materiales de recubrimiento superficial para optimizar sus propiedades y poder comparar los resultados entre ellos.





# CAPÍTULO II MARCO TEÓRICO





#### II. MARCO TEÓRICO

## II. 1. La Odontología Mínimamente Invasiva como marco conceptual del Tratamiento Restaurador Atraumático

El actual conocimiento de la caries y su manifestación en los tejidos dentarios ha producido cambios sustanciales en los últimos años, en cuanto al abordaje terapéutico de esta patología. En primer término, la prevención basada en un enfoque de riesgo ha relegado al tratamiento del síntoma clínico (cavidad) a un lugar de menor preponderancia.

En este contexto, la Odontología de Mínima Intervención o Mínimamente Invasiva (OMI), no es una técnica sino una filosofía de trabajo en el tratamiento de las lesiones por caries (Lanata 2008, Frencken 2012) y se construye a partir de los siguientes pilares basales:

- 1) Diagnóstico etiológico y control de los factores de riesgo de la caries;
- 2) Máxima conservación de tejidos y
- 3) Minimizar la necesidad de intervención quirúrgica.

Las decisiones de intervención quedan supeditadas al control de los factores etiológicos, con la finalidad de asegurar un mejor pronóstico para la restauración, utilizando en estos casos materiales que favorezcan la permanencia de los cambios logrados en el nuevo equilibrio bucal (Verdonschot EH 1997).

Si bien esta corriente filosófica tiene connotaciones en todas las disciplinas de la Odontología, es en la Cariología donde se ha producido el movimiento con mayor repercusión, dando nuevas interpretaciones a los principios enunciados hace más de un siglo por G.V. Black, el padre de la Operatoria Dental. Es, tal vez la visión "operatorista" la que redujo el tratamiento de la caries al abordaje del síntoma, descuidando la enfermedad en su conjunto.

Entre los avances más relevantes que inciden en la temática de esta presentación, la comprensión de la dinámica y génesis en la enfermedad de caries y la consolidación de las técnicas adhesivas, resultan en una combinación inmejorable para la máxima conservación de los tejidos dentarios sanos o recuperables a sano.

En la OMI se comparte la responsabilidad de la salud bucal con el destinatario de nuestras acciones profesionales. El odontólogo será el encargado de asesorar, motivar y monitorear, mientras que el paciente, una vez tomada la decisión de vivir en salud bucal, deberá responsabilizarse por esto. En tal sentido, el principio general





que rige la OMI es "la menor intervención profesional para poner al paciente en control de su salud bucal".

Dan Ericson escribe: "... la Odontología Mínimamente Invasiva es la aplicación de un respeto sistemático hacia el tejido original". Esto implica que la profesión dental reconoce que un artefacto es de menor valor biológico que el tejido sano original. La OMI es un concepto que abarca todos los aspectos de la profesión. El factor común es la preservación de tejido, de preferencia evitando que se presente la enfermedad e interceptando su progreso al eliminarla y reemplazarla con la menor pérdida de tejido como sea posible.

La Federación Dental Internacional (FDI) y la Asociación Dental Americana (ADA) apoyan los principios de la mínima intervención en odontología o "intervención sin invasión" para el manejo de caries dentales (Tyas M J 2000). Éstos son:

- 1. Modificación de la flora bucal: La caries dental es una enfermedad infecciosa y el enfoque primario debería ser por ello el control de la infección, control de la placa y la reducción de la ingesta de carbohidratos.
- 2. Educación del paciente: Se debería explicar al paciente la etiología de la caries dental así como los medios para prevenirla a través de medidas alimenticias y de higiene oral.
- 3. Remineralización de lesiones no cavitadas en esmalte y dentina: La saliva juega un papel crítico en el ciclo de desmineralización/ remineralización y su cantidad y calidad debería ser por ello evaluada. Existe gran evidencia de que las lesiones de "manchas blancas" en el esmalte y lesiones no cavitadas en la dentina pueden detenerse o revertirse. Tales lesiones deben por ello ser manejadas inicialmente con técnicas de remineralización. Debe registrarse objetivamente la extensión de la lesión de modo que todo progreso pueda ser identificado en citas subsiquientes.
- 4. Intervención quirúrgica mínima de lesiones cavitadas Un método operativo ("quirúrgico") deberá ser usado sólo cuando sea indicado específicamente, por ejemplo cuando la cavitación es tal que la lesión no puede ser detenida, o cuando existen requerimientos estéticos o funcionales. La intervención operativa deberá enfocarse en la preservación de estructura dental natural y deberá limitarse a la remoción de esmalte frágil y dentina infectada. Dependiendo de las circunstancias, esto puede realizarse con instrumentos manuales, rotatorios, de sonido o ultrasonido, abrasión por aire o laser. Cada cavidad preparada es por ende única, y depende principalmente de la extensión de la dentina infectada más que de un diseño de





cavidad predeterminado. La mínima preparación de cavidades posibilita su restauración con materiales adhesivos como los cementos ionómero vítreos, y/o composite.

5. Reparación de restauraciones defectuosas La remoción de restauraciones resulta en un aumento inevitable del tamaño de la cavidad como consecuencia de remover estructura dental sana. Dependiendo del juicio clínico del dentista, la reparación podría ser considerada como una alternativa de una sustitución en algunas circunstancias.

El TRA fue desarrollado en el marco de esta corriente de pensamiento, aplicado en comunidades rurales de países en desarrollo y luego extendido su uso en la práctica cotidiana para el tratamiento de lesiones por caries (Frencken J.E 1996).

El TRA, cuyo abordaje preventivo y mínimamente invasivo tiene el fin de detener la progresión de la caries dental, consiste en la remoción de la dentina cariada desmineralizada con instrumentos manuales (cucharillas de Black) y luego, la cavidad resultante, así como las fosas y fisuras adyacentes, se restauran con un material adhesivo que promueve la remineralización y sella simultáneamente los surcos con riesgo de caries (Frencken J 1999; Ewoldsen N.1999; Massara M 2002) que es cemento de ionómero Vítreo de Alta Viscosidad.

#### II. 2. Evolución de la sobrevida del las restauraciones TRA

El TRA se desarrolló en los años 80 dentro del marco del programa de atención primaria de la salud bucal de la Escuela Dental de Dar es Salaam, en la República de Tanzania, África, en respuesta a la necesidad de encontrar un método para preservar los dientes cariados en personas de todas las edades que viven en países en desarrollo y en comunidades menos favorecidas. Intervenciones similares se emprendieron luego en Tailandia (sureste asiático) en 1991, Zimbabwe (África) en 1993 y Pakistán (sur de Asia Central) en 1995 y en China en el año 2001; Perú, Ecuador y Argentina.

Desde el origen del TRA, se utilizaron diferentes materiales de restauración como amalgamas, resinas compuestas y CIV; con el paso del tiempo los resultados clínicos expresados en las investigaciones fueron variando (Scholtanus JD 2007; Hof MA 2006).





En un meta-análisis de Frencken y col. (2004) se evaluó la durabilidad de las restauraciones TRA, en dos períodos: desde 1987 a 1992 y desde 1995 hasta 2004, en el primer período, las cavidades obturadas con amalgama presentaron mayor durabilidad que las realizadas con la técnica de restauración atraumática; mientras que en el segundo período no se encontraron diferencias estadísticamente significativas entre los dos materiales de restauración evaluados (Frencken 2004).

En otro meta-análisis realizado por Van't Hof y col. (2006) se relevaron publicaciones, algunas de ellas que correspondieron a la década de 1980 y se utilizaron CIV de media viscosidad; mientras que otras datan desde 1990 y se restauraron con CIV de alta viscosidad. Los resultados de este meta-análisis informaron altos niveles de supervivencia para restauraciones TRA a los 3 años: del 95% y del 97% para aquellas de 1 superficie en dentición primaria y permanente, respectivamente, y se sugieren los CIV de alta densidad sobre los de media viscosidad tanto en dentición temporaria como permanente.

Estudios realizados durante un periodo más amplio (Lo E. 2007; Frencken JE, 2007) señalan una tasa de supervivencia satisfactoria a los 6 años, siendo ésta mayor en cavidades clase 1 que en cavidades clase 2 en ambas denticiones. La sobrevida de las restauraciones TRA de una superficie fue mayor que de aquellas realizadas con amalgama luego de 6,3 años de seguimiento; resultados opuestos a estudios anteriores (Frencken 2004). Sin embargo, las últimas investigaciones realizadas por Frencken y otros autores, indican que no hay diferencias estadísticamente significativas entre restauraciones de amalgama y de CIV de alta viscosidad (Frencken 2012, Mickenautsch 2010).

Estas observaciones suponen que el mayor desarrollo tecnológico en la elaboración de estos materiales dentales, influiría de manera positiva en las propiedades físicas, lo cual prolongaría la durabilidad de las restauraciones TRA, optimizando resultados clínicos en este abordaje.

#### II. 3. Materiales Dentales usado para el TRA

A partir de esta nueva visión de la enfermedad de caries, las propuestas para solucionar la problemática se establecen desde la siguiente secuencia:

- 1) Diagnóstico de lesiones.
- 2) Evaluación individual del riesgo de caries.





- 3) Estrategias preventivas.
- 4) Tratamiento operatorio de las lesiones.
- 5) Elección de los materiales de restauración.
- 6) Recitación de acuerdo al riesgo.

En relación a la selección de los materiales restauradores que han sido utilizados y cuyos resultados se han publicado encontramos a las amalgamas, resinas compuestas y CIV.

#### AMALGAMA DENTAL

La amalgama dental es un material de restauración permanente, de inserción plástica, formado por la mezcla de una aleación en polvo (plata, cobre, estaño, cinc) y mercurio.

Si bien las amalgamas son materiales de restauración convencional con amplia trayectoria de uso clínico, su utilización en el marco del TRA se contrapone con los principios filosóficos de este concepto, en tanto es necesario realizar una configuración cavitaria para la retención del material. Investigaciones realizadas por Frencken y otros autores, indican que no hay diferencias estadísticamente significativas entre restauraciones de amalgama y de CIV de alta viscosidad (Frencken 2012, Mickenautsch 2010).

Siguiendo las recomendaciones de la FDA, no es aconsejable el uso de la amalgama de plata debido a la toxicidad del mercurio, tanto para el paciente como en el medio ambiente (Bernal C 2014) (Mutis M 2011).

#### RESINAS COMPUESTAS

Los composites o resinas compuestas (Rc) surgen en el año 1962, de la mano del Dr. Bowen. Son materiales dentales bifásicos, de obturación permanente de inserción plástica y alto valor estético. Sus componentes están representados por: una matriz o fase orgánica (polimerizable), un relleno cerámico o fase inorgánica (que le otorga las características ópticas y mecánicas) ligados ambos por un agente de unión o enlace.

Las resinas compuestas no han demostrado ser una primera opción para una restauración de TRA a pesar de sus grandes propiedades ópticas y mecánicas. Esto debido a la utilización de los equipos rotatorios que se requiere para un rendimiento





óptimo del material. Además se puede considerar la posibilidad de toxicidad de estos materiales, según la composición pueden producir reacciones dañinas y/o alérgicas tanto en el caso de su reciente colocación, como durante el proceso del envejecimiento de las restauraciones (Privada P 2011).

Evaluaciones clínicas realizadas con Rc indican un porcentaje del 5,9% mayor en la tasa de sobrevida (del 76.1% y 82% para CIV y Rc respectivamente) en restauraciones TRA de clase 2 en comparación con los cementos de ionómero vítreo de alta densidad (Ersin 2006).

En contraposición a esto, un estudio clínico similar, muestra que la tasa de supervivencia de las restauraciones con resina compuesta fue significativamente más baja (menos de 54,1%) (Topaloglu-AK, 2009).

#### CEMENTOS DE IONÓMERO VITREO

Están constituidos por un polvo que contiene fluoruros (óxido, fosfato y fluoruro de aluminio, sílice y fosfato de calcio) y un líquido que contiene poliácidos, (ácido poliacrílico, tartárico, itacónico, maleico y copolímeros). Esta composición, es la que determina las propiedades biológicas, físicas y químicas tan particulares que algunos autores consideran al CIV como un material de restauración "inteligente". Por definición, un material inteligente es un material que tiene propiedades que pueden ser modificados de manera controlada por estímulos como el estrés, la temperatura, humedad, pH, campos eléctricos o magnéticos (F. McCABE, J 2009). El cemento de ionómero vítreo es considerado como "material de restauración ideal" en el TRA (Frencken 1999). Numerosas investigadores han realizado estudios comparativos entre sus formas de presentación (cápsulas, polvo y líquido, pasta/pasta) (Dowling A, Fleming G, 2008-2009) y los diferentes tipos de CIV (convencionales, de alta viscosidad, modificados con resina) (Palma-Dibb 2002; Hübel S 2003; Percq A 2008). Una variedad de cementos de ionómero de vidrio están disponibles en el mercado con fines de materiales de restauración:

#### Cementos de Ionomero Vitreo Encapsulados vs Mezcla Manual

Además de la variabilidad en el rendimiento de los diferentes productos, la mejora tecnológica de cada uno de CIV dentro de la misma empresa se ha producido a través de los últimos años.



Con respecto a sus variantes en la presentación comercial, en 2008 y 2009 Dowling y Fleming compararon el desempeño entre CIV encapsulados y los de mezcla manual, llegando a la conclusión que los primeros superan a sus equivalentes de mezclado manual en relación a las variables analizadas (Resistencia Compresiva a la Fractura, Módulo de Elasticidad y Resistencia al Desgaste). Estos resultados podrían atribuirse a que las proporciones de polvo/liquido dosificadas de manera incorrecta o variable según cada operador, tendría su influencia en las propiedades físicas alterando las características finales del material. De acuerdo a estos hallazgos, sería aconsejable utilizar en la práctica clínica CIV encapsulados (si se dispone de corriente eléctrica); de lo contrario, se deben respetar estrictamente las indicaciones y proporciones establecidas por el fabricante (Dowling & Fleming 2008, 2009).

En alusión a las formulaciones de cementos anhidros (mezclados con agua) y los convencionales (acido polialquenoico en el líquido) se prefieren los segundos, debido a que los anhidros son más susceptibles a la variabilidad clínica durante su manipulación (Dowling & Fleming 2009).

Eso significa que si estamos usando un CIV de mezcla manual en TRA, es mejor elegir aquellos que contienen el ácido en el líquido.

#### Cementos de Ionómero Vítreo Híbridos o Modificados con Resina

La incorporación de componentes de las resinas compuestas a los cementos de ionómero vítreo han dado origen a los CIV híbridos o modificados con resina (CIVH), produciendo mejoras en las propiedades ópticas, el control del tiempo de fraguado por medio de la lámpara de polimerización, mayor fuerza física temprana y menor susceptibilidad a la deshidratación. Según algunas investigaciones, los cementos de ionómero de vidrio modificados con resina tuvieron mejores valores relacionados con la resistencia a la flexión y la resistencia a la tracción diametral (Xie D 2000) mostrando una mayor fuerza de adherencia a la tracción de los valores del esmalte y la dentina (Palma-Dibb 2003).

Los resultados de un estudio (Palma-Dibb 2003) mostraron que los cementos de ionómero de vidrio tradicionales tuvieron menores valores medios de resistencia de la unión a la dentina afectada que los cementos de ionómero de vidrio modificados con resina.

La resistencia al desgaste tiende a disminuir a medida que los CIV maduran con el tiempo. La liberación de fluoruros de los CIVH sería inferior que los CIV



## PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO



convencionales, pero son necesarios mas estudios para poder confirmarlo. Además faltan estudios que comparen todas las propiedades de estos dos tipos de CIV.

Los CIVH serían aplicables en TRA sólo cuando hay disponibilidad de una fuente de luz de curado y cuando el cemento se puede colocar en bloque (Tri- curado para cavidades profundas menos de 2 mm).

#### Cementos de Ionómero Vítreo de Alta Viscosidad

Los CIV de Alta Viscosidad o Densidad presentan propiedades mejoradas debido a que ciertas características como: menor tamaño de las partículas de polvo (mayor relación polvo/ liquido), fraguado más rápido, menor viscosidad del líquido (mayor poder de humectación y reactividad) y mayor liberación y recarga de flúor (Chiayi Shen 2008) aunque sólo unos pocos de ellos han sido probados en ensayos clínicos. El meta-análisis realizado por Van't Hof en el 2006 concluye diciendo que los CIV de media viscosidad no deben ser utilizados para restauraciones TRA. Por lo tanto, sólo CIV de alta viscosidad que han sido probados en estudios de largo seguimiento deben ser utilizados con este abordaje.

Valores similares de resistencia a la flexión se registraron en la mayoría de los estudios que comparan diferentes marcas comerciales de CIV de alta viscosidad, siendo la debilidad de muchos de ellos. Que, traducido a una situación clínica, puede provocar la fractura del material y el fracaso de la restauración (Xie D 2000, Bonifacio CC 2009). La resistencia a la compresión, que a menudo es utilizada para medir la capacidad del material para soportar las fuerzas masticatorias, también varía según las marcas. FIX y KM presentaron el mejor rendimiento en diferentes estudios (Bonifacio CC 2009; Peez, R. 2006; Algera, T.J 2006). Recientemente han surgido en el mercado, cementos de ionómero vítreos de alta densidad con propiedades mejoradas (EQUIA FIL - GC) que poseen un barniz protector de fotocurado (G-Coat Plus), cuyo objetivo es compensar el alto desgaste inicial, rellenar las porosidades para aumentar la resistencia a la fractura y permitir la maduración de CIV, garantizando un alto nivel de la resistencia al desgaste temprano.

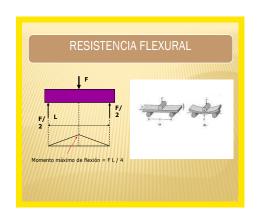
#### II. 4. Importancia de la evaluación de las propiedades físicas/biológicas de los materiales usados en el TRA

El análisis de las propiedades in vitro de los materiales dentales son indispensables para conocer el comportamiento de los mismos y poder hacer la transferencia a situaciones clínicas.





A continuación se desarrollan las definiciones de las propiedades que se analizaron en el presente trabajo de investigación.


#### A. RESISTENCIA COMPRESIVA

La Resistencia Compresiva se determina cuando dos fuerzas de igual dirección y sentido contrario actúan sobre un cuerpo (material) buscando acercar sus puntos de aplicación y, por ello, generando una tendencia a disminuir la longitud del cuerpo (aplastarlo, comprimirlo). Simultáneamente se produce una deformación en compresión y, la tensión máxima que puede llegar a inducir, se llama resistencia compresiva o a la compresión (Macchi RL 2007).



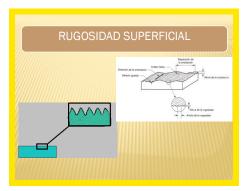
#### **B. RESISTENCIA FLEXURAL**

La Resistencia Flexural es una prueba de resistencia que consiste en una barra sujeta a ambos lados, sometida a una carga estática. Un cuerpo es sometido a una flexión por la acción de cargas flexurales, que producen tensiones compresivas, traccionales y de corte. El estudio de la Resistencia Flexural o Módulo de Ruptura, comprende el análisis del complejo de tensiones o combinación de los tipos de tensiones fundamentales. Es el esfuerzo máximo desarrollado en una probeta justo antes de que se agriete o se rompa en un ensayo de flexión (Macchi RL 2007).





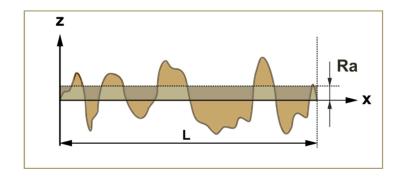



#### C. RESISTENCIA AL DESGASTE

El Desgaste es la pérdida de sustancia por acción del cepillo de dientes y la pasta dental (ISO/TR 14569-1:2007E). Es la pérdida de masa de la superficie de un material sólido por la interacción mecánica con otro cuerpo en contacto. Es específicamente la eliminación de material de una superficie como resultado de una acción mecánica (Rabinowicz E. 1966) (Macchi RL 2007).



#### D. RUGOSIDAD SUPERFICIAL


La Rugosidad Superficial se define como el conjunto de irregularidades que posee una superficie en aquellas secciones donde se corrigieron los errores de forma y las ondulaciones que pudiesen presentar. Una superficie perfecta es una abstracción matemática ya que cualquier superficie real, por perfecta que parezca ser, presentará irregularidades. El mayor grado de irregularidad se corresponde con los errores de forma asociados con la planitud de una superficie, estriados, espiras, rayones, etc., todos ellos medibles con instrumentos convencionales. El resto de irregularidades vienen dadas por la ondulación y la rugosidad que presenten. La ondulación puede deberse a la falta de homogeneidad del material, a la liberación de esfuerzos residuales, a las deformaciones por tratamientos térmicos, a las vibraciones, mientras que la rugosidad se debe al mecanizado y a las características propias del material (Macchi RL 2007).

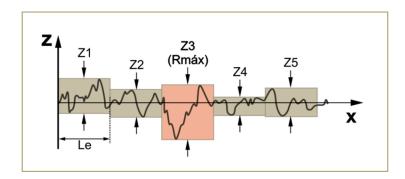






#### D.1 Rugosidad media aritmética (Ra)




Ra es la integral del valor absoluto de la función amplitud (z) a lo largo del trayecto L, esto es la sumatoria de las áreas que se forman entre la curva y la línea media y que equivale al área rectangular de altura Ra y base L:

$$Ra = \frac{1}{L} \int_0^L |f(x)| \, dx$$

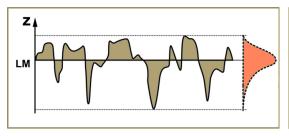
En la práctica, Ra se puede calcular como el promedio de las amplitudes (z) dentro del intervalo o módulo de medición L, denominado también cut-off (80µm en este estudio).

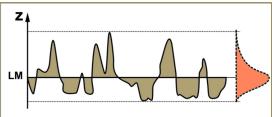
#### D.2 Rugosidad parcial (Rz)

Rz se define como la media aritmética de los valores de rugosidad parcial Zi correspondientes a cada uno de los cinco módulos de medición Le, siendo Zi la rugosidad parcial (i: 1 a 5).



Zi, dentro de cada módulo de medición (L o Le), representa: a) Distancia entre los puntos máximo y mínimo del perfil o b) Suma de las ordenadas (en valor absoluto) de los puntos más alejados de la línea media. Se emplea para determinar los parámetros Rmáx y Rz.





#### D.3 Sesgo o asimetría (Rsk)

El parámetro Rsk indica la propiedad simétrica de la línea central de la función para la densidad de la amplitud (ADF); viene expresado por la fórmula:

$$Rsk = \frac{1}{Rq^3} \int_{-\infty}^{\infty} Z^3 P(z) dz$$
 aproximadamente igual a:  $Rsk = \frac{1}{Rq^3 \cdot n} \sum_{i=1}^{n} y_i^3$ 

La simetría muestra si muchos objetos se encuentran o no sobre la línea media. Cuando la porción total de la máxima densidad de probabilidad dentro de la función de la densidad de la amplitud se desvía hacia el lado superior de la línea central, Rsk<0. Esto sugiere que la superficie que ha sufrido desgaste, abrasión o pulido.





En este caso los valles son poco profundos, probablemente obstruidos, o bien las crestas son prominentes por que no han sufrido desgaste o como resultado de partículas adheridas.

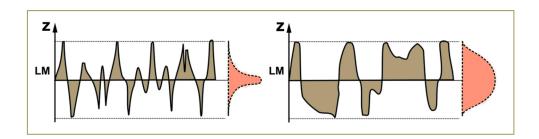
En este caso se analizará directamente el efecto del desgaste o cepillado dental sobre las superficies de los materiales, ya que justamente la mayor utilidad de este parámetro es mostrar los efectos del pulido, abrasión o desgaste en general.

#### D.4 Curtosis (Rku)

Este parámetro indica los dispositivos implicados en la curva de la densidad de la amplitud (ADC) (si se ha efectuado un reglaje o una comprensión) y viene definido por la siguiente fórmula:

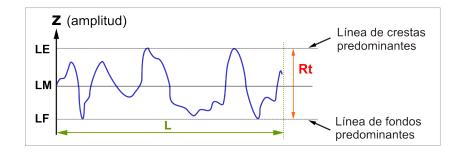
$$Rku = \frac{1}{Rq^4} \int_{-\infty}^{\infty} Z^4 P(z) dz$$
 aproximadamente igual a:  $Rku = \frac{1}{Rq^4 \cdot n} \sum_{i=1}^{n} y_i^4$ 

Partiendo del punto de que la función de densidad de la amplitud es una distribución normal, el valor Rku se caracteriza por lo siguiente:


Distribución platicúrtica: 0<Rku<3 (curva de distribución compacta y plana).






Distribución **normal**: Rku=3 (curva de distribución gaussiana).

Distribución leptocúrtica: Rku>3 (curva de distribución ahusada).



#### D.5 Rugosidad total (Rt)

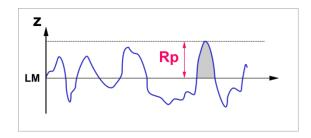
Rugosidad total o profundidad de aspereza. Profundidad total de la rugosidad. Distancia vertical entre el pico más alto y el valle más profundo dentro de LM.



En dónde: **L**: longitud básica o módulo de medición o Cut-off. Valores normales: 80μm, 250μm, 800μm, 2.5mm, 8mm y 25mm.

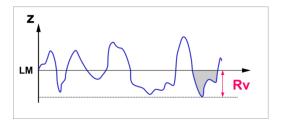
**LE**: Línea que pasa por los puntos más altos (predominantes) de las crestas y es paralela a la línea media

**LM**: Línea de referencia paralela al trazado teórico de la superficie y que divide al perfil de tal forma que la suma de las áreas comprendidas entre ella y el perfil es igual en ambas partes.


**LF**: Línea que pasa por el punto más bajo (predominante) de los fondos y es paralela a la línea media.






#### D.6 Rugosidad de cresta o de pico (Rp)

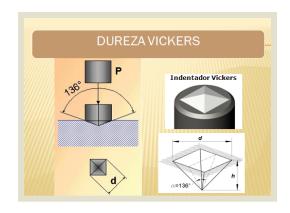
Cresta mayor del perfil. Distancia entre el punto más alto del perfil y la línea media.



#### D.7 Rugosidad de valle (Rv)

Valle más profundo del perfil. Distancia entre el punto más alto del perfil y la línea media.




#### **E. DUREZA VICKERS**

La Dureza, en mineralogía, se basa en la capacidad para resistir el rayado; en metalurgia, es la "resistencia a la indentación". En odontología se aplica este último concepto (Phillips 2008). La dureza es el grado de solidez producida por la cohesión entre partículas que componen una sustancia (Peylon F.A.1974). La Dureza es la resistencia que ofrece el material a que se le haga una "indentación" (depresión o marca) permanente. El método para medirla consiste en un indentador que trata de penetrar la probeta del material de estudio aplicándole una carga establecida. Relacionando la carga con la magnitud de penetración puede establecerse el valor de la dureza. Cuanto mayor es ese número, mayor será la resistencia a la indentación de ese material. Hay diferentes métodos para medir dureza, todos usan el mismo principio pero se diferencian en el tipo de penetrador. La prueba de dureza Vickers tiene un penetrador de diamante con forma de pirámide cuadrangular con un ángulo base de 136°. El indentador producirá una marca cuadrada cuyas diagonales





se medirán para determinar el número de dureza Vickers de cada muestra. (Macchi RL 2007).



#### F. REMINERALIZACION DE LOS TEJIDOS ADYACENTES: PENETRACIÓN DE FLÚOR Y ESTRONCIO DESDE CIV HACIA LOS TEJIDOS DENTARIOS ADYACENTES

La remineralización del esmalte o la dentina se ha definido como la deposición de minerales en defectos desmineralizados en un nivel molecular. Se ha sugerido que el mineral depositado debería ser de apatita y no debe ser muy diferente del mineral del esmalte y la dentina. Además, el término "remineralización" sólo se puede utilizar si el mineral es "traídos de afuera " al esmalte (Ngo H et al, 2006).

Los CIV de alta viscosidad presentan propiedades mejoradas como resultado de innovaciones en el tamaño de las partículas de polvo (mayor relación polvo/ liquido), fraguado más rápido, menor viscosidad del líquido (mayor poder de humectación y reactividad) y mayor liberación y recarga de flúor (Kuhn E 2014).

Si bien la eliminación de la dentina cariada por medio de cucharillas se ha reportado como el método más completo y preciso (Banerjee A 2000), la presencia de dentina afectada por caries podría alterar el sellado de la restauración. La interacción de materiales restauradores con el sustrato dentinario mejoraría esta interfaz, favoreciendo los procesos de remineralización.

La hipermineralización de la dentina reblandecida por caries asociada a restauraciones de cementos de ionómero vítreo se atribuye a la inducción producida por la liberación de flúor y estroncio desde el material a la estructura dentaria adyacente (Bezerra A 2012; Ngo H 1997; Watson TF 2014; Zhou SL 2012).





Una ventaja incidental de los CIV de alta viscosidad es la mayor cantidad de fluoruro y estroncio en comparación con los CIV convencionales. Como elemento, el estroncio (Sr) tiene estrecha similitud con el calcio (Ca) en las propiedades químicas y físicas, además de un radio iónico y valencia similar ( $Sr_2 + = 1,13 \text{ A}$ ,  $Ca_2 + = 0,99 \text{ A}$ ), por lo que puede reemplazar el calcio sin alterar la estructura de la hidrioxiapatita (Curzon ME 1983). Esto sugiere que el calcio perdido de la dentina durante el progreso de la lesión de caries debe ser capaz de ser reemplazado por el estroncio desde ionómero de vidrio en el proceso de remineralización y que esta sustitución debe ser capaz de ser rastreado utilizando diferentes técnicas.





## CAPÍTULO III

## **HIPÓTESIS**





#### III. HIPÓTESIS

Las innovaciones tecnológicas aplicadas en los nuevos Cementos de Ionómeros Vítreos diseñados para TRA, tales como el recubrimiento superficial, mejoran las propiedades físicas y biológicas con respecto a sus antecesores,





# CAPÍTULO IV OBJETIVOS





#### **IV. OBJETIVOS**

#### **IV. 1. OBJETIVO GENERAL**

El propósito de la presente investigación es evaluar mediante un estudio in vitro las propiedades de diversos CIV de Alta Viscosidad (EQUIA FIL GC, Fuji IX GC, Ketac Molar Easymix 3M ESPE, Vitremer 3M ESPE e Ionofill Molar VOCO) con diversos materiales de recubrimiento superficial (G-Coat Plus GC, Adper Single Bond 2 3M ESPE y vaselina sólida Drogal SA).

#### IV. 2. OBJETIVOS ESPECÍFICOS

- 1 Evaluar las siguientes propiedades: Resistencia Compresiva (RC), Resistencia Flexural (RF), Resistencia al Desgaste (RD), Rugosidad Superficial (RS), Dureza Vickers (HV) y Remineralización de los Tejidos Adyacentes (RTA) con el fin de evaluar el comportamiento de estos materiales, y así poder determinar cuál de ellos tendría el mejor desempeño en el TRA.
- 2 Comparar las propiedades físicas de todos los CIV analizados, con y sin recubrimientos superficiales.
- 3 Analizar la interfaz material/cavidad, en relación a la acción remineralizante.
- 4 Transpolar los resultados in vitro a posibles situaciones clínicas.





# CAPÍTULO V MATERIALES Y MÉTODOS





#### V. MATERIALES Y MÉTODOS

Los materiales dentales que se utilizaron en este estudio fueron 5 Cementos Ionómero Vítreo que se utilizan para TRA, 4 de ellos convencionales de Alta Viscosidad y 1 Modificado con Resina. Se utilizó una resina acrílica (PMMA) o una resina compuesta (Rc) como grupo control según la propiedad analizada. El CIV híbrido se constituyó en un sub-grupo control.

Los materiales dentales estudiados se enumeran en la Tabla V.1 junto con datos técnicos de cada producto. En la Tabla V.2 se listan los materiales de recubrimiento superficial o "coating" que fueron colocados sobre cada CIV, cuya combinación en grupos se muestra en la Tabla V.3.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CODIGO  | PRODUCTO               | FABRICANTE                | COLOR   | CODIGO<br>DE LOTE | VENC.    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|---------------------------|---------|-------------------|----------|
| Curtification of the Control of the  | EF*     | EQUIA FIL              | GC Europe<br>(Leuven, BE) | A2      | 1209061           | 2014-09  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                        |                           | COAT    | 1209121           | 2015-09  |
| Consequence of the Consequence o | FIX *   | Fuji IX                | GC Europe<br>(Leuven, BE) | A2      | 1212061           | 2015-12  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KM *    | Ketac Molar<br>Easymix | 3M/ESPE<br>(Seefeld, GE)  | А3      | 457928            | 2013-12  |
| this this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IM *    | Ionofil Molar          | VOCO (Germani)            | А3      | 1233262           | 2014_11  |
| work files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                        |                           | liquido | 1232518           | 2015-04  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V **    | Vitremer               | 3M/ESPE<br>(Seefeld, GE)  | A3      | VKA31204/1        | 2014-10' |
| 5 <b>58</b> 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PMMA*** | Subident               | SL S.A.(Argentina)        | 66      | 9881              | 2018-05  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rc****  | Filtek Z350XT          | 3M/ESPE (Seefeld,<br>GE)  | A3      | N355556           | 2015-01  |

Tabla V.1 Materiales Dentales utilizados en este estudio

<sup>\*</sup>Cementos de Ionomero Vitreo de Alta Densidad | \*\* Cementos de Ionomero Vitreo Modificados con resina.

<sup>\*\*\*</sup>Resinas Acrílica | \*\*\*\* Resinas Compuestas



|                                        | CODIGO | PRODUCTO                | FABRICANTE             | CODIGO DE<br>LOTE | VENC.   |
|----------------------------------------|--------|-------------------------|------------------------|-------------------|---------|
| 1000 co                                | GCP    | G- Coat Plus            | GC Europe (Leuven, BE) | 1111181           | 2013-11 |
| Tops                                   | ASB    | Adper™ Single<br>Bond 2 | 3M/ESPE (Seefeld, GE)  | SB31104/1         | 2014-08 |
| PROGAL + transa secon us. USELINA SOLI | vs     | Vaselina Solida         | Drogal SA              | 0642/05           | 2012-10 |

Tabla V.2: Materiales de Recubrimiento Superficial utilizados en este estudio

| GRUPO        | N | MATERIAL DE RESTAURACIÓN CON SU RECUBRIMIENTO<br>SUPERFICIAL        |
|--------------|---|---------------------------------------------------------------------|
| 1 A          | 6 | EQUIA FIL                                                           |
| 1 A sin Coat | 6 | EQUIA FIL sin Coat                                                  |
| 2 A          | 6 | FUJI IX + sin recubrimiento protector                               |
| 2 B          | 6 | FUJI IX + G- Coat Plus                                              |
| 2 C          | 6 | FUJI IX + Adper™ Single Bond 2                                      |
| 2 D          | 6 | FUJI IX + Vaselina Sólida                                           |
| 3 A          | 6 | KETAC <sup>™</sup> MOLAR EASYMIX + sin recubrimiento protector      |
| 3 B          | 6 | KETAC <sup>™</sup> MOLAR EASYMIX + G- Coat Plus                     |
| 3 C          | 6 | KETAC <sup>™</sup> MOLAR EASYMIX + Adper <sup>™</sup> Single Bond 2 |
| 3 D          | 6 | KETAC <sup>™</sup> MOLAR EASYMIX + Vaselina Sólida                  |
| 4 A          | 6 | IONOFIL MOLAR + sin recubrimiento protector                         |
| 4 B          | 6 | IONOFIL MOLAR + G- Coat Plus                                        |
| 4 C          | 6 | IONOFIL MOLAR + Adper™ Single Bond 2                                |
| 4 D          | 6 | IONOFIL MOLAR + Vaselina Sólida                                     |
| 5 A          | 6 | VITREMER                                                            |

**Tabla V.3:** Combinación entre los distintos CIVs de restauración y el recubrimiento superficial (14 grupos experimentales)





La preparación y manipulación de los cementos se realizó según indicación del fabricante. Los cementos de mezcla manual se pesaron previamente con una balanza de precisión y se mezclaron según indicación del fabricante con una espátula plástica sobre papel satinado. Las muestras se prepararon a una Tº ambiente de 23±2°C y una humedad relativa del aire de 50±10% de acuerdo a especificaciones de la ADA. La masa resultante se insertó inmediatamente dentro de las matrices hasta llenarlo con un pequeño exceso de material y se aplicó presión digital durante 60 segundos. El tamaño y forma de los especímenes está relacionado con la propiedad analizada, como muestra la Tabla V.4. Posteriormente, la superficie expuesta de ionómero de vidrio se protegió con materiales de recubrimiento según cada grupo y cada ensayo y se almacenaron en agua desionizada a 37°C.

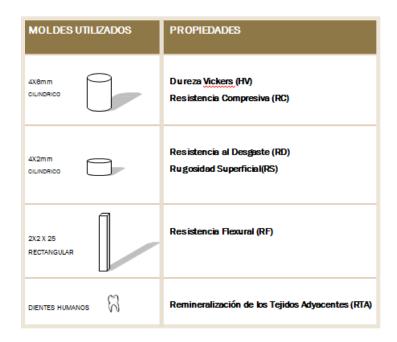



Tabla V.4: Moldes utilizados según la propiedad analizada en este estudio





#### V. 1: RESISTENCIA COMPRESIVA

La Resistencia Compresiva (RC) se determinó usando moldes cilíndricos de bronce de 4mm de ancho por 6mm de alto (Normas ISO 9917-1) (Figura V.1).

Se realizaron 10 muestras para cada grupo y para cada período de tiempo (1 hora, 24 horas y 7 días) conformado un total de 420 especímenes.

Los materiales se insertaron en sus matrices previamente revestidas con vaselina (Figura V.2). Se sobrellenaron y luego se colocó una tira de poliéster envaselinada y un portaobjetos sobre cada espécimen, con una pesa de 1kg. A los 2 minutos de iniciarse la mezcla se colocaron las matrices en un horno a 37±1°C y 95±5% de humedad relativa durante 1 minuto. Luego se retiraron las muestras de las matrices y se eliminó el exceso con un tallador.

.A todas las muestras se les realizaron el tratamiento cobertor correspondiente:

- A. Grupos 1 A, 2B, 3B, 3C, 4B, 4C: Luego de colocarles el material de superficie se fotopolimerizaron durante 30 segundos con luz LED 1400mW/cm² (ECCO LIGHT S-2)
- B. Grupo Rc y 5A: Se fotopolimerizaron 30seg de cada lado del cilindro (total de 60 segundos cada muestra) con luz LED 1400mW/cm² (ECCO LIGHT S-2)

Todas las muestras se almacenaron en agua destilada a 37±2°C (humedad del 100%) durante 7 días, 24hs o 1 hora según corresponda.

Las pruebas mecánicas de las muestras se realizaron con una maquina universal de ensayos, Digimess, modelo RS-8000-5, con una velocidad de carrera de 1mm/min. (Figura V.3). Los ensayos se llevaron a cabo en las instalaciones del ABO, Laboratorio de Materiales Sólidos y Laboratorio de Análisis y Procesamiento de Imágenes en la Facultad de Odontología de la UNC.

El tamaño de la muestra fue de n=140 para cada período de tiempo de almacenamiento (1 hora, 24 horas y 7 días), con n=10 especímenes por grupo, agrupados como se detalla en las Tablas V.5.a, V.5.b y V.5.c.

La Resistencia a la Compresión se calculó a partir de la ecuación:

C<sub>S =</sub> <u>F</u> ½πd²,

Donde F es la carga de rotura y d es el diámetro del cilindro de la muestra.



Los resultados se obtuvieron en KgF. Para pasar a MPa se aplicó la siguiente formula

MPa: KgF x 9,81 Área (mm²)



Figura V.1: Moldes cilíndricos de bronce de 4mm de ancho por 6mm de alto

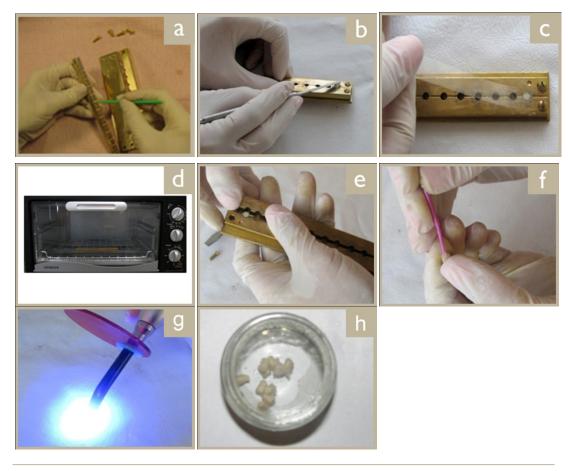



Figura V.2 : Secuencia para la elaboración de muestras de RC



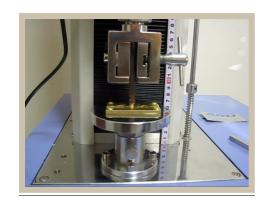



Figura V.3: Espécimen colocado en la maquina universal de ensayos (Digimess) para realizar la prueba de RC

#### V. 2: RESISTENCIA FLEXURAL

La Resistencia Flexural (RF) se determinó usando moldes rectangulares de silicona por adición (ExpressTM STD 3M ESPE) de 2mm de ancho por 2mm de alto por 25mm de largo (Normas ISO 9917-2) (Figura V.4)

Se realizaron 10 muestras para cada grupo y para cada período de tiempo (1 hora, 24 horas y 7 días) conformado un total de 450 especímenes.

Los materiales se insertaron en sus matrices (Figura V.5) Se sobrellenaron y luego se colocó una tira de poliéster envaselinada y un portaobjetos sobre cada espécimen, con una pesa de 1 kg durante 1 minuto. A los 60 minutos de iniciarse la mezcla se retiraron las muestras de los matrices, se eliminaron los excesos con un tallador y se almacenaron en vaselina a 37±1°C y 95±5% de humedad relativa durante 7 días, 24hs o 1 hora según corresponda.

A todas las muestras se les realizaron el tratamiento cobertor correspondiente:

- A. Grupos 1 A, 2B, 2C, 3B, 3C, 4B, 4C: Luego de colocarles el material de superficie se fotopolimerizaron durante 30 segundos en cada extremo del rectángulo con luz LED 1400mW/cm2 (ECCO LIGHT S-2) (total de 60 segundos cada muestra).
- B. Grupo control Rc y 5 A: Se fotopolimerizó 30 segundos de cada extremo del rectángulo (total de 60 segundos cada muestra) con luz LED 1400mW/cm2 (ECCO LIGHT S-2)

Las muestras se midieron con un calibre digital (Asimeto Digital Caliper) y se colocaron en un soporte de bronce para su ensayo.

Las pruebas mecánicas de las muestras se realizaron con una maquina universal de ensayos, Digimess, modelo RS-8000-5, con una velocidad de carrera de 1mm/min





(Figura V.6). Los especímenes fueron sometidos a una prueba de flexión de 3 puntos (la distancia entre los dos soportes es de 20mm). Los ensayos se llevaron a cabo en las instalaciones del ABO, Laboratorio de Materiales Sólidos y Laboratorio de Análisis y Procesamiento de Imágenes en la Facultad de Odontología de la UNC.

El tamaño de la muestra fue de n=150 para cada período de tiempo de almacenamiento (1 hora, 24 horas y 7 días), con n=10 especímenes por grupo, agrupados como se detalla en las Tablas V.5.a, V.5.b y V.5.c.

La Resistencia a la Flexión se calculó a partir de la ecuación:

Donde F es la carga de rotura, I la distancia entre los soportes (20mm), w es el ancho de la muestra y h la altura de la muestra. Los resultados se obtuvieron en KgF. Para pasar a MPa se aplicó la siguiente formula

MPa: <u>KgF x 9,81</u> Área (mm2)













**Figura V.4**: moldes rectangulares de silicona por adición (ExpressTM STD 3M ESPE) de 2mm de ancho por 2mm de alto por 25mm de largo





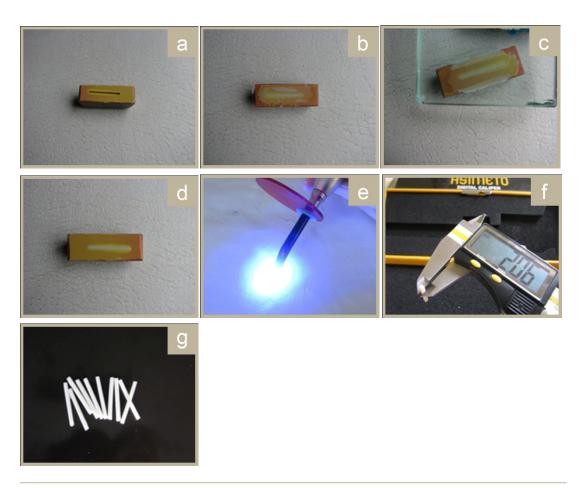



Figura V.5: Secuencia para la elaboración de las muestras de RF



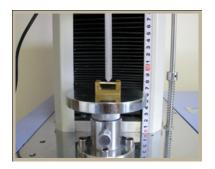



Figura V.6: Espécimen en el atril de bronce y maquina universal de ensayos





| GRUPO | N  | MATERIAL DE RESTAURACIÓN CON SU RECUBRIMIENTO     |
|-------|----|---------------------------------------------------|
|       |    | SUPERFICIAL                                       |
| 1 A   | 10 | EQUIA FIL                                         |
| 2 A   | 10 | FUJI IX + sin recubrimiento protector             |
| 2 B   | 10 | FUJI IX + G- Coat Plus                            |
| 2 C   | 10 | FUJI IX + Adper™ Single Bond 2                    |
| 2 D   | 10 | FUJI IX + Vaselina Sólida                         |
| 3 A   | 10 | KETAC MOLAR EASYMIX + sin recubrimiento protector |
| 3 B   | 10 | KETAC MOLAR EASYMIX + G- Coat Plus                |
| 3 C   | 10 | KETAC MOLAR EASYMIX + Adper™ Single Bond 2        |
| 3 D   | 10 | KETAC MOLAR EASYMIX + Vaselina Sólida             |
| 4 A   | 10 | IONOFIL MOLAR + sin recubrimiento protector       |
| 4 B   | 10 | IONOFIL MOLAR + G- Coat Plus                      |
| 4 C   | 10 | IONOFIL MOLAR + Adper™ Single Bond 2              |
| 4 D   | 10 | IONOFIL MOLAR + Vaselina Sólida                   |
| 5 A   | 10 | VITREMER                                          |
| Rc    | 10 | RESINAS COMPUESTAS (CONTROL)                      |

Tabla V.5.a: Grupo de muestras evaluadas a 1 hora de almacenamiento

| GRUPO | N  | MATERIAL DE RESTAURACIÓN CON SU RECUBRIMIENTO     |
|-------|----|---------------------------------------------------|
|       |    | SUPERFICIAL                                       |
| 1 A   | 10 | EQUIA FIL                                         |
| 2 A   | 10 | FUJI IX + sin recubrimiento protector             |
| 2 B   | 10 | FUJI IX + G- Coat Plus                            |
| 2 C   | 10 | FUJI IX + Adper™ Single Bond 2                    |
| 2 D   | 10 | FUJI IX + Vaselina Sólida                         |
| 3 A   | 10 | KETAC MOLAR EASYMIX + sin recubrimiento protector |
| 3 B   | 10 | KETAC MOLAR EASYMIX + G- Coat Plus                |
| 3 C   | 10 | KETAC MOLAR EASYMIX + Adper™ Single Bond 2        |
| 3 D   | 10 | KETAC MOLAR EASYMIX + Vaselina Sólida             |
| 4 A   | 10 | IONOFIL MOLAR + sin recubrimiento protector       |
| 4 B   | 10 | IONOFIL MOLAR + G- Coat Plus                      |
| 4 C   | 10 | IONOFIL MOLAR + Adper™ Single Bond 2              |
| 4 D   | 10 | IONOFIL MOLAR + Vaselina Sólida                   |
| 5 A   | 10 | VITREMER                                          |
| Rc    | 10 | RESINAS COMPUESTAS (CONTROL)                      |

Tabla V.5.b Grupo de muestras evaluadas a las 24 horas de almacenamiento





| GRUPO | N  | MATERIAL DE RESTAURACIÓN CON SU RECUBRIMIENTO     |
|-------|----|---------------------------------------------------|
|       |    | SUPERFICIAL                                       |
| 1 A   | 10 | EQUIA FIL                                         |
| 2 A   | 10 | FUJI IX + sin recubrimiento protector             |
| 2 B   | 10 | FUJI IX + G- Coat Plus                            |
| 2 C   | 10 | FUJI IX + Adper™ Single Bond 2                    |
| 2 D   | 10 | FUJI IX + Vaselina Sólida                         |
| 3 A   | 10 | KETAC MOLAR EASYMIX + sin recubrimiento protector |
| 3 B   | 10 | KETAC MOLAR EASYMIX + G- Coat Plus                |
| 3 C   | 10 | KETAC MOLAR EASYMIX + Adper™ Single Bond 2        |
| 3 D   | 10 | KETAC MOLAR EASYMIX + Vaselina Sólida             |
| 4 A   | 10 | IONOFIL MOLAR + sin recubrimiento protector       |
| 4 B   | 10 | IONOFIL MOLAR + G- Coat Plus                      |
| 4 C   | 10 | IONOFIL MOLAR + Adper™ Single Bond 2              |
| 4 D   | 10 | IONOFIL MOLAR + Vaselina Sólida                   |
| 5 A   | 10 | VITREMER                                          |
| Rc    | 10 | RESINAS COMPUESTAS (CONTROL)                      |

Tabla V.5.c: Grupo de muestras evaluadas a los 7 días de almacenamiento

#### V. 3: RESISTENCIA AL DESGASTE POR CEPILLADO DENTAL

Las condiciones ambientales de temperatura y humedad requerida por la Asociación Dental Americana (ADA) especificación número 66 en 1989, para los cementos dentales ionómero de vidrio, y, los requisitos de la Organización Internacional de Normalización (ISO) especificación técnica 14569-1, establecida en 2007, con respecto a los ensayos de cepillado se aplicaron en este trabajo durante las construcciones de muestras y pruebas. Las dimensiones de las muestras también se realizaron según la especificación de las dos instituciones mencionadas.

Para la RD se utilizaron moldes cilíndricos de 4mm de ancho por 2mm de alto.

Se realizaron 6 muestras para cada grupo experimental y 30 para el grupo control (PMMA) confeccionando 14 grupos experimentales y 1 control (Tabla V.6).

La masa resultante se insertó inmediatamente dentro de las matrices hasta llenarlo con un pequeño exceso de material. Sobre las muestras se colocó una tira de poliéster, encima de ésta, un portaobjeto de vidrio y se aplicó presión digital durante 60 segundos. Después, esta carga fue reemplazada por una pesa de 250g durante 10min. Después se retiraron los excesos con una hoja de bisturí y se regularizó la





superficie con limas. Posteriormente, la superficie expuesta de ionómero de vidrio se protegió con materiales de recubrimiento según cada grupo.

Los grupos recubiertos con G-Coat Plus y Adper Single Bond (1 A, 2B, 2C, 3B, 3C, 4B, 4C) y el grupo 5 A (Vitremer), fueron fotopolimerizados durante 30 segundos con luz LED 1400mW/cm<sup>2</sup> (ECCO LIGHT S-2).

| GRUPO        | N  | MATERIAL DE RESTAURACIÓN CON SU RECUBRIMIENTO SUPERFICIAL      |
|--------------|----|----------------------------------------------------------------|
| 1 A          | 6  | EQUIA FIL                                                      |
| 1 A sin Coat | 6  | EQUIA FIL sin Coat                                             |
| 2 A          | 6  | FUJI IX + sin recubrimiento protector                          |
| 2 B          | 6  | FUJI IX + G- Coat Plus                                         |
| 2 C          | 6  | FUJI IX + Adper™ Single Bond 2                                 |
| 2 D          | 6  | FUJI IX + Vaselina Sólida                                      |
| 3 A          | 6  | KETAC <sup>™</sup> MOLAR EASYMIX + sin recubrimiento protector |
| 3 B          | 6  | KETAC <sup>™</sup> MOLAR EASYMIX + G- Coat Plus                |
| 3 C          | 6  | KETAC <sup>™</sup> MOLAR EASYMIX + Adper™ Single Bond 2        |
| 3 D          | 6  | KETAC <sup>™</sup> MOLAR EASYMIX + Vaselina Sólida             |
| 4 A          | 6  | IONOFIL MOLAR + sin recubrimiento protector                    |
| 4 B          | 6  | IONOFIL MOLAR + G- Coat Plus                                   |
| 4 C          | 6  | IONOFIL MOLAR + Adper™ Single Bond 2                           |
| 4 D          | 6  | IONOFIL MOLAR + Vaselina Sólida                                |
| 5 A          | 6  | VITREMER                                                       |
| РММА         | 30 | RESINA ACRILICA                                                |

**Tabla V.6:** Combinación entre los distintos CIVs de restauración y el recubrimiento superficial (14 grupos experimentales) y el grupo control (PMMA)

#### Almacenamiento

Cada espécimen, después de su confección fueron lavados en ultrasonido (Digital Ultrasonic Cleaner CD-3800) con agua deionizada por 1 minuto para posteriormente ser almacenados en agua desmineralizada, donde permanecían dentro de una estufa, a una temperatura de 37±2 °C, por 7 días.

#### Determinación de masa inicial

La masa inicial fue determinada por el pesado de los especímenes por tres veces, en una balanza analítica con acuidad de 0,0001g (Pioneer Ohaus). La media aritmética de los resultados obtenidos, expresados en miligramos, paso a ser considerada la



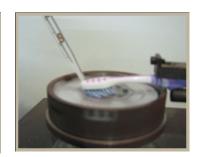
#### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO

masa inicial. Previamente al pesado, cada uno de los especímenes a ser cepillados fue secado con papeles absorbentes durante 10 segundos y dejados secar espontáneamente por 2 minutos.

#### Prueba de abrasión por cepillado

El proceso de desgaste por abrasión fue realizado en una máquina que se adaptó para simular un cepillado mecánico un Convertidor de Frecuencia Serie: CFW-07 Software: versión 3.XX 0899.3360 S/4 (Figura V.7) que se encuentra en el Departamento de Materiales, FCEFyN, UNC.

En dicha máquina se colocó una platina de 1mm de espesor para permitir el trabajo de 8 especímenes cada vez, por tanto, se decidió componer lotes de 6 especímenes de CIV y 2 de PMMA (Figura V.8). La carga del cepillo dental Colgate Extra Clean Professional (Colgate-Palmolive) de cerdas suaves y puntas redondeadas, sobre los especímenes era de aproximadamente 2,5N, la velocidad del cepillo fue de 13.82rad/s, con frecuencia de 2.2HZ. El periodo de cepillado de un espécimen comprendía 5.000 ciclos y duraba 38 minutos. La suspensión abrasiva utilizada consistía en una crema dental Colgate Total 12 Clean Mint (Colgate-Palmolive) y agua desmineralizada en la proporción de 1:2 en peso, de acuerdo con las especificaciones de la ISO. Esta solución se mezcló en el interior de un Becker y luego con una pipeta se dispensó 0,4ml cada 2min sobre las muestras, como lo ilustra la Figura V.9.


#### Pesaje final

Finalizada la prueba de desgaste, cada muestra se lavó en agua corriente durante 5 segundos aproximadamente, hasta la visualización de la eliminación de dentífrico. Después, se lavaron de nuevo en el dispositivo de ultrasonido durante 6min para ser pesado como se mencionó anteriormente. La pérdida de masa se obtuvo por la diferencia entre las medidas iníciales y finales y así se registró el valor final de masa. Se observaron los especímenes de los diferentes materiales (EF, FIX, KM, IM, V y PMMA) antes y después del ensayo con Lupa Estereoscópica Konus Mod. ST-30 2L con aumento de 20 y 40X. Las imágenes se analizaron con el Programa: Motic Images Plus 2.0 ML (Figura V.10).









**Figura V.7**: Maquina que simula el cepillado dental

**Figura V.8**: Platina que contiene 6 muestras del grupo experimental y 2 del control

Figura V.9: Prueba de desgate y dispensación de 0,4ml de pasta abrasiva cada 2min mediante una pipeta



Figura V.10: análisis con Lupa Estereoscópica antes y después del desgaste





#### V. 4: RUGOSIDAD SUPERFICIAL

Para la RS se utilizaron moldes cilíndricos de 4mm de ancho por 2mm de alto.

Se realizaron 6 muestras para cada grupo. La preparación y manipulación de los cementos se realizó según indicación del fabricante. La masa resultante se insertó inmediatamente dentro de las matrices hasta llenarlo con un pequeño exceso de material. Sobre las muestras se colocó una tira de poliéster, encima de ésta, un portaobjeto de vidrio y se aplicó presión digital durante 60 segundos. Después, esta carga fue reemplazada por una pesa de 250g durante 10min. Luego se retiraron los excesos con una hoja de bisturí y se regularizó la superficie con limas. Posteriormente, la superficie expuesta de ionómero de vidrio se protegió con materiales de recubrimiento según cada grupo.

Los grupos recubiertos con G-Coat Plus y Adper Single Bond 2 (1 A, 2B, 2C, 3B, 3C, 4B, 4C) y el grupo 5 A (Vitremer), fueron fotopolimerizados durante 30 segundos con luz LED 1400mW/cm² (ECCO LIGHT S-2).

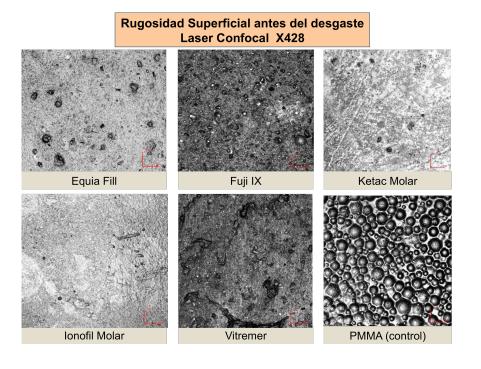
#### Prueba de abrasión por cepillado

La mitad de las muestras (3 de cada grupo) se sometieron al proceso de desgaste por abrasión fue realizado según las NORMAS ISO 14569-1 en una máquina que se adaptó para simular un cepillado mecánico un Convertidor de Frecuencia Serie: CFW-07 Software: versión 3.XX 0899.3360 S/4 que se encuentra en el Departamento de Materiales, FCEFyN, UNC (Figura V.7).

#### Almacenamiento

Cada espécimen, después de su confección fueron lavados en ultrasonido (Digital Ultrasonic Cleaner CD-3800) con agua deionizada por 1min para posteriormente ser almacenados en agua desmineralizada, donde permanecían dentro de una estufa, a una temperatura de 37±2 °C, por 7 días.

#### Prueba de rugosidad superficial


Para la medición de la rugosidad superficial se analizaron 6 materiales (EF, FIX, KM, IM, V y PMMA) divididos en 12 grupos de estudio (6 antes del desgaste y 6 después del mismo) (Figura V. 11). Se midieron: la rugosidad media aritmética (Ra), la rugosidad parcial (Rz), el sesgo o asimetría (Rsk), curtosis (Rku), la rugosidad total (Rt), la rugosidad de cresta o de pico (Rp) y la rugosidad de valle (Rv).

La máquina de medición que se utilizó fue el Confocal Laser Scanning Microscope Olympus LEXT4000 (Japan) del laboratorio LAMARX (Laboratorio de Microscopía Electrónica y Análisis por Rayos X), ubicado en la FAMAF con un aumento de 428X.





El campo de la zona del espécimen fue de 550x 560 μm. Para la medición se utilizó el Parametro R Normas ISO 4287. La longitud de onda fue de 80 μm. En cada espécimen se midieron 3 líneas equidistantes: superior (100), media (510) e inferior (920). Se pueden observar líneas de alta, media y baja frecuencia.



#### Rugosidad Superficial despues del desgaste Laser Confocal X428



Figura V.11: imágenes del Confocal Laser Scanning Microscope antes y después del desgaste de los 6 materiales estudiados.



#### V. 5: DUREZA VICKERS

Para la Dureza Vickers (HV) se utilizaron moldes cilíndricos de 6mm de alto por 4mm de ancho. Se utilizó las Rc como grupo control. La preparación y manipulación de los cementos se realizó según indicación del fabricante. La masa resultante se insertó inmediatamente dentro de las matrices hasta llenarlo con un pequeño exceso de material. Sobre las muestras se colocó una tira de poliéster, encima de ésta, un portaobjeto de vidrio y se aplicó presión digital durante 60 segundos. Después, esta carga fue reemplazada por una pesa de 250g durante 10min. Después se retiraron los excesos con una hoja de bisturí y se regularizó la superficie con limas. Posteriormente, la superficie expuesta de ionómero de vidrio se protegió con materiales de recubrimiento según cada grupo.

Los grupos recubiertos con G-Coat Plus y Adper Single Bond 2 (1 A, 2B, 2C, 3B, 3C, 4B, 4C) y el grupo 5 A (Vitremer) y Rc (Resina compuesta), fueron fotopolimerizados durante 30 segundos con luz LED 1400mW/cm² (ECCO LIGHT S-2).

#### Almacenamiento

Cada espécimen, después de su confección fueron almacenados en agua desmineralizada, donde permanecían dentro de una estufa, a una temperatura de 37±2 °C, por 24hs.

#### Prueba de Microdureza

Para la medición de la HV se midió la dureza de las superficies usando el instrumento de medición de microdureza Vickers (LECO Corporation, Modelo LM-247AT, Serie Nº XM0303, Date 11-2009, Michigan, USA) en el INTI. Las muestras se prepararon según el procedimiento PE-MET.01.01. Se midió dureza Vickers por microindentación con carga de 500gf durante 15 segundos siguiendo el procedimiento PE-MET 02.01 (basado en la norma ASTM E 384-11ɛ1). El valor de dureza informado es el promedio de 5 mediciones realizadas en cada muestra.

Previo a la prueba, las muestras se empastillaron con resina acrílica Subident, SL S.A. (Argentina) y las superficies se pulieron para lograr las mejores lecturas en los durómetros con un papel de óxido de aluminio de grano creciente hasta el 1.200. En la Figura V.12 se observan la disposición de las muestras en el empastillado.

La Dureza Vickers se calculó a partir de la siguiente formula:

HV: <u>1854.4 F(gf)</u> d<sup>2(</sup>µm)

Donde F es la carga que se le aplica a la muestra (500gf) y d la diagonal del indentador.

**HV:** símbolo de la dureza Vickers, que va precedido por el valor de la dureza. A su derecha se coloca el valor de la carga de ensayo expresada en gramos, por ejemplo:  $354 \text{ HV}_{500}$ .

Luego se observaron en un Microscopio óptico NIKON a través de un analizador de imágenes (Motic) (Flgura V.13).

Posteriormente se realizó un segundo ensayo colocando el material de recubrimiento G-Coat Plus o Adper Single Bond 2, según correspondiera, sobre los grupos 2.B, 2.C, 3.B, 3.C, 4.B y 4.C y se midió la HV nuevamente para observar diferencias comparando los resultados del primer ensayo.

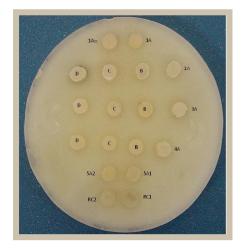



Figura V.12: Disposición de las muestras en el empastillado





#### Microdureza Vickers MO (NIKON)X100

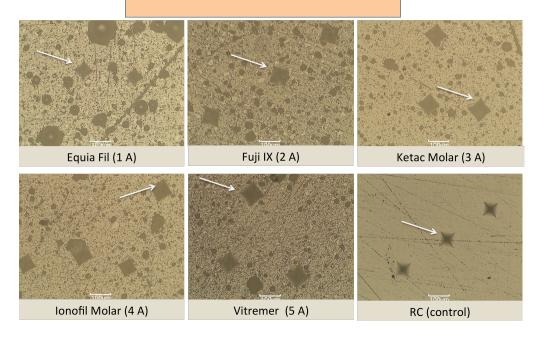



Figura V.13: Imágenes de HV en MO NIKON a través del analizador de imágenes (Motic) de los direfentes materiales estudiados.

### V. 6: REMINERALIZACIÓN DE LOS TEJIDOS ADYACENTES (PENETRACIÓN DE FLÚOR Y ESTRONCIO)

#### Confección de las cavidades

Se seleccionaron 15 terceros molares inferiores, que fueron recogidos de acuerdo con el requerimientos del Comité de Ética de la Investigación Humana del Hospital Nacional de Clínicas Registro Nº: 139/12, de reciente extracción, de pacientes jóvenes (edad media 26,8 años) uno para cada material (KM, EF, IM, FIX, V) y para cada periodo de tiempo (0, 40 y 90 días). Se tallaron cavidades estandarizadas de 8mm de largo por 4mm de ancho y 1mm de profundidad debajo del límite amelodentinario (medido con calibre digital), utilizando instrumental rotatorio con abundante refrigeración, con piedra cilíndrica D+Z Germany ISO 807.314.018 lote 587119 (Figura V.14.a).

El procedimiento de desmineralización fue realizado con 0,1M ácido láctico, pH 4,5 durante 2 días a temperatura ambiente (Savarino L 2004). El piso y las paredes axiales de la cavidad fueron regularizados con un excavador mediano (Excavador Nº





2, Henry Shein, USA) hasta encontrar dentina firme. Luego, los dientes fueron lavados con agua corriente y almacenados en agua desionizada. El desarrollo in-vitro de caries artificial tuvo la finalidad de simular la formación de dentina afectada, susceptible a remineralizarse, sin bacterias (Frencken 1999).

#### Preparación de los cementos de ionómero vítreo

La preparación y manipulación de los cementos se realizó según indicación del fabricante. La masa resultante se insertó inmediatamente dentro de las cavidades hasta llenarlo con un pequeño exceso de material y se aplicó presión digital con vaselina durante 60 segundos (Figura V.14.b, c y d).

#### Almacenamiento

Se almacenaron en agua desionizada a 37°C durante 0, 40 ó 90 días según corresponda.

#### Preparación de las muestras previo al análisis SEM

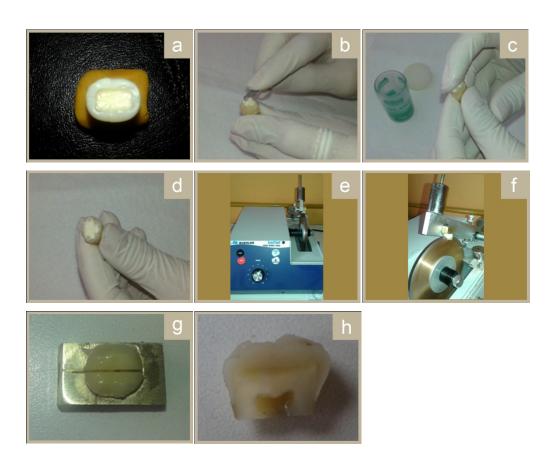
Los dientes se seccionaron en dos mitades en sentido mesio-distal, utilizando una cortadora Isomet Low Speed (Buehler, EE.UU.), con disco de diamante Nº 11- 4244 (Buehler, EE.UU.) (Figura V.14.e, f, g). Previo al corte se fijaron en un mandril con cianoacrilato en gel. Las superficies a examinar como así también las raíces de los dientes se pulieron progresivamente utilizando Pulidora Metalográfica de doble discos de aluminio (Prazis) con granulometría decreciente. Se almacenaron en agua destilada y se disecaron a punto critico con Bal-Tec Modelo CPD 030 (Figura V.15) según el siguiente procedimiento: alcohol al 20% hasta llegar al 100%, luego se colocan en acetona y se introduce en la máquina, se hace pasar CO<sub>2</sub> en estado líquido para reemplazar a la acetona. El CO<sub>2</sub> a más de 30°C pasa de líquido a vapor y queda listo para metalizarlo.

Se metalizaron las muestras con carbono con Metalizadora Balzers Modelo CED 010 (Figura V.16).

#### Microscopía SEM

Se examinaron con Microscopio Electrónico de Barrido (SEM) del laboratorio LAMARX (Laboratorio de Microscopía Electrónica y Análisis por Rayos X), ubicado en la FAMAF, tipo FEG Marca Carl Zeizz Modelo Sigma con detector de rx SDD Marca Oxford Modelo X-Max 80mm², con una working distance (distancia entre la pieza polar y la superficie de la muestra de 8,5mm y una apertura de 60µm.

En primera instancia se realizó un mapeo de la superficie de 300µm para observar la presencia de varios elementos y así poder cuantificar relativamente la penetración de iones de F y Sr a los 0, 40 y 90 días de haber realizado el tratamiento.





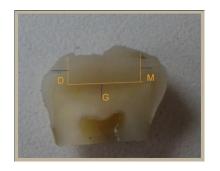

Para cada muestra se realizaron un promedio de 5 perfiles de espectros de rayos X en las paredes distal (D), gingival (G) y mesial (M) de la interfaz (Figura V.17) para identificar la presencia de flúor (F) y estroncio (Sr). La magnificación usada para hacer la línea de scaneo (scan line) fue de 200x. Los espectros se adquirieron marcando 20 puntos desde la interfaz hacia 200µm en la zona del diente cada 10µm (Figura V.18). La penetración de estos elementos en los tejidos adyacentes se estudia a partir de la variación de la intensidad de los rayos X de F y Sr. Se compara con la intensidad de estos elementos en cada material.

Además se adquirieron mapas de rayos X en la zona de la interfaz con el objetivo de mostrar la variación espacial del perfil de difusión de F y Sr.

Para conocer la presencia del F y el Sr en los CIV también se hicieron perfiles de espectros de rayos X desde la interfaz hacia 100µm en el material que correspondían a las caras G, M y D.

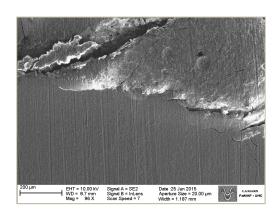


**Figura V.14:** Cavidades estandarizadas en 3º molares inferiores de 8mm de largo por 4mm de ancho y 1mm de profundidad debajo del límite amelo-dentinario (a). Colocacion del CIV (b,c,d). Cortadora Isomet Low Speed (e,f). Corte de las muestras en sentido M-D (g,h),









Figura V.15: Disecado a punto crítico.





**Figura V16:** Metalizado de las muestras. Disposición de las muestras antes del SEM

**Figura V.17**: muestra que indica las paredes distal (D), gingival (G) y mesial (M) de la interfaz



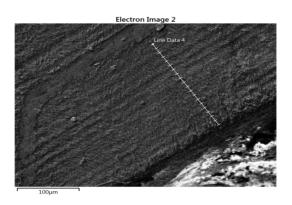



Figura V.18: SEM mostrando la interfaz entre el CIV y el diente





#### V. 7: ANÁLISIS ESTADÍSTICO

Se utilizó un análisis de varianza (ANOVA) de rango múltiple con el test de Tukey-Kramer HSD para determinar las diferencias significativas entre los materiales de cada prueba. Con un nivel de significación estadística de  $\alpha$ = 0.05.

Para evaluar las diferencias en las distribuciones de valores de RC, RF, HV y RTA, se realizó un análisis de varianza de multiples vías (material, tiempo y recubrimiento) y un análisis de la varianza (ANOVA de dos vías) para contrastar los valores obtenidos en los ensayos de RD y HV. Se complementaron los análisis mediante pruebas de contrastes múltiples (test de Tukey-Kramer HSD) para determinar cómo se diferenciaban los grupos entre sí. Para todas las pruebas se fijó el nivel de significación estadística de  $\alpha$ = 0.05.





## CAPÍTULO VI RESULTADOS





#### **VI. RESULTADOS**

#### RESISTENCIA COMPRESIVA

La RC de cada marca de CIV en función del tiempo se detalla en la Tabla VI.1. En términos generales, lo valores más altos de RC se obtienen a las 24hs, manteniéndose constante a los 7 días (Figura VI.1). De los 14 grupos evaluados, 11 mostraron un aumento de la RC a las 24hs, manteniendo los valores medios obtenidos a los 7 días, excepto para los grupos 1.A (EQUIA FIL) y 3.D (Ketac Molar E.+ recubrimiento de vaselina sólida) cuyos valores más altos se alcanzaron luego de una hora de almacenamiento. En tanto que el grupo 2.A (Fuji IX sin recubrimiento) alcanzó una resistencia mayor a los 7 días, con los valores medios más bajos a las 24 horas. Estos tres grupos (1.A, 2.A y 3.D) presentaron mayor coeficiente de variación de Pearson (TablaVI.2).

El grupo 5.A (Vitremer) fue el que obtuvo los valores más altos de RC (Figura VI.2 y VI.3) sin considerar el grupo control. En las Tablas VI.3, VI.4 y VI.5 se detalla el análisis de varianza (ANOVA) y el test de Tukey-Kramer HSD con y sin grupo control. En la Tabla VI.6 y Figura VI.4 se detallan los valores de RC según el material de recubrimiento y el tiempo sin considerar el grupo control. En la Figura VI.5 se observan las medias marginales estimadas de RC en relación al material y sus tratamientos superficiales. En la Figura VI.6 se presentan cuatro gráficos (diagramas de cajas), que muestran de manera esquemática, las distribuciones de valores según la marca del material y el tiempo para cada una de las categorías de recubrimiento incluyendo el grupo control.

Para contrastar los valores obtenidos en los ensayos de RC, se realizó un Analisis de Varianza ANOVA de 3 vias (material, tiempo y recubrimiento) y el test de Tukey-Kramer SD (Tabla VI.7). En relación al material, EF, IM, KM y FIX conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,116; p>0,05). El grupo V, con valores mayores que los demás grupos experimentales, se diferenció significativamente de ellos y se lo consideró como subconjunto homogéneo, al igual que el grupo control quien registró los valores más altos de resistencia compresiva (Tabla VI.8). Analizando los cementos con diferentes recubrimientos (Tabla VI.9), aquellos recubiertos con Single Bond, G-Coat Plus y no recubiertos, conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,761; p>0,05). En tanto que los materiales recubiertos con vaselina sólida, registraron valores más altos de RC, diferenciándose del resto, conformando el otro subconjunto homogéneo.





En función del tiempo, los ensayos sobre probetas de una hora fueron significativamente menores que los obtenidos a las 24 horas y 7 días. Estos últimos conformaron un segundo subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,657; p>0,05) (TablaVI.10).

| Marca          | Tiempo   | Media  | Desv. típ. | n   |
|----------------|----------|--------|------------|-----|
|                | 1 hora   | 53,81  | 21,71      | 10  |
| FOLUA FIL      | 24 horas | 44,44  | 17,36      | 10  |
| EQUIA FIL      | 7 días   | 47,80  | 14,54      | 9   |
|                | Total    | 48,71  | 18,02      | 29  |
|                | 1 hora   | 42,92  | 11,48      | 31  |
|                | 24 horas | 61,23  | 16,47      | 40  |
| FUJI IX        | 7 días   | 57,60  | 20,08      | 40  |
|                | Total    | 54,81  | 18,24      | 111 |
|                | 1 hora   | 55,10  | 21,68      | 36  |
|                | 24 horas | 61,62  | 20,66      | 40  |
| KETAC MOLAR E. | 7 días   | 56,07  | 18,13      | 45  |
|                | Total    | 57,62  | 20,11      | 121 |
|                | 1 hora   | 59,84  | 15,65      | 25  |
|                | 24 horas | 57,86  | 11,99      | 15  |
| IONOFIL MOLAR  | 7 días   | 66,16  | 21,41      | 23  |
|                | Total    | 61,67  | 17,39      | 63  |
|                | 1 hora   | 50,19  | 6,89       | 9   |
| VITREMER       | 24 horas | 95,43  | 19,16      | 10  |
|                | 7 días   | 74,17  | 27,54      | 10  |
|                | Total    | 74,06  | 26,86      | 29  |
|                | 24 horas | 132,04 | 38,49      | 10  |
| Rc (CONTROL)   | 7 días   | 142,48 | 38,27      | 11  |
|                | Total    | 137,51 | 37,78      | 21  |

Tabla VI.1: Valores de Resistencia Compresiva (MPa) en relación a la marca del CIV y el tiempo de almacenamiento



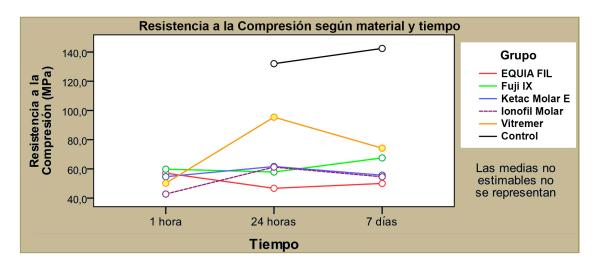



Figura VI.1: Comportamiento en general de valores de RC (MPa) en función del tiempo

| Marca   | Material de restauración                                  |        | Tiempo   |        |
|---------|-----------------------------------------------------------|--------|----------|--------|
| Marca   | Material de l'estauracion                                 | 1 hora | 24 horas | 7 días |
| EF      | (1A) EQUIA FIL                                            |        | 44.44    | 47.80  |
| l - 1   |                                                           |        | 39.0%    | 30.4%  |
|         | (2A) FUJI IX + sin recubrimiento protector                | 65.83  | 62.06    | 72.96  |
|         | (2.1) . St. M. St. reconstituents protected               | 26.8%  | 24.0%    | 36.6%  |
| FIX     | (2B) FUJI IX + Adper™ Single Bond 2                       | 59.42  | 55.20    | 60.19  |
| I I I   | (25) FOJI IX + Auper Single Boliu 2                       | 18.8%  | 23.7%    | 33.1%  |
|         | (2C) FUJI IX + Vaselina Sólida                            | 54.18  | 56.31    | 63.37  |
|         | (26) FOSFIX F Vascilla Solida                             | 29.4%  | 15.5%    | 23.0%  |
|         | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento protector   | 50.62  | 58.30    | 59.03  |
|         | (3A) KETAC INOLAN LASTIVITA + SITTECUBITITIETIO PROTECTOR |        | 36.5%    | 36.9%  |
|         | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus                  | 45.98  | 58.67    | 47.45  |
| км      | (35) KETAC MOLAK LASTIMIX TO COULTIUS                     | 22.9%  | 30.7%    | 25.3%  |
| KIVI    | (3C) KETAC™ MOLAR EASYMIX + Adper™ Single Bond 2          | 43.85  | 54.97    | 55.56  |
|         |                                                           | 23.0%  | 26.7%    | 24.6%  |
|         | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida               | 78.15  | 74.55    | 60.77  |
|         | (3D) KETAC WIGEAR EASTWIN Vascilla Solida                 | 30.9%  | 32.9%    | 33.5%  |
|         | (4A) IONOFIL MOLAR + sin recubrimiento protector          | 37.14  | 46.97    | 61.74  |
|         | (4A) IONOTIE MOEAR - SITTEEUSTIMENTO Protector            | 16.2%  | 29.8%    | 34.3%  |
|         | (4B) IONOFIL MOLAR + G- Coat Plus                         | 38.22  | 68.10    | 62.24  |
| IM      | (1B) TOTAL MODIME TO CONCERNO                             | 9.0%   | 21.6%    | 34.5%  |
| 1       | (4C) IONOFIL MOLAR + Adper™ Single Bond 2                 | 35.79  | 60.41    | 45.44  |
|         | (1-5)                                                     | 9.9%   | 18.8%    | 23.7%  |
|         | (4D) IONOFIL MOLAR + Vaselina Sólida                      | 59.94  | 69.45    | 48.92  |
|         | (+D) IONOFIL WOLAR + VaseIIIIa SUIIUa                     |        | 24.1%    | 34.2%  |
| V       | (5A) VITREMER                                             | 50.19  | 95.43    | 74.17  |
|         | V (OA) VIINLINEN                                          |        |          | 37.1%  |
| Rc (CON | P. (CONTROL)                                              |        |          | 142.48 |
| ne (con | Rc (CONTROL)                                              |        | 29.1%    | 26.9%  |

Tabla VI.2: Valores de Resistencia Compresiva (MPa) según el Grupo y el tiempo de almacenamient



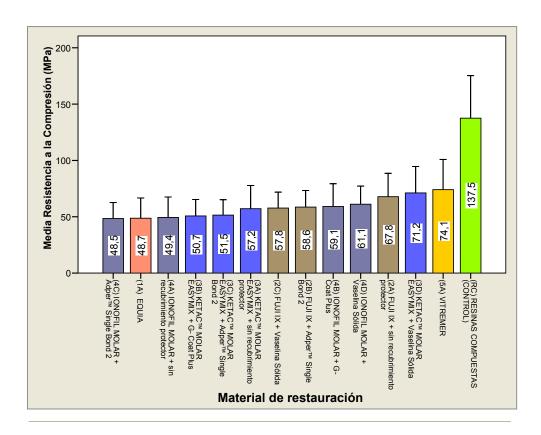



Figura VI.2: Resistencia a la compresión, media y desviación estándar (MPa) según el grupo.

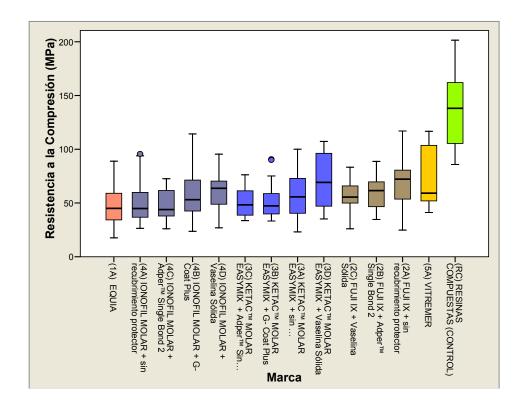



Figura VI.3: Diagrama de cajas. Resistencia a la compresión (MPa) según el grupo.





Tabla VI.3: ANOVA. Pruebas de los efectos inter-sujetos (Incluye Rc o grupo control)

Variable dependiente: Resistencia a la Compresión (MPa)

| Fuente           | Suma de cuadrados<br>tipo III | gl  | Media<br>cuadrática | F        | Significación |
|------------------|-------------------------------|-----|---------------------|----------|---------------|
| Modelo corregido | 153621,462(a)                 | 16  | 9601,341            | 24,333   | ,000,         |
| Intersección     | 1162989,023                   | 1   | 1162989,023         | 2947,380 | ,000          |
| G                | 119946,177                    | 5   | 23989,235           | 60,796   | ,000          |
| Tiempo           | 4872,777                      | 2   | 2436,389            | 6,175    | ,002          |
| G * Tiempo       | 12464,289                     | 9   | 1384,921            | 3,510    | ,000          |
| Error            | 138498,988                    | 351 | 394,584             |          |               |
| Total            | 1752449,122                   | 368 |                     |          |               |
| Total corregida  | 292120,450                    | 367 |                     |          |               |

a R cuadrado = ,526 (R cuadrado corregida = ,504)

#### Comparaciones múltiples. DHS de Tukey (tiempo)

| (I) Tiempo | (J) Tiempo | Diferencia entre<br>medias (I-J) | Error típ. | Significación |
|------------|------------|----------------------------------|------------|---------------|
| 1 horo     | 24 horas   | -15,7582(*)                      | 2,60963    | ,000          |
| 1 hora     | 7 días     | -13,6033(*)                      | 2,55117    | ,000          |
| 24 baras   | 1 hora     | 15,7582(*)                       | 2,60963    | ,000          |
| 24 horas   | 7 días     | 2,1549                           | 2,47072    | ,658          |
| 7 -1/      | 1 hora     | 13,6033(*)                       | 2,55117    | ,000          |
| 7 días     | 24 horas   | -2,1549                          | 2,47072    | ,658          |

Basado en las medias observadas.

#### Resistencia a la Compresión (MPa) DHS de Tukey

| Tiomno        | N   | Subconjunto |         |  |
|---------------|-----|-------------|---------|--|
| Tiempo        | N   | 2           | 1       |  |
| 1 hora        | 111 | 52,2507     |         |  |
| 7 días        | 138 |             | 65,8540 |  |
| 24 horas      | 125 |             | 68,0089 |  |
| Significación |     | 1,000       | ,674    |  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

El término error es la Media cuadrática (Error) = 400,387.

- a Usa el tamaño muestral de la media armónica = 123,684
- b Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos. No se garantizan los niveles de error tipo I.
- c Alfa = ,05.

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.





#### Comparaciones múltiples. DHS de Tukey. (Marca)

| (I) Marca        | (J) Marca     | Diferencia entre<br>medias (I-J) | Error típico | Significación |
|------------------|---------------|----------------------------------|--------------|---------------|
|                  | FUJI IX       | -12,9601(*)                      | 4,49019      | ,047          |
|                  | KETAC MOLAR   | -8,9022                          | 4,13708      | ,263          |
| EQUIA FIL        | IONOFIL MOLAR | -6,0925                          | 4,17295      | ,690          |
|                  | VITREMER      | -25,3448(*)                      | 5,25480      | ,000          |
|                  | CONTROL       | -88,7931(*)                      | 5,73345      | ,000          |
|                  | EQUIA FIL     | 12,9601(*)                       | 4,49019      | ,047          |
|                  | KETAC MOLAR   | 4,0579                           | 3,10875      | ,782          |
| FUJI IX          | IONOFIL MOLAR | 6,8677                           | 3,15633      | ,252          |
|                  | VITREMER      | -12,3847                         | 4,49019      | ,067          |
|                  | CONTROL       | -75,8330(*)                      | 5,04196      | ,000          |
|                  | EQUIA FIL     | 8,9022                           | 4,13708      | ,263          |
| KETAC            | FUJI IX       | -4,0579                          | 3,10875      | ,782          |
| MOLAR            | IONOFIL MOLAR | 2,8098                           | 2,62984      | ,894          |
|                  | VITREMER      | -16,4426(*)                      | 4,13708      | ,001          |
|                  | CONTROL       | -79,8909(*)                      | 4,73023      | ,000          |
|                  | EQUIA FIL     | 6,0925                           | 4,17295      | ,690          |
| IONOFIL          | FUJI IX       | -6,8677                          | 3,15633      | ,252          |
| IONOFIL<br>MOLAR | KETAC MOLAR   | -2,8098                          | 2,62984      | ,894          |
|                  | VITREMER      | -19,2524(*)                      | 4,17295      | ,000          |
|                  | CONTROL       | -82,7007(*)                      | 4,76163      | ,000          |
|                  | EQUIA FIL     | 25,3448(*)                       | 5,25480      | ,000          |
|                  | FUJI IX       | 12,3847                          | 4,49019      | ,067          |
| VITREMER         | KETAC MOLAR   | 16,4426(*)                       | 4,13708      | ,001          |
|                  | IONOFIL MOLAR | 19,2524(*)                       | 4,17295      | ,000          |
|                  | CONTROL       | -63,4483(*)                      | 5,73345      | ,000          |
|                  | EQUIA FIL     | 88,7931(*)                       | 5,73345      | ,000          |
|                  | FUJI IX       | 75,8330(*)                       | 5,04196      | ,000          |
| CONTROL          | KETAC MOLAR   | 79,8909(*)                       | 4,73023      | ,000          |
|                  | IONOFIL MOLAR | 82,7007(*)                       | 4,76163      | ,000          |
|                  | VITREMER      | 63,4483(*)                       | 5,73345      | ,000          |

Basado en las medias observadas.

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.



#### Resistencia a la Compresión (MPa) DHS de Tukey

| Marca         | N   | Subconjunto |         |         |          |  |  |
|---------------|-----|-------------|---------|---------|----------|--|--|
| Marca         | IN  | 2           | 3       | 4       | 1        |  |  |
| EQUIA FIL     | 29  | 48,7145     |         |         |          |  |  |
| IONOFIL MOLAR | 111 | 54,8069     | 54,8069 |         |          |  |  |
| KETAC MOLAR   | 121 | 57,6167     | 57,6167 |         |          |  |  |
| FUJI IX       | 63  |             | 61,6746 | 61,6746 |          |  |  |
| VITREMER      | 29  |             |         | 74,0593 |          |  |  |
| CONTROL       | 21  |             |         |         | 137,5076 |  |  |
| Significación |     | ,349        | ,641    | ,065    | 1,000    |  |  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

- El término error es la Media cuadrática (Error) = 400,387.
- a Usa el tamaño muestral de la media armónica = 40,072
- b Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos. No se garantizan los niveles de error tipo I. c Alfa = ,05.

Tabla VI.4: ANOVA. Pruebas de los efectos inter-sujetos (Sin Rc o grupo control)

Variable dependiente: Resistencia a la Compresión (MPa)

| Fuente           | Suma de cuadrados<br>tipo III | gl  | Media<br>cuadrática | F        | Significación |
|------------------|-------------------------------|-----|---------------------|----------|---------------|
| Modelo corregido | 30203,692(a)                  | 14  | 2157,407            | 6,343    | ,000,         |
| Intersección     | 841063,120                    | 1   | 841063,120          | 2472,829 | ,000          |
| G                | 11696,488                     | 4   | 2924,122            | 8,597    | ,000          |
| Tiempo           | 5748,106                      | 2   | 2874,053            | 8,450    | ,002          |
| G * Tiempo       | 11524,076                     | 8   | 1440,510            | 4,235    | ,000          |
| Error            | 114961,193                    | 338 | 340,122             |          |               |
| Total            | 1335806,050                   | 353 |                     |          |               |
| Total corregida  | 145164,885                    | 352 |                     |          |               |

a R cuadrado = ,208 (R cuadrado corregida = ,175)

#### Comparaciones múltiples. DHS de Tukey (tiempo)

| (I) Tiempo | (J) Tiempo | Diferencia entre<br>medias (I-J) | Error típ. | Significación |
|------------|------------|----------------------------------|------------|---------------|
| 4 5 5 7 5  | 24 horas   | -10,1901(*)                      | 2,45392    | ,000          |
| 1 hora     | 7 días     | -6,9666(*)                       | 2,39631    | ,011          |
| 24 horas   | 1 hora     | 10,1901(*)                       | 2,45392    | ,000          |
| 24 110185  | 7 días     | 3,2235                           | 2,37396    | ,364          |
| 7 días     | 1 hora     | 6,9666(*)                        | 2,39631    | ,011          |
| 7 días     | 24 horas   | -3,2235                          | 2,37396    | ,364          |

Basado en las medias observadas.

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.





#### Resistencia a la Compresión (MPa) DHS de Tukey

|               |     | Subconjunto |         |  |
|---------------|-----|-------------|---------|--|
| Tiempo        | N   | 2           | 1       |  |
| 1 hora        | 111 | 52,2507     |         |  |
| 7 días        | 127 |             | 59,2173 |  |
| 24 horas      | 115 |             | 62,4409 |  |
| Significación |     | 1,000       | ,375    |  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

El término error es la Media cuadrática (Error) = 340,122.

- a Usa el tamaño muestral de la media armónica = 117,285
- b Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos. No se garantizan los niveles de error tipo I.
- c Alfa = ,05.

#### Comparaciones múltiples. DHS de Tukey. (Marca)

| (I) Marca | (J) Marca     | Diferencia entre<br>medias (I-J) | Error típico | Significación |
|-----------|---------------|----------------------------------|--------------|---------------|
|           | FUJI IX       | -12,9601(*)                      | 4,13849      | ,047          |
|           | KETAC MOLAR   | -8,9022                          | 3,81304      | ,263          |
| EQUIA FIL | IONOFIL MOLAR | -6,0925                          | 3,84610      | ,690          |
|           | VITREMER      | -25,3448(*)                      | 4,84321      | ,000          |
|           | EQUIA FIL     | 12,9601(*)                       | 4,13849      | ,047          |
| FUJI IX   | KETAC MOLAR   | 4,0579                           | 2,86525      | ,782          |
| FUJITA    | IONOFIL MOLAR | 6,8677                           | 2,90911      | ,252          |
|           | VITREMER      | -12,3847(*)                      | 4,13849      | ,067          |
|           | EQUIA FIL     | 8,9022                           | 3,81304      | ,263          |
| KETAC     | FUJI IX       | -4,0579                          | 2,86525      | ,782          |
| MOLAR     | IONOFIL MOLAR | 2,8098                           | 2,42386      | ,894          |
|           | VITREMER      | -16,4426(*)                      | 3,81304      | ,001          |
|           | EQUIA FIL     | 6,0925                           | 3,84610      | ,690          |
| IONOFIL   | FUJI IX       | -6,8677                          | 2,90911      | ,252          |
| MOLAR     | KETAC MOLAR   | -2,8098                          | 2,42386      | ,894          |
|           | VITREMER      | -19,2524(*)                      | 3,84610      | ,000          |
|           | EQUIA FIL     | 25,3448(*)                       | 4,84321      | ,000          |
| VITDEMED  | FUJI IX       | 12,3847(*)                       | 4,13849      | ,067          |
| VITREMER  | KETAC MOLAR   | 16,4426(*)                       | 3,81304      | ,001          |
|           | IONOFIL MOLAR | 19,2524(*)                       | 3,84610      | ,000          |

Basado en las medias observadas. La diferencia de medias es significativa al nivel ,05.





#### Resistencia a la Compresión (MPa) DHS de Tukey

|               |     | Subconjunto |         |         |  |
|---------------|-----|-------------|---------|---------|--|
| Marca         | N   | 2           | 3       | 1       |  |
| EQUIA FIL     | 29  | 48,7145     |         |         |  |
| IONOFIL MOLAR | 111 | 54,8069     | 54,8069 |         |  |
| KETAC MOLAR   | 121 | 57,6167     | 57,6167 |         |  |
| FUJI IX       | 63  |             | 61,6746 |         |  |
| VITREMER      | 29  |             |         | 74,0593 |  |
| Significación |     | ,121        | ,351    | 1,000   |  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

El término error es la Media cuadrática (Error) = 340,122.

- a Usa el tamaño muestral de la media armónica = 48,966
- b Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos. No se garantizan los niveles de error tipo I.
- c Alfa = ,05.

Tabla VI.5: ANOVA. Pruebas de los efectos inter-sujetos (Sin Rc o grupo control)

Variable dependiente: Resistencia a la Compresión (MPa)

| Fuente           | Suma de cuadrados<br>tipo III | gl  | Media<br>cuadrática | F        | Significación |
|------------------|-------------------------------|-----|---------------------|----------|---------------|
| Modelo corregido | 50847,737(a)                  | 38  | 1338,098            | 4,455    | ,000          |
| Intersección     | 1082761,805                   | 1   | 1082761,805         | 3604,723 | ,000          |
| G                | 24238,594                     | 12  | 2019,883            | 6,725    | ,000          |
| Tiempo           | 5695,490                      | 2   | 2847,745            | 9,481    | ,000          |
| G * Tiempo       | 19373,541                     | 24  | 807,231             | 2,687    | ,000          |
| Error            | 94317,148                     | 314 | 300,373             |          |               |
| Total            | 1335806,050                   | 353 |                     |          |               |
| Total corregida  | 145164,885                    | 352 |                     |          |               |

a R cuadrado = ,350 (R cuadrado corregida = ,272)





#### DHS de Tukey. SUBCONJUNTOS HOMOGÉNEOS

| Material de restauración                                |    |         | Subconjunto |         |
|---------------------------------------------------------|----|---------|-------------|---------|
|                                                         | N  | 1       | 2           | 3       |
| (4C) IONOFIL MOLAR + Adper™ Single Bond 2               | 24 | 48,4592 |             |         |
| (1A) EQUIA FIL                                          | 29 | 48,7145 |             |         |
| (4A) IONOFIL MOLAR + sin recubrimiento protector        | 28 | 49,4329 |             |         |
| (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus                | 30 | 50,6990 |             |         |
| (3C) KETAC™ MOLAR EASYMIX + Adper™ Single<br>Bond 2     | 30 | 51,4600 |             |         |
| (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento protector | 31 | 57,1674 | 57,1674     |         |
| (2C) FUJI IX + Vaselina Sólida                          | 21 | 57,7500 | 57,7500     |         |
| (2B) FUJI IX + Adper™ Single Bond 2                     | 19 | 58,5953 | 58,5953     | 58,5953 |
| (4B) IONOFIL MOLAR + G- Coat Plus                       | 35 | 59,1100 | 59,1100     | 59,1100 |
| (4D) IONOFIL MOLAR + Vaselina Sólida                    | 24 | 61,1492 | 61,1492     | 61,1492 |
| (2A) FUJI IX + sin recubrimiento protector              | 23 |         | 67,8017     | 67,8017 |
| (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida             | 30 |         | 71,1553     | 71,1553 |
| (5A) VITREMER                                           | 29 |         |             | 74,0593 |
| Significación                                           |    | ,280    | ,152        | ,067    |

Se muestran las medias para los grupos en subconjuntos homogéneos.

El término error es la Media cuadrática (Error) = 300,373.

- a Usa el tamaño muestral de la media armónica = 26,392
- b Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos. No se garantizan los niveles de error tipo I.
- c Alfa = ,05.





#### Comparaciones múltiples. DHS de Tukey

| (I) Marca  | (J) Marca                                        | Dif. entre  | Error   | Sig.  |
|------------|--------------------------------------------------|-------------|---------|-------|
|            | (2A) FUJI IX + sin recubrimiento protector       | -19,0873(*) | 4,83915 | ,006  |
|            | (2B) FUJI IX + Adper™ Single Bond 2              | -9,8808     | 5,11535 | ,776  |
|            | (2C) FUJI IX + Vaselina Sólida                   | -9,0355     | 4,96600 | ,839  |
|            | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | -8,4529     | 4,47740 | ,801  |
|            | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -1,9845     | 4,51333 | 1,000 |
| (1A) EQUIA | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B 2        | -2,7455     | 4,51333 | 1,000 |
| FIL        | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -22,4409(*) | 4,51333 | ,000  |
|            | (4A) IONOFIL MOLAR + sin recubrimiento protector | -,7184      | 4,59187 | 1,000 |
|            | (4B) IONOFIL MOLAR + G- Coat Plus                | -10,3955    | 4,35199 | ,455  |
|            | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | ,2553       | 4,78260 | 1,000 |
|            | (4D) IONOFIL MOLAR + Vaselina Sólida             | -12,4347    | 4,78260 | ,315  |
|            | (5A) VITREMER                                    | -25,3448(*) | 4,55142 | ,000  |

| (I) Marca           | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|---------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                     | (1A) EQUIA FIL                                   | 19,0873(*)                 | 4,83915         | ,006  |
|                     | (2B) FUJI IX + Adper™ Single Bond 2              | 9,2065                     | 5,37297         | ,888  |
|                     | (2C) FUJI IX + Vaselina Sólida                   | 10,0517                    | 5,23098         | ,782  |
|                     | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 10,6343                    | 4,76961         | ,570  |
| (2A) FUJI IX        | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 17,1027(*)                 | 4,80335         | ,025  |
| + sin recubrimiento | (3C) KETAC " WOLAN EASTWIN TAUDEI " 3. B. Z      | 16,3417(*)                 | 4,80335         | ,041  |
| protector           | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -3,3536                    | 4,80335         | 1,000 |
|                     | (4A) IONOFIL MOLAR + sin recubrimiento protector | 18,3689(*)                 | 4,87722         | ,012  |
|                     | (4B) IONOFIL MOLAR + G- Coat Plus                | 8,6917                     | 4,65207         | ,812  |
|                     | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 19,3426(*)                 | 5,05720         | ,010  |
|                     | (4D) IONOFIL MOLAR + Vaselina Sólida             | 6,6526                     | 5,05720         | ,984  |
|                     | (5A) VITREMER                                    | -6,2576                    | 4,83915         | ,986  |

| (I) Marca    | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|--------------|--------------------------------------------------|----------------------------|-----------------|-------|
|              | (1A) EQUIA FIL                                   | 9,8808                     | 5,11535         | ,776  |
|              | (2A) FUJI IX + sin recubrimiento protector       | -9,2065                    | 5,37297         | ,888, |
|              | (2C) FUJI IX + Vaselina Sólida                   | ,8453                      | 5,48749         | 1,000 |
|              | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 1,4278                     | 5,04961         | 1,000 |
| (2B) FUJI IX | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 7,8963                     | 5,08149         | ,942  |
| + Adper™     | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | 7,1353                     | 5,08149         | ,973  |
| Single Bond  | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -12,5601                   | 5,08149         | ,397  |
| 2            | (4A) IONOFIL MOLAR + sin recubrimiento protector | 9,1624                     | 5,15138         | ,859  |
|              | (4B) IONOFIL MOLAR + G- Coat Plus                | -,5147                     | 4,93874         | 1,000 |
|              | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 10,1361                    | 5,32209         | ,792  |
|              | (4D) IONOFIL MOLAR + Vaselina Sólida             | -2,5539                    | 5,32209         | 1,000 |
|              | (5A) VITREMER                                    | -15,4640                   | 5,11535         | ,121  |





| (I) Marca                  | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|----------------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                            | (1A) EQUIA FIL                                   | 9,0355                     | 4,96600         | ,839  |
|                            | (2A) FUJI IX + sin recubrimiento protector       | -10,0517                   | 5,23098         | ,782  |
|                            | (2B) FUJI IX + Adper™ Single Bond 2              | -,8453                     | 5,48749         | 1,000 |
|                            | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | ,5826                      | 4,89826         | 1,000 |
|                            | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 7,0510                     | 4,93112         | ,969  |
| (2C) FUJI IX<br>+ Vaselina | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | 6,2900                     | 4,93112         | ,988  |
| Sólida                     | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -13,4053                   | 4,93112         | ,248  |
|                            | (4A) IONOFIL MOLAR + sin recubrimiento protector | 8,3171                     | 5,00311         | ,908  |
|                            | (4B) IONOFIL MOLAR + G- Coat Plus                | -1,3600                    | 4,78389         | 1,000 |
|                            | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 9,2908                     | 5,17871         | ,851  |
|                            | (4D) IONOFIL MOLAR + Vaselina Sólida             | -3,3992                    | 5,17871         | 1,000 |
|                            | (5A) VITREMER                                    | -16,3093                   | 4,96600         | ,059  |

| (I) Marca                         | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|-----------------------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                                   | (1A) EQUIA FIL                                   | 8,4529                     | 4,47740         | ,801  |
|                                   | (2A) FUJI IX + sin recubrimiento protector       | -10,6343                   | 4,76961         | ,570  |
|                                   | (2B) FUJI IX + Adper™ Single Bond 2              | -1,4278                    | 5,04961         | 1,000 |
| (3A)<br>KETAC™                    | (2C) FUJI IX + Vaselina Sólida                   | -,5826                     | 4,89826         | 1,000 |
| MOLAR EASYMIX + sin recubrimiento | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 6,4684                     | 4,43868         | ,964  |
|                                   | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | 5,7074                     | 4,43868         | ,987  |
|                                   | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -13,9879                   | 4,43868         | ,086  |
| protector                         | (4A) IONOFIL MOLAR + sin recubrimiento protector | 7,7346                     | 4,51852         | ,889  |
|                                   | (4B) IONOFIL MOLAR + G- Coat Plus                | -1,9426                    | 4,27452         | 1,000 |
|                                   | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 8,7083                     | 4,71222         | ,824  |
|                                   | (4D) IONOFIL MOLAR + Vaselina Sólida             | -3,9817                    | 4,71222         | 1,000 |
|                                   | (5A) VITREMER                                    | -16,8919(*)                | 4,47740         | ,012  |

| (I) Marca          | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|--------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                    | (1A) EQUIA FIL                                   | 1,9845                     | 4,51333         | 1,000 |
|                    | (2A) FUJI IX + sin recubrimiento protector       | -17,1027(*)                | 4,80335         | ,025  |
|                    | (2B) FUJI IX + Adper™ Single Bond 2              | -7,8963                    | 5,08149         | ,942  |
| (3B)               | (2C) FUJI IX + Vaselina Sólida                   | -7,0510                    | 4,93112         | ,969  |
| KETAC™             | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | -6,4684                    | 4,43868         | ,964  |
| MOLAR<br>EASYMIX + | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | -,7610                     | 4,47492         | 1,000 |
| G- Coat Plus       | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -20,4563(*)                | 4,47492         | ,001  |
|                    | (4A) IONOFIL MOLAR + sin recubrimiento protector | 1,2661                     | 4,55412         | 1,000 |
|                    | (4B) IONOFIL MOLAR + G- Coat Plus                | -8,4110                    | 4,31214         | ,764  |
|                    | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 2,2398                     | 4,74637         | 1,000 |
|                    | (4D) IONOFIL MOLAR + Vaselina Sólida             | -10,4502                   | 4,74637         | ,591  |
|                    | (5A) VITREMER                                    | -23,3603(*)                | 4,51333         | ,000  |





| (I) Marca        | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                  | (1A) EQUIA FIL                                   | 2,7455                     | 4,51333         | 1,000 |
|                  | (2A) FUJI IX + sin recubrimiento protector       | -16,3417(*)                | 4,80335         | ,041  |
|                  | (2B) FUJI IX + Adper™ Single Bond 2              | -7,1353                    | 5,08149         | ,973  |
| (3C)             | (2C) FUJI IX + Vaselina Sólida                   | -6,2900                    | 4,93112         | ,988  |
| KETAC™<br>MOLAR  | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | -5,7074                    | 4,43868         | ,987  |
| EASYMIX +        | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | ,7610                      | 4,47492         | 1,000 |
| Adper™           | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -19,6953(*)                | 4,47492         | ,001  |
| Single Bond<br>2 | (4A) IONOFIL MOLAR + sin recubrimiento protector | 2,0271                     | 4,55412         | 1,000 |
|                  | (4B) IONOFIL MOLAR + G- Coat Plus                | -7,6500                    | 4,31214         | ,861  |
|                  | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 3,0008                     | 4,74637         | 1,000 |
|                  | (4D) IONOFIL MOLAR + Vaselina Sólida             | -9,6892                    | 4,74637         | ,705  |
|                  | (5A) VITREMER                                    | -22,5993(*)                | 4,51333         | ,000  |

| (I) Marca            | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|----------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                      | (1A) EQUIA FIL                                   | 22,4409(*)                 | 4,51333         | ,000  |
|                      | (2A) FUJI IX + sin recubrimiento protector       | 3,3536                     | 4,80335         | 1,000 |
|                      | (2B) FUJI IX + Adper™ Single Bond 2              | 12,5601                    | 5,08149         | ,397  |
|                      | (2C) FUJI IX + Vaselina Sólida                   | 13,4053                    | 4,93112         | ,248  |
| (3D) KETAC™<br>MOLAR | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 13,9879                    | 4,43868         | ,086  |
| EASYMIX +            | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 20,4563(*)                 | 4,47492         | ,001  |
| Vaselina             | (3C) KETAC™ MOLAR EASYMIX + Adper™ S.B. 2        | 19,6953(*)                 | 4,47492         | ,001  |
| Sólida               | (4A) IONOFIL MOLAR + sin recubrimiento protector | 21,7225(*)                 | 4,55412         | ,000  |
|                      | (4B) IONOFIL MOLAR + G- Coat Plus                | 12,0453                    | 4,31214         | ,211  |
|                      | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 22,6962(*)                 | 4,74637         | ,000  |
|                      | (4D) IONOFIL MOLAR + Vaselina Sólida             | 10,0062                    | 4,74637         | ,658  |
|                      | (5A) VITREMER                                    | -2,9040                    | 4,51333         | 1,000 |

| (I) Marca       | (J) Marca                                     | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|-----------------|-----------------------------------------------|----------------------------|-----------------|-------|
|                 | (1A) EQUIA FIL                                | ,7184                      | 4,59187         | 1,000 |
|                 | (2A) FUJI IX + sin recubrimiento protector    | -18,3689(*)                | 4,87722         | ,012  |
|                 | (2B) FUJI IX + Adper™ Single Bond 2           | -9,1624                    | 5,15138         | ,859  |
|                 | (2C) FUJI IX + Vaselina Sólida                | -8,3171                    | 5,00311         | ,908  |
| (4A)<br>IONOFIL | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento | -7,7346                    | 4,51852         | ,889  |
| MOLAR + sin     | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus      | -1,2661                    | 4,55412         | 1,000 |
| recubrimiento   | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2    | -2,0271                    | 4,55412         | 1,000 |
| protector       | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida   | -21,7225(*)                | 4,55412         | ,000  |
|                 | (4B) IONOFIL MOLAR + G- Coat Plus             | -9,6771                    | 4,39428         | ,590  |
|                 | (4C) IONOFIL MOLAR + Adper™ Single Bond 2     | ,9737                      | 4,82112         | 1,000 |
|                 | (4D) IONOFIL MOLAR + Vaselina Sólida          | -11,7163                   | 4,82112         | ,426  |
|                 | (5A) VITREMER                                 | -24,6265(*)                | 4,59187         | ,000  |





73

| (I) Marca    | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|--------------|--------------------------------------------------|----------------------------|-----------------|-------|
|              | (1A) EQUIA FIL                                   | 10,3955                    | 4,35199         | ,455  |
|              | (2A) FUJI IX + sin recubrimiento protector       | -8,6917                    | 4,65207         | ,812  |
|              | (2B) FUJI IX + Adper™ Single Bond 2              | ,5147                      | 4,93874         | 1,000 |
|              | (2C) FUJI IX + Vaselina Sólida                   | 1,3600                     | 4,78389         | 1,000 |
| (4B)         | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 1,9426                     | 4,27452         | 1,000 |
| IONOFIL      | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 8,4110                     | 4,31214         | ,764  |
| MOLAR +      | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | 7,6500                     | 4,31214         | ,861  |
| G- Coat Plus | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -12,0453                   | 4,31214         | ,211  |
|              | (4A) IONOFIL MOLAR + sin recubrimiento protector | 9,6771                     | 4,39428         | ,590  |
|              | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 10,6508                    | 4,59322         | ,505  |
|              | (4D) IONOFIL MOLAR + Vaselina Sólida             | -2,0392                    | 4,59322         | 1,000 |
|              | (5A) VITREMER                                    | -14,9493(*)                | 4,35199         | ,037  |

| (I) Marca        | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                  | (1A) EQUIA FIL                                   | -,2553                     | 4,78260         | 1,000 |
|                  | (2A) FUJI IX + sin recubrimiento protector       | -19,3426(*)                | 5,05720         | ,010  |
|                  | (2B) FUJI IX + Adper™ Single Bond 2              | -10,1361                   | 5,32209         | ,792  |
|                  | (2C) FUJI IX + Vaselina Sólida                   | -9,2908                    | 5,17871         | ,851  |
| (4C)<br>IONOFIL  | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | -8,7083                    | 4,71222         | ,824  |
| MOLAR +          | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -2,2398                    | 4,74637         | 1,000 |
| Adper™           | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | -3,0008                    | 4,74637         | 1,000 |
| Single Bond<br>2 | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -22,6962(*)                | 4,74637         | ,000  |
|                  | (4A) IONOFIL MOLAR + sin recubrimiento protector | -,9737                     | 4,82112         | 1,000 |
|                  | (4B) IONOFIL MOLAR + G- Coat Plus                | -10,6508                   | 4,59322         | ,505  |
|                  | (4D) IONOFIL MOLAR + Vaselina Sólida             | -12,6900                   | 5,00311         | ,354  |
|                  | (5A) VITREMER                                    | -25,6001(*)                | 4,78260         | ,000  |

| (I) Marca       | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|-----------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                 | (1A) EQUIA FIL                                   | 12,4347                    | 4,78260         | ,315  |
|                 | (2A) FUJI IX + sin recubrimiento protector       | -6,6526                    | 5,05720         | ,984  |
|                 | (2B) FUJI IX + Adper™ Single Bond 2              | 2,5539                     | 5,32209         | 1,000 |
|                 | (2C) FUJI IX + Vaselina Sólida                   | 3,3992                     | 5,17871         | 1,000 |
| (4D)<br>IONOFIL | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 3,9817                     | 4,71222         | 1,000 |
| MOLAR +         | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 10,4502                    | 4,74637         | ,591  |
| Vaselina        | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | 9,6892                     | 4,74637         | ,705  |
| Sólida          | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -10,0062                   | 4,74637         | ,658  |
|                 | (4A) IONOFIL MOLAR + sin recubrimiento protector | 11,7163                    | 4,82112         | ,426  |
|                 | (4B) IONOFIL MOLAR + G- Coat Plus                | 2,0392                     | 4,59322         | 1,000 |
|                 | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 12,6900                    | 5,00311         | ,354  |
|                 | (5A) VITREMER                                    | -12,9101                   | 4,78260         | ,258  |





| (I) Marca        | (J) Marca                                        | Dif. entre<br>medias (I-J) | Error<br>típico | Sig.  |
|------------------|--------------------------------------------------|----------------------------|-----------------|-------|
|                  | (1A) EQUIA FIL                                   | 25,3448(*)                 | 4,55142         | ,000  |
|                  | (2A) FUJI IX + sin recubrimiento protector       | 6,2576                     | 4,83915         | ,986  |
|                  | (2B) FUJI IX + Adper™ Single Bond 2              | 15,4640                    | 5,11535         | ,121  |
|                  | (2C) FUJI IX + Vaselina Sólida                   | 16,3093                    | 4,96600         | ,059  |
|                  | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 16,8919(*)                 | 4,47740         | ,012  |
| (5A)<br>VITREMER | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 23,3603(*)                 | 4,51333         | ,000  |
| VIIREWER         | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | 22,5993(*)                 | 4,51333         | ,000  |
|                  | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 2,9040                     | 4,51333         | 1,000 |
|                  | (4A) IONOFIL MOLAR + sin recubrimiento protector | 24,6265(*)                 | 4,59187         | ,000  |
|                  | (4B) IONOFIL MOLAR + G- Coat Plus                | 14,9493(*)                 | 4,35199         | ,037  |
|                  | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 25,6001(*)                 | 4,78260         | ,000  |
|                  | (4D) IONOFIL MOLAR + Vaselina Sólida             | 12,9101                    | 4,78260         | ,258  |

Basado en las medias observadas.

\* La diferencia de medias es significativa al nivel ,05

| Recubrimiento     | Tiempo   | Media | DE    | n   |
|-------------------|----------|-------|-------|-----|
|                   | 1 hora   | 51,88 | 19,06 | 23  |
| Sin               | 24 horas | 54,52 | 17,94 | 25  |
| Recubrimiento     | 7 días   | 63,51 | 23,04 | 34  |
|                   | Total    | 57,51 | 20,91 | 82  |
|                   | 1 hora   | 64,76 | 20,25 | 27  |
| Vaselina Solida   | 24 horas | 68,86 | 19,73 | 25  |
| Vaseiii la Soliua | 7 días   | 58,47 | 18,07 | 23  |
|                   | Total    | 64,20 | 19,62 | 75  |
|                   | 1 hora   | 48,86 | 15,23 | 34  |
| A. Single Bond    | 24 horas | 54,59 | 14,09 | 34  |
| A. Sirigle Borid  | 7 días   | 52,49 | 15,39 | 32  |
|                   | Total    | 51,97 | 14,95 | 100 |
|                   | 1 hora   | 42,78 | 9,07  | 17  |
| G-Coat Plus       | 24 horas | 63,39 | 16,73 | 20  |
| G-Coat Flus       | 7 días   | 56,96 | 19,75 | 28  |
|                   | Total    | 55,23 | 18,21 | 65  |

**Tabla VI.6**: Estadisticos Descriptivos de Resistencia a la Compresión: Media, Desviación estándar (DE) y recuento de casos (n) según recubrimiento y tiempo. Valores expresados en MPa.



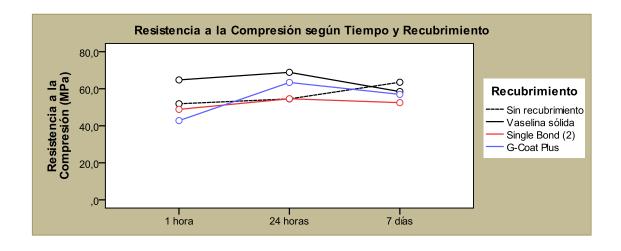



Figura VI. 4: Resistencia a la Compresión según recubrimiento y tiempo. Medias marginales estimadas.

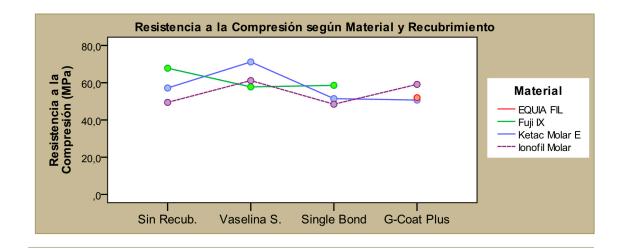
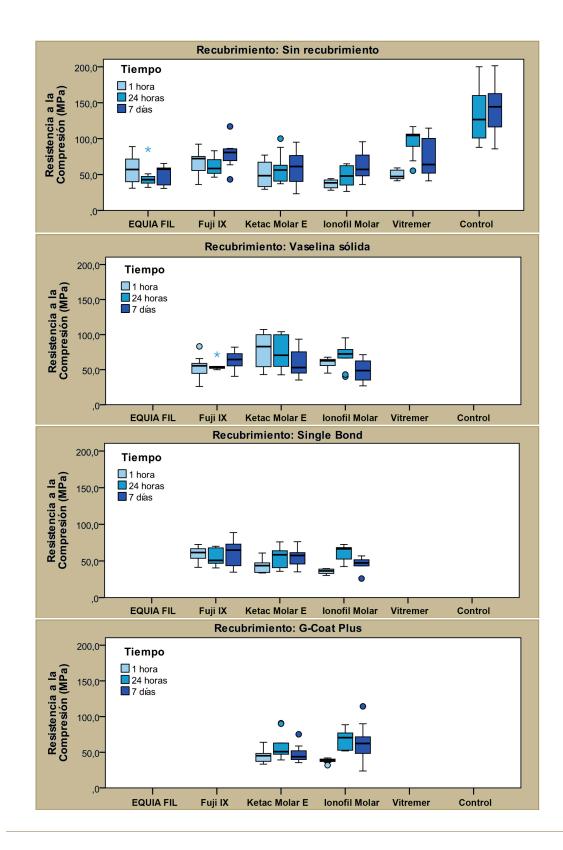




Figura VI. 5: Resistencia a la Compresión según material y recubrimiento. Medias marginales estimadas





**Figura VI.6:** Resistencia compresiva según recubrimiento, marca y tiempo. Las líneas centrales representan las medianas, las cajas rectangulares al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*), mostrados dentro de cada subgrupo.





## **Contraste Estadístico**

<u>Variable dependiente</u>: Resistencia a la Compresión (MPa)
Factores: Grupo o **Marca**; Tipo de **Recubrimiento** y **Tiempo** 

| Origen<br>(fuente del efecto) | SC tipo III | gl  | МС      | F      | Sig.<br>(p-valor) |
|-------------------------------|-------------|-----|---------|--------|-------------------|
| Grupo                         | 102272,0    | 5   | 20454,4 | 57,309 | <<0,001           |
| Recubrimiento                 | 3924,5      | 3   | 1308,2  | 3,665  | 0,013             |
| Tiempo                        | 4555,2      | 2   | 2277,6  | 6,381  | 0,002             |
| Grupo * Recubrimiento         | 7504,9      | 5   | 1501,0  | 4,205  | 0,001             |
| Grupo * Tiempo                | 12484,2     | 9   | 1387,1  | 3,886  | <0,001            |
| Recubrimiento * Tiempo        | 5127,5      | 6   | 854,6   | 2,394  | 0,028             |
| Error                         | 120281,1    | 337 | 356,9   |        |                   |
| Error                         | ,           |     | 356,9   |        |                   |

R cuadrado = 0,599 (R cuadrado corregida = 0,550)

**Tabla VI.7:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (resistencia compresiva), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (356,9).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor grupo o marca fue el que provocó mayor efecto sobre los valores resistivos (F=57,309; p<<0,001), lo cual era previsible en función de los elevados valores dentro del grupo control (Rc). El factor Tiempo también resultó significativo, aunque en menor grado (F=6,381; p=0,002), en tanto que el factor recubrimiento, que también fue significativo (F=3,665; p=0,013), pero en grado menor.

Se verificó que las interacciones entre factores eran significativas (p<0,05 en todos los casos): a) Grupo \* Recubrimiento: el efecto del recubrimiento sobre los materiales no fue el mismo en todos ellos, en algunos grupos incrementó la resistencia y en





otros el efecto fue contrario; b) Grupo \* Tiempo: Algunos grupos no mostraron variaciones significativas según los tiempos mientras que otros sí, aunque en términos generales se observó un incremento de valores resistivos a las 24h y a los 7 días, por último c) Recubrimiento \* Tiempo: el grupo de vaselina sólida se diferenció de los demás en cuanto a su respuesta con el transcurso del tiempo.

El determinante R<sup>2</sup> indica el nivel de ajuste del modelo planteado, que en este caso fue del 55%, siendo el porcentaje restante atribuible al error experimental, que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores marca, recubrimiento y tiempo:

# Contraste múltiple entre marcas:

| Marsa          | N   | :     | Subconjunt | 0      |
|----------------|-----|-------|------------|--------|
| Marca          | N   | 1     | 2          | 3      |
| EQUIA FIL      | 24  | 51,27 |            |        |
| IONOFIL MOLAR  | 111 | 54,81 |            |        |
| KETAC MOLAR    | 121 | 57,62 |            |        |
| FUJI IX        | 62  | 62,27 |            |        |
| VITREMER       | 29  |       | 74,06      |        |
| CONTROL        | 21  |       |            | 137,51 |
| Sig. (p-valor) |     | 0,116 | 1,000      | 1,000  |

**Tabla VI.8:** Cuadro resumido de la prueba DHS de Tukey para el factor MARCA. Se muestran las medias de Resistencia a la Compresión (MPa) de los grupos en subconjuntos homogéneos.

## Contraste múltiple entre tipos de recubrimiento:

| Recubrimiento     | N   | Subco | njunto |
|-------------------|-----|-------|--------|
| Recubililiento    | IN  | 1     | 2      |
| Single Bond       | 100 | 51,97 |        |
| G-Coat Plus       | 65  | 55,23 |        |
| Sin recubrimiento | 82  | 57,51 |        |
| Vaselina sólida   | 75  |       | 64,20  |
| Sig. (p-valor)    |     | 0,170 | 1,000  |

**Tabla VI.9:** Cuadro resumido de la prueba DHS de Tukey para el factor RECUBRIMIENTO. Se muestran las medias de Resistencia a la Compresión (MPa) de los grupos en subconjuntos homogéneos.





## Contraste múltiple entre tiempos:

| Tiomno         | N   | Subco | njunto |
|----------------|-----|-------|--------|
| Tiempo         | N   | 1     | 2      |
| 1 hora         | 109 | 52,46 |        |
| 7 días         | 136 |       | 66,42  |
| 24 horas       | 123 |       | 68,54  |
| Sig. (p-valor) |     | 1,000 | 0,657  |

**Tabla VI.10:** Cuadro resumido de la prueba DHS de Tukey para el factor TIEMPO. Se muestran las medias de Resistencia ala Compresión (MPa) de los grupos en subconjuntos homogéneos.

## RESISTENCIA FLEXURAL

En la Tabla VI.11 observamos los valores medios (MPa) de la RF según la marca de cada material en función del tiempo (1h, 24hs, 7días). El grupo control (Rc) presentó los valores más altos de RF seguido por el grupo 5A. Los otros, mostraron valores similares próximos a 50 MPa (Figura VI.7).

En relación al tiempo, el Análisis de Varianza ANOVA (F= 2,541; p=< 0,005) y el Test de Tukey Kramer HSD (p=0,05) mostraron diferencia estadísticamente significativa entre los grupos (Tabla VI.12). En términos generales los valores más altos de RF se registraron a las 24hs y 7 días (Figuras VI.8 y VI.11).

En relación a los grupos el Análisis de Varianza ANOVA (F= 4,813; p=< 0,0001) y el Test de Tukey Kramer HSD (p=0,05) mostraron diferencia estadísticamente significativa entre ellos (Tablas VI.13 y VI.14). En términos generales, los grupos sin recubrimiento y con vaselina (2.A, 3.A, 4.A; 2.D, 3.D, 4.D, respectivamente) presentaron un comportamiento similar entre ellos; diferente a su vez a los grupos con recubrimiento G-Coat Plus y Adper Single Bond (2.B, 3.B, 4.B; 2.C, 3.C, 4.C, respectivamente) quienes presentaron valores más altos de RF y un comportamiento semejante entre ellos (Figuras VI.9 y VI.10). Los valores medios en MPa para estos grupos fueron: 4.A: 32,29; 3.A: 35,89; 2.A: 36,80; 2.D: 39,39; 4.D: 47,52; 3.D: 48,32; 3.B: 54,19; 2.C: 54,54; 4.B: 60,92; 2.B:61,14; 3.C: 61,96 y 4.C: 64,71. El grupo 1.A presentó valores intermedios entre los grupos con y sin recubrimiento (50,39 MPa).





El grupo 5.A difiere del resto de los grupos, presentando los valores más altos de RF (80,75MPa).

Relacionando el material de recubrimiento con el tiempo, en términos generales, los valores más altos de RF se registraron en los cementos con recubrimiento (Tabla VI.16) y a las 24hs de almacenamiento (Figura VI.12).

En la Figura VI.13 se presentan cuatro gráficos (diagramas de cajas), que muestran de manera esquemática, las distribuciones de valores según marca y tiempo para cada una de las categorías de recubrimiento.

En relación a los grupos con G-Coat Plus, el Análisis de Varianza ANOVA (F= 18,57; p=<0,0001) y el Test de Tukey (p=0,05) mostraron diferencia estadísticamente significativa entre los grupos con y sin recubrimiento (Tabla VI.15).

| Marca         | Tiempo   | Media  | DE    | n   |
|---------------|----------|--------|-------|-----|
|               | 1 hora   | 44,81  | 7,09  | 10  |
| EQUIA FIL     | 24 horas | 54,98  | 19,59 | 10  |
| EQUIA FIL     | 7 días   | 51,39  | 7,11  | 10  |
|               | Total    | 50,39  | 12,99 | 30  |
|               | 1 hora   | 32,44  | 6,93  | 40  |
| IONOFIL MOLAR | 24 horas | 62,80  | 22,06 | 40  |
| IONOFIL WOLAR | 7 días   | 58,85  | 24,59 | 40  |
|               | Total    | 51,36  | 23,59 | 120 |
|               | 1 hora   | 35,54  | 6,06  | 40  |
| KETAC MOLAR   | 24 horas | 64,35  | 23,70 | 40  |
|               | 7 días   | 50,39  | 17,07 | 40  |
|               | Total    | 50,09  | 20,76 | 120 |
|               | 1 hora   | 38,30  | 13,72 | 40  |
| FUJI IX       | 24 horas | 59,65  | 23,23 | 40  |
| FUJI IX       | 7 días   | 45,97  | 11,87 | 40  |
|               | Total    | 47,97  | 19,06 | 120 |
|               | 1 hora   | 53,15  | 4,75  | 10  |
| VITDEMED      | 24 horas | 97,93  | 34,41 | 10  |
| VITREMER      | 7 días   | 91,20  | 16,57 | 10  |
|               | Total    | 80,76  | 29,36 | 30  |
| CONTROL       | 1 hora   | 106,20 | 32,09 | 10  |
|               | 24 horas | 122,02 | 26,25 | 10  |
| CONTROL       | 7 días   | 104,87 | 41,88 | 10  |
|               | Total    | 111,03 | 33,77 | 30  |

**Tabla IV. 11:** Valores medios (MPa) de la RF según la marca de cada material en función del tiempo (1h, 24hs, 7días).



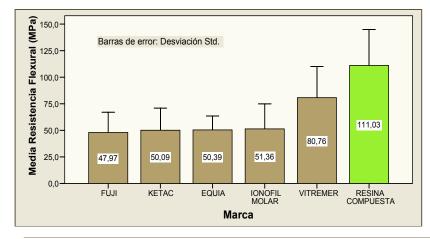



Figura VI.7: Valores medios de RF (MPa) según la marca

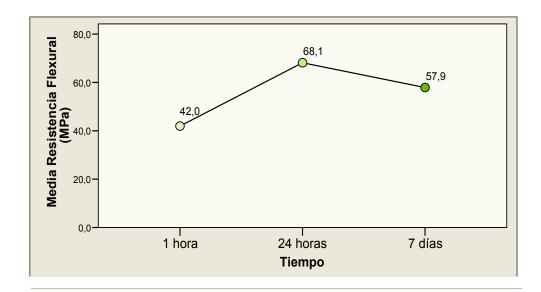



Figura VI.8: Diagrama de medias de RF (MPa) según tiempo.



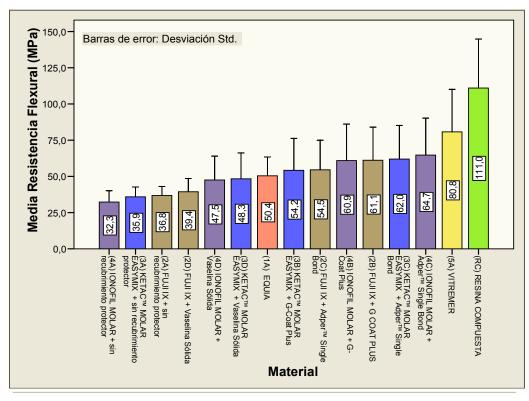



Figura VI. 9: Resistencia flexural, media y desviación estándar (MPa) según grupos.

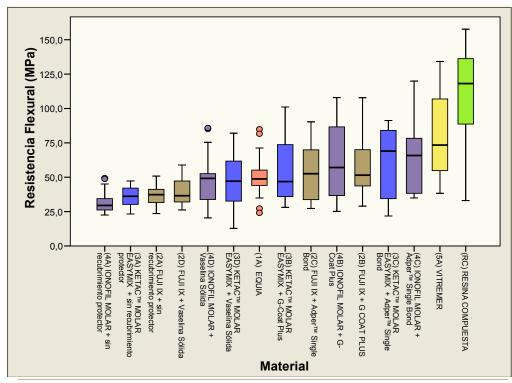



Figura VI. 10: Diagrama de cajas. Resistencia a la flexión (MPa) según grupos.





Tabla VI.12: ANOVA. Pruebas de los efectos inter-sujetos (Incluye Rc o grupo control)

Variable dependiente: Resistencia a la flexión (MPa)

| Fuente           | Suma de cuadrados<br>tipo III | gl  | Media<br>cuadrática | F        | Significación |
|------------------|-------------------------------|-----|---------------------|----------|---------------|
| Modelo corregido | 186455,558(a)                 | 17  | 10967,974           | 29,258   | ,000          |
| Intersección     | 1226858,260                   | 1   | 1226858,260         | 3272,766 | ,000          |
| G                | 124681,724                    | 5   | 24936,345           | 66,520   | ,000          |
| Tiempo           | 31006,746                     | 2   | 15503,373           | 41,357   | ,000          |
| G * Tiempo       | 9526,832                      | 10  | 952,683             | 2,541    | ,005          |
| Error            | 161943,368                    | 432 | 374,869             |          |               |
| Total            | 1759230,470                   | 450 |                     |          |               |
| Total corregida  | 348398,926                    | 449 |                     |          |               |

a R cuadrado = ,535 (R cuadrado corregida = ,517)

Comparaciones múltiples. DHS de Tukey (tiempo)

| (I) Tiempo | (J) Tiempo | Diferencia entre<br>medias (I-J) | Error típ. | Significación |
|------------|------------|----------------------------------|------------|---------------|
| 1 horo     | 24 horas   | -26,1890(*)                      | 2,23568    | ,000          |
| 1 hora     | 7 días     | -15,9357(*)                      | 2,23568    | ,000          |
| 24 horas   | 1 hora     | 26,1890(*)                       | 2,23568    | ,000          |
| 24 1101 as | 7 días     | 10,2533(*)                       | 2,23568    | ,000          |
| 7 días     | 1 hora     | 15,9357(*)                       | 2,23568    | ,000          |
| 7 días     | 24 horas   | -10,2533(*)                      | 2,23568    | ,000          |

Basado en las medias observadas.

\* La diferencia de medias es signifi

Resistencia a la Flexión (MPa). DHS de Tukey

| Tiompo        |     | Subconjunto |         |         |  |
|---------------|-----|-------------|---------|---------|--|
| Tiempo        | N   | 2           | 3       | 1       |  |
| 1 hora        | 150 | 41,9511     |         |         |  |
| 7 días        | 150 |             | 57,8868 |         |  |
| 24 horas      | 150 |             |         | 68,1401 |  |
| Significación |     | 1,000       | 1,000   | 1,000   |  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

El término error es la Media cuadrática (Error) = 374,869.

- a Usa el tamaño muestral de la media armónica = 150,000
- b Alfa = ,05.

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.



Comparaciones múltiples. DHS de Tukey. (Marca)

| (I) Marca | (J) Marca     | Diferencia entre<br>medias (I-J) | Error<br>típico | Significación |
|-----------|---------------|----------------------------------|-----------------|---------------|
|           | FUJI IX       | 2,4218                           | 3,95216         | ,990          |
| EQUIA FIL | KETAC MOLAR   | ,3018                            | 3,95216         | 1,000         |
|           | IONOFIL MOLAR | -,9689                           | 3,95216         | 1,000         |
|           | VITREMER      | -30,3633(*)                      | 4,99913         | ,000          |
|           | Rc            | -60,6360(*)                      | 4,99913         | ,000          |
|           | EQUIA FIL     | -2,4218                          | 3,95216         | ,990          |
|           | KETAC MOLAR   | -2,1200                          | 2,49956         | ,958          |
| FUJI IX   | IONOFIL MOLAR | -3,3908                          | 2,49956         | ,753          |
|           | VITREMER      | -32,7852(*)                      | 3,95216         | ,000          |
|           | Rc            | -63,0578(*)                      | 3,95216         | ,000          |
|           | EQUIA FIL     | -,3018                           | 3,95216         | 1,000         |
| KETAC     | FUJI IX       | 2,1200                           | 2,49956         | ,958          |
| MOLAR     | IONOFIL MOLAR | -1,2708                          | 2,49956         | ,996          |
| WOLAR     | VITREMER      | -30,6652(*)                      | 3,95216         | ,000          |
|           | Rc            | -60,9378(*)                      | 3,95216         | ,000          |
|           | EQUIA FIL     | ,9689                            | 3,95216         | 1,000         |
| IONOFIL   | FUJI IX       | 3,3908                           | 2,49956         | ,753          |
| MOLAR     | KETAC MOLAR   | 1,2708                           | 2,49956         | ,996          |
|           | VITREMER      | -29,3944(*)                      | 3,95216         | ,000          |
|           | Rc            | -59,6671(*)                      | 3,95216         | ,000          |
|           | EQUIA FIL     | 30,3633(*)                       | 4,99913         | ,000          |
|           | FUJI IX       | 32,7852(*)                       | 3,95216         | ,000          |
| VITREMER  | KETAC MOLAR   | 30,6652(*)                       | 3,95216         | ,000          |
|           | IONOFIL MOLAR | 29,3944(*)                       | 3,95216         | ,000          |
|           | Rc            | -30,2727(*)                      | 4,99913         | ,000          |
| RESINA    | EQUIA FIL     | 60,6360(*)                       | 4,99913         | ,000          |
|           | FUJI IX       | 63,0578(*)                       | 3,95216         | ,000          |
| COMPUESTA | KETAC MOLAR   | 60,9378(*)                       | 3,95216         | ,000          |
|           | IONOFIL MOLAR | 59,6671(*)                       | 3,95216         | ,000          |
|           | VITREMER      | 30,2727(*)                       | 4,99913         | ,000          |

Basado en las medias observadas.

Resistencia a la Flexión (MPa) DHS de Tukey

| Maraa         | N   |         | Subconjunto |          |
|---------------|-----|---------|-------------|----------|
| Marca         | N   | 2       | 3           | 1        |
| EQUIA FIL     | 120 | 47,9722 |             |          |
| IONOFIL MOLAR | 120 | 50,0922 |             |          |
| KETAC MOLAR   | 30  | 50,3940 |             |          |
| FUJI IX       | 120 | 51,3629 |             |          |
| VITREMER      | 30  |         | 80,7573     |          |
| Rc CONTROL    | 30  |         |             | 111,0300 |
| Significación |     | ,956    | 1,000       | 1,000    |

Se muestran las medias para los grupos en subconjuntos homogéneos.

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.



# LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO

Basado en la suma de cuadrados tipo III. El término error es la Media cuadrática (Error) = 374,869.

a Usa el tamaño muestral de la media armónica = 48,000. b Alfa = ,05.

Tabla VI. 13: ANOVA. Pruebas de los efectos inter-sujetos (Excluyendo Rc o grupo control)

Variable dependiente: Resistencia a la Flexión (MPa)

| Fuente           | Suma de cuadrados<br>tipo III | gl  | Media<br>cuadrática | F        | Significación |
|------------------|-------------------------------|-----|---------------------|----------|---------------|
| Modelo corregido | 87271,562(a)                  | 14  | 6233,683            | 19,318   | ,000          |
| Intersección     | 858810,997                    | 1   | 858810,997          | 2661,472 | ,000          |
| G                | 27317,615                     | 4   | 6829,404            | 21,164   | ,000          |
| Tiempo           | 34985,127                     | 2   | 17492,563           | 54,210   | ,000          |
| G * Tiempo       | 7908,246                      | 8   | 988,531             | 3,063    | ,002          |
| Error            | 130686,497                    | 405 | 322,683             |          |               |
| Total            | 1356323,885                   | 420 |                     |          |               |
| Total corregida  | 217958,059                    | 419 |                     |          |               |

a R cuadrado = ,400 (R cuadrado corregida = ,380)

Comparaciones múltiples. DHS de Tukey (tiempo)

| (I) Tiempo | (J) Tiempo | Diferencia entre<br>medias (I-J) | Error típ. | Significación |
|------------|------------|----------------------------------|------------|---------------|
| 4 hono     | 24 horas   | -26,9299(*)                      | 2,14703    | ,000          |
| 1 hora     | 7 días     | -17,1689(*)                      | 2,14703    | ,000          |
| 24 horas   | 1 hora     | 26,9299(*)                       | 2,14703    | ,000          |
| 24 110183  | 7 días     | 9,7609(*)                        | 2,14703    | ,000          |
| 7 días     | 1 hora     | 17,1689(*)                       | 2,14703    | ,000          |
| 7 dias     | 24 horas   | -9,7609(*)                       | 2,14703    | ,000          |

Basado en las medias observadas.

Resistencia a la Flexión (MPa). DHS de Tukey

| Tiomno        | NI  | Subconjunto |         |         |  |
|---------------|-----|-------------|---------|---------|--|
| Tiempo        | N   | 2           | 3       | 1       |  |
| 1 hora        | 140 | 37,3619     |         |         |  |
| 7 días        | 140 |             | 54,5308 |         |  |
| 24 horas      | 140 |             |         | 64,2917 |  |
| Significación |     | 1,000       | 1,000   | 1,000   |  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

Basado en la suma de cuadrados tipo III

El término error es la Media cuadrática (Error) = 322,683.

- a Usa el tamaño muestral de la media armónica = 140,000
- b Alfa = ,05.
- c Criterio de Inclusión = Incluido

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.



Comparaciones múltiples. DHS de Tukey. (Marca)

| (I) Marca | (J) Marca     | Diferencia entre<br>medias (I-J) | Error típico | Significación |
|-----------|---------------|----------------------------------|--------------|---------------|
|           | FUJI IX       | 2,4218                           | 3,66676      | ,965          |
| EQUIA FIL | KETAC MOLAR   | ,3018                            | 3,66676      | 1,000         |
| EQUIA FIL | IONOFIL MOLAR | -,9689                           | 3,66676      | ,999          |
|           | VITREMER      | -30,3633(*)                      | 4,63812      | ,000          |
|           | EQUIA FIL     | -2,4218                          | 3,66676      | ,965          |
| FUJI IX   | KETAC MOLAR   | -2,1200                          | 2,31906      | ,891          |
| FUSITA    | IONOFIL MOLAR | -3,3908                          | 2,31906      | ,588          |
|           | VITREMER      | -32,7852(*)                      | 3,66676      | ,000          |
|           | EQUIA FIL     | -,3018                           | 3,66676      | 1,000         |
| KETAC     | FUJI IX       | 2,1200                           | 2,31906      | ,891          |
| MOLAR     | IONOFIL MOLAR | -1,2708                          | 2,31906      | ,982          |
|           | VITREMER      | -30,6652(*)                      | 3,66676      | ,000          |
|           | EQUIA FIL     | ,9689                            | 3,66676      | ,999          |
| IONOFIL   | FUJI IX       | 3,3908                           | 2,31906      | ,588          |
| MOLAR     | KETAC MOLAR   | 1,2708                           | 2,31906      | ,982          |
|           | VITREMER      | -29,3944(*)                      | 3,66676      | ,000          |
|           | EQUIA FIL     | 30,3633(*)                       | 4,63812      | ,000          |
| VITREMER  | FUJI IX       | 32,7852(*)                       | 3,66676      | ,000          |
| VIIKEWER  | KETAC MOLAR   | 30,6652(*)                       | 3,66676      | ,000          |
|           | IONOFIL MOLAR | 29,3944(*)                       | 3,66676      | ,000          |

Basado en las medias observadas.

Resistencia a la Flexión (MPa). DHS de Tukey

| Moree         | Marca N |         | njunto  |
|---------------|---------|---------|---------|
| Marca         | IN      | 2       | 1       |
| FUJI IX       | 120     | 47,9722 |         |
| KETAC MOLAR   | 120     | 50,0922 |         |
| EQUIA FIL     | 30      | 50,3940 |         |
| IONOFIL MOLAR | 120     | 51,3629 |         |
| VITREMER      | 30      |         | 80,7573 |
| Significación |         | ,862    | 1,000   |

Se muestran las medias para los grupos en subconjuntos homogéneos.

Basado en la suma de cuadrados tipo III

El término error es la Media cuadrática (Error) = 322,683.

- a Usa el tamaño muestral de la media armónica = 54,545
- b Los tamaños de los grupos son distintos. Se empleará la media armónica de los tamaños de los grupos.
- c Alfa = ,05.

<sup>\*</sup> La diferencia de medias es significativa al nivel ,05.





Tabla VI.14: ANOVA. Pruebas de los efectos inter-sujetos (Sin Rc o grupo control)

Variable dependiente: Resistencia a la Flexión (MPa)

| Fuente           | Suma de cuadrados tipo III | gl  | Media<br>cuadrática | F        | Significación |
|------------------|----------------------------|-----|---------------------|----------|---------------|
| Modelo corregido | 145960.284(a)              | 41  | 3560.007            | 18.691   | .000          |
| Intersección     | 1138365.826                | 1   | 1138365.826         | 5976.605 | .000          |
| Subgrupos (Mat.) | 70077.807                  | 13  | 5390.601            | 28.302   | .000          |
| Tiempo           | 52045.702                  | 2   | 26022.851           | 136.624  | .000          |
| Mat. * Tiempo    | 23836.775                  | 26  | 916.799             | 4.813    | .000          |
| Error            | 71997.775                  | 378 | 190.470             |          |               |
| Total            | 1356323.885                | 420 |                     |          |               |
| Total corregida  | 217958.059                 | 419 |                     |          |               |

a R cuadrado = ,670 (R cuadrado corregida = ,634)

DHS de Tukey. SUBCONJUNTOS HOMOGÉNEOS. Resistencia Flexural (MPa)

| Material                     | N  | Subconjunto |        |        |        |        |        |        |        |
|------------------------------|----|-------------|--------|--------|--------|--------|--------|--------|--------|
| iviaterial                   | IN | 2           | 3      | 4      | 5      | 6      | 7      | 8      | 1      |
| (4A) IONOFIL M (sin Prot.)   | 30 | 32.294      |        |        |        |        |        |        |        |
| (3A) KETAC M E (sin Prot.)   | 30 | 35.890      | 35.890 |        |        |        |        |        |        |
| (2A) FUJI IX (sin Prot.)     | 30 | 36.801      | 36.801 | 36.801 |        |        |        |        |        |
| (2D) FUJI IX + Vaselina Sól. | 30 | 39.398      | 39.398 | 39.393 | 39.398 |        |        |        |        |
| (4D) IONOFIL M + Vas. Sól.   | 30 |             | 47.527 | 47.527 | 47.527 | 47.527 |        |        |        |
| (3D) KETAC M E + Vas. Sól.   | 30 |             |        | 48.321 | 48.321 | 48.321 |        |        |        |
| (1A) EQUIA FIL               | 30 |             |        |        | 50.394 | 50.394 | 50.394 |        |        |
| (3B) KETAC M E + G-C Plus    | 30 |             |        |        |        | 54.196 | 54.196 | 54.196 |        |
| (2C) FUJI IX + Single Bond   | 30 |             |        |        |        | 54.547 | 54.547 | 54.547 |        |
| (4B) IONOFIL M + G-C Plus    | 30 |             |        |        |        |        | 60.920 | 60.920 |        |
| (2B) FUJI IX + G-C Plus      | 30 |             |        |        |        |        | 61.141 | 61.141 |        |
| (3C) KETAC M E +Single B.    | 30 |             |        |        |        |        | 61.961 | 61.961 |        |
| (4C) IONOFIL M +Single B.    | 30 |             |        |        |        |        |        | 64.710 |        |
| (5A) VITREMER                | 30 |             |        |        |        |        |        |        | 80.757 |
| Significación                |    | .771        | .069   | .076   | .114   | .785   | .073   | .161   | 1.000  |

Se muestran las medias para los grupos en subconjuntos homogéneos.

Basado en la suma de cuadrados tipo III

El término error es la Media cuadrática (Error) = 190.470.

- a Usa el tamaño muestral de la media armónica = 30.000
- b Alfa = .05.





# Comparaciones múltiples. DHS de Tukey

| (I) Marca      | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|----------------|--------------------------------------------------|-------------|---------|-------|
|                | (2A) FUJI IX + sin recubrimiento protector       | 13.5927(*)  | 3.56343 | .012  |
|                | (2B) FUJI IX + Adper™ Single Bond 2              | -10.7473    | 3.56343 | .137  |
|                | (2C) FUJI IX + G-Coat Plus                       | -4.1537     | 3.56343 | .997  |
|                | (2D) FUJI IX + Vaselina Sólida                   | 10.9957     | 3.56343 | .114  |
|                | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 14.5040(*)  | 3.56343 | .004  |
|                | (3B) KETAC™ MOLAR EASYMIX + G-Coat Plus          | -3.8023     | 3.56343 | .999  |
| (1A) EQUIA FIL | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B 2        | -11.5670    | 3.56343 | .073  |
| (,             | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 2.0727      | 3.56343 | 1.000 |
|                | (4A) IONOFIL MOLAR + sin recubrimiento protector | 18.1000(*)  | 3.56343 | .000  |
|                | (4B) IONOFIL MOLAR + G- Coat Plus                | -10.5260    | 3.56343 | .160  |
|                | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -14.3163(*) | 3.56343 | .005  |
|                | (4D) IONOFIL MOLAR + Vaselina Sólida             | 2.8667      | 3.56343 | 1.000 |
|                | (5A) VITREMER                                    | -30.3633(*) | 3.56343 | .000  |

| (I) Marca               | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|-------------------------|--------------------------------------------------|-------------|---------|-------|
|                         | (1A) EQUIA FIL                                   | -13.5927(*) | 3.56343 | .012  |
|                         | (2B) FUJI IX + Adper™ Single Bond 2              | -24.3400(*) | 3.56343 | .000  |
|                         | (2C) FUJI IX + G-Coat Plus                       | -17.7463(*) | 3.56343 | .000  |
|                         | (2D) FUJI IX + Vaselina Sólida                   | -2.5970     | 3.56343 | 1.000 |
|                         | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | .9113       | 3.56343 | 1.000 |
| (2A) FUJI IX + sin      | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -17.3950(*) | 3.56343 | .000  |
| recubrimiento protector | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | -25.1597(*) | 3.56343 | .000  |
| proteons:               | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -11.5200    | 3.56343 | .076  |
|                         | (4A) IONOFIL MOLAR + sin recubrimiento protector | 4.5073      | 3.56343 | .993  |
|                         | (4B) IONOFIL MOLAR + G- Coat Plus                | -24.1187(*) | 3.56343 | .000  |
|                         | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -27.9090(*) | 3.56343 | .000  |
|                         | (4D) IONOFIL MOLAR + Vaselina Sólida             | -10.7260    | 3.56343 | .139  |
|                         | (5A) VITREMER                                    | -43.9560(*) | 3.56343 | .000  |

| (I) Marca      | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|----------------|--------------------------------------------------|-------------|---------|-------|
|                | (1A) EQUIA FIL                                   | 10.7473     | 3.56343 | .137  |
|                | (2A) FUJI IX + sin recubrimiento protector       | 24.3400(*)  | 3.56343 | .000  |
|                | (2C) FUJI IX + G-Coat Plus                       | 6.5937      | 3.56343 | .851  |
|                | (2D) FUJI IX + Vaselina Sólida                   | 21.7430(*)  | 3.56343 | .000  |
|                | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 25.2513(*)  | 3.56343 | .000  |
| (2B) FUJI IX + | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 6.9450      | 3.56343 | .798  |
| Adper™ Single  | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | 8197        | 3.56343 | 1.000 |
| Bond 2         | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 12.8200(*)  | 3.56343 | .025  |
|                | (4A) IONOFIL MOLAR + sin recubrimiento protector | 28.8473(*)  | 3.56343 | .000  |
|                | (4B) IONOFIL MOLAR + G- Coat Plus                | .2213       | 3.56343 | 1.000 |
|                | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -3.5690     | 3.56343 | .999  |
|                | (4D) IONOFIL MOLAR + Vaselina Sólida             | 13.6140(*)  | 3.56343 | .011  |
|                | (5A) VITREMER                                    | -19.6160(*) | 3.56343 | .000  |

89





| (I) Marca                      | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|--------------------------------|--------------------------------------------------|-------------|---------|-------|
|                                | (1A) EQUIA FIL                                   | 4.1537      | 3.56343 | .997  |
|                                | (2A) FUJI IX + sin recubrimiento protector       | 17.7463(*)  | 3.56343 | .000  |
|                                | (2B) FUJI IX + Adper™ Single Bond 2              | -6.5937     | 3.56343 | .851  |
|                                | (2D) FUJI IX + Vaselina Sólida                   | 15.1493(*)  | 3.56343 | .002  |
|                                | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 18.6577(*)  | 3.56343 | .000  |
|                                | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | .3513       | 3.56343 | 1.000 |
| (2C) FUJI IX + G-<br>Coat Plus | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | -7.4133     | 3.56343 | .714  |
|                                | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 6.2263      | 3.56343 | .897  |
|                                | (4A) IONOFIL MOLAR + sin recubrimiento protector | 22.2537(*)  | 3.56343 | .000  |
|                                | (4B) IONOFIL MOLAR + G- Coat Plus                | -6.3723     | 3.56343 | .880  |
|                                | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -10.1627    | 3.56343 | .204  |
|                                | (4D) IONOFIL MOLAR + Vaselina Sólida             | 7.0203      | 3.56343 | .785  |
|                                | (5A) VITREMER                                    | -26.2097(*) | 3.56343 | .000  |

| (I) Marca                                 | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|-------------------------------------------|--------------------------------------------------|-------------|---------|-------|
|                                           | (1A) EQUIA FIL                                   | -10.9957    | 3.56343 | .114  |
|                                           | (2A) FUJI IX + sin recubrimiento protector       | 2.5970      | 3.56343 | 1.000 |
|                                           | (2B) FUJI IX + Adper™ Single Bond 2              | -21.7430(*) | 3.56343 | .000  |
|                                           | (2C) FUJI IX + G-Coat Plus                       | -15.1493(*) | 3.56343 | .002  |
|                                           | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 3.5083      | 3.56343 | .999  |
|                                           | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -14.7980(*) | 3.56343 | .003  |
| (2D) FUJI IX +<br>Vaselina Sólida         | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | -22.5627(*) | 3.56343 | .000  |
| 7 4 5 5 11 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -8.9230     | 3.56343 | .408  |
|                                           | (4A) IONOFIL MOLAR + sin recubrimiento protector | 7.1043      | 3.56343 | .771  |
|                                           | (4B) IONOFIL MOLAR + G- Coat Plus                | -21.5217(*) | 3.56343 | .000  |
|                                           | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -25.3120(*) | 3.56343 | .000  |
|                                           | (4D) IONOFIL MOLAR + Vaselina Sólida             | -8.1290     | 3.56343 | .570  |
|                                           | (5A) VITREMER                                    | -41.3590(*) | 3.56343 | .000  |

| (I) Marca              | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|------------------------|--------------------------------------------------|-------------|---------|-------|
|                        | (1A) EQUIA FIL                                   | -14.5040(*) | 3.56343 | .004  |
|                        | (2A) FUJI IX + sin recubrimiento protector       | 9113        | 3.56343 | 1.000 |
|                        | (2B) FUJI IX + Adper™ Single Bond 2              | -25.2513(*) | 3.56343 | .000  |
|                        | (2C) FUJI IX + G-Coat Plus                       | -18.6577(*) | 3.56343 | .000  |
| (3A) KETAC™            | (2D) FUJI IX + Vaselina Sólida                   | -3.5083     | 3.56343 | .999  |
| MOLAR<br>EASYMIX + sin | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -18.3063(*) | 3.56343 | .000  |
| recubrimiento          | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | -26.0710(*) | 3.56343 | .000  |
| protector              | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | -12.4313(*) | 3.56343 | .035  |
|                        | (4A) IONOFIL MOLAR + sin recubrimiento protector | 3.5960      | 3.56343 | .999  |
|                        | (4B) IONOFIL MOLAR + G- Coat Plus                | -25.0300(*) | 3.56343 | .000  |
|                        | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -28.8203(*) | 3.56343 | .000  |
|                        | (4D) IONOFIL MOLAR + Vaselina Sólida             | -11.6373    | 3.56343 | .069  |
|                        | (5A) VITREMER                                    | -44.8673(*) | 3.56343 | .000  |





| (I) Marca                 | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|---------------------------|--------------------------------------------------|-------------|---------|-------|
|                           | (1A) EQUIA FIL                                   | 3.8023      | 3.56343 | .999  |
|                           | (2A) FUJI IX + sin recubrimiento protector       | 17.3950(*)  | 3.56343 | .000  |
|                           | (2B) FUJI IX + Adper™ Single Bond 2              | -6.9450     | 3.56343 | .798  |
|                           | (2C) FUJI IX + G-Coat Plus                       | 3513        | 3.56343 | 1.000 |
| (3B) KETAC™               | (2D) FUJI IX + Vaselina Sólida                   | 14.7980(*)  | 3.56343 | .003  |
| MOĹAR                     | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 18.3063(*)  | 3.56343 | .000  |
| EASYMIX + G-<br>Coat Plus | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2       | -7.7647     | 3.56343 | .645  |
|                           | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 5.8750      | 3.56343 | .932  |
|                           | (4A) IONOFIL MOLAR + sin recubrimiento protector | 21.9023(*)  | 3.56343 | .000  |
|                           | (4B) IONOFIL MOLAR + G- Coat Plus                | -6.7237     | 3.56343 | .833  |
|                           | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -10.5140    | 3.56343 | .161  |
|                           | (4D) IONOFIL MOLAR + Vaselina Sólida             | 6.6690      | 3.56343 | .841  |
|                           | (5A) VITREMER                                    | -26.5610(*) | 3.56343 | .000  |

| (I) Marca                  | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|----------------------------|--------------------------------------------------|-------------|---------|-------|
|                            | (1A) EQUIA FIL                                   | 11.5670     | 3.56343 | .073  |
|                            | (2A) FUJI IX + sin recubrimiento protector       | 25.1597(*)  | 3.56343 | .000  |
|                            | (2B) FUJI IX + Adper™ Single Bond 2              | .8197       | 3.56343 | 1.000 |
|                            | (2C) FUJI IX + G-Coat Plus                       | 7.4133      | 3.56343 | .714  |
| (3C) KETAC™                | (2D) FUJI IX + Vaselina Sólida                   | 22.5627(*)  | 3.56343 | .000  |
| MOĹAR                      | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 26.0710(*)  | 3.56343 | .000  |
| EASYMIX +<br>Adper™ Single | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 7.7647      | 3.56343 | .645  |
| Bond 2                     | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 13.6397(*)  | 3.56343 | .011  |
|                            | (4A) IONOFIL MOLAR + sin recubrimiento protector | 29.6670(*)  | 3.56343 | .000  |
|                            | (4B) IONOFIL MOLAR + G- Coat Plus                | 1.0410      | 3.56343 | 1.000 |
|                            | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -2.7493     | 3.56343 | 1.000 |
|                            | (4D) IONOFIL MOLAR + Vaselina Sólida             | 14.4337(*)  | 3.56343 | .005  |
|                            | (5A) VITREMER                                    | -18.7963(*) | 3.56343 | .000  |

| (I) Marca          | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|--------------------|--------------------------------------------------|-------------|---------|-------|
|                    | (1A) EQUIA FIL                                   | -2.0727     | 3.56343 | 1.000 |
|                    | (2A) FUJI IX + sin recubrimiento protector       | 11.5200     | 3.56343 | .076  |
|                    | (2B) FUJI IX + Adper™ Single Bond 2              | -12.8200(*) | 3.56343 | .025  |
|                    | (2C) FUJI IX + G-Coat Plus                       | -6.2263     | 3.56343 | .897  |
|                    | (2D) FUJI IX + Vaselina Sólida                   | 8.9230      | 3.56343 | .408  |
| (3D) KETAC™        | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 12.4313(*)  | 3.56343 | .035  |
| MOLAR<br>EASYMIX + | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -5.8750     | 3.56343 | .932  |
| Vaselina Sólida    | (3C) KETAC™ MOLAR EASYMIX + Adper™ S.B. 2        | -13.6397(*) | 3.56343 | .011  |
|                    | (4A) IONOFIL MOLAR + sin recubrimiento protector | 16.0273(*)  | 3.56343 | .001  |
|                    | (4B) IONOFIL MOLAR + G- Coat Plus                | -12.5987(*) | 3.56343 | .030  |
|                    | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -16.3890(*) | 3.56343 | .000  |
|                    | (4D) IONOFIL MOLAR + Vaselina Sólida             | .7940       | 3.56343 | 1.000 |
|                    | (5A) VITREMER                                    | -32.4360(*) | 3.56343 | .000  |





| (I) Marca                   | (J) Marca                                     | Dif. (I-J)  | ES      | Sig. |
|-----------------------------|-----------------------------------------------|-------------|---------|------|
|                             | (1A) EQUIA FIL                                | -18.1000(*) | 3.56343 | .000 |
|                             | (2A) FUJI IX + sin recubrimiento protector    | -4.5073     | 3.56343 | .993 |
|                             | (2B) FUJI IX + Adper™ Single Bond 2           | -28.8473(*) | 3.56343 | .000 |
|                             | (2C) FUJI IX + G-Coat Plus                    | -22.2537(*) | 3.56343 | .000 |
|                             | (2D) FUJI IX + Vaselina Sólida                | -7.1043     | 3.56343 | .771 |
| (4A) IONOFIL<br>MOLAR + sin | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento | -3.5960     | 3.56343 | .999 |
| recubrimiento               | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus      | -21.9023(*) | 3.56343 | .000 |
| protector                   | (3C) KETAC™ MOLAR EASYMIX + Adper™ S. B. 2    | -29.6670(*) | 3.56343 | .000 |
|                             | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida   | -16.0273(*) | 3.56343 | .001 |
|                             | (4B) IONOFIL MOLAR + G- Coat Plus             | -28.6260(*) | 3.56343 | .000 |
|                             | (4C) IONOFIL MOLAR + Adper™ Single Bond 2     | -32.4163(*) | 3.56343 | .000 |
|                             | (4D) IONOFIL MOLAR + Vaselina Sólida          | -15.2333(*) | 3.56343 | .002 |
|                             | (5A) VITREMER                                 | -48.4633(*) | 3.56343 | .000 |

| (I) Marca    | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|--------------|--------------------------------------------------|-------------|---------|-------|
|              | (1A) EQUIA FIL                                   | 10.5260     | 3.56343 | .160  |
|              | (2A) FUJI IX + sin recubrimiento protector       | 24.1187(*)  | 3.56343 | .000  |
|              | (2B) FUJI IX + Adper™ Single Bond 2              | 2213        | 3.56343 | 1.000 |
|              | (2C) FUJI IX + G-Coat Plus                       | 6.3723      | 3.56343 | .880  |
|              | (2D) FUJI IX + Vaselina Sólida                   | 21.5217(*)  | 3.56343 | .000  |
| (4B) IONOFIL | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 25.0300(*)  | 3.56343 | .000  |
| MOLAR + G-   | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 6.7237      | 3.56343 | .833  |
| Coat Plus    | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | -1.0410     | 3.56343 | 1.000 |
|              | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 12.5987(*)  | 3.56343 | .030  |
|              | (4A) IONOFIL MOLAR + sin recubrimiento protector | 28.6260(*)  | 3.56343 | .000  |
|              | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -3.7903     | 3.56343 | .999  |
|              | (4D) IONOFIL MOLAR + Vaselina Sólida             | 13.3927(*)  | 3.56343 | .014  |
|              | (5A) VITREMER                                    | -19.8373(*) | 3.56343 | .000  |

| (I) Marca                | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|--------------------------|--------------------------------------------------|-------------|---------|-------|
|                          | (1A) EQUIA FIL                                   | 14.3163(*)  | 3.56343 | .005  |
|                          | (2A) FUJI IX + sin recubrimiento protector       | 27.9090(*)  | 3.56343 | .000  |
|                          | (2B) FUJI IX + Adper™ Single Bond 2              | 3.5690      | 3.56343 | .999  |
|                          | (2C) FUJI IX + G-Coat Plus                       | 10.1627     | 3.56343 | .204  |
|                          | (2D) FUJI IX + Vaselina Sólida                   | 25.3120(*)  | 3.56343 | .000  |
| (4C) IONOFIL             | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 28.8203(*)  | 3.56343 | .000  |
| MOLAR +<br>Adper™ Single | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 10.5140     | 3.56343 | .161  |
| Bond 2                   | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | 2.7493      | 3.56343 | 1.000 |
|                          | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 16.3890(*)  | 3.56343 | .000  |
|                          | (4A) IONOFIL MOLAR + sin recubrimiento protector | 32.4163(*)  | 3.56343 | .000  |
|                          | (4B) IONOFIL MOLAR + G- Coat Plus                | 3.7903      | 3.56343 | .999  |
|                          | (4D) IONOFIL MOLAR + Vaselina Sólida             | 17.1830(*)  | 3.56343 | .000  |
|                          | (5A) VITREMER                                    | -16.0470(*) | 3.56343 | .001  |





| (I) Marca                  | (J) Marca                                        | Dif. (I-J)  | ES      | Sig.  |
|----------------------------|--------------------------------------------------|-------------|---------|-------|
|                            | (1A) EQUIA FIL                                   | -2.8667     | 3.56343 | 1.000 |
|                            | (2A) FUJI IX + sin recubrimiento protector       | 10.7260     | 3.56343 | .139  |
|                            | (2B) FUJI IX + Adper™ Single Bond 2              | -13.6140(*) | 3.56343 | .011  |
|                            | (2C) FUJI IX + G-Coat Plus                       | -7.0203     | 3.56343 | .785  |
|                            | (2D) FUJI IX + Vaselina Sólida                   | 8.1290      | 3.56343 | .570  |
| (4D) IONOFIL               | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 11.6373     | 3.56343 | .069  |
| MOLAR +<br>Vaselina Sólida | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | -6.6690     | 3.56343 | .841  |
| 74004 0044                 | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | -14.4337(*) | 3.56343 | .005  |
|                            | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 7940        | 3.56343 | 1.000 |
|                            | (4A) IONOFIL MOLAR + sin recubrimiento protector | 15.2333(*)  | 3.56343 | .002  |
|                            | (4B) IONOFIL MOLAR + G- Coat Plus                | -13.3927(*) | 3.56343 | .014  |
|                            | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | -17.1830(*) | 3.56343 | .000  |
|                            | (5A) VITREMER                                    | -33.2300(*) | 3.56343 | .000  |

| (I) Marca     | (J) Marca                                        | Dif. (I-J) | ES      | Sig. |
|---------------|--------------------------------------------------|------------|---------|------|
|               | (1A) EQUIA FIL                                   | 30.3633(*) | 3.56343 | .000 |
|               | (2A) FUJI IX + sin recubrimiento protector       | 43.9560(*) | 3.56343 | .000 |
|               | (2B) FUJI IX + Adper™ Single Bond 2              | 19.6160(*) | 3.56343 | .000 |
|               | (2C) FUJI IX + G-Coat Plus                       | 26.2097(*) | 3.56343 | .000 |
|               | (2D) FUJI IX + Vaselina Sólida                   | 41.3590(*) | 3.56343 | .000 |
|               | (3A) KETAC™ MOLAR EASYMIX + sin recubrimiento    | 44.8673(*) | 3.56343 | .000 |
| (5A) VITREMER | (3B) KETAC™ MOLAR EASYMIX + G- Coat Plus         | 26.5610(*) | 3.56343 | .000 |
|               | (3C) KETAC™ MOLAR EASYMIX + Adper™ S B 2         | 18.7963(*) | 3.56343 | .000 |
|               | (3D) KETAC™ MOLAR EASYMIX + Vaselina Sólida      | 32.4360(*) | 3.56343 | .000 |
|               | (4A) IONOFIL MOLAR + sin recubrimiento protector | 48.4633(*) | 3.56343 | .000 |
|               | (4B) IONOFIL MOLAR + G- Coat Plus                | 19.8373(*) | 3.56343 | .000 |
|               | (4C) IONOFIL MOLAR + Adper™ Single Bond 2        | 16.0470(*) | 3.56343 | .001 |
|               | (4D) IONOFIL MOLAR + Vaselina Sólida             | 33.2300(*) | 3.56343 | .000 |

Basado en las medias observadas.

La diferencia de medias es significativa al nivel ,05.



Tabla VI:15: ANOVA según el Material+ Coat

| Variable N | $R^z$ | $R^z Aj$ | CV   |       |
|------------|-------|----------|------|-------|
| MAT Y COAT | 178   | 0,35     | 0,33 | 33,13 |

## Cuadro de Análisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC      | gl  | CM     | F     | p-valor  |
|--------|---------|-----|--------|-------|----------|
| Modelo | 1865,84 | 5   | 373,17 | 18,57 | < 0,0001 |
| MyC    | 1865,84 | 5   | 373,17 | 18,57 | < 0,0001 |
| Error  | 3455,91 | 172 | 20,09  |       |          |
| Total  | 5321,74 | 177 |        |       |          |

Test: Tukey Alfa= 0,05 DMD=3,38953

Error: 20,0925 gl=172

| MAT+COAT | MEDIAS | n  |   |   |
|----------|--------|----|---|---|
| 4 A      | 32,29  | 30 | А |   |
| 3 A      | 35,89  | 30 | Α |   |
| 2 A      | 36,80  | 30 | Α |   |
| 3 B      | 54,19  | 30 |   | В |
| 4 B      | 60,92  | 30 |   | В |
| 2 B      | 61,14  | 30 |   | В |

## **Estadística Descriptiva**

| MAT + COAT | n  | Media | D.E   | E.E   |
|------------|----|-------|-------|-------|
| 2 A        | 30 | 36,80 | 4.18  | 2,41  |
| 2 B        | 30 | 61,14 | 8,65  | 4,99  |
| 3 A        | 30 | 35,89 | 21,89 | 12,64 |
| 3 B        | 30 | 54,19 | 25,47 | 14,71 |
| 4 A        | 30 | 32,29 | 27,63 | 15,95 |
| 4 B        | 30 | 60,92 | 25    | 14,43 |

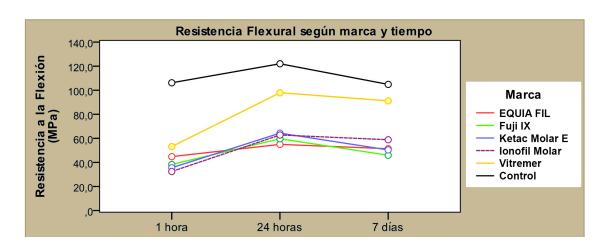



Figura VI.11: Resistencia a la Flexión según material y tiempo. Medias marginales estimadas



| Recubrimiento     | Tiempo   | Media | DE    | n   |
|-------------------|----------|-------|-------|-----|
|                   | 1 hora   | 49,61 | 30,06 | 60  |
| Vaselina Solida   | 24 horas | 65,88 | 37,81 | 60  |
| Vaseiii la Soliua | 7 días   | 58,10 | 34,74 | 60  |
|                   | Total    | 57,86 | 34,80 | 180 |
|                   | 1 hora   | 32,88 | 7,36  | 30  |
| Sin               | 24 horas | 51,61 | 15,38 | 30  |
| Recubrimiento     | 7 días   | 50,76 | 14,27 | 30  |
|                   | Total    | 45,08 | 15,38 | 90  |
|                   | 1 hora   | 37,75 | 7,60  | 30  |
| A Cingle Bond     | 24 horas | 79,91 | 13,75 | 30  |
| A. Single Bond    | 7 días   | 63,56 | 21,92 | 30  |
|                   | Total    | 60,41 | 23,27 | 90  |
|                   | 1 hora   | 39,91 | 14,15 | 30  |
| G-Coat Plus       | 24 horas | 77,42 | 22,37 | 30  |
| G-Coat Flus       | 7 días   | 58,93 | 15,69 | 30  |
|                   | Total    | 58,75 | 23,36 | 90  |

**Tabla VI.16**: Estadísticos descriptivos según recubrimiento y tiempo. Resistencia a la Flexión: Media, Desviación estándar (DE) y recuento de casos (n) según recubrimiento y tiempo. Valores expresados en MPa.

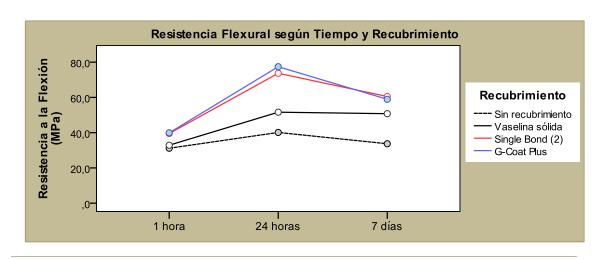



Figura VI.12: Resistencia a la Flexión según recubrimiento y tiempo. Medias marginales estimadas.





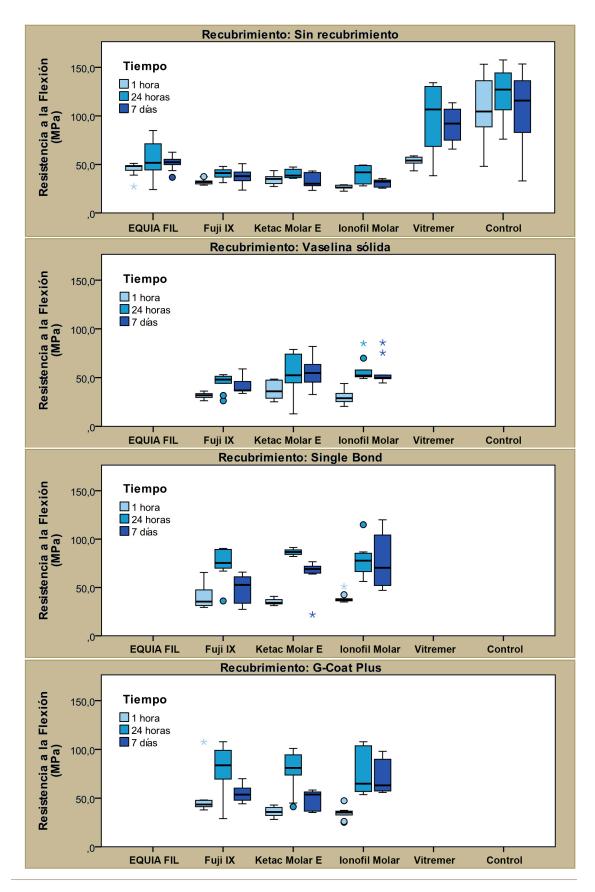



Figura VI.13: Resistencia flexural según recubrimiento, marca y tiempo.





## **Contraste Estadístico**

Variable dependiente: Resistencia a la Flexión (MPa)

Factores: Material o Marca; Tipo de Recubrimiento y Tiempo

Para evaluar la influencia de los factores sobre la resistencia flexural, se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de tres vías (Tabla VI.17).

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС      | F       | Sig.<br>(p-valor) |  |
|---------------------------------------------------|-------------|-----|---------|---------|-------------------|--|
| Grupo                                             | 149968,9    | 5   | 29993,8 | 117,038 | <<0,001           |  |
| Recubrimiento                                     | 39067,5     | 3   | 13022,5 | 50,815  | <0,001            |  |
| Tiempo                                            | 36071,0     | 2   | 18035,5 | 70,376  | <0,001            |  |
| Grupo * Recubrimiento                             | 3692,7      | 6   | 615,4   | 2,402   | 0,027             |  |
| Grupo * Tiempo                                    | 11214,4     | 10  | 1121,4  | 4,376   | 0,001             |  |
| Recubrimiento * Tiempo                            | 12316,6     | 6   | 2052,8  | 8,010   | <0,001            |  |
| Error                                             | 106866,6    | 417 | 256,3   |         |                   |  |
| R cuadrado = 0,693 (R cuadrado corregida = 0,670) |             |     |         |         |                   |  |

**Tabla VI.17:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (resistencia flexural), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (256,3).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor grupo fue el que provocó mayor efecto sobre los valores resistivos (F=117,038; p<<0,001), lo cual era previsible en función de los elevados valores dentro del grupo control (Rc). El factor Tiempo también resultó muy significativo, aunque en menor grado (F=70,376; p<0,001), y por último el factor recubrimiento, que también resultó significativo (F=50,815; p<0,001).





Se verificó que las interacciones entre factores eran significativas (p<0,05 en todos los casos): a) Grupo \* Recubrimiento: el efecto del recubrimiento sobre los materiales no fue el mismo en todos ellos, los grupos con recubrimientos incrementaron los valores de RF; b) Grupo \* Tiempo: en términos generales se observó un incremento de valores resistivos a las 24h y a los 7 días; c) Recubrimiento \* Tiempo: los grupos vaselina sólida y sin recubrimiento mostraron una respuesta diferente en relación al factor tiempo respecto de los otros dos tipos de recubrimiento (Single Bond y G-Coat Plus).

El determinante R<sup>2</sup> indica el nivel de ajuste del modelo planteado, que en este caso fue del 67%, mucho más explicativo que en el estudio compresivo, siendo el porcentaje restante atribuible al error experimental, que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores marca, recubrimiento y tiempo:

# Contraste múltiple entre marcas:

| Marca          | _     |       | 0     |        |
|----------------|-------|-------|-------|--------|
| Marca          | n     | 1     | 2     | 3      |
| FUJI IX        | 120   | 47,97 |       |        |
| KETAC MOLAR    | 120   | 50,09 |       |        |
| EQUIA FIL      | 30    | 50,39 |       |        |
| IONOFIL MOLAR  | 120   | 51,36 |       |        |
| VITREMER       | 30    |       | 80,76 |        |
| CONTROL        | 30    |       |       | 111,03 |
| Sig. (p-valor) | 0,905 | 1,000 | 1,000 |        |

**Tabla VI.18**: Cuadro resumido de la prueba DHS de Tukey para el factor MARCA. Se muestran las medias de Resistencia a la Flexión (MPa) de los grupos en subconjuntos homogéneos.

Los grupos FIX, KM, EF e IM, conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,905; p>0,05). El grupo V, con valores mayores que los demás grupos experimentales, se diferenció significativamente de ellos y se lo consideró como subconjunto homogéneo, al igual que el grupo control





que registró los valores de resistencia flexural más altos de toda la muestra (Tabla VI.18).

## Contraste múltiple entre tipos de recubrimiento:

| Recubrimiento     | _     | Subconjunto |       |       |  |
|-------------------|-------|-------------|-------|-------|--|
| Recubililiento    | n     | 1           | 2     | 3     |  |
| Sin recubrimiento | 90    | 35,00       |       |       |  |
| Vaselina sólida   | 90    |             | 45,08 |       |  |
| Single Bond (2)   | 120   |             |       | 57,90 |  |
| G-Coat Plus 90    |       |             |       | 58,75 |  |
| Sig. (p-valor)    | 1,000 | 1,000       | 0,969 |       |  |

**Tabla VI.19:** Cuadro resumido de la prueba DHS de Tukey para el factor RECUBRIMIENTO. Se muestran las medias de Resistencia a la Flexión (MPa) de los grupos en subconjuntos homogéneos.

De acuerdo al resultado del contraste múltiple, en los materiales no recubiertos, hay un decremento de la resistencia a la flexión, la distribución de valores resistivos en este grupo fue significativamente menor (35,00MPa) que los demás, por lo cual conformó un subconjunto homogéneo diferente al conformado por el resto de los materiales: con Vaselina Sólida, que constituyó otro subconjunto homogéneo y con Single Bond y G-Coat Plus, los cuales no se diferenciaron significativamente entre sí y conformaron el tercer subconjunto homogéneo (p=0,665; p>0,05) (Tabla VI.19).

# Contraste múltiple entre tiempos:

| Tiempo         | n     | Subconjunto |       |       |  |
|----------------|-------|-------------|-------|-------|--|
| Heilipo        | n     | 1           | 2     | 3     |  |
| 1 hora         | 109   | 41,95       |       |       |  |
| 7 días         | 136   |             | 57,89 |       |  |
| 24 horas       | 123   |             |       | 68,14 |  |
| Sig. (p-valor) | 1,000 | 1,000       | 1,000 |       |  |

**Tabla VI.20:** Cuadro resumido de la prueba DHS de Tukey para el factor TIEMPO. Se muestran las medias de Resistencia a la Flexión (MPa) de los grupos en subconjuntos homogéneos.

Los valores de resistencia flexural fueron significativamente diferentes en las tres etapas evaluadas (Tabla VI.20).



## RESISTENCIA AL DESGASTE

En la Tabla VI.21 se observan los pesos iniciales y finales de cada espécimen según el grupo, y la pérdida de masa ( $\Delta m$ ) en cada caso con sus valores medios respectivos.

En la Tabla VI.22 se detallan: la pérdida de masa de cada grupo experimental ( $\Delta m$ ) y del grupo control ( $\Delta m_{ref}$ ), la pérdida de volumen de cada grupo experimental ( $\Delta V$ ) y del grupo control ( $\Delta V_{ref}$ ) y la pérdida relativa de volumen ( $V_{rehv}$ ) con una  $\Delta V_{ref}$  especifica y con un  $\Delta V_{ref}$  de 0,44mm<sup>3</sup>.

En relación a la marca comercial de los CIV, ANOVA (F=27,71; p< 0,0001) y el Test de Tukey (p=0,05) mostraron diferencia estadísticamente significativa entre los grupos. EQUIA FIL fue el que menos desgaste sufrió y Fuji IX el que más pérdida de masa obtuvo. No hay diferencia significativa entre EQUIA FIL y PMMA; entre Ketac Molar E., Vitremer e Ionofil Molar; ni tampoco entre Ionofil Molar y Fuji IX (Tabla VI.23).

El Análisis de Varianza ANOVA (F= 18,54; p=< 0,0001) y el Test de Tukey (p=0,05) mostraron diferencia estadísticamente significativa entre los grupos (Tabla VI.24). El grupo que presentó menor desgaste fue el 1.A (EQUIA FIL) con una pérdida de masa de 0,34mg; seguido del grupo control (PMMA) que registró un desgaste de 0,91mg. Los grupos que presentaron mayor desgaste fueron el 2.C (Fuji IX + Adper Single Bond 2) seguido del 4.C (Ionofil Molar + Adper™ Single Bond 2) con una pérdida de masa de 4,02mg y 3,08mg respectivamente (Tabla VI.31 y Figura VI.14).

En el diagrama de cajas de la Figura VI.15, se muestran de manera esquemática las distribuciones de valores según marca y tipo de recubrimiento.

Comparando el desgaste entre los grupos con G-Coat Plus y sin recubrimiento superficial (2.B, 3.B, 4.B y 2.A, 3.A, 4.A, respectivamente; ANOVA (F=1,20; p<0,3342) y el Test de Tukey (p=0,05) mostraron que no hubo diferencia estadísticamente significativa entre los grupos (Tabla VI.25). Pero si analizamos el desgaste entre los grupos con recubrimiento G-Coat Plus entre ellos (Tabla VI.26), ANOVA (F=4,85; p<0,0251) y el Test de Tukey (p=0,05) mostraron diferencia estadísticamente significativa. El grupo 2.B fue el que mayor desgaste sufrió (2,76mg) y el 3.B el que menos pérdida de masa obtuvo (2,12mg). No hay diferencia significativa entre el 3.B y 4.B; ni entre el 4.B y 2.B; pero si entre el 3.B y 2.B.





Comparando el desgaste entre los grupos con Adper Single Bond y sin recubrimiento superficial (2.C, 3.C, 4.C y 2.A, 3.A, 4.A, respectivamente); ANOVA (F=6,24; p<0,0005) y el Test de Tukey (p=0,05) mostraron diferencia estadísticamente significativa (Tabla VI.27). Los grupos 3.A, 4.A, 3.C, 2.A y 4.C tuvieron un desgaste similar. No hay diferencia entre el 4.C y 2.C pero si difieren estos últimos con respecto a los anteriores. El desgaste comparando los grupos con el recubrimiento Adper Single Bond (2.C, 3.C y 4.C), ANOVA (F=12,32; p<0,0007) y el Test de Tukey (p=0,05) mostraron diferencia estadísticamente significativa entre los grupos (Tabla VI.28). El grupo 2.C fue el que mayor desgaste sufrió (4,02mg) y el 3.C el que menos pérdida de masa obtuvo (2,07mg). No hay diferencia significativa entre el 3.C y 4.C; ni entre el 4.C y 2.C; pero si entre el 3.C y 2.C.

Comparando el desgaste entre los grupos sin recubrimiento superficial (1.A sin Coat, 2.A, 3.A y 4.A) y el 5.A (CIV hibrido); ANOVA (F=2,26; p< 0,0934) y el Test de Tukey (p=0,05) indicó que no hubo diferencia estadísticamente significativa entre ellos (Tabla VI.29). El grupo 5.A mostró el mayor desgaste (2,07mg) y el 1.A sin Coat registró los valores más bajos de pérdida de masa entre estos grupos (0,97mg).

El Análisis con Lupa Estereoscópica Konus Mod. ST-30 2L mostró una pérdida de brillo y de material de las muestras luego del desgaste (Figura V.10).

Para evaluar la influencia de los factores sobre la RD, se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de dos vías (Tabla VI.32). Los grupos EF y Control (PMMA), conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,576; p>0,05), presentando los valores más bajos de desgaste en función del parámetro pérdida de peso, y se diferenciaron significativamente del resto de las marcas. Los grupos KM, V e IM, conformaron el segundo subconjunto homogéneo, ya que compartían características en sus distribuciones de valores, de este subconjunto, el material de marca IM, con 2,24mg de media, también presentó una distribución similar al grupo FIX, el cual registró los mayores desgastes (2,84mg de media), estas dos marcas conformaron un tercer subconjunto homogéneo (Tabla VI.33). De acuerdo al resultado del contraste múltiple, los materiales sin recubrimiento, con G-Coat Plus y aquellos recubiertos con vaselina sólida, experimentaron menor desgaste, conformando un subconjunto homogéneo. En contraparte, diferenciándose de ellos, se ubicó Single Bond (segundo subconjunto homogéneo) (Tabla VI.34).



| GRUPOS     | PESO INICIAL (mg) | PESO FINAL (mg) | Δm   |
|------------|-------------------|-----------------|------|
|            | 85                | 84,8            | 0,2  |
|            | 87,5              | 87,2            | 0,3  |
|            | 85                | 84,8            | 0,2  |
|            | 89,3              | 88,9            | 0,4  |
| 1A         | 89,2              | 88,9            | 0,3  |
|            | 85,5              | 85              | 0,5  |
|            | 79,1              | 78,3            | 0,8  |
|            | 81,8              | 81,3            | 0,5  |
|            | 82                | 81,8            | 0,2  |
|            | 80,3              | 80              | 0,3  |
|            | 82,5              | 82,5            | 0    |
|            | 82,4              | 82              | 0,4  |
|            | 84,13             | 83,79           | 0,34 |
|            | 78,5              | 77,5            | 1    |
|            | 78,8              | 77,9            | 0,9  |
| 1Asin çoat | 63,7              | 62,9            | 0,8  |
|            | 60,5              | 59,6            | 0,9  |
|            | 82,5              | 81,5            | 1    |
|            | 63                | 61,8            | 1,2  |
|            | 71,16             | 70,2            | 0,96 |

| GRUPOS | PESO INICIAL (mg) | PESO FINAL (mg) | Δm (mg) |
|--------|-------------------|-----------------|---------|
|        | 81,7              | 80,3            | 1,4     |
|        | 84,6              | 82,7            | 1,9     |
| 2#     | 84,3              | 82,3            | 2,5     |
|        | 83                | 79,8            | 3,2     |
|        | 79,4              | 77,3            | 2,1     |
|        | 82,6              | 80,48           | 2,12    |
|        | 84,1              | 81              | 3,1     |
| 28     | 85,1              |                 |         |
| 28     |                   | 82,3            | 2,8     |
|        | 86,5              | 83,9            | 2,6     |
|        | 85                | 82,5            | 2,5     |
|        | 84,9              | 82,1            | 2,8     |
|        | 85,12             | 82,36           | 2,76    |
|        | 85,4              | 81,1            | 4,3     |
|        | 86                | 82              | 4       |
| 2C     | 86,4              | 82,2            | 4,2     |
|        | 83                | 79,3            | 3,7     |
|        | 86,8              | 82,9            | 3,9     |
|        | 84,9              | 80,9            | 4       |
|        | 85,41             | 81,4            | 4,01    |
|        | 83,6              | 80,9            | 2,7     |
| 2D     | 80,2              | 78,2            | 2       |
|        | 84                | 82,1            | 1,9     |
|        | 80,2              | 77,3            | 2,9     |
|        | 81,5              | 79,1            | 2,4     |
|        | 83,6              | 81,6            | 2       |
|        | 82,18             | 79,86           | 2,32    |

| GRUPOS | PESO INICIAL (mg) | PESO FINAL (mg) | Δm (mg) |
|--------|-------------------|-----------------|---------|
|        | 79,9              | 78,4            | 1,5     |
|        | 84,4              | 82,7            | 1,7     |
| 38     | 75,4              | 72,9            | 2,5     |
|        | 80                | 80              | 0       |
|        | 77,3              | 74,2            | 3,1     |
|        | 79,4              | 77,64           | 1,76    |
|        | 86,4              | 84,2            | 2,2     |
|        | 87,8              | 85,6            | 2,2     |
| 3B     | 88,9              | 86,8            | 2,1     |
|        | 88,5              | 86,4            | 2,1     |
|        | 86                | 83,8            | 2,2     |
|        | 87,9              | 86              | 1,9     |
|        | 87,58             | 85,46           | 2,12    |
|        | 85,5              | 84,3            | 1,2     |
|        | 87,5              | 85              | 2,5     |
| 3C     | 74,7              | 72,8            | 1,9     |
|        | 75,3              | 73              | 2,3     |
|        | 75,3              | 73,3            | 2       |
|        | 88,6              | 86,1            | 2,5     |
|        | 81,15             | 79,08           | 2,07    |
|        | 78,8              | 77,7            | 1,1     |
|        | 78                | 77,1            | 0,9     |
| 3D     | 79,7              | 78,7            | 1       |
|        | 77,3              | 76              | 1,3     |
|        | 78,7              | 77,6            | 1,1     |
|        | 78,1              | 77,2            | 0,9     |
|        | 78,43             | 77,38           | 1,05    |
|        |                   |                 |         |

| ) | GRUPOS | PESO INICIAL (mg) | PESO FINAL (mg) | Δm (mg) |
|---|--------|-------------------|-----------------|---------|
| 5 |        | 80,2              | 76,1            | 4,1     |
| 7 |        | 81,7              | 79,9            | 1,8     |
| 5 | 49     | 80                | 78,5            | 1,5     |
| 0 |        | 82,7              | 81,2            | 1,5     |
| 1 |        | 79,8              | 78,6            | 1,2     |
| 5 |        | 80,5              | 78,9            | 1,6     |
| 2 |        | 80,81             | 78,86           | 1,95    |
| 2 |        | 80,6              | 78,3            | 2,3     |
| 1 |        | 85,2              | 83,6            | 1,6     |
| 1 | 48     | 82,4              | 79,3            | 3,1     |
| 2 |        | 88,3              | 85,5            | 2,8     |
| 9 |        | 85                | 82,8            | 2,2     |
| 2 |        | 81,6              | 79,1            | 2,5     |
| 2 |        | 83,85             | 81,43           | 2,42    |
| 5 |        | 82,6              | 78,4            | 4,2     |
| 9 |        | 84,9              | 81,4            | 3,5     |
| 3 | 4C     | 83,8              | 81              | 2,8     |
| 2 |        | 81,4              | 79,9            | 1,5     |
| 5 |        | 81,5              | 79,1            | 2,4     |
| 7 |        | 84,7              | 80,6            | 4,1     |
| 1 |        | 83,15             | 80,06           | 3,09    |
| 9 |        | 80,9              | 79,4            | 1,5     |
| 1 |        | 81,3              | 79,4            | 1,9     |
| 3 | 4D     | 79,6              | 77,6            | 2       |
| 1 |        | 81,4              | 79,8            | 1,6     |
| 9 |        | 79,5              | 78,5            | 1       |
| 5 |        | 81                | 80              | 1       |
|   |        | 80,61             | 79,11           | 1,5     |
|   |        |                   |                 |         |



| GRUPOS | PESO INICIAL (mg) | PESO FINAL (mg) | ∆m (mg) |
|--------|-------------------|-----------------|---------|
|        |                   |                 |         |
|        | 80,8              | 78,7            | 2,1     |
|        |                   |                 | ١       |
|        | 82,3              | 80,5            | 1,8     |
| 52     | 78,2              | 76,1            | 2,1     |
|        | , 5,2             | , ,,,           |         |
|        | 80,3              | 78,3            | 2       |
|        |                   |                 |         |
|        | 76,2              | 73,9            | 2,3     |
|        |                   |                 |         |
|        | 82,2              | 80,1            | 2,1     |
|        |                   |                 | 2.00    |
|        | 80                | 77,93           | 2,06    |

| GRUPOS | PESO INICIAL (mg) | PESO FINAL (mg) | Δm (mg) |
|--------|-------------------|-----------------|---------|
|        | 39,9              | 38,6            | 1,3     |
|        | 43,3              | 42              | 1,3     |
|        | 39,2              | 38,6            | 0,6     |
|        | 39,1              | 38,6            | 0,5     |
|        | 41,2              | 40,1            | 1,1     |
|        | 38,1              | 37,3            | 0,8     |
|        | 41,3              | 38,6            | 2,7     |
| PMMA   | 41                | 39,9            | 1,1     |
|        | 35,9              | 32,3            | 3,6     |
|        | 44,1              | 43,4            | 0,7     |
|        | 42,5              | 41,7            | 0,8     |
|        | 40,3              | 39,7            | 0,6     |
|        | 37,7              | 35,9            | 1,8     |
|        | 39,7              | 38,1            | 1,6     |
|        | 43,1              | 42,8            | 0,3     |
|        | 39,4              | 38,6            | 0,8     |
|        | 44,7              | 44,4            | 0,3     |
|        | 41,2              | 40,5            | 0,7     |
|        | 44,9              | 44,4            | 0,5     |
|        | 45,5              | 45,3            | 0,2     |
|        | 46                | 44              | 2       |
|        | 46,7              | 46,5            | 0,2     |
|        | 43,1              | 42,8            | 0,3     |
|        | 39,4              | 38,6            | 0,8     |
|        | 45,7              | 45,1            | 0,6     |
|        | 44,9              | 44,5            | 0,4     |
|        | 44,9              | 44,4            | 0,5     |
|        | 45,5              | 45,3            | 0,2     |
|        | 47,2              | 46              | 1,2     |
|        | 46,7              | 46              | 0,7     |
|        | 41                | 40,5            | 0,5     |
|        | 41,9              | 41,4            | 0,5     |
|        | 42,34             | 41,43           | 0,91    |

**Tabla VI.21:** Se observan los pesos iniciales y finales de cada espécimen según el grupo, y la pérdida de masa ( $\Delta m$ ) en cada caso con sus valores medios respectivos

| GRUPO          | ∆m (mg) | ∆mref (mg) | ∆V (mm3) | ∆Vref (mm3) | V <sub>rehv</sub> (%) | V <sub>rehv</sub> (%) 0,44 ∆Vref |
|----------------|---------|------------|----------|-------------|-----------------------|----------------------------------|
| 1A             | 0,34    | 0,5        | 0,05     | 0,17        | 35                    | 11                               |
| 1A sin coat    | 0,96    | 0,95       | 0,2      | 0,32        | 62                    | 45                               |
| 2ª             | 2,1     | 0,5        | 0,4      | 0,2         | 200                   | 90                               |
| 2B             | 2,7     | 0,35       | 0,49     | 0,12        | 409                   | 111                              |
| 2C             | 4       | 1,1        | 0,72     | 0,4         | 181                   | 163                              |
| 2D             | 2,32    | 0,55       | 0,41     | 0,2         | 215                   | 93                               |
| 3ª             | 1,76    | 1,3        | 0,34     | 0,48        | 70                    | 77                               |
| 3B             | 2,12    | 0,55       | 0,37     | 0,22        | 168                   | 84                               |
| 3C             | 2,07    | 0,95       | 0,4      | 0,37        | 108                   | 90                               |
| 3D             | 1,05    | 1,9        | 0,21     | 0,72        | 29                    | 47                               |
| 4 <sup>a</sup> | 1,95    | 2,15       | 0,37     | 0,83        | 44                    | 84                               |
| 4B             | 2,42    | 0,7        | 0,44     | 0,26        | 169                   | 100                              |
| 4C             | 3,08    | 1,7        | 0,57     | 0,68        | 84                    | 129                              |
| 4D             | 1,5     | 0,55       | 0,29     | 0,21        | 138                   | 65                               |
| 5ª             | 2,06    | 0,5        | 0,42     | 0,19        | 210                   | 90                               |
| PMMA           | 0,91    | 0,33       |          | 0,36        |                       |                                  |

**Tabla VI.22:** Se detallan: la pérdida de masa de cada grupo experimental ( $\Delta m$ ) y del grupo control ( $\Delta m_{ref}$ ), la pérdida de volumen de cada grupo experimental ( $\Delta V$ ) y del grupo control ( $\Delta V_{ref}$ ) y la pérdida relativa de volumen ( $V_{rehv}$ ), con una  $\Delta V_{ref}$  especifica y con un  $\Delta V_{ref}$  de 0,44mm<sup>3</sup>



# UNC Universidad Nacional de Córdoba

103

Tabla VI.23: Análisis de la Varianza según el Marca

Variable N R<sup>z</sup> R<sup>z</sup> Aj CV

MATERIAL 125 0,54 0,52 45,62

## Cuadro de Analisis de la Varianza ANOVA (SC tipo III)

| F.V      | SC     | gl  | СМ    | F     | p-valor  |
|----------|--------|-----|-------|-------|----------|
| Modelo   | 79,68  | 5   | 15,94 | 27,71 | < 0,0001 |
| Material | 79,68  | 5   | 15,94 | 27,71 | < 0,0001 |
| Error    | 68,44  | 119 | 0,58  |       |          |
| Total    | 148,11 | 124 |       |       |          |

Test: Tukey Alfa= 0,05 DMD=0,722330

Error: 0,5751 gl=119

| MATERIAL      | MEDIAS | n  |   |   |   |
|---------------|--------|----|---|---|---|
| EQUIA FIL     | 0,55   | 18 | А |   |   |
| PMMA          | 0,91   | 32 | Α |   |   |
| KETAC MOLAR   | 1,75   | 23 |   | В |   |
| VITREMER      | 2,07   | 6  |   | В |   |
| IONOFIL MOLAR | 2,24   | 24 |   | В | С |
| FUJI IX       | 2,84   | 22 |   |   | С |

## **Estadística Descriptiva**

| MATERIAL      | n  | Media | D.E  | E.E  |
|---------------|----|-------|------|------|
| EQUIA FIL     | 18 | 0,55  | 0,35 | 0,08 |
| FUJI IX       | 22 | 2,84  | 0,86 | 0,18 |
| KETAC MOLAR   | 23 | 1,75  | 0,72 | 0,15 |
| IONOFIL MOLAR | 24 | 2,24  | 0,97 | 0,20 |
| VITREMER      | 6  | 2,07  | 0,16 | 0,07 |
| PMMA          | 32 | 0,91  | 0,75 | 0,13 |

Tabla VI.24: Análisis de la Varianza según el Grupo

| Variable | N   | R <sup>z</sup> | R <sup>z</sup> Aj | CV    |
|----------|-----|----------------|-------------------|-------|
| GRUPO    | 125 | 0,72           | 0,68              | 37,21 |

# Cuadro de Analisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC     | gl  | CM   | F     | p-valor  |
|--------|--------|-----|------|-------|----------|
| Modelo | 106,41 | 15  | 7,09 | 18,54 | < 0,0001 |
| Grupo  | 106,41 | 15  | 7,09 | 18,54 | < 0,0001 |
| Error  | 41,71  | 109 | 0,38 |       |          |
| Total  | 148,11 | 124 |      |       |          |





Test: Tukey Alfa= 00,5 DMD=1,18928 Error: 0,3826 gl=109

| GRUPO        | MEDIAS | n  |   |   |   |   |   |   |   |
|--------------|--------|----|---|---|---|---|---|---|---|
| 1 A          | 0,34   | 12 | А |   |   |   |   |   |   |
| PMMA         | 0,91   | 32 | Α | В |   |   |   |   |   |
| 1 A sin coat | 1,97   | 6  | Α | В | С |   |   |   |   |
| 3 D          | 1,05   | 6  | Α | В | С |   |   |   |   |
| 4 D          | 1,50   | 6  | Α | В | С | D |   |   |   |
| 3 A          | 1,76   | 5  |   | В | С | D | E |   |   |
| 4 A          | 1,95   | 6  |   | В | С | D | Е | F |   |
| 3 C          | 2,07   | 6  |   | В | С | D | Е | F |   |
| 5 A          | 2,07   | 6  |   | В | С | D | Е | F |   |
| 3 B          | 2,12   | 6  |   |   | С | D | Е | F |   |
| 2 A          | 2,12   | 5  |   |   | С | D | Е | F |   |
| 2 D          | 2,32   | 6  |   |   |   | D | E | F |   |
| 4 B          | 2,42   | 6  |   |   |   | D | Е | F |   |
| 2 B          | 2,76   | 5  |   |   |   |   | E | F |   |
| 4 C          | 3,08   | 6  |   |   |   |   |   | F | G |
| 2 C          | 4,02   | 6  |   |   |   |   |   |   | G |

## Estadística Descriptiva

| GRUPO        | n  | Media | D.E  | E.E  |
|--------------|----|-------|------|------|
| 1 A          | 12 | 0,34  | 0,20 | 0,06 |
| 1 A sin coat | 6  | 0,97  | 0,14 | 0,06 |
| 2 A          | 5  | 2,12  | 0,66 | 0,30 |
| 2 B          | 5  | 2,76  | 0,23 | 0,10 |
| 2 C          | 6  | 4,02  | 0,21 | 0,09 |
| 2 D          | 6  | 2,32  | 0,42 | 0,17 |
| 3 A          | 5  | 1,76  | 1,17 | 0,52 |
| 3 B          | 6  | 2,12  | 0,12 | 0,05 |
| 3 C          | 6  | 2,07  | 0,49 | 0,20 |
| 3 D          | 6  | 1,05  | 0,15 | 0,06 |
| 4 A          | 6  | 1,95  | 1,07 | 0,44 |
| 4 B          | 6  | 2,42  | 0,52 | 0,21 |
| 4 C          | 6  | 3,08  | 1,05 | 0,43 |
| 4 D          | 6  | 1,50  | 0,43 | 0,18 |
| 5 A          | 6  | 2,07  | 0,16 | 0,07 |
| PMMA         | 32 | 0,91  | 0,75 | 0,13 |

Tabla VI.25: Análisis de la Varianza según el Material + G Coat Plus

| Variable N | $R^z$ | R <sup>z</sup> Aj | CV   |       |
|------------|-------|-------------------|------|-------|
| MAT Y COAT | 33    | 0,18              | 0,03 | 33,68 |

# Cuadro de Analisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC    | gl | CM   | F    | p-valor  |
|--------|-------|----|------|------|----------|
| Modelo | 3,26  | 5  | 0,65 | 1,20 | < 0,3342 |
| МуС    | 3,26  | 5  | 0,65 | 1,20 | < 0,3342 |
| Error  | 14,62 | 27 | 0,54 |      | <u> </u> |
| Total  | 17,88 | 32 |      |      |          |





Test: Tukey Alfa= 0,05 DMD=0,36413 Error: 0,5416 gl=27

| MAT+COAT | MEDIAS | n |   |
|----------|--------|---|---|
| 3 A      | 1,76   | 5 | А |
| 4 A      | 1, 95  | 6 | Α |
| 3 B      | 2, 12  | 6 | Α |
| 2 A      | 2,12   | 5 | Α |
| 4 B      | 2,42   | 6 | Α |
| 2 B      | 2,76   | 5 | А |

## Estadística Descriptiva

| MAT + COAT | n | Media | D.E  | E.E  |
|------------|---|-------|------|------|
| 2 A        | 5 | 2,12  | 0,66 | 0,30 |
| 2 B        | 5 | 2,76  | 0,23 | 0,10 |
| 3 A        | 5 | 1,76  | 1,17 | 0,52 |
| 3 B        | 6 | 2,12  | 0,12 | 0,05 |
| 4 A        | 6 | 1,95  | 1,07 | 0,44 |
| 4 B        | 6 | 2,42  | 0,52 | 0,21 |

Tabla VI.26: Análisis de la Varianza según el G Coat Plus

# Cuadro de Análisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC   | gl | CM   | F    | p-valor  |
|--------|------|----|------|------|----------|
| Modelo | 1,13 | 2  | 0,56 | 4,85 | < 0,0251 |
| Coat   | 1,13 | 2  | 0,56 | 4,85 | < 0,0251 |
| Error  | 1.63 | 14 | 0,12 |      |          |
| Total  | 2,76 | 16 |      |      |          |

Test: Tukey Alfa= 0,05 DMD=0,53139

Error: 0,1163 gl=14

| COAT | MEDIAS | n |   |   |
|------|--------|---|---|---|
| 3 B  | 2,12   | 6 | A |   |
| 4 B  | 4,42   | 6 | Α | В |
| 2 B  | 2,76   | 5 |   | В |

## Estadística Descriptiva

| COAT | N | Media | D.E  | E.E  |
|------|---|-------|------|------|
| 2 B  | 5 | 2,76  | 0,23 | 0,10 |
| 3 B  | 6 | 2,12  | 0,12 | 0,05 |
| 4 B  | 6 | 2,42  | 0,52 | 0,21 |





Tabla VI.27: Análisis de la Varianza según el Material + Adper Single Bond

| Variable N | $R^{z}$ | $R^z Aj$ | CV   |       |
|------------|---------|----------|------|-------|
| MAT Y ADH  | 34      | 0,53     | 0,44 | 33,33 |

## Cuadro de Análisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC    | gl | CM   | F    | p-valor  |
|--------|-------|----|------|------|----------|
| Modelo | 22,21 | 5  | 4,44 | 6,24 | < 0,0005 |
| МуА    | 22,21 | 5  | 4,44 | 6,24 | < 0,0005 |
| Error  | 19,95 | 28 | 0,71 |      |          |
| Total  | 42,15 | 33 |      |      |          |

# Test: Tukey Alfa= 0,05 DMD=1,53655

Error: 0,7123 gl=28

| MAT+ADH    | MEDIAS | n |   |   |
|------------|--------|---|---|---|
| 2 Δ        | 1 76   | 5 | Δ |   |
| 4 A        | 1, 95  | 6 | Α |   |
| 4 A<br>3 C | 2, 07  | 6 | Α |   |
| 2 A        | 2,12   | 5 | Α |   |
| 4 C        | 3,08   | 6 | Α | В |
| 2 C        | 4,02   | 6 |   | В |

## Estadística Descriptiva

| MAT + ADH | n | Media | D.E  | E.E  |
|-----------|---|-------|------|------|
| 2 A       | 5 | 2,12  | 0,66 | 0,30 |
| 2 C       | 6 | 4,02  | 0,21 | 0,09 |
| 3 A       | 5 | 1,76  | 1,17 | 0,52 |
| 3 C       | 6 | 2,07  | 0,49 | 0,20 |
| 4 A       | 6 | 1,95  | 1,07 | 0,44 |
| 4 C       | 6 | 3,08  | 1,05 | 0,43 |

Tabla VI.28: Análisis de la Varianza según Adper Single Bond

# Cuadro de Análisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC    | gl | СМ   | F     | p-valor  |
|--------|-------|----|------|-------|----------|
| Modelo | 11,41 | 2  | 5,71 | 12,32 | < 0,0007 |
| Coat   | 11,41 | 2  | 5,71 | 12,32 | < 0,0007 |
| Error  | 6,95  | 15 | 0,46 |       |          |
| Total  | 18,36 | 17 |      |       |          |

Test: Tukey Alfa= 00,5 DMD=1,02096

Error: 0,4633 gl=15



| ADHESIVO | MEDIAS | n |   |   |
|----------|--------|---|---|---|
| 3 C      | 2,07   | 6 | A |   |
| 4 C      | 3,08   | 6 | Α | В |
| 2 C      | 4,02   | 6 |   | В |

### Estadística Descriptiva

|     | N | Media | D.E  | E.E  |
|-----|---|-------|------|------|
| 2 C | 6 | 4,02  | 0,21 | 0,09 |
| 3 C | 6 | 2,07  | 0,49 | 0,20 |
| 4 C | 6 | 3,08  | 1,05 | 0,43 |

Tabla VI.29: Análisis de la Varianza según el Grupo sin Recubrimiento + 5 A

### Análisis de la Varianza

| Variable    | Ν   | $R^z$ | $R^z Aj$ | CV   |       |
|-------------|-----|-------|----------|------|-------|
| G sin R + 5 | 5 A | 28    | 0,28     | 0,16 | 43,06 |

### Cuadro de Análisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC    | gl | CM   | F    | p-valor  |
|--------|-------|----|------|------|----------|
| Modelo | 5,21  | 4  | 1,30 | 2,26 | < 0,0934 |
| MsR+5A | 5,21  | 4  | 1,30 | 2,26 | < 0,0934 |
| Error  | 13,22 | 23 | 0,57 |      |          |
| Total  | 18,43 | 27 |      |      |          |

Test: Tukey Alfa= 0,05 DMD=1,34285 Error: 0,5749 gl=23

| Ms R+5A   | MEDIAS | n |   |
|-----------|--------|---|---|
| 1 A sin C | 0,97   | 6 | А |
| 3 A       | 1, 76  | 5 | Α |
| 4 A       | 1,95   | 6 | Α |
| 5 A       | 2,07   | 6 | Α |
| 2 A       | 2,12   | 5 | А |

# Estadística Descriptiva

| Ms R+ 5A | n | Media | D.E  | E.E  |
|----------|---|-------|------|------|
| 1 A      | 6 | 0,97  | 0,14 | 0,26 |
| 2 A      | 5 | 2,12  | 0,66 | 0,30 |
| 3 A      | 5 | 1,76  | 1,17 | 0,52 |
| 4 A      | 6 | 1,95  | 1,07 | 0,44 |
| 5 A      | 6 | 2,07  | 0,16 | 0,07 |



Tabla VI.30: Análisis de la Varianza Comparación entre los Grupos sin Recubrimiento, son Coat y con Adhesivo

| Variable N | $R^z$ | $R^z Aj$ | CV   |       |
|------------|-------|----------|------|-------|
| MAT+C+A    | 51    | 0,42     | 0,43 | 28,76 |

### Cuadro de Análisis de la Varianza ANOVA (SC tipo III)

| F.V    | SC    | gl | CM   | F    | p-valor  |
|--------|-------|----|------|------|----------|
| Modelo | 23,50 | 8  | 2,94 | 5,72 | < 0,0001 |
| M +C+A | 23,50 | 8  | 2,94 | 5,72 | < 0,0001 |
| Error  | 21,57 | 42 | 0,51 |      |          |
| Total  | 45,08 | 50 |      |      |          |

Test: Tukey Alfa= 0,05 DMD=1,39559

Error: 0,5137 gl=42

| MAT+C+A | MEDIAS | n |   |   |
|---------|--------|---|---|---|
| 3 A     | 1,76   | 5 | A |   |
| 4 A     | 1, 95  | 6 | Α |   |
| 3 C     | 2, 07  | 6 | Α |   |
| 3 B     | 2,12   | 6 | Α |   |
| 2 A     | 2,12   | 5 | Α |   |
| 4 B     | 2,42   | 6 | Α |   |
| 2 B     | 2,76   | 5 | Α | В |
| 4 C     | 3,08   | 6 | Α | В |
| 2 C     | 4,02   | 6 |   | В |

### **Estadística Descriptiva**

| MAT + C + A | n | Media | D.E  | E.E  |
|-------------|---|-------|------|------|
| 2 A         | 5 | 2,12  | 0,66 | 0,30 |
| 2 B         | 5 | 2,76  | 0,23 | 0,10 |
| 2 C         | 6 | 4,02  | 0,21 | 0,09 |
| 3 A         | 5 | 1,76  | 1,17 | 0,52 |
| 3 B         | 6 | 2,12  | 0,12 | 0,05 |
| 3 C         | 6 | 2,07  | 0,49 | 0,20 |
| 4 A         | 6 | 1,95  | 1,07 | 0,44 |
| 4 B         | 6 | 2,42  | 0,52 | 0,21 |
| 4 C         | 6 | 3,08  | 1,05 | 0,43 |





# Estadísticos descriptivos según MARCA y RECUBRIMIENTO

| Marca      | Recubrimiento     | Media | DE   | n  |
|------------|-------------------|-------|------|----|
|            | Sin recubrimiento | 0,97  | 0,14 | 6  |
| EQUIA FIL  | Con recubrimiento | 0,34  | 0,20 | 12 |
|            | Total             | 0,55  | 0,35 | 18 |
|            | Sin recubrimiento | 2,12  | 0,66 | 5  |
|            | G-Coat Plus       | 2,76  | 0,23 | 5  |
| FUJI IX    | Single Bond       | 4,02  | 0,21 | 6  |
|            | Vaselina sólida   | 2,32  | 0,42 | 6  |
|            | Total             | 2,84  | 0,86 | 22 |
|            | Sin recubrimiento | 1,76  | 1,17 | 5  |
| KETAC      | G-Coat Plus       | 2,12  | 0,12 | 6  |
| MOLAR      | Single Bond       | 2,07  | 0,49 | 6  |
| WOLAR      | Vaselina sólida   | 1,05  | 0,15 | 6  |
|            | Total             | 1,75  | 0,72 | 23 |
|            | Sin recubrimiento | 1,95  | 1,07 | 6  |
| IONOFIL    | G-Coat Plus       | 2,42  | 0,52 | 6  |
| MOLAR      | Single Bond       | 3,08  | 1,05 | 6  |
| WOLAR      | Vaselina sólida   | 1,50  | 0,43 | 6  |
|            | Total             | 2,24  | 0,97 | 24 |
| VITREMER   | Sin recubrimiento | 2,07  | 0,16 | 6  |
| VIINCIVIER | Total             | 2,07  | 0,16 | 6  |
| CONTROL    | Sin recubrimiento | 0,91  | 0,75 | 32 |
| CONTROL    | Total             | 0,91  | 0,75 | 32 |

**Tabla VI.31:** Resistencia al desgaste (pérdida de peso): Media, Desviación estándar (DE) y recuento de casos (n) según GRUPO (marca y tipo de recubrimiento). Valores expresados en mg.

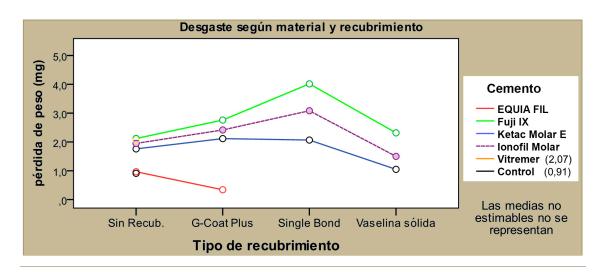
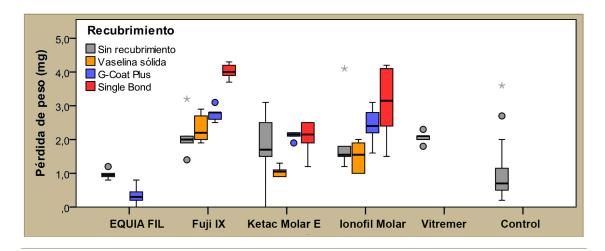




Figura VI.14: Resistencia al desgaste. Pérdida de peso según marca y tipo de recubrimiento. Medias marginales estimadas.





**Figura VI.15:** Resistencia al desgaste. Pérdida de peso según marca y tipo de recubrimiento. Las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.

### **Contraste Estadístico**

Variable dependiente: Resistencia al desgaste. Pérdida de peso (mg)

Factores: Grupo o Marca; Tipo de Recubrimiento

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС   | F      | Sig.<br>(p-valor) |  |
|---------------------------------------------------|-------------|-----|------|--------|-------------------|--|
| Grupo                                             | 48,23       | 5   | 9,65 | 25,208 | <0,001            |  |
| Recubrimiento                                     | 19,39       | 3   | 6,46 | 16,889 | <0,001            |  |
| Grupo * Recubrimiento                             | 7,71        | 7   | 1,10 | 2,878  | 0,008             |  |
| Error                                             | 41,71       | 109 | 0,38 |        |                   |  |
| R cuadrado = 0,718 (R cuadrado corregida = 0,680) |             |     |      |        |                   |  |

**Tabla VI.32**: Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (desgaste), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (0,38).





De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor marca fue el que provocó mayor efecto sobre los valores de pérdida de peso o desgaste (F=25,208; p<0,001). El factor recubrimiento también resultó significativo (F=16,889; p<0,001).

También la interacción entre factores (F=2.878; p<0,05), el agregado de una capa o recubrimiento (*coat*), generó respuestas disímiles en las diversas marcas.

El determinante R<sup>2</sup> indica el nivel de ajuste del modelo planteado, que en este caso fue del 68%, lo cual es un valor muy aceptable desde el punto de vista estadístico, siendo el porcentaje restante atribuible al error experimental (32%), que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores marca y recubrimiento:

# Contraste múltiple entre marcas:

| Tiomno         | _  | Subconjunto |       |       |  |  |
|----------------|----|-------------|-------|-------|--|--|
| Tiempo         | n  | 1           | 2     | 3     |  |  |
| EQUIA FIL      | 18 | 0,55        |       |       |  |  |
| CONTROL (PMMA) | 32 | 0,91        |       |       |  |  |
| KETAC MOLAR    | 23 |             | 1,75  |       |  |  |
| VITREMER       | 6  |             | 2,07  |       |  |  |
| IONOFIL MOLAR  | 24 |             | 2,24  | 2,24  |  |  |
| FUJI IX        | 22 |             |       | 2,84  |  |  |
| Sig. (p-valor) |    | 0,576       | 0,241 | 0,082 |  |  |

**Tabla VI.33:** Cuadro resumido de la prueba DHS de Tukey para el factor MARCA. Se muestran las medias de Resistencia al desgaste (mg) de los grupos en subconjuntos homogéneos.

## Contraste múltiple entre tipos de recubrimiento:

| Recubrimiento     | _  | Subco | njunto |
|-------------------|----|-------|--------|
| Recubililiento    | n  | 1     | 2      |
| Sin recubrimiento | 60 | 1,31  |        |
| G-Coat Plus       | 29 | 1,56  |        |
| Vaselina sólida   | 18 | 1,62  |        |
| Single Bond       | 18 |       | 3,06   |
| Sig. (p-valor)    |    | 0,288 | 1,000  |

**Tabla VI.34**: Cuadro resumido de la prueba DHS de Tukey para el factor RECUBRIMIENTO. Se muestran las medias de pérdida de peso o desgaste de los grupos en subconjuntos homogéneos.





## RUGOSIDAD SUPERFICIAL

En la Tabla VI.35 observamos la rugosidad media aritmética (Ra) en μm según la marca de cada material sin tener en cuenta el efecto del desgaste. En términos generales los materiales con menor Ra fueron KM, IM y EF (0,18; 0,25 y 0,34 μm respectivamente) y los que registraron mayor Ra: V, FIX y PMMA (1,08; 1,40 y 1,63 μm respectivamente) (Figura VI.16).

En las Tablas VI.36, VI.51 y en la Figura VI.17, podemos observar los valores medios de Ra para grupos con y sin desgaste junto a otros datos.

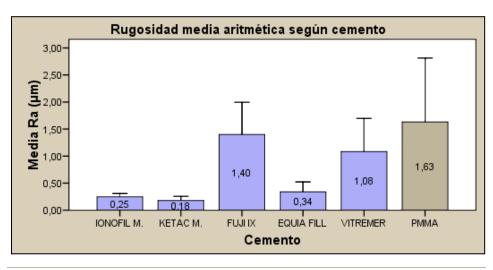
En relación a la Ra de los materiales sin desgaste el Análisis de Varianza ANOVA (F= 134.319; p=< 0,000) y el Test de Tukey Kramer HSD (p<0,05) mostraron diferencia estadísticamente significativa entre los grupos (Tabla VI.37), registrándose los valores más bajos para KM, IM y EF, sin haber diferencia estadísticamente significativa entre ellos. Los cementos V y FIX presentaron valores superiores de Ra (1.11µm y 1.43µm respectivamente) sin diferenciarse significativamente entre sí. El grupo control PMMA registró valores de Ra significativamente mayores que el resto de los materiales (p<0.05).

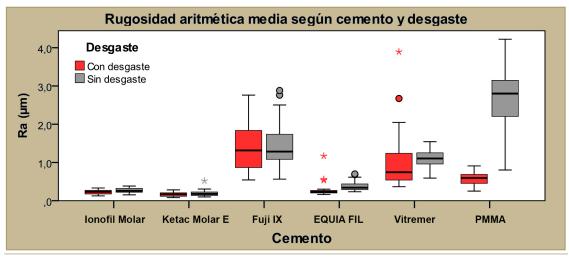
En relación a la Ra de los materiales luego del desgaste, el Análisis de Varianza ANOVA (F= 31.283; p=< 0,0000) y el Test de Tukey Kramer HSD (p=0,05) mostraron diferencia estadísticamente significativa entre los grupos (Tabla VI.38). En términos generales, los valores de Ra en todos los materiales disminuyó luego de desgaste y todos los cementos presentaron un comportamiento similar entre ellos en relación a los grupos sin desgaste; excepto el grupo control PMMA quien disminuyó su Ra a niveles algo por encima de EF e IM (Figura VI.25).

| Cemento       | N  | Media | DE.   | EE    | Mediana | Rango |
|---------------|----|-------|-------|-------|---------|-------|
| IONOFIL MOLAR | 48 | 0.248 | 0.063 | 0.009 | 0.250   | 0.257 |
| KETAC MOLAR   | 48 | 0.181 | 0.074 | 0.011 | 0.176   | 0.441 |
| FUJI IX       | 48 | 1.400 | 0.594 | 0.086 | 1.302   | 2.338 |
| EQUIA FIL     | 48 | 0.341 | 0.182 | 0.026 | 0.286   | 1.007 |
| VITREMER      | 48 | 1.084 | 0.612 | 0.088 | 1.059   | 3.528 |
| PMMA          | 48 | 1.632 | 1.183 | 0.171 | 0.908   | 3.971 |

Tabla VI.35: Valores medios de Ra (μm) según la marca de cada material sin tener en cuenta el efecto del desgaste.







Figura VI.16.a.: Rugosidad media (Ra) según cemento. media y desviación estándar.

| Cemento    | Desgaste     | Media | DE    | EE    | Mediana | Rango | Mann-Whitney (p-valor) |
|------------|--------------|-------|-------|-------|---------|-------|------------------------|
| IONOFIL    | Con desgaste | 0.230 | 0.059 | 0.012 | 0.233   | 0.206 | 0.091                  |
| MOLAR      | Sin desgaste | 0.266 | 0.063 | 0.013 | 0.257   | 0.230 | 0.091                  |
| KETAC      | Con desgaste | 0.167 | 0.056 | 0.012 | 0.167   | 0.204 | 0.322                  |
| MOLAR      | Sin desgaste | 0.194 | 0.087 | 0.018 | 0.177   | 0.421 | 0.322                  |
| FUJI IX    | Con desgaste | 1.372 | 0.593 | 0.121 | 1.314   | 2.218 | 0.869                  |
| FUJI IX    | Sin desgaste | 1.428 | 0.606 | 0.124 | 1.284   | 2.317 | 0.609                  |
| EQUIA FIL  | Con desgaste | 0.293 | 0.211 | 0.043 | 0.231   | 1.007 | 0.008                  |
| EQUIA FIL  | Sin desgaste | 0.388 | 0.135 | 0.028 | 0.341   | 0.465 | 0.008                  |
| VITREMER   | Con desgaste | 1.062 | 0.836 | 0.171 | 0.744   | 3.528 | 0.044                  |
| VIIKEWIEK  | Sin desgaste | 1.106 | 0.253 | 0.052 | 1.104   | 0.952 | 0.044                  |
| PMMA       | Con desgaste | 0.581 | 0.164 | 0.033 | 0.594   | 0.659 | <<0.001                |
| L IAIIAI A | Sin desgaste | 2.684 | 0.724 | 0.148 | 2.801   | 3.419 | ~~0.001                |

Tabla VI.36: Efecto del desgaste sobre la rugosidad media. Resúmenes de casos según cemento y desgaste. Ra (μm)







**Figura VI.17:** Rugosidad aritmética media según cemento y desgaste. Las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.

Tabla VI.37: ANOVA. Entre materiales sin desgaste. Ra (µm)

|              | Suma de cuadrados | gl  | Media<br>cuadrática | F       | Sig.<br>(p-valor) |
|--------------|-------------------|-----|---------------------|---------|-------------------|
| Inter-grupos | 110.187           | 5   | 22.037              | 134.319 | 0.000             |
| Intra-grupos | 22.641            | 138 | .164                |         |                   |
| Total        | 132.828           | 143 |                     |         |                   |

## Comparaciones múltiples. DHS de Tukey. Ra (µm)

| (I) Cemento   | (J) Cemento | Dif. entre<br>medias (I-J) | p-valor |
|---------------|-------------|----------------------------|---------|
|               | KETAC MOLAR | 0.072                      | 0.990   |
|               | FUJI IX     | -1.162                     | 0.000   |
| IONOFIL MOLAR | EQUIA FILL  | -0.122                     | 0.901   |
|               | VITREMER    | -0.840                     | 0.000   |
|               | PMMA        | -2.418                     | 0.000   |
|               | FUJI IX     | -1.234                     | 0.000   |
| KETAC MOLAR   | EQUIA FILL  | -0.194                     | 0.561   |
| RETAC WOLAR   | VITREMER    | -0.912                     | 0.000   |
|               | PMMA        | -2.490                     | 0.000   |
|               | EQUIA FILL  | 1.040                      | 0.000   |
| FUJI IX       | VITREMER    | 0.322                      | 0.072   |
|               | PMMA        | -1.256                     | 0.000   |
| EQUIA FIL     | VITREMER    | -0.718                     | 0.000   |
| EQUIA FIL     | PMMA        | -2.295                     | 0.000   |
| VITREMER      | PMMA        | -1.578                     | 0.000   |





Test de Tukey complementario (subconjuntos homogéneos)

| Motorial      | <b>5</b> | Subconjunto para alfa = .05 |         |         |  |  |
|---------------|----------|-----------------------------|---------|---------|--|--|
| Material      | n        | 1                           | 2       | 3       |  |  |
| KETAC M.      | 24       | 0.19429                     |         |         |  |  |
| IONOFIL M.    | 24       | 0.26596                     |         |         |  |  |
| EQUIA FIL     | 24       | 0.38833                     |         |         |  |  |
| VITREMER      | 24       |                             | 1.10629 |         |  |  |
| FUJI IX       | 24       |                             | 1.42813 |         |  |  |
| PMMA          | 24       |                             |         | 2.68379 |  |  |
| Significación |          | 0.561                       | 0.072   | 1.000   |  |  |

Tabla VI.38: ANOVA. Entre materiales con desgaste. Ra (µm)

|              | Suma de cuadrados | gl  | Media<br>cuadrática | F      | Sig.<br>(p-valor) |
|--------------|-------------------|-----|---------------------|--------|-------------------|
| Inter-grupos | 29.430            | 5   | 5.886               | 31.283 | 0.000             |
| Intra-grupos | 25.965            | 138 | .188                |        |                   |
| Total        | 55.395            | 143 |                     |        |                   |

## Comparaciones múltiples. DHS de Tukey. Ra (µm)

| (I) Cemento  | (J) Cemento | Dif. entre<br>medias (I-J) | p-valor |
|--------------|-------------|----------------------------|---------|
|              | KETAC MOLAR | 0.063                      | 0.996   |
|              | FUJI IX     | -1.142                     | 0.000   |
| ONOFIL MOLAR | EQUIA FIL   | -0.063                     | 0.996   |
|              | VITREMER    | -0.831                     | 0.000   |
|              | PMMA        | -0.351                     | 0.063   |
|              | FUJI IX     | -1.205                     | 0.000   |
| KETAC MOLAD  | EQUIA FIL   | -0.126                     | 0.916   |
| KETAC MOLAR  | VITREMER    | -0.894                     | 0.000   |
|              | PMMA        | -0.414                     | 0.015   |
|              | EQUIA FIL   | 1.079                      | 0.000   |
| FUJI IX      | VITREMER    | 0.310                      | 0.137   |
|              | PMMA        | 0.791                      | 0.000   |
| EQUIA FIL    | VITREMER    | -0.769                     | 0.000   |
| EQUIA FIL    | PMMA        | -0.288                     | 0.200   |
| VITREMER     | PMMA        | 0.481                      | 0.003   |





Test de Tukey complementario (subconjuntos homogéneos)

| Meterial      |    | Subconjunto para alfa = .05 |         |         |  |  |
|---------------|----|-----------------------------|---------|---------|--|--|
| Material      | n  | 1                           | 2       | 3       |  |  |
| KETAC M.      | 24 | 0.16717                     |         |         |  |  |
| IONOFIL M.    | 24 | 0.23013                     | 0.23013 |         |  |  |
| EQUIA FIL     | 24 | 0.29271                     | 0.29271 |         |  |  |
| PMMA          | 24 |                             | 0.58092 |         |  |  |
| VITREMER      | 24 |                             |         | 1.06158 |  |  |
| FUJI IX       | 24 |                             |         | 1.37204 |  |  |
| Significación |    | 0.916                       | 0.063   | 0.137   |  |  |

material antes del desgaste, y en la Tabla VI.40 y Figura VI.19, después del mismo. En relación a la Rz, el Análisis de Varianza ANOVA (F= 78.951; p=< 0,000) y el Test de Tukey Kramer HSD (p<0,05) mostró que todos los materiales antes del procedimiento de desgaste, tuvieron un comportamiento similar al de Ra (Tabla VI.41). La menor Rz se registró para KM, IM y EF (0,83 $\mu$ m; 1,16 $\mu$ m y 1,77 $\mu$ m respectivamente) sin diferencias estadísticamente significativas entre ellos; valores

En la Tabla VI.39 y Figura VI.18 observamos la rugosidad parcial (Rz), de cada

más altos de Rz que los anteriores se informaron para FIX, V (4,36μm y 5,31μm) sin diferencia entre ellos y el grupo control PMMA fue quien registró los valores de Rz mas altos (7,87 μm) y diferentes en relación a los otros grupos (Tabla VI.54).

Sin embargo, luego del desgaste según el Análisis de Varianza ANOVA (F= 49.980; p=< 0,000) y el Test de Tukey Kramer HSD (p<0,05) el comportamiento fue diferente para algunos de ellos (Tabla VI.42). Los cementos KM, IM y EF, registraron valores de Rz bajos y semejantes, no diferenciándose significativamente entre sí (0,82 $\mu$ m; 1,15 $\mu$ m y 1,33 $\mu$ m respectivamente). El grupo control PMMA con desgaste mostró valores de Rz semejantes a EF e IM (1,96 $\mu$ m).V (3,54 $\mu$ m) y FIX presentaron características únicas y se diferenciaron entre sí y con el resto significativamente (p<0.05). FIX registró los valores medios de Rz más elevados (4.71 $\mu$ m) (Figura VI.26).

En las Tablas VI.43, VI.57 y Figuras VI.20, VI.27 se resumen los valores de Sesgo o Asimetría (Rsk) antes y después del desgaste. Se observa una disminución del parámetro Rsk en todos los cementos a excepción del cemento KM.

Los cementos EF e IM, según el Análisis de Varianza ANOVA (F= 3.998; p=< 0,002) y el Test de Tukey Kramer HSD (p<0,05) registraron valores positivos de Rsk y por





encima del resto (0,16 y 0,12 µm respectivamente), llegando a diferenciarse significativamente del cemento FIX, el cual registró los valores más bajos de Rsk (-0,54 µm) (Tabla VI.44).

Con respecto al parámetro Curtosis (Rku) los datos se resumen en las Tablas VI.45, VI.59 y Figuras VI.21, VI.28. El Análisis de Varianza ANOVA (F= 1.281; p=< 0,276) y el Test de Tukey Kramer HSD (p>0,05) para los materiales sin desgaste, no evidenció diferencias significativas entre ninguno de ellos (Tabla VI.46). Sin embargo, al contrastar los materiales con desgaste, el cemento EF se diferenció significativamente del resto de los materiales (p<0.05) ANOVA (F= 6.777; p=< 0,000) y el Test de Tukey Kramer HSD (Tablas VI.47 y VI.60).

En relación al parámetro Rugosidad Total (Rt), sólo en el control PMMA, el desgaste modificó significativamente este parámetro (p<0.05), en los demás materiales, no se verificaron diferencias significativas (Tablas VI.48, VI.62 y Figuras VI.22, VI.29).

Teniendo en cuenta la rugosidad de la cresta (Rp) se verificaron diferencias significativas entre IM, EF y PMMA, en donde el efecto del desgaste modificó significativamente este parámetro (p<0.05). En los demás materiales, no se observaron diferencias estadísticamente significativas (Tabla VI.49 y Figura VI.23).

Analizando la rugosidad del valle (Rv) sólo en el grupo control, PMMA, el desgaste modificó significativamente este parámetro (p<0.05); en los demás materiales, no se registraron diferencias estadísticamente significativas (Tabla VI.50 y Figura VI.24).

| Cemento       | n  | Media | DE.   | EE    | Mediana | Rango  |
|---------------|----|-------|-------|-------|---------|--------|
| IONOFIL MOLAR | 48 | 1.159 | 0.323 | 0.047 | 1.197   | 1.358  |
| KETAC MOLAR   | 48 | 0.827 | 0.284 | 0.041 | 0.777   | 1.533  |
| FUJI IX       | 48 | 5.010 | 1.592 | 0.230 | 4.918   | 6.520  |
| EQUIA FIL     | 48 | 1.556 | 0.723 | 0.104 | 1.346   | 3.608  |
| VITREMER      | 48 | 3.957 | 1.521 | 0.220 | 4.008   | 7.317  |
| PMMA          | 48 | 4.918 | 3.732 | 0.539 | 2.698   | 17.754 |

**Tabla VI.39:** Rugosidad Parcial Rz (μm) de cada material antes del desgaste



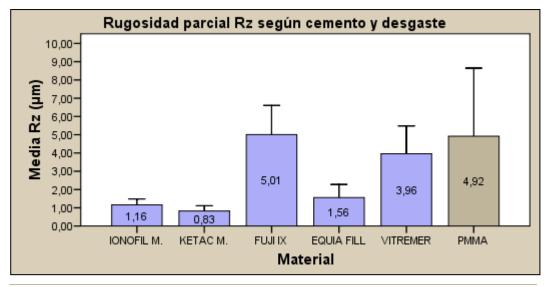



Figura VI.18: Rugosidad parcial (Rz) según material, media y desviación estándar antes del desgaste.

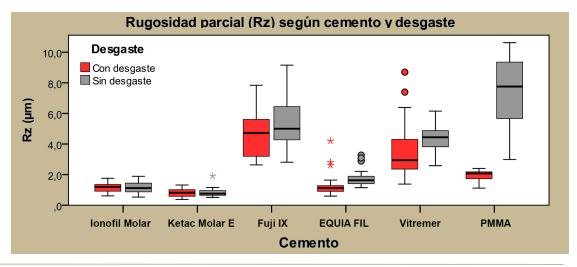

| Cemento   | Desgaste     | Media | DE    | EE    | Mediana | Rango  | Mann-Whitney (p-valor) |
|-----------|--------------|-------|-------|-------|---------|--------|------------------------|
| IONOFIL   | Con desgaste | 1.155 | 0.282 | 0.057 | 1.199   | 1.149  | 0.910                  |
| MOLAR     | Sin desgaste | 1.163 | 0.367 | 0.075 | 1.120   | 1.358  | 0.910                  |
| KETAC     | Con desgaste | 0.820 | 0.276 | 0.056 | 0.817   | 0.939  | 0.951                  |
| MOLAR     | Sin desgaste | 0.835 | 0.297 | 0.061 | 0.758   | 1.405  | 0.951                  |
| FUJI IX   | Con desgaste | 4.710 | 1.520 | 0.310 | 4.718   | 5.205  | 0.353                  |
| FUJIIX    | Sin desgaste | 5.310 | 1.637 | 0.334 | 4.999   | 6.346  | 0.353                  |
| EQUIA FIL | Con desgaste | 1.336 | 0.798 | 0.163 | 1.119   | 3.608  | 0.001                  |
| EQUIA FIL | Sin desgaste | 1.775 | 0.575 | 0.117 | 1.627   | 2.126  | 0.007                  |
| VITREMER  | Con desgaste | 3.546 | 1.909 | 0.390 | 2.940   | 7.317  | 0.005                  |
| VIIKEWEK  | Sin desgaste | 4.368 | 0.855 | 0.175 | 4.439   | 3.566  | 0.005                  |
| PMMA      | Con desgaste | 1.963 | 0.327 | 0.067 | 2.076   | 1.289  | <<0.001                |
| FIVIIVIA  | Sin desgaste | 7.872 | 3.184 | 0.650 | 7.756   | 15.878 | ~~0.001                |

Tabla VI.40: Rugosidad Parcial Rz (μm) según cemento y desgaste.





119



**Figura VI.19:** Rugosidad parcial (Rz) según cemento y desgaste. Diagrama de cajas. Las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.

Tabla VI.41: ANOVA entre materiales sin desgaste. Rz (µm)

|              | Suma de cuadrados | gl  | Media<br>cuadrática | F      | Sig.<br>(p-valor) |
|--------------|-------------------|-----|---------------------|--------|-------------------|
| Inter-grupos | 928.072           | 5   | 185.614             | 78.951 | 0.000             |
| Intra-grupos | 324.437           | 138 | 2.351               |        |                   |
| Total        | 1252.509          | 143 |                     |        |                   |

### Comparaciones múltiples. DHS de Tukey. Rz (µm)

| (I) Cemento   | (J) Cemento | Dif. entre<br>medias (I-J) | p-valor |
|---------------|-------------|----------------------------|---------|
|               | KETAC MOLAR | 0.328                      | 0.976   |
|               | FUJI IX     | -4.147                     | 0.000   |
| IONOFIL MOLAR | EQUIA FIL   | -0.612                     | 0.737   |
|               | VITREMER    | -3.205                     | 0.000   |
|               | PMMA        | -6.709                     | 0.000   |
|               | FUJI IX     | -4.476                     | 0.000   |
| KETAC MOLAR   | EQUIA FIL   | -0.941                     | 0.280   |
| RETAC WOLAR   | VITREMER    | -3.534                     | 0.000   |
|               | PMMA        | -7.038                     | 0.000   |
|               | EQUIA FILL  | 3.535                      | 0.000   |
| FUJI IX       | VITREMER    | 0.942                      | 0.279   |
|               | PMMA        | -2.562                     | 0.000   |
| EQUIA FIL     | VITREMER    | -2.593                     | 0.000   |
| EQUIA FIL     | PMMA        | -6.097                     | 0.000   |
| VITREMER      | PMMA        | -3.504                     | 0.000   |





Test de Tukey complementario (subconjuntos homogéneos)

| Matarial      | Matarial |         | Subconjunto para alfa = .05 |         |  |  |  |
|---------------|----------|---------|-----------------------------|---------|--|--|--|
| Material      | n        | 1       | 2                           | 3       |  |  |  |
| KETAC M.      | 24       | 0.83454 |                             |         |  |  |  |
| IONOFIL M.    | 24       | 1.16296 |                             |         |  |  |  |
| EQUIA FIL     | 24       | 1.77542 |                             |         |  |  |  |
| VITREMER      | 24       |         | 4.36825                     |         |  |  |  |
| FUJI IX       | 24       |         | 5.31029                     |         |  |  |  |
| PMMA          | 24       |         |                             | 7.87213 |  |  |  |
| Significación |          | 0.280   | 0.279                       | 1.000   |  |  |  |

Tabla VI.42: ANOVA entre materiales con desgaste. Rz ( $\mu$ m)

|              | Suma de cuadrados | gl  | Media<br>cuadrática | F      | Sig.<br>(p-valor) |
|--------------|-------------------|-----|---------------------|--------|-------------------|
| Inter-grupos | 285.467           | 5   | 57.093              | 49.980 | 0.000             |
| Intra-grupos | 157.642           | 138 | 1.142               |        |                   |
| Total        | 443.109           | 143 |                     |        |                   |

# Comparaciones múltiples. DHS de Tukey. Rz (µm)

| (I) Cemento   | (J) Cemento | Dif. entre<br>medias (I-J) | p-valor |
|---------------|-------------|----------------------------|---------|
|               | KETAC MOLAR | 0.334                      | 0.887   |
|               | FUJI IX     | -3.556                     | 0.000   |
| IONOFIL MOLAR | EQUIA FIL   | -0.182                     | 0.992   |
|               | VITREMER    | -2.391                     | 0.000   |
|               | PMMA        | -0.809                     | 0.099   |
|               | FUJI IX     | -3.890                     | 0.000   |
| KETAC MOLAR   | EQUIA FIL   | -0.516                     | 0.552   |
| KETAC WOLAR   | VITREMER    | -2.726                     | 0.000   |
|               | PMMA        | -1.143                     | 0.004   |
|               | EQUIA FIL   | 3.374                      | 0.000   |
| FUJI IX       | VITREMER    | 1.164                      | 0.003   |
|               | PMMA        | 2.747                      | 0.000   |
| FOLUA FIL     | VITREMER    | -2.210                     | 0.000   |
| EQUIA FIL     | PMMA        | -0.627                     | 0.330   |
| VITREMER      | PMMA        | 1.583                      | 0.000   |



Test de Tukey complementario (subconjuntos homogéneos)

| Motorial      | Subconjunto para alfa = .05 |         |         |         |         |  |
|---------------|-----------------------------|---------|---------|---------|---------|--|
| Material      | IN                          | 1       | 2       | 3       | 4       |  |
| KETAC M.      | 24                          | 0.82008 |         |         |         |  |
| IONOFIL M.    | 24                          | 1.15454 | 1.15454 |         |         |  |
| EQUIA FIL     | 24                          | 1.33613 | 1.33613 |         |         |  |
| PMMA          | 24                          |         | 1.96308 |         |         |  |
| VITREMER      | 24                          |         |         | 3.54600 |         |  |
| FUJI IX       | 24                          |         |         |         | 4.71025 |  |
| Significación |                             | 0.552   | 0.099   | 1.000   | 1.000   |  |

| Cemento   | Desgaste     | Media  | DE    | EE    | Mediana | Rango | Mann-Whitney (p-valor) |
|-----------|--------------|--------|-------|-------|---------|-------|------------------------|
| IONOFIL   | Con desgaste | -0.025 | 0.740 | 0.151 | 0.008   | 3.370 | 0.083                  |
| MOLAR     | Sin desgaste | 0.281  | 0.837 | 0.171 | 0.529   | 2.915 | 0.063                  |
| KETAC     | Con desgaste | -0.123 | 0.477 | 0.097 | -0.136  | 2.026 | 0.202                  |
| MOLAR     | Sin desgaste | -0.170 | 1.281 | 0.261 | 0.055   | 5.082 | 0.202                  |
| FUJI IX   | Con desgaste | -0.649 | 1.051 | 0.214 | -0.731  | 4.359 | 0.126                  |
| FOSTIX    | Sin desgaste | -0.439 | 0.873 | 0.178 | -0.295  | 3.346 | 0.120                  |
| EQUIA FIL | Con desgaste | -0.023 | 1.236 | 0.252 | -0.156  | 5.227 | 0.119                  |
| EQUIA FIL | Sin desgaste | 0.362  | 0.932 | 0.190 | 0.444   | 4.652 | 0.119                  |
| VITREMER  | Con desgaste | -0.267 | 1.117 | 0.228 | -0.346  | 4.345 | 0.122                  |
|           | Sin desgaste | -0.088 | 0.684 | 0.140 | -0.005  | 2.939 | 0.122                  |
| PMMA      | Con desgaste | -0.305 | 0.647 | 0.132 | -0.442  | 2.263 | 0.146                  |
| FIVIIVIA  | Sin desgaste | -0.248 | 0.805 | 0.164 | -0.074  | 3.580 | 0.146                  |

Tabla VI.43: Efecto del desgaste sobre el parámetro Rsk.

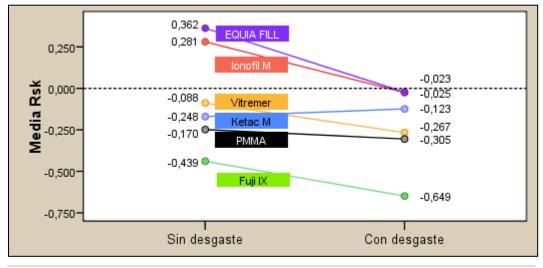



Figura VI.20: Sesgo (Rsk) según cemento y desgaste. Diagrama de medias.

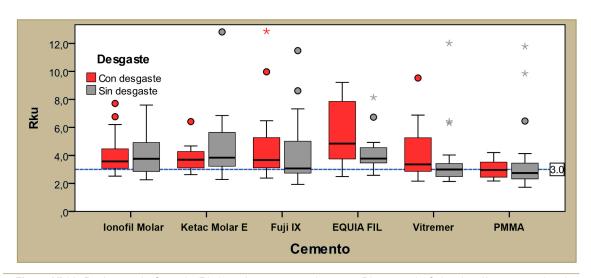


TABLA VI.44: ANOVA Entre materiales con y sin desgaste. Rsk

|              | Suma de | gl  | Media | F     | Sig.  |
|--------------|---------|-----|-------|-------|-------|
| Inter-grupos | 16.842  | 5   | 3.368 | 3.998 | 0.002 |
| Intra-grupos | 237.590 | 282 | .843  |       |       |
| Total        | 254.432 | 287 |       |       |       |

Comparaciones múltiples. DHS de Tukey. Parámetro Rsk

| (I) Cemento   | (J) Cemento | Dif. entre | p-valor |
|---------------|-------------|------------|---------|
|               | KETAC MOLAR | 0.274      | 0.687   |
|               | FUJI IX     | 0.672      | 0.005   |
| IONOFIL MOLAR | EQUIA FILL  | -0.042     | 1.000   |
|               | VITREMER    | 0.305      | 0.580   |
|               | PMMA        | 0.404      | 0.261   |
|               | FUJI IX     | 0.397      | 0.280   |
| KETAC MOLAR   | EQUIA FILL  | -0.316     | 0.540   |
| RETAC WOLAR   | VITREMER    | 0.031      | 1.000   |
|               | PMMA        | 0.130      | 0.983   |
|               | EQUIA FILL  | -0.714     | 0.002   |
| FUJI IX       | VITREMER    | -0.367     | 0.370   |
|               | PMMA        | -0.267     | 0.710   |
| EQUIA FIL     | VITREMER    | 0.347      | 0.434   |
| EQUIA FIL     | PMMA        | 0.446      | 0.166   |
| VITREMER      | PMMA        | 0.099      | 0.995   |


Test de Tukey complementario (subconjuntos homogéneos)

| Material      | N  | Subconjunto | para alfa = .05 |  |
|---------------|----|-------------|-----------------|--|
| Material      | IN | 1           | 2               |  |
| FUJI IX       | 48 | -0.54402    |                 |  |
| PMMA          | 48 | -0.27660    | -0.27660        |  |
| VITREMER      | 48 | -0.17750    | -0.17750        |  |
| KETAC M.      | 48 | -0.14675    | -0.14675        |  |
| IONOFIL M.    | 48 |             | 0.12767         |  |
| EQUIA FIL     | 48 |             | 0.16967         |  |
| Significación |    | 0.280       | 0.166           |  |



| Cemento   | Desgaste     | Media | DE    | EE    | Mediana | Rango  | Mann-Whitney (p-valor) |
|-----------|--------------|-------|-------|-------|---------|--------|------------------------|
| IONOFIL   | Con desgaste | 3.957 | 1.321 | 0.270 | 3.571   | 5.195  | 0.224                  |
| MOLAR     | Sin desgaste | 4.212 | 1.557 | 0.318 | 3.759   | 5.339  | 0.321                  |
| KETAC     | Con desgaste | 3.745 | 0.847 | 0.173 | 3.693   | 3.792  | 0.141                  |
| MOLAR     | Sin desgaste | 5.032 | 3.346 | 0.683 | 3.837   | 14.473 | 0.141                  |
| FUJI IX   | Con desgaste | 4.549 | 2.414 | 0.493 | 3.668   | 10.494 | 0.065                  |
| FOSITIX   | Sin desgaste | 4.175 | 2.403 | 0.491 | 3.068   | 9.553  | 0.005                  |
| EQUIA FIL | Con desgaste | 6.388 | 4.016 | 0.820 | 4.844   | 16.699 | 0.026                  |
| EQUIA FIL | Sin desgaste | 4.575 | 2.665 | 0.544 | 3.772   | 13.118 | 0.020                  |
| VITREMER  | Con desgaste | 4.144 | 1.783 | 0.364 | 3.358   | 7.372  | 0.097                  |
|           | Sin desgaste | 3.566 | 2.099 | 0.428 | 2.993   | 9.871  | 0.097                  |
| PMMA      | Con desgaste | 2.997 | 0.579 | 0.118 | 2.963   | 2.031  | 0.260                  |
| FIVIIVIA  | Sin desgaste | 3.562 | 2.457 | 0.502 | 2.740   | 10.062 | 0.200                  |

Tabla VI.45: Efecto del desgaste sobre el parámetro Rku.



**Figura VI.21:** Parámetro de Curtosis (Rku) según cemento y desgaste. Diagrama de Cajas. Las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.

Tabla VI.46: ANOVA entre materiales sin desgaste. Rku

|              | Suma de cuadrados | gl  | Media<br>cuadrática | F     | Sig.<br>(p-valor) |
|--------------|-------------------|-----|---------------------|-------|-------------------|
| Inter-grupos | 39.426            | 5   | 7.885               | 1.281 | 0.276             |
| Intra-grupos | 849.620           | 138 | 6.157               |       |                   |
| Total        | 889.046           | 143 |                     |       |                   |





Test de Tukey complementario (subconjuntos homogéneos)

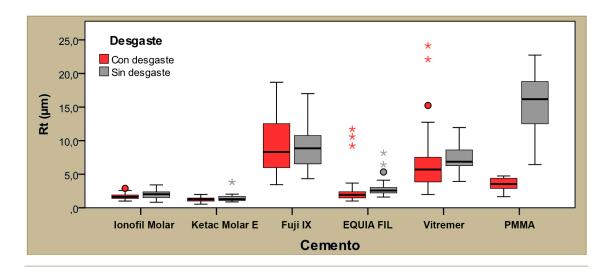
| Material   | n  | Subconjunto para alfa = .05 |
|------------|----|-----------------------------|
| PMMA       | 24 | 3.56167                     |
| VITREMER   | 24 | 3.56567                     |
| FUJI IX    | 24 | 4.17529                     |
| IONOFIL M. | 24 | 4.21171                     |
| EQUIA FIL  | 24 | 4.57471                     |
| KETAC M.   | 24 | 5.03233                     |
| Sig.       |    | 0.318                       |

Tabla VI.47: ANOVA entre materiales con desgaste. Rku

|              | Suma de cuadrados | gl  | Media<br>cuadrática | F     | Sig.<br>(p-valor) |
|--------------|-------------------|-----|---------------------|-------|-------------------|
| Inter-grupos | 157.734           | 5   | 31.547              | 6.777 | 0.000             |
| Intra-grupos | 642.388           | 138 | 4.655               |       |                   |
| Total        | 800.122           | 143 |                     |       |                   |

## Comparaciones múltiples. DHS de Tukey. Rku

| (I) Cemento   | (J) Cemento | Dif. entre<br>medias (I-J) | p-valor |
|---------------|-------------|----------------------------|---------|
|               | KETAC MOLAR | 0.211                      | 0.999   |
|               | FUJI IX     | -0.592                     | 0.932   |
| IONOFIL MOLAR | EQUIA FIL   | -2.432                     | 0.002   |
|               | VITREMER    | -0.187                     | 1.000   |
|               | PMMA        | 0.960                      | 0.638   |
|               | FUJI IX     | -0.803                     | 0.790   |
| KETAC MOLAR   | EQUIA FIL   | -2.643                     | 0.001   |
| RETAC MOLAR   | VITREMER    | -0.399                     | 0.988   |
|               | PMMA        | 0.749                      | 0.835   |
|               | EQUIA FIL   | -1.840                     | 0.042   |
| FUJI IX       | VITREMER    | 0.405                      | 0.987   |
|               | PMMA        | 1.552                      | 0.134   |
| EQUIA FIL     | VITREMER    | 2.245                      | 0.006   |
| LQUIATIL      | PMMA        | 3.392                      | 0.000   |
| VITREMER      | PMMA        | 1.147                      | 0.442   |




Test de Tukey complementario (subconjuntos homogéneos)

| Material      | n  | para alfa = .05 |         |
|---------------|----|-----------------|---------|
| Material      | n  | 1               | 2       |
| PMMA          | 24 | 2.99654         |         |
| KETAC M.      | 24 | 3.74533         |         |
| IONOFIL M.    | 24 | 3.95663         |         |
| VITREMER      | 24 | 4.14388         |         |
| FUJI IX       | 24 | 4.54879         |         |
| EQUIA FIL     | 24 |                 | 6.38842 |
| Significación |    | 0.134           | 1.000   |

| Cemento   | Desgaste     | Media  | DE    | EE    | Mediana | Rango  | Mann-Whitney (p-valor) |
|-----------|--------------|--------|-------|-------|---------|--------|------------------------|
| IONOFIL   | Con desgaste | 1.683  | 0.439 | 0.090 | 1.631   | 1.899  | 0.007                  |
| MOLAR     | Sin desgaste | 1.957  | 0.655 | 0.134 | 2.015   | 2.580  | 0.087                  |
| KETAC     | Con desgaste | 1.218  | 0.363 | 0.074 | 1.245   | 1.437  | 0.327                  |
| MOLAR     | Sin desgaste | 1.518  | 0.777 | 0.159 | 1.285   | 2.966  | 0.327                  |
| FILLIN    | Con desgaste | 9.310  | 4.306 | 0.879 | 8.315   | 15.249 | 0.005                  |
| FUJI IX   | Sin desgaste | 9.274  | 3.423 | 0.699 | 8.856   | 12.677 | 0.805                  |
|           | Con desgaste | 2.996  | 2.990 | 0.610 | 1.924   | 10.709 | 0.044                  |
| EQUIA FIL | Sin desgaste | 3.043  | 1.573 | 0.321 | 2.572   | 6.583  | 0.044                  |
| VITDEMED  | Con desgaste | 7.231  | 5.825 | 1.189 | 5.706   | 22.169 | 0.055                  |
| VITREMER  | Sin desgaste | 7.281  | 2.072 | 0.423 | 6.864   | 8.019  | 0.055                  |
| DNANAA    | Con desgaste | 3.522  | 0.889 | 0.182 | 3.529   | 3.084  | 0.000                  |
| PMMA      | Sin desgaste | 17.140 | 7.409 | 1.512 | 16.176  | 30.958 | 0.000                  |

Tabla VI.48: Efecto del desgaste sobre el parámetro Rt (µm).



**Figura VI.22:** Rt según cemento y desgaste. Diagrama de Cajas. Las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.



| Cemento   | Desgaste     | Media | DE    | EE    | Mediana | Rango  | Mann-Whitney (p-valor) |
|-----------|--------------|-------|-------|-------|---------|--------|------------------------|
| IONOFIL   | Con desgaste | 0.821 | 0.238 | 0.049 | 0.797   | 1.174  | 0.035                  |
| MOLAR     | Sin desgaste | 1.039 | 0.388 | 0.079 | 1.053   | 1.388  | 0.035                  |
| KETAC     | Con desgaste | 0.583 | 0.203 | 0.041 | 0.594   | 1.010  | 0.177                  |
| MOLAR     | Sin desgaste | 0.689 | 0.248 | 0.051 | 0.661   | 0.872  | 0.177                  |
| FUJI IX   | Con desgaste | 3.647 | 2.650 | 0.541 | 2.801   | 12.699 | 0.103                  |
| FUJIIX    | Sin desgaste | 4.127 | 1.794 | 0.366 | 3.959   | 5.760  | 0.103                  |
| EQUIA FIL | Con desgaste | 1.300 | 0.937 | 0.191 | 0.969   | 3.940  | 0.006                  |
| EQUIA FIL | Sin desgaste | 1.608 | 0.710 | 0.145 | 1.458   | 3.533  | 0.000                  |
| VITREMER  | Con desgaste | 3.182 | 1.939 | 0.396 | 2.431   | 7.059  | 0.055                  |
| VIIKEWEK  | Sin desgaste | 3.594 | 1.138 | 0.232 | 3.286   | 3.933  | 0.055                  |
| PMMA      | Con desgaste | 1.561 | 0.416 | 0.085 | 1.515   | 1.647  |                        |
| FIVIIVIA  | Sin desgaste | 7.852 | 2.835 | 0.579 | 7.056   | 10.594 | 0.000                  |

Tabla VI.49: Efecto del desgaste sobre el parámetro Rp (µm).

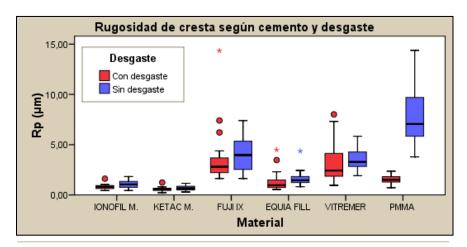



Figura VI.23: Rp según cemento y desgaste

| Cemento   | Desgaste     | Media | DE    | EE    | Mediana | Rango  | Mann-Whitney<br>(p-valor) |
|-----------|--------------|-------|-------|-------|---------|--------|---------------------------|
| IONOFIL   | Con desgaste | 0.862 | 0.308 | 0.063 | 0.842   | 1.495  | 0.757                     |
| MOLAR     | Sin desgaste | 0.918 | 0.423 | 0.086 | 0.855   | 1.989  | 0.757                     |
| KETAC     | Con desgaste | 0.635 | 0.216 | 0.044 | 0.675   | 0.764  | 0.829                     |
| MOLAR     | Sin desgaste | 0.829 | 0.722 | 0.147 | 0.617   | 3.077  | 0.029                     |
| FUJI IX   | Con desgaste | 5.664 | 2.942 | 0.601 | 4.766   | 11.018 | 0.707                     |
| FUJI IX   | Sin desgaste | 5.147 | 2.207 | 0.450 | 4.692   | 7.770  | 0.707                     |
|           | Con desgaste | 1.695 | 2.148 | 0.438 | 0.823   | 7.932  | 0.132                     |
| EQUIA FIL | Sin desgaste | 1.435 | 1.196 | 0.244 | 0.997   | 5.610  | 0.132                     |
| VITREMER  | Con desgaste | 4.049 | 4.173 | 0.852 | 3.036   | 15.414 | 0.420                     |
| VIIKEWEK  | Sin desgaste | 3.687 | 1.510 | 0.308 | 3.541   | 6.919  | 0.138                     |
| DMMA      | Con desgaste | 1.961 | 0.624 | 0.127 | 1.978   | 2.423  | 0.000                     |
| PMMA      | Sin desgaste | 9.289 | 6.340 | 1.294 | 7.276   | 28.170 | 0.000                     |

Tabla VI.50: Efecto del desgaste sobre el parámetro Rv ( $\mu m$ ).



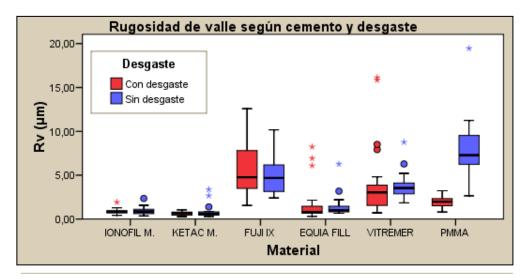



Figura VI.24: Rv según cemento y desgaste.

| Marca             | Desgaste     | Media | DE    | n  |
|-------------------|--------------|-------|-------|----|
| IONOFIL           | Con desgaste | 0,230 | 0,059 | 24 |
| MOLAR             | Sin desgaste | 0,266 | 0,063 | 24 |
| WOLAR             | Total        | 0,248 | 0,063 | 48 |
| KETAO             | Con desgaste | 0,167 | 0,056 | 24 |
| KETAC<br>MOLAR    | Sin desgaste | 0,194 | 0,087 | 24 |
| WOLAR             | Total        | 0,181 | 0,074 | 48 |
|                   | Con desgaste | 1,372 | 0,593 | 24 |
| FUJI IX           | Sin desgaste | 1,428 | 0,606 | 24 |
|                   | Total        | 1,400 | 0,594 | 48 |
| FOLUA             | Con desgaste | 0,293 | 0,211 | 24 |
| EQUIA<br>FIL      | Sin desgaste | 0,388 | 0,135 | 24 |
| 112               | Total        | 0,341 | 0,182 | 48 |
|                   | Con desgaste | 1,062 | 0,836 | 24 |
| VITREMER          | Sin desgaste | 1,106 | 0,253 | 24 |
|                   | Total        | 1,084 | 0,612 | 48 |
| CONTROL           | Con desgaste | 0,581 | 0,164 | 24 |
| CONTROL<br>(PMMA) | Sin desgaste | 2,684 | 0,724 | 24 |
| (I IVIIVIA)       | Total        | 1,632 | 1,183 | 48 |

**Tabla VI.51:** Rugosidad media aritmética (Ra): Media, Desviación estándar (DE) y recuento de casos (n) según marca y desgaste. Valores expresados en μm.



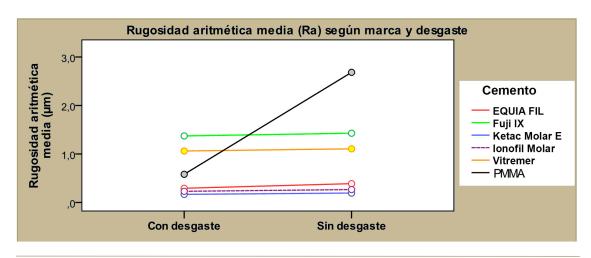



Figura VI.25: Rugosidad aritmética media según cemento y desgaste. Medias marginales estimadas.

### Contraste Estadístico

Para evaluar la influencia de los factores sobre la rugosidad aritmética media, se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de dos vías (Tabla VI.52).

Variable dependiente: Rugosidad media aritmética (Ra)

Factores: Cemento o Marca; Desgaste

| Origen<br>(fuente del efecto) | SC tipo III                                       | gl  | МС    | F       | Sig.<br>(p-valor) |  |  |  |
|-------------------------------|---------------------------------------------------|-----|-------|---------|-------------------|--|--|--|
| Cemento                       | 97,52                                             | 5   | 19,50 | 110,744 | <<0,001           |  |  |  |
| Desgaste                      | 11,16                                             | 1   | 11,16 | 63,372  | <0,001            |  |  |  |
| Cemento * Desgaste            | 42,10                                             | 5   | 8,42  | 47,811  | <0,001            |  |  |  |
| Error                         | 48,61                                             | 276 | 0,18  |         |                   |  |  |  |
| R cuadrado = 0.756 (R cuad    | R cuadrado = 0.756 (R cuadrado corregida = 0.747) |     |       |         |                   |  |  |  |

**Tabla VI.52:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (Ra), según los diferentes factores y la interacción entre ellos, que se interpretan como las





fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (0,18).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor cemento fue el que provocó mayor efecto sobre los valores de rugosidad aritmética media (F=110,744; p<<0,001). El factor desgaste también resultó significativo (F=63,372; p<0,001).

También resultó significativa la interacción entre factores (F=47,811; p<0,001), resultado que puede atribuirse exclusivamente a lo acontecido con el grupo control (PMMA), en el cual el factor desgaste influyó muy significativamente en la superficie resinosa, disminuyendo notablemente la rugosidad aritmética media (p<<0,001). En los cementos FIX y V también se observó un grado de influencia significativo del factor desgaste, con niveles de rugosidad media mayores en casos sin desgaste (p<0.05), pero mucho menos marcado que el grupo control. En los demás cementos, no resultaron significativas las diferencias de Ra con y sin desgaste (p>0.05).

El determinante R<sup>2</sup> evidenció que el ajuste del modelo planteado (75%), fue muy aceptable estadísticamente, siendo el porcentaje restante atribuible al error experimental (25%), que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre cementos:

## Contraste múltiple entre cementos:

| Tiomno         | _  | Subconjunto |       |       |  |  |
|----------------|----|-------------|-------|-------|--|--|
| Tiempo         | n  | 1           | 2     | 3     |  |  |
| KETAC MOLAR    | 48 | 0,181       |       |       |  |  |
| IONOFIL MOLAR  | 48 | 0,248       |       |       |  |  |
| EQUIA FIL      | 48 | 0,341       |       |       |  |  |
| VITREMER       | 48 |             | 1,084 |       |  |  |
| FUJI IX        | 48 |             |       | 1,400 |  |  |
| PMMA (Control) | 48 |             |       | 1,632 |  |  |
| Sig. (p-valor) |    | 0,426       | 1,000 | 0,076 |  |  |

**Tabla VI.53**: Cuadro resumido de la prueba DHS de Tukey para el factor MARCA. Se muestran las medias de Rugosidad aritmética media de los cementos en subconjuntos homogéneos.





Los cementos con menor rugosidad media aritmética fueron KM, IM y EF, ellos conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,426; p>0,05). El cemento V registró valores intermedios y se diferenció significativamente tanto de los cementos con menor Ra (primer subconjunto homogéneo), como de los cementos FIX y PMMA, los cuales conformaron un tercer subconjunto homogéneo con valores elevados de rugosidad aritmética media (Tabla VI.53).

| Marca            | Desgaste     | Media | DE    | n  |
|------------------|--------------|-------|-------|----|
| IONOFIL          | Con desgaste | 1,155 | 0,282 | 24 |
| IONOFIL<br>MOLAR | Sin desgaste | 1,163 | 0,367 | 24 |
| WOLAR            | Total        | 1,159 | 0,323 | 48 |
| KETAC            | Con desgaste | 0,820 | 0,276 | 24 |
| KETAC<br>MOLAR   | Sin desgaste | 0,835 | 0,297 | 24 |
| WOLAR            | Total        | 0,827 | 0,284 | 48 |
|                  | Con desgaste | 4,710 | 1,520 | 24 |
| FUJI IX          | Sin desgaste | 5,310 | 1,637 | 24 |
|                  | Total        | 5,010 | 1,592 | 48 |
| FOLUA            | Con desgaste | 1,336 | 0,798 | 24 |
| EQUIA<br>FIL     | Sin desgaste | 1,775 | 0,575 | 24 |
| I IL             | Total        | 1,556 | 0,723 | 48 |
|                  | Con desgaste | 3,546 | 1,909 | 24 |
| VITREMER         | Sin desgaste | 4,368 | 0,855 | 24 |
|                  | Total        | 3,957 | 1,521 | 48 |
| CONTROL          | Con desgaste | 1,963 | 0,327 | 24 |
| (PMMA)           | Sin desgaste | 7,872 | 3,184 | 24 |
| (1 IVIIVIA)      | Total        | 4,918 | 3,732 | 48 |

**Tabla VI.54**: Rugosidad parcial (Rz): Media, Desviación estándar (DE) y recuento de casos (n) según marca y desgaste. Valores expresados en μm.

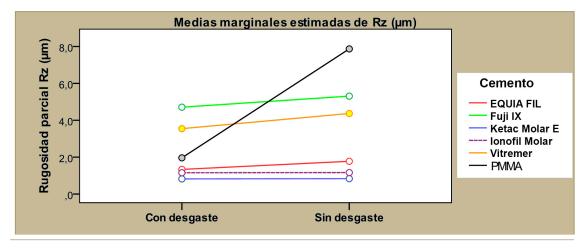



Figura VI.26: Rugosidad parcial según cemento y desgaste. Medias marginales estimadas.





### **Contraste Estadístico**

Para evaluar la influencia de los factores sobre la Rz, se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de dos vías (Tabla VI.55).

Variable dependiente: Rugosidad parcial (Rz)

Factores: Grupo o Material; Desgaste

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС     | F       | Sig.<br>(p-valor) |  |  |
|---------------------------------------------------|-------------|-----|--------|---------|-------------------|--|--|
| Cemento                                           | 901,26      | 5   | 180,25 | 103,198 | <<0,001           |  |  |
| Desgaste                                          | 121,48      | 1   | 121,48 | 69,548  | <0,001            |  |  |
| Cemento * Desgaste                                | 312,28      | 5   | 62,46  | 35,757  | <0,001            |  |  |
| Error                                             | 482,08      | 276 | 1,75   |         |                   |  |  |
| R cuadrado = 0.735 (R cuadrado corregida = 0.724) |             |     |        |         |                   |  |  |

**Tabla VI.55:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (Rz), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (1,75).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor marca fue el que provocó mayor efecto sobre los valores de rugosidad parcial (F=103,198; p<<0,001). El factor desgaste también resultó significativo (F=69,548; p<0,001).

También resultó significativa la interacción entre factores (F=35,757; p<0,001), resultado que nuevamente puede atribuirse casi con exclusividad a lo acontecido con el grupo control (PMMA), en el cual el factor desgaste influyó muy significativamente sobre los valores de Rz, disminuyendo notablemente la rugosidad parcial al





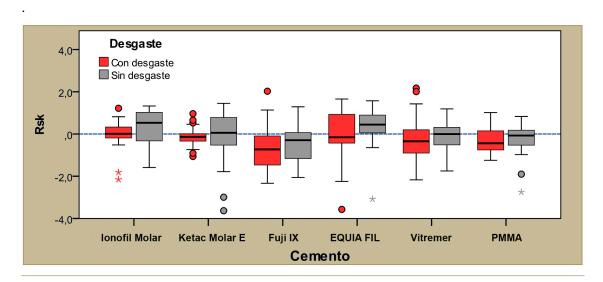
desgastar la superficie (p<<0,001). En los cementos FIX y V también se observó un grado de influencia significativo del factor desgaste, con niveles de rugosidad media mayores en casos sin desgaste (p<0,05), pero mucho menos marcado que el grupo control. En los demás cementos, no resultaron significativas las diferencias de Rz con y sin desgaste (p>0,05).

El determinante R<sup>2</sup> evidenció que el ajuste del modelo planteado (72,4%), fue muy aceptable estadísticamente, siendo el porcentaje restante atribuible al error experimental (27,6%), que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre cementos:

## Contraste múltiple entre cementos:

| Tiemne         | _     | ;     | Subconjunto | )     |
|----------------|-------|-------|-------------|-------|
| Tiempo         | n     | 1     | 2           | 3     |
| KETAC MOLAR    | 48    | 0,827 |             |       |
| IONOFIL MOLAR  | 48    | 1,159 |             |       |
| EQUIA FIL      | 48    | 1,556 |             |       |
| VITREMER       | 48    |       | 3,957       |       |
| PMMA (Control) | 48    |       |             | 4,918 |
| FUJI IX        | 48    |       |             | 5,010 |
| Sig. (p-valor) | 0,078 | 1,000 | 0,999       |       |


**Tabla VI.56:** Cuadro resumido de la prueba DHS de Tukey para el factor MATERIAL. Se muestran las medias de Rugosidad parcial de los cementos en subconjuntos homogéneos.

Los cementos con menor rugosidad media parcial (Rz) fueron: KM, IM y EF, ellos conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,078; p>0,05). El cemento V registró valores intermedios y se diferenció significativamente tanto de los cementos con menor Rz (primer subconjunto homogéneo), como de los cementos FIX y PMMA, los cuales conformaron un tercer subconjunto homogéneo con valores elevados de rugosidad parcial. (Tabla VI.56)



| Marca             | Desgaste     | Media  | DE    | n  |
|-------------------|--------------|--------|-------|----|
| IONOFIL           | Con desgaste | -0,025 | 0,740 | 24 |
| IONOFIL<br>MOLAR  | Sin desgaste | 0,281  | 0,837 | 24 |
| WOLAR             | Total        | 0,128  | 0,797 | 48 |
| LETAG             | Con desgaste | -0,123 | 0,477 | 24 |
| KETAC<br>MOLAR    | Sin desgaste | -0,170 | 1,281 | 24 |
| WOLAR             | Total        | -0,147 | 0,956 | 48 |
|                   | Con desgaste | -0,649 | 1,051 | 24 |
| FUJI IX           | Sin desgaste | -0,439 | 0,873 | 24 |
|                   | Total        | -0,544 | 0,961 | 48 |
| FOLUA             | Con desgaste | -0,023 | 1,236 | 24 |
| EQUIA<br>FIL      | Sin desgaste | 0,362  | 0,932 | 24 |
| 112               | Total        | 0,170  | 1,100 | 48 |
|                   | Con desgaste | -0,267 | 1,117 | 24 |
| VITREMER          | Sin desgaste | -0,088 | 0,684 | 24 |
|                   | Total        | -0,178 | 0,921 | 48 |
| 00117701          | Con desgaste | -0,305 | 0,647 | 24 |
| CONTROL<br>(PMMA) | Sin desgaste | -0,248 | 0,805 | 24 |
| (FIVIIVIA)        | Total        | -0,277 | 0,723 | 48 |

**Tabla VI.57:** Sesgo o asimetría (Rsk): Media, Desviación estándar (DE) y recuento de casos (n) según cemento y desgaste. Valores comprendidos entre -1 y 1.



**Figura VI.27:** Parámetro de asimetría (Rsk) según cemento y desgaste. Las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.





### **Contraste Estadístico**

Para evaluar la influencia de los factores sobre el parámetro de asimetría Rsk, se analizaron los datos aplicando un modelo lineal univariante o ANOVA de dos vías (Tabla VI.58).

Variable dependiente: Sesgo o asimetría (Rsk)

Factores: Material o Cemento; Desgaste

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС   | F     | Sig.<br>(p-valor) |  |  |
|---------------------------------------------------|-------------|-----|------|-------|-------------------|--|--|
| Cemento                                           | 16,84       | 5   | 3,37 | 3,978 | 0,002             |  |  |
| Desgaste                                          | 2,37        | 1   | 2,37 | 2,804 | 0,095             |  |  |
| Cemento * Desgaste                                | 1,50        | 5   | 0,30 | 0,355 | 0,879             |  |  |
| Error                                             | 233,71      | 276 | 0,85 |       |                   |  |  |
| R cuadrado = 0,081 (R cuadrado corregida = 0,045) |             |     |      |       |                   |  |  |

**Tabla VI.58:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (Rsk), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (0,85).

De acuerdo a los resultados del análisis, sólo el factor cemento resultó significativo respecto a los valores de asimetría (F=3,978; p=0,002). El factor desgaste no resultó significativo (F=2,804; p>0,05), aunque la tendencia general, observada en la mayoría de los cementos fue de disminución del parámetro Rsk con el desgaste, algo esperado en procesos de pulidos.

La interacción entre factores no resultó significativa (F=0,355; p>0,05).

El determinante R<sup>2</sup> evidenció que el ajuste del modelo planteado fue muy pobre, pudiendo explicar sólo el 4,5% de la variabilidad del modelo. el porcentaje restante atribuible al error experimental (95,5%), que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental. Se complementó el análisis mediante pruebas de comparaciones múltiples entre cementos:





# Contraste múltiple entre cementos:

| Cemento        | _  | Subco  | njunto |
|----------------|----|--------|--------|
| Cemento        | n  | 1      | 2      |
| FUJI IX        | 48 | -0,544 |        |
| PMMA           | 48 | -0,277 | -0,277 |
| VITREMER       | 48 | -0,178 | -0,178 |
| KETAC MOLAR    | 48 | -0,147 | -0,147 |
| IONOFIL MOLAR  | 48 |        | 0,128  |
| EQUIA FIL      | 48 |        | 0,170  |
| Sig. (p-valor) |    | 0,283  | 0,168  |

**Tabla VI.59**: Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de valores Rsk de los cementos en subconjuntos homogéneos.

Se conformaron dos subconjuntos homogéneos (Tabla VI.59). Sólo se constataron diferencias significativas entre el cemento FIX y los grupos IM y EF, estos últimos registraron medias de Rsk positivas.

| Marca             | Desgaste     | Media | DE    | n  |
|-------------------|--------------|-------|-------|----|
| IONOFIL           | Con desgaste | 3,957 | 1,321 | 24 |
| IONOFIL<br>MOLAR  | Sin desgaste | 4,212 | 1,557 | 24 |
| WOLAR             | Total        | 4,084 | 1,434 | 48 |
| KETAO             | Con desgaste | 3,745 | 0,847 | 24 |
| KETAC<br>MOLAR    | Sin desgaste | 5,032 | 3,346 | 24 |
| WOLATE            | Total        | 4,389 | 2,500 | 48 |
|                   | Con desgaste | 4,549 | 2,414 | 24 |
| FUJI IX           | Sin desgaste | 4,175 | 2,403 | 24 |
|                   | Total        | 4,362 | 2,391 | 48 |
| FOLUA             | Con desgaste | 6,388 | 4,016 | 24 |
| EQUIA<br>FIL      | Sin desgaste | 4,575 | 2,665 | 24 |
| 1 12              | Total        | 5,482 | 3,494 | 48 |
|                   | Con desgaste | 4,144 | 1,783 | 24 |
| VITREMER          | Sin desgaste | 3,566 | 2,099 | 24 |
|                   | Total        | 3,855 | 1,949 | 48 |
| CONTROL           | Con desgaste | 2,997 | 0,579 | 24 |
| CONTROL<br>(PMMA) | Sin desgaste | 3,562 | 2,457 | 24 |
| (I IVIIVIA)       | Total        | 3,279 | 1,789 | 48 |

**Tabla VI.59:** Curtosis (Rku): Media, Desviación estándar (DE) y recuento de casos (n) según cemento y desgaste. Valores comprendidos entre -1 y 1.



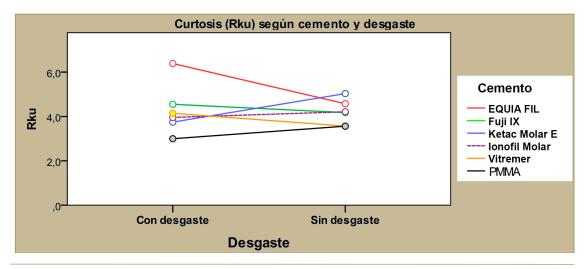



Figura VI.28: Curtosis (Rku) según cemento y desgaste. Diagrama de medias.,

### **Contraste Estadístico**

Para evaluar la influencia de los factores sobre el parámetro de Curtosis (Rku), se analizaron los datos aplicando un modelo lineal univariante o ANOVA de dos vías (Tabla VI.60).

Variable dependiente: Sesgo o asimetría (Rku)

Factores: Marca o Cemento; Desgaste

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС    | F     | Sig.<br>(p-valor) |  |  |
|---------------------------------------------------|-------------|-----|-------|-------|-------------------|--|--|
| Cemento                                           | 128,38      | 5   | 25,68 | 4,750 | <0,001            |  |  |
| Desgaste                                          | 0,87        | 1   | 0,87  | 0,160 | 0,689             |  |  |
| Cemento * Desgaste                                | 68,78       | 5   | 13,76 | 2,545 | 0,028             |  |  |
| Error                                             | 1492,01     | 276 | 5,41  |       |                   |  |  |
| R cuadrado = 0,117 (R cuadrado corregida = 0,082) |             |     |       |       |                   |  |  |

**Tabla VI.60:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (Rku), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los





valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (5,41).

De acuerdo a los resultados del análisis, sólo el factor cemento resultó significativo respecto a los valores de Curtosis (F=4,750; p<0,001), en tanto que el factor desgaste no fue una fuente significativa del efecto (F=0,160; p>0,05).

La interacción entre factores resultó significativa (F=2,545; p=0,028), en algunos cementos el efecto por desgaste se manifestó y en otro no.

El determinante R<sup>2</sup> evidenció que el ajuste del modelo planteado fue muy pobre, pudiendo explicar sólo el 8,2% de la variabilidad del modelo. El porcentaje restante atribuible al error experimental (91,8%), que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre cementos:

### Contraste múltiple entre cementos:

| Cemento        | _  | Subco | njunto |
|----------------|----|-------|--------|
| Cemento        | n  | 1     | 2      |
| PMMA           | 48 | 3,279 |        |
| VITREMER       | 48 | 3,855 |        |
| IONOFIL M.     | 48 | 4,084 |        |
| FUJI IX        | 48 | 4,362 | 4,362  |
| KETAC M.       | 48 | 4,389 | 4,389  |
| EQUIA FIL      | 48 |       | 5,482  |
| Sig. (p-valor) |    | 0,182 | 0,175  |

**Tabla VI,61:** Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de valores Rku de los cementos en subconjuntos homogéneos.

Se conformaron dos subconjuntos homogéneos (Tabla VI.61). Sólo se constataron diferencias significativas entre el cemento EF y los cementos PMMA, V e IM, siendo el grupo control el que registró los valores más bajos de Curtosis.



| Marca            | Desgaste     | Media | DE   | n  |
|------------------|--------------|-------|------|----|
| IONOFIL          | Con desgaste | 1,68  | 0,44 | 24 |
| IONOFIL<br>MOLAR | Sin desgaste | 1,96  | 0,65 | 24 |
| WOLAR            | Total        | 1,82  | 0,57 | 48 |
| LETAO            | Con desgaste | 1,22  | 0,36 | 24 |
| KETAC<br>MOLAR   | Sin desgaste | 1,52  | 0,78 | 24 |
| WOLAR            | Total        | 1,37  | 0,62 | 48 |
|                  | Con desgaste | 9,31  | 4,31 | 24 |
| FUJI IX          | Sin desgaste | 9,27  | 3,42 | 24 |
|                  | Total        | 9,29  | 3,85 | 48 |
| E01114           | Con desgaste | 2,99  | 2,99 | 24 |
| EQUIA<br>FIL     | Sin desgaste | 3,04  | 1,57 | 24 |
| 1112             | Total        | 3,02  | 2,36 | 48 |
|                  | Con desgaste | 7,23  | 5,83 | 24 |
| VITREMER         | Sin desgaste | 7,28  | 2,07 | 24 |
|                  | Total        | 7,26  | 4,33 | 48 |
|                  | Con desgaste | 3,52  | 0,89 | 24 |
| CONTROL          | Sin desgaste | 17,14 | 7,41 | 24 |
| (PMMA)           | Total        | 10,33 | 8,64 | 48 |

**Tabla VI.62:** Rugosidad total (Rt): Media, Desviación estándar (DE) y recuento de casos (n) según cemento y desgaste. Valores expresados en  $\mu$ m.

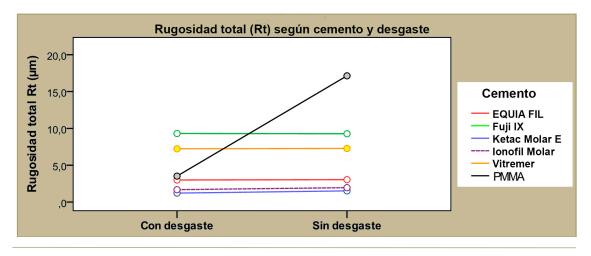



Figura VI.29: Rugosidad total (Rt) según cemento y desgaste. Diagrama de medias.





#### Contraste Estadístico

Para evaluar la influencia de los factores sobre la rugosidad total (Rt) de los cementos, se analizaron los datos aplicando un modelo lineal univariante o ANOVA de dos vías (Tabla VI. 63).

<u>Variable dependiente</u>: Rugosidad total (Rt) Factores: Material o Cemento; Desgaste

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС    | F      | Sig.<br>(p-valor) |  |  |
|---------------------------------------------------|-------------|-----|-------|--------|-------------------|--|--|
| Cemento                                           | 3723,3      | 5   | 744,7 | 65,255 | <<0,001           |  |  |
| Desgaste                                          | 406,3       | 1   | 406,3 | 35,607 | <0,001            |  |  |
| Cemento * Desgaste                                | 1821,3      | 5   | 364,3 | 31,921 | <0,001            |  |  |
| Error                                             | 3149,6      | 276 | 11,4  |        |                   |  |  |
| R cuadrado = 0.654 (R cuadrado corregida = 0.640) |             |     |       |        |                   |  |  |

**Tabla VI.63**: Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (Rt), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (11,4).

De acuerdo a los resultados del análisis, ambos factores resultaron significativos respecto a los valores de aspereza o rugosidad total: pero el de mayor relevancia o significación fue el factor cemento (F=65,255; p<<0,001), en tanto que el factor desgaste lo fue en menor grado (F=35,607; p<0,001).

La interacción entre factores resultó significativa (F=31,921; p<0,001), en algunos cementos la influencia del desgaste sobre el parámetro Rt fue muy notoria (grupo control), en otros moderada (Vitremer y Equia Fil), mientras que en los demás no se evidenciaron cambios significativos.

El determinante R<sup>2</sup> reveló que el ajuste del modelo de regresión fue aceptable, pudiendo explicar un 64,0% de la variabilidad del modelo. El porcentaje restante





atribuible al error experimental (36,0%), constituyó la fuente de variación que agrupó a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre cementos:

## Contraste múltiple entre cementos:

| Tiemne         | _  | Subconjunto |       |       |
|----------------|----|-------------|-------|-------|
| Tiempo         | n  | 1           | 2     | 3     |
| KETAC M.       | 48 | 1,37        |       |       |
| IONOFIL M.     | 48 | 1,82        |       |       |
| EQUIA FIL      | 48 | 3,02        |       |       |
| VITREMER       | 48 |             | 7,26  |       |
| FUJI IX        | 48 |             |       | 9,29  |
| PMMA           | 48 |             |       | 10,33 |
| Sig. (p-valor) |    | 0,161       | 1,000 | 0,660 |

**Tabla VI.64:** Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de valores de Rt de los cementos en subconjuntos homogéneos.

Se conformaron tres subconjuntos homogéneos (Tabla VI.64), el primero conformado por los cementos más "lisos": KM, IM y EF, El cemento V, que registró valores de rugosidad total intermedios (7,26µm de media), se diferenció de los demás cementos, tanto los del subconjunto antes mencionado como del subconjunto homogéneo de valores de Rt elevados: FIX y PMMA.



### MICRODUREZA VICKERS

En las Tablas VI.65.a, VI.65.b y en la Figura VI.30 observamos la HV según la marca de cada material. En términos generales EF (1.A con y sin coat), registró los valores más altos de dureza (104.3HV), seguido por el grupo control o Rc (98.5HV), diferenciándose estadísticamente del resto. FIX y KM tuvieron medias cercanas a 90HV, mientras que los grupos que presentaron menor dureza fueron IM y V o subcontrol con 71 y 69.8HV de media respectivamente.

En relación a la HV según los grupos, el Análisis de Varianza ANOVA (F= 57.035; p=< 0,001) y el Test de Tukey Kramer HSD (p<0,05) mostraron diferencia estadísticamente significativa entre ellos (Tablas VI.66.a y VI.66.b) (Figura VI.31), registrándose los valores más altos para los grupos 1.A (110.6HV) y 3.C (104.2HV), seguidos por Rc, 1.A s/coat y 3.B con medias de 98.5, 98 y 95.2HV respectivamente. Los grupos 2.A, 2.B, 2.C y 2.D registraron valores similares con un rango de 88.2 a 92HV. Los grupos 4.A, 4.B, 4.C y 4.D presentaron medias muy parecidas y cercanas al grupo sub-control, con valores cercanos a 70HV.

Cuando se compararon los subgrupos dentro de cada grupo para evaluar el efecto del material de recubrimiento sobre la HV, se registraron los siguientes resultados:

- El grupo 1.A mostró valores de 110.6HV y el 1.A s/coat 98HV, resultando significativas las diferencias entre ambos (p<0.05). (Tabla VI.67).
- 2 Se contrastaron todos los subgrupos 2 mediante test de ANOVA de una vía, resultando no significativas las diferencias entre ellos (p>0.05). (Tabla VI.68).
- En relación a los subgrupos 3, test de ANOVA de una vía, mostró significativas las diferencias entre ellos (p<0.05). El grupo 3.B y 3.C registraron los valores más elevados de HV, sin diferencia significativa entre ellos; y los grupos 3.A y 3.D mostraron la HV mas baja del grupo sin diferencias entre ellos pero si con los anteriores. (Tabla VI.69).
- 4 Se contrastaron todos los subgrupos 4 mediante test de ANOVA de una vía, resultando no significativas las diferencias entre ellos (p>0.05) (Tabla VI.70).

Los resultados del segundo ensayo de dureza Vickers, en donde se colocó el material cobertor luego del pulido, indicaron valores muy inferiores de HV con respecto a los del primer análisis de microdureza (Tabla VI.71).



|      | Grupo Gral.       | n  | Media | Desv. Std. | Mediana | Rango |
|------|-------------------|----|-------|------------|---------|-------|
| 1    | EQUIA FIL         | 10 | 104.3 | 8.2        | 104.5   | 24.0  |
| 2    | FUJI IX           | 20 | 89.7  | 3.5        | 89.0    | 11.0  |
| 3    | KETAC<br>MOLAR E. | 20 | 91.5  | 11.2       | 89.0    | 39.0  |
| 4    | IONOFIL<br>MOLAR  | 20 | 71.1  | 2.6        | 71.0    | 9.0   |
| 5    | VITREMER          | 10 | 69.8  | 3.2        | 71.0    | 9.0   |
| Rc ( | (Control)         | 10 | 98.5  | 2.2        | 99.0    | 8.0   |

Tabla VI.65.a: Dureza (HV) según Marca del material

| Crupo Crol    | Subconjunto |       |       |        |  |  |
|---------------|-------------|-------|-------|--------|--|--|
| Grupo Gral.   | 1           | 2     | 3     | 4      |  |  |
| Vitremer      | 69.80       |       |       |        |  |  |
| Ionofil Molar | 71.05       |       |       |        |  |  |
| Fuji IX       |             | 89.65 |       |        |  |  |
| Ketac Molar   |             | 91.45 | 91.45 |        |  |  |
| Rc            |             |       | 98.50 | 98.50  |  |  |
| EQUIA FIL     |             |       |       | 104.30 |  |  |
| Significación | .996        | .978  | .061  | .193   |  |  |

Tabla VI. 65.b:DHS de Tukey (Dureza HV).

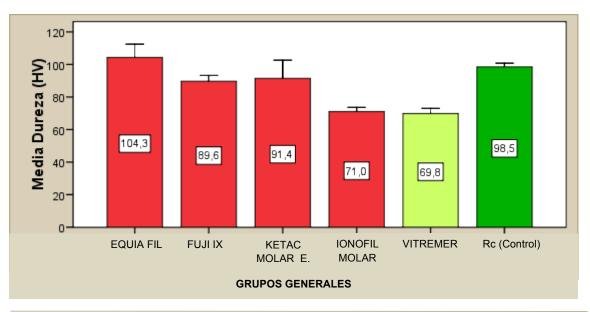



Figura VI.30: Dureza (HV) según Marca del material



| Marca            | Recubrimiento     | Media | DE    | n  |
|------------------|-------------------|-------|-------|----|
|                  | Sin recubrimiento | 98,0  | 4,12  | 5  |
| EQUIA FIL        | Con recubrimiento | 110,6 | 5,77  | 5  |
|                  | Total             | 104,3 | 8,15  | 10 |
|                  | Sin recubrimiento | 88,2  | 4,09  | 5  |
|                  | G-Coat Plus       | 89,2  | 4,09  | 5  |
| FUJI IX          | Single Bond       | 89,2  | 2,17  | 5  |
|                  | Vaselina sólida   | 92,0  | 3,39  | 5  |
|                  | Total             | 89,6  | 3,54  | 20 |
|                  | Sin recubrimiento | 80,0  | 4,36  | 5  |
| KETAO            | G-Coat Plus       | 95,2  | 10,64 | 5  |
| KETAC<br>MOLAR   | Single Bond       | 104,2 | 5,40  | 5  |
| WOLAR            | Vaselina sólida   | 86,4  | 3,65  | 5  |
|                  | Total             | 91,5  | 11,16 | 20 |
|                  | Sin recubrimiento | 70,2  | 2,77  | 5  |
| IONOFIL          | G-Coat Plus       | 70,6  | 2,79  | 5  |
| IONOFIL<br>MOLAR | Single Bond       | 70,6  | 2,07  | 5  |
| WOLAR            | Vaselina sólida   | 72,8  | 2,49  | 5  |
|                  | Total             | 71,1  | 2,56  | 20 |
| VITREMER         | Sin recubrimiento | 69,8  | 3,16  | 10 |
| VIIKEWER         | Total             | 69,8  | 3,16  | 10 |
| CONTROL          | Sin recubrimiento | 98,5  | 2,22  | 10 |
| CONTROL          | Total             | 98,5  | 2,22  | 10 |

**Tabla VI.66.a**: Dureza (HV-500) según los grupos: Media, Desviación estándar (DE) y recuento de casos (n) según marca y tipo de recubrimiento. Valores expresados en unidades HV

| Grupo         |       |       |       | Subco | njunto |       |        | Subconjunto |  |  |  |  |
|---------------|-------|-------|-------|-------|--------|-------|--------|-------------|--|--|--|--|
| Grupo         | 1     | 2     | 3     | 4     | 5      | 6     | 7      | 8           |  |  |  |  |
| 5.A           | 69.80 |       |       |       |        |       |        |             |  |  |  |  |
| 4.A           | 70.20 |       |       |       |        |       |        |             |  |  |  |  |
| 4.B           | 70.60 |       |       |       |        |       |        |             |  |  |  |  |
| 4.C           | 70.60 |       |       |       |        |       |        |             |  |  |  |  |
| 4.D           | 72.80 | 72.80 |       |       |        |       |        |             |  |  |  |  |
| 3.A           |       | 80.00 | 80.00 |       |        |       |        |             |  |  |  |  |
| 3.D           |       |       | 86.40 | 86.40 |        |       |        |             |  |  |  |  |
| 2.A           |       |       | 88.20 | 88.20 |        |       |        |             |  |  |  |  |
| 2.B           |       |       | 89.20 | 89.20 | 89.20  |       |        |             |  |  |  |  |
| 2.C           |       |       | 89.20 | 89.20 | 89.20  |       |        |             |  |  |  |  |
| 2.D           |       |       |       | 92.00 | 92.00  | 92.00 |        |             |  |  |  |  |
| 3.B           |       |       |       | 95.20 | 95.20  | 95.20 | 95.20  |             |  |  |  |  |
| 1.A (s/coat)  |       |       |       |       | 98.00  | 98.00 | 98.00  |             |  |  |  |  |
| RC            |       |       |       |       |        | 98.50 | 98.50  |             |  |  |  |  |
| 3.C           |       |       |       |       |        |       | 104.20 | 104.20      |  |  |  |  |
| 1.A           |       |       |       |       |        |       |        | 110.60      |  |  |  |  |
| Significación | .999  | .311  | .052  | .078  | .078   | .485  | .064   | .512        |  |  |  |  |

Tabla VI.66.b: Dureza (HV). DHS de Tukey





Figura VI.31: Dureza (HV) según los grupos

| Sub Grupo | Media | Desv. | N  |
|-----------|-------|-------|----|
| 1.A       | 110.6 | 5.8   | 5  |
| 1.A       | 98.0  | 4.1   | 5  |
| Total     | 104.3 | 8.2   | 10 |

Tabla VI.67: Contraste de subgrupos 1: Dureza (HV)

| Sub Grupo | Media | Desv. | N  |
|-----------|-------|-------|----|
| 2.A       | 88.2  | 4.1   | 5  |
| 2.B       | 89.2  | 4.1   | 5  |
| 2.C       | 89.2  | 2.2   | 5  |
| 2.D       | 92.0  | 3.4   | 5  |
| Total     | 89.7  | 3.5   | 20 |

Tabla VI.68: Contraste de subgrupos 2: Dureza (HV)

| Sub Grupo | Media | Desv. | N  |
|-----------|-------|-------|----|
| 3.A       | 80.0  | 4.4   | 5  |
| 3.B       | 95.2  | 10.6  | 5  |
| 3.C       | 104.2 | 5.4   | 5  |
| 3.D       | 86.4  | 3.6   | 5  |
| Total     | 91.5  | 11.2  | 20 |

Tabla VI.69: Contraste de subgrupos 3: Dureza (HV)

DHS de Tukey. Grupo 3

| Grupo         | Subconjunto |       |        |  |  |
|---------------|-------------|-------|--------|--|--|
|               | 1           | 3     |        |  |  |
| 3.A           | 80.00       |       |        |  |  |
| 3.D           | 86.40       | 86.40 |        |  |  |
| 3.B           |             | 95.20 | 95.20  |  |  |
| 3.C           |             |       | 104.20 |  |  |
| Significación | .443        | .193  | .179   |  |  |



| Sub Grupo | Media | Desv. | N  |
|-----------|-------|-------|----|
| 4.A       | 70.2  | 2.8   | 5  |
| 4.B       | 70.6  | 2.8   | 5  |
| 4.C       | 70.6  | 2.1   | 5  |
| 4.D       | 72.8  | 2.5   | 5  |
| Total     |       | 2.6   | 20 |

Tabla VI.70: Contraste de subgrupo 4: Dureza (HV)

| Sub Grupo | n | Media 2° | Desv.  | Media 1° | Desv.  |
|-----------|---|----------|--------|----------|--------|
| 2.B       | 5 | 76.50    | 6.098  | 89.20    | 4.087  |
| 2.C       | 5 | 43.30    | 6.996  | 89.20    | 2.168  |
| 3.B       | 5 | 37.40    | 8,650  | 95.20    | 10.640 |
| 3.C       | 5 | 57.50    | 14.321 | 104.20   | 5.404  |
| 4.B       | 5 | 39.00    | 6.657  | 70.60    | 2.793  |
| 4.C       | 5 | 50.30    | 5.987  | 70.60    | 2.074  |
|           |   |          |        |          |        |

**Tabla VI.71:** Valores medios y desviación estándar del Segundo ensayo de HV (post colocación del material de recubrimiento (rojo) y la comparación con los valores del Primer Ensayo de HV. (Negro)

Con respecto a la HV de los grupos experimentales, FIX e IM no presentaron variaciones significativas en relación al tipo de recubrimiento, no así el cemento KM, el cual respondió de forma diferente según el recubrimiento utilizado, con mayores durezas al recubrirlo con Single Bond y G-Coat Plus. El grupo EF registró los valores medios más altos, particularmente dentro del subgrupo con recubrimiento. Los materiales V y grupo control (PMMA), sólo fueron evaluados sin recubrimiento, con valores medios de dureza igual a 69,8HV y 98,5HV respectivamente (Figura VI. 32). En el diagrama de cajas de la Figura VI.33, se muestran de manera esquemática las distribuciones de valores de dureza según el cemento y el tipo de recubrimiento.



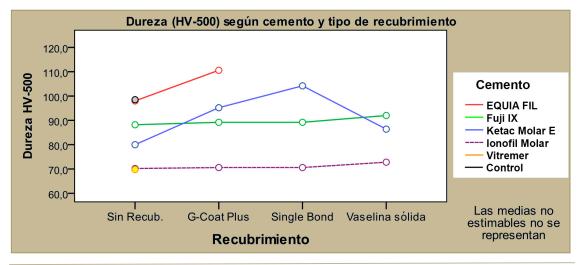
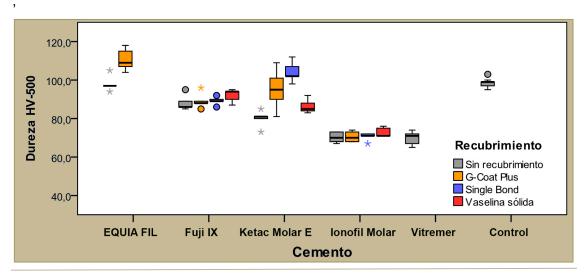




Figura VI.32: Dureza (HV-500) según marca y tipo de recubrimiento. Medias marginales estimadas.



**Figura VI.33:** Dureza (HV-500) según marca y tipo de recubrimiento. las líneas centrales de las cajas representan las medianas, las cajas corresponden al 50% de los datos centrales y las barras a los valores mínimo y máximo, sin considerar los valores atípicos, representados por círculos (°) ni los valores extremos (asteriscos \*) mostrados dentro de cada subgrupo.

#### **Contraste Estadístico**

Para evaluar la influencia de los factores sobre la Dureza Vickers (HV), se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de dos vías (Tabla VI.72).

Variable dependiente: Dureza (HV-500)

Factores: Grupo o Marca; Tipo de Recubrimiento



| Origen<br>(fuente del efecto)                     | SC tipo III | gl | MC     | F       | Sig.<br>(p-valor) |  |
|---------------------------------------------------|-------------|----|--------|---------|-------------------|--|
| Cemento                                           | 12872,9     | 5  | 2574,6 | 142,551 | <<0,001           |  |
| Recubrimiento                                     | 867,4       | 3  | 289,1  | 16,010  | <0,001            |  |
| Cemento * Recubrimiento                           | 1256,7      | 7  | 179,5  | 9,940   | <0,001            |  |
| Error 1336,5 74 18,1                              |             |    |        |         |                   |  |
| R cuadrado = 0,918 (R cuadrado corregida = 0,901) |             |    |        |         |                   |  |

**Tabla VI.72:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (HV), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (18,1).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor cemento o marca fue el que provocó mayor efecto sobre los valores de dureza superficial (F=142,551; p<0,001). El factor recubrimiento también resultó significativo (F=16,010; p<0,001).

La interacción entre factores resultó significativa (F=9,940; p<0,001), el agregado de una capa o recubrimiento (*coat*), generó respuestas disímiles en las diversas marcas tal como se mencionó con anterioridad.

El determinante R<sup>2</sup> indica el nivel de ajuste del modelo planteado, que en este caso fue del 90%, lo cual es un valor muy aceptable desde el punto de vista estadístico, siendo el porcentaje restante atribuible al error experimental (10%), que constituye la fuente de variación que aglutina a todos los componentes no controlados dentro del modelo de clasificación experimental.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores marca y recubrimiento:





#### Contraste múltiple entre marcas:

| Tiomno         |    |       | Subco | njunto |        |
|----------------|----|-------|-------|--------|--------|
| Tiempo         | n  | 1     | 2     | 3      | 4      |
| VITREMER       | 10 | 69,80 |       |        |        |
| IONOFIL MOLAR  | 20 | 71,05 |       |        |        |
| FUJI IX        | 20 |       | 89,65 |        |        |
| KETAK MOLAR    | 20 |       | 91,45 |        |        |
| Control        | 10 |       |       | 98,50  |        |
| EQUIA FIL      | 10 |       |       |        | 104,30 |
| Sig. (p-valor) |    | 0,973 | 0,882 | 1,000  | 1,000  |

**Tabla VI.73**: Cuadro resumido de la prueba DHS de Tukey para el factor MARCA. Se muestran las medias de dureza HV-500 de los grupos en subconjuntos homogéneos.

Los cementos V e IM conformaron un subconjunto homogéneo (sin diferencias significativas entre ellas: p=0,973; p>0,05), éstos dos cementos presentaron los valores más bajos de HV, y se diferenciaron significativamente del resto de los cementos. Los grupos FIX y KM, conformaron el segundo subconjunto homogéneo, ya que compartían características en sus distribuciones de valores y se diferenciaron de los demás cementos significativamente. El grupo Control, con una dureza media de 98.5HV presentó características únicas, al igual que el cemento EF, que registró el valor medio más alto de todos (104,3HV), estas dos marcas conformaron el tercer y cuarto subconjunto homogéneo (Tabla VI.73).

#### Contraste múltiple entre tipos de recubrimiento:

| Desubrimients     | _  | Subco | njunto |  |
|-------------------|----|-------|--------|--|
| Recubrimiento     | n  | 1     | 2      |  |
| Vaselina sólida   | 15 | 83,73 |        |  |
| Sin recubrimiento | 40 | 84,13 |        |  |
| Single Bond       | 15 |       | 88,00  |  |
| G-Coat Plus       | 20 |       | 91,40  |  |
| Sig. (p-valor)    |    | 0,992 | 0,072  |  |

**Tabla VI.74**: Cuadro resumido de la prueba DHS de Tukey para el factor RECUBRIMIENTO. Se muestran las medias de dureza HV-500 de los grupos en subconjuntos homogéneos.

Los cementos sin recubrimiento y aquellos cubiertos con vaselina sólida tuvieron distribuciones similares, con valores significativamente menores que los recubiertos con Single Bond y G-Coat Plus. Se conformaron dos subconjuntos homogéneos de acuerdo al esquema mostrado en la Tabla VI.74.



149

# PENETRACIÓN DE FLÚOR Y ESTRONCIO DEL CIV A LOS TEJIDOS ADYACENTES

Para el análisis de los datos se utilizó el **modelo lineal general**, el cual permite estudiar los efectos de un conjunto de variables o factores y a la vez evaluar si estos factores están relacionados entre sí.

#### Penetración de flúor

En la Tabla VI.75 observamos el valor relativo de F según el material y el tiempo. En términos generales los valores mas altos se registraron para EF, seguido de KM, FIX, IM y V (342,9; 318; 311,2; 217,9 y 138 respectivamente). En la etapa inicial los valores de F son bajos y similares en todos los grupos, pero en etapas posteriores se diferencian entre sí, registrando además un incremento en la cantidad de flúor detectada. (Figura VI.34). En términos generales, la concentración de flúor aumenta a los 40 días, continuando a los 90 días con similar comportamiento pero de forma más moderada. V registró los valores más bajos en las etapas 40 y 90 días. En orden ascendente le siguió el grupo IM, con valores por debajo de los grupos restantes. A los 90 días, el cemento EF registró las mayores concentraciones de flúor (Figura VI.35).

Para evaluar la influencia de los factores sobre los niveles de flúor, se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de cuatro vías (Tabla VI.76). El análisis de Varianza ANOVA y el test de Tukey Kramer HSD (Tabla VI.77) mostró que los materiales se diferenciaron significativamente entre si, EF fue quien alcanzó los mayores valores diferenciandose del resto.

En relación al tiempo (0, 40 y 90 días) las diferencias resultaron significativas (p<0,05) (Tabla VI.78).

En relación a la profundidad del trayecto medido (200μm) se individualizaron 3 zonas: superficial (0 a 60μm), media (70 a 130μm) y profunda (mayor a 130μm). Teniendo en cuenta dicha medición, las diferencias entre los primeros dos tramos del trayecto no resultaron significativas (p>0,05), pero los valores disminuyeron significativamente a mayor profundidad (p<0,05) (Tabla VI.79). En términos generales, las concentraciones fueron muy parejas dentro de cada grupo a lo largo de todo el trayecto evaluado, particularmente en las dos primeras etapas (0 y 40 días), y sólo a los 90 días se pudo apreciar alguna diferencia entre zonas, con





valores mayores en los primeros tramos (0-130µm) y menores a mayor profundidad (Figuras VI.36.a, VI.36.b y VI.36.c).

Con respecto a la zona de medición (G, M y D) de la presencia de F, el análisis de Varianza ANOVA y el test de Tukey Kramer HSD indicó que no hay diferencias significativas ente los grupos (p>0,05) (Tabla VI.80).

Flúor (F): Estadísticos descriptivos según MATERIAL y TIEMPO

| Marca     | Días    | Media | DE    | n   |
|-----------|---------|-------|-------|-----|
|           | 0 días  | 94,6  | 43,4  | 67  |
| EQUIA FIL | 40 días | 362,9 | 88,4  | 63  |
| EQUIATIL  | 90 días | 603,4 | 129,7 | 59  |
|           | Total   | 342,9 | 227,6 | 189 |
|           | 0 días  | 64,5  | 43,4  | 70  |
| FUJI IX   | 40 días | 415,8 | 57,2  | 57  |
| FUJI IX   | 90 días | 506,3 | 69,9  | 58  |
|           | Total   | 311,2 | 204,3 | 185 |
|           | 0 días  | 101,6 | 43,7  | 90  |
| IONOFIL   | 40 días | 243,7 | 41,1  | 59  |
| MOLAR     | 90 días | 367,1 | 68,0  | 60  |
|           | Total   | 217,9 | 122,7 | 209 |
|           | 0 días  | 71,1  | 33,1  | 83  |
| KETAC     | 40 días | 417,2 | 65,4  | 57  |
| MOLAR     | 90 días | 549,9 | 34,9  | 64  |
|           | Total   | 318,0 | 215,9 | 204 |
| VITDEMED  | 0 días  | 65,0  | 17,0  | 78  |
|           | 40 días | 161,9 | 50,6  | 65  |
| VITREMER  | 90 días | 206,8 | 51,1  | 60  |
|           | Total   | 138,0 | 73,0  | 203 |

**Tabla VI.75:** Cantidad de Flúor detectado según cemento y etapa: Recuento de mediciones (n); Media; Desviación estándar (DE) y Rango de valores.

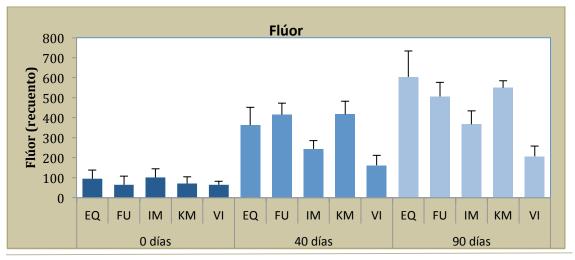



Figura. VI.34: Cantidad de Flúor detectado según cemento y etapa: Media y Desviación estándar.



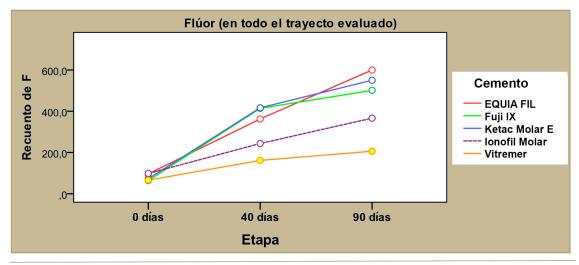



Figura. VI.35: Flúor según cemento y etapa: Medias marginales estimadas. Valores globales

#### **Contraste Estadístico**

Variable dependiente: Niveles de Flúor

Factores: Cemento; Zona; Etapa y Profundidad

| Origen<br>(fuente del efecto) | SC tipo III        | gl    | МС         | F      | Sig.<br>(p-valor) |
|-------------------------------|--------------------|-------|------------|--------|-------------------|
| Cemento                       | 6126859,1          | 4     | 1531714,7  | 715,3  | <<0,001           |
| Zona                          | 24712,6            | 2     | 12356,3    | 2,7    | 0,083             |
| Etapa                         | 22127375,4         | 2     | 11063687,7 | 5166,9 | <<0,001           |
| Profundidad                   | 74964,5            | 2     | 37482,2    | 17,5   | <0,001            |
| Cemento * Etapa               | 3697791,3          | 8     | 462223,9   | 215,8  | <<0,001           |
| Cemento * Profundidad         | 113631,1           | 8     | 14203,8    | 6,6    | 0,001             |
| Zona * Profundidad            | 34501,8            | 4     | 8625,4     | 4,0    | 0,033             |
| Etapa * Profundidad           | 202957,3           | 4     | 50739,3    | 23,6   | <0,001            |
| Error                         | 2019245,9          | 943   | 2141,3     |        |                   |
| R cuadrado = 0,983 (R cuad    | rado corregida = 0 | ,980) |            |        |                   |

**Tabla VI.76**: Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (F), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se





calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (2141,3).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor etapa o tiempo fue el que provocó mayor efecto sobre las concentraciones de flúor (F=5166,9; p<<0,001). El factor cemento también resultó muy significativo (F=715,3; p<<0,001) y en menor grado de significación se ubicó el factor Profundidad (F=17,5; p<0,001).

La interacción entre factores resultó significativa en todos los casos, particularmente cemento \* etapa, dado que las diferencias de concentración de flúor se fueron incrementando sustancialmente con el tiempo.

El determinante R<sup>2</sup> (0,98 ó 98%), reveló que el ajuste del modelo fue notorio, dejando sólo un escaso porcentaje (2%) no explicado por el modelo, atribuible al error experimental o residuo, relacionado con los factores no incluidos dentro del modelo. Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores cemento, zona, etapa y profundidad:

#### Contraste múltiple entre cementos:

| Tiemne         | _   | Subconjunto |       |       |       |
|----------------|-----|-------------|-------|-------|-------|
| Tiempo         | n   | 1           | 2     | 3     | 4     |
| VITREMER       | 203 | 138,0       |       |       |       |
| IONOFIL MOLAR  | 209 |             | 218,0 |       |       |
| FUJI IX        | 185 |             |       | 311,3 |       |
| KETAC MOLAR    | 204 |             |       | 318,1 |       |
| EQUIA FIL      | 189 |             |       |       | 342,9 |
| Sig. (p-valor) |     | 1,000       | 1,000 | 0,593 | 1,000 |

**Tabla VI. 77:** Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de cantidad de flúor en los cementos en subconjuntos homogéneos.

#### Contraste múltiple entre tiempos:

| Tiompo         | _   | Subconjunto |       |       |  |
|----------------|-----|-------------|-------|-------|--|
| Tiempo         | n   | 1           | 2     | 3     |  |
| 0 días         | 388 | 79,8        |       |       |  |
| 40 días        | 301 |             | 316,5 |       |  |
| 90 días        | 301 |             |       | 447,2 |  |
| Sig. (p-valor) |     | 1,000       | 1,000 | 1,000 |  |

**Tabla VI.78**: Cuadro resumido de la prueba DHS de Tukey para el factor TIEMPO. Se muestran las medias de cantidad de flúor en los cementos en subconjuntos homogéneos.





# Contraste múltiple entre tramos o profundidades:

| Trome (profundided) | _   | Subconjunto |       |  |
|---------------------|-----|-------------|-------|--|
| Tramo (profundidad) | n   | 1           | 2     |  |
| 0-60 μm             | 305 | 288,2       |       |  |
| 70-130 μm           | 315 | 288,0       |       |  |
| > 130 µm            | 370 |             | 222,3 |  |
| Sig. (p-valor)      |     | 0,999       | 1,000 |  |

**Tabla VI.79:** Cuadro resumido de la prueba DHS de Tukey para el factor TRAMO. Se muestran las medias de cantidad de flúor en los cementos en subconjuntos homogéneos.

# Contraste múltiple entre zonas:

| 7ama           | _   | Subconjunto |
|----------------|-----|-------------|
| Zona           | n   | 1           |
| Gingival (G)   | 338 | 258,6       |
| Mesial (M)     | 328 | 265,2       |
| Distal (D)     | 324 | 266,8       |
| Sig. (p-valor) |     | 0,061       |

**Tabla VI.80:** Cuadro resumido de la prueba DHS de Tukey para el factor ZONA. Se muestran las medias de cantidad de flúor en los cementos en subconjuntos homogéneos.

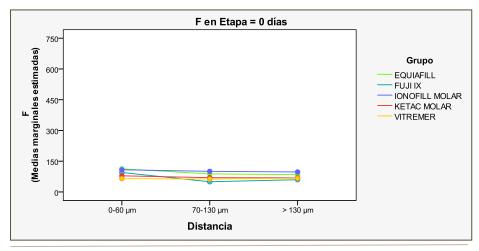



Figura. VI.36.a: Presencia de Flúor según cemento y profundidad en la etapa inicial



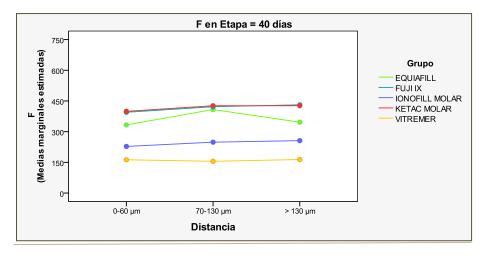



Figura VI.36.b: Presencia de Flúor según cemento y profundidad a los 40 días.

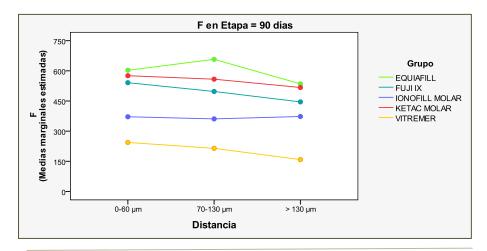



Figura VI.36.c: Presencia de Flúor según cemento y profundidad a los 90 días

#### Penetración de Sr

En relación a la penetración de Sr según el material, en términos generales, KM registró los valores más altos seguidos por FIX, IM, EF y V (394,5; 385,4; 328,5; 325,1 y 216,3; respectivamente) (Tabla VI.81).

Para evaluar la influencia de los factores sobre los niveles de estroncio, se aplicó un modelo lineal univariante o ANOVA multifactorial de cuatro vías (Tabla VI.82). El análisis de Varianza ANOVA con el test de Tukey Kramer HSD mostró diferencias estadísticamente significativas entre los materiales (Tabla VI.83). KM y FIX obtuvieron los valores más altos sin diferencia entre ellos; seguidos de IM y EF





quienes registraron un comportamiento similar. Los niveles de Sr detectados en el cemento V resultaron significativamente más bajos que el resto.

En relación al tiempo, el análisis ANOVA con el test de Tukey Kramer HSD mostró diferencias estadísticamente significativas (p<0,05) (Tabla VI.84). Los valores de Sr fueron aumentando transcurrido los días, excepto para V quien no registró variación significativa del Sr con paso del tiempo. KM y FIX mostraron valores y características evolutivas similares, con niveles altos de Sr a los 40 y 90 días. Mientras que EF e IM registraron valores medios muy parecidos en las etapas posteriores. (Figuras VI.37 y VI.38).

Con respecto a la profundidad, el análisis ANOVA con el test de Tukey Kramer HSD mostró diferencias estadísticamente significativas (p<0,05) (Tabla VI.85), aunque los valores medios no estuvieron tan distanciados. Los niveles de Sr registrados en cada grupo a lo largo de todo el trayecto evaluado, se comportaron de manera semejante al flúor, en general, los niveles de este elemento químico se mantuvieron relativamente constantes en todo el trayecto, particularmente en las dos primeras etapas, con excepción de FIX quien registró los valores más elevados en el primer tramo (0-60µm). A los 90 días se pudo apreciar alguna diferencia entre zonas, con valores mayores cerca de la interfaz (0-130µm) y menores a mayor profundidad, evidenciándose por otra parte como se fueron separando o definiendo los diversos cementos en los tiempos 40 y 90 días. (Figuras VI.39.a, VI.39.b, VI.39.c).

Teniendo en cuenta las zonas de medición del Sr, gingival (G) registró valores mayores de este elemento con respecto a las caras mesial (M) y distal (D), resultando significativas las diferencias (p<0,05) (Tabla VI.86).





# Estroncio (Sr): Estadísticos descriptivos según MATERIAL y TIEMPO

| Marca        | Días    | Media | DE    | n   |
|--------------|---------|-------|-------|-----|
|              | 0 días  | 232,0 | 49,7  | 67  |
| EQUIA FIL    | 40 días | 330,6 | 64,1  | 62  |
|              | 90 días | 423,4 | 76,9  | 60  |
|              | Total   | 325,1 | 101,2 | 189 |
|              | 0 días  | 200,7 | 140,3 | 68  |
| FUJI IX      | 40 días | 448,8 | 48,2  | 57  |
| 1 031 17     | 90 días | 539,7 | 49,4  | 58  |
|              | Total   | 385,4 | 174,1 | 183 |
|              | 0 días  | 274,5 | 45,3  | 87  |
| IONOFIL      | 40 días | 316,2 | 70,4  | 59  |
| MOLAR        | 90 días | 418,8 | 76,2  | 60  |
|              | Total   | 328,5 | 87,2  | 206 |
|              | 0 días  | 228,1 | 58,3  | 83  |
| KETAC        | 40 días | 454,5 | 58,3  | 57  |
| MOLAR        | 90 días | 557,0 | 89,6  | 64  |
|              | Total   | 394,5 | 159,6 | 204 |
|              | 0 días  | 236,3 | 20,9  | 78  |
| VITREMER     | 40 días | 183,1 | 57,5  | 66  |
| VIIIXLIVILIX | 90 días | 226,8 | 50,1  | 60  |
|              | Total   | 216,3 | 50,0  | 204 |

**Tabla VI.81:** Cantidad de Estroncio detectado según cemento y etapa: Recuento de mediciones (n); Media; Desviación estándar (DE) y Rango de valores.

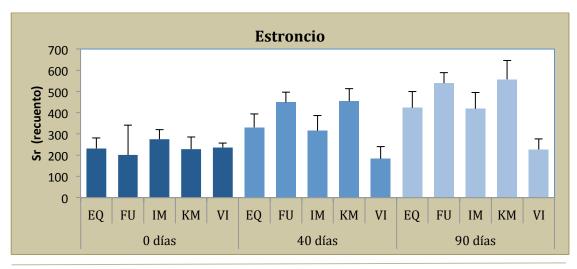



Figura VI.37: Cantidad de Estroncio detectado según material y etapa: Media y Desviación estándar





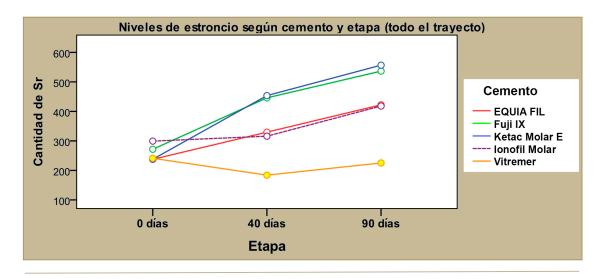



Figura VI.38: Estroncio según cemento y etapa: Medias marginales estimadas. Valores globales.

#### **Contraste Estadístico**

<u>Variable dependiente</u>: Niveles de estroncio (Sr) Factores: **Cemento**; **Zona**; **Etapa** y **Profundidad** 

| Origen<br>(fuente del efecto) | SC tipo III                                       | gl  | МС        | F       | Sig.<br>(p-valor) |  |  |  |
|-------------------------------|---------------------------------------------------|-----|-----------|---------|-------------------|--|--|--|
| Cemento                       | 4698361,8                                         | 4   | 1174590,4 | 393,12  | <<0,001           |  |  |  |
| Zona                          | 75203,7                                           | 2   | 37601,8   | 6,58    | 0,008             |  |  |  |
| Etapa                         | 6058072,6                                         | 2   | 3029036,3 | 1013,75 | <<0,001           |  |  |  |
| Profundidad                   | 65403,3                                           | 2   | 32701,6   | 10,95   | <0,001            |  |  |  |
| Cemento * Etapa               | 3037409,7                                         | 8   | 379676,2  | 127,07  | <<0,001           |  |  |  |
| Cemento * Profundidad         | 72310,5                                           | 8   | 9038,8    | 3,03    | 0,022             |  |  |  |
| Zona * Profundidad            | 147060,2                                          | 4   | 36765,0   | 12,30   | <0,001            |  |  |  |
| Etapa * Profundidad           | 126335,4                                          | 4   | 31583,8   | 10,57   | <0,001            |  |  |  |
| Error                         | 2820577,9                                         | 944 | 2987,9    |         |                   |  |  |  |
| R cuadrado = 0,980 (R cuad    | R cuadrado = 0,980 (R cuadrado corregida = 0,977) |     |           |         |                   |  |  |  |

**Tabla VI.82:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

Las sumas de cuadrados tipo III se calcularon con el fin de efectuar una descomposición de la variabilidad total asociada a la variable evaluada (Sr), según los diferentes factores y la interacción entre ellos, que se interpretan como las fuentes de variación de los efectos. A partir de estos valores y de los grados de libertad se calcularon las medias cuadráticas (MC) y posteriormente se obtuvieron los





valores estadísticos F (distribución F de Snedecor) como el cociente entre las medias cuadráticas de los factores y la media cuadrática del error o residuo (2987,9).

De acuerdo a los resultados del análisis llevado a cabo, dentro de las fuentes de efectos principales, el factor etapa o tiempo fue el que provocó mayor efecto sobre las concentraciones de estroncio (F=1013,75; p<<0,001). El factor cemento también resultó muy significativo (F=393,12; p<<0,001) y en menor grado de significación se ubicó el factor profundidad (F=10,95; p<0,001).

La interacción entre factores resultó significativa en todos los casos, particularmente cemento \* etapa, dado que las diferencias de concentración de estroncio entre cementos se fueron incrementando sustancialmente con el tiempo.

El determinante R<sup>2</sup> (0,977 ó 97,7%), reveló que el ajuste del modelo fue muy bueno, dejando sólo un escaso porcentaje (2,3%) no explicado por el modelo, atribuible al error experimental o residuo, relacionado con los factores no incluidos dentro del modelo.

Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores cemento, zona, etapa y profundidad:

# Contraste múltiple entre cementos:

| Cemento        | _   |       | Subconjunto |       |
|----------------|-----|-------|-------------|-------|
| Cemento        | n   | 1     | 2           | 3     |
| VITREMER       | 204 | 216,3 |             |       |
| EQUIA FIL      | 189 |       | 325,1       |       |
| IONOFIL MOLAR  | 206 |       | 328,5       |       |
| FUJI IX        | 183 |       |             | 385,4 |
| KETAC MOLAR    | 204 |       |             | 394,6 |
| Sig. (p-valor) |     | 1,000 | 0,973       | 0,462 |

**Tabla VI.83:** Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de cantidad de estroncio en los cementos en subconjuntos homogéneos.

#### Contraste múltiple entre tiempos:

| Etana          | _   |       | Subconjunto |       |
|----------------|-----|-------|-------------|-------|
| Etapa          | n   | 1     | 2           | 3     |
| 0 días         | 388 | 236,1 |             |       |
| 40 días        | 301 |       | 341,3       |       |
| 90 días        | 302 |       |             | 434,1 |
| Sig. (p-valor) |     | 1,000 | 1,000       | 1,000 |

**Tabla VI.84:** Cuadro resumido de la prueba DHS de Tukey para el factor TIEMPO. Se muestran las medias de cantidad de estroncio en los cementos en subconjuntos homogéneos.



# Contraste múltiple entre tramos o profundidades:

| Trome (profundided) | _   |       | Subconjunto |       |
|---------------------|-----|-------|-------------|-------|
| Tramo (profundidad) | n   | 1     | 2           | 3     |
| 0-60 μm             | 300 | 350,5 |             |       |
| 70-130 μm           | 315 |       | 338,6       |       |
| > 130 µm            | 371 |       |             | 303,2 |
| Sig. (p-valor)      |     | 1,000 | 1,000       | 1,000 |

**Tabla VI.85:** Cuadro resumido de la prueba DHS de Tukey para el factor TRAMO. Se muestran las medias de cantidad de estroncio en los cementos en subconjuntos homogéneos.

### Contraste múltiple entre zonas:

| Zono           | _   | Subco  | njunto |
|----------------|-----|--------|--------|
| Zona           | n   | 1      | 2      |
| Distal (D)     | 324 | 318,66 |        |
| Mesial (M)     | 323 | 325,30 |        |
| Gingival (G)   | 339 |        | 342,03 |
| Sig. (p-valor) |     | 0,264  | 1,000  |

**Tabla VI.86**: Cuadro resumido de la prueba DHS de Tukey para el factor RECUBRIMIENTO. Se muestran las medias de cantidad de estroncio en los cementos en subconjuntos homogéneos.

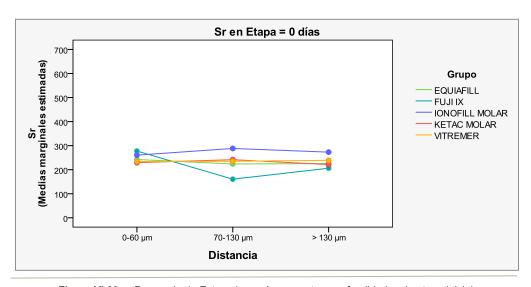



Figura VI.39.a: Presencia de Estroncio según cemento y profundidad en la etapa inicial.



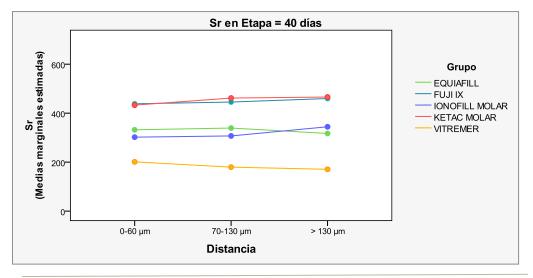



Figura VI.39.b: Presencia de Estroncio según cemento y profundidad a los 40 días.

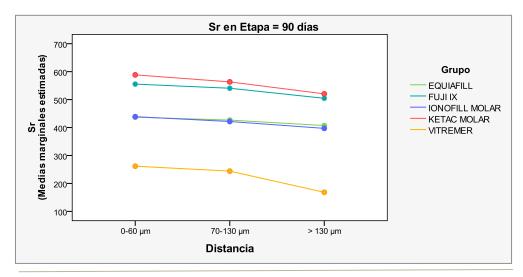



Figura VI.39.c: Presencia de Estroncio según cemento y profundidad a los 90 días.

# Niveles de F y Sr en el MATERIAL

En la Tabla VI.87 y en la Figura VI.40, se observan los niveles de F según cada cemento y cara. En las Tablas VI.88 se observa el análisis de ANOVA de dos vías y el Test de Tukey Kramer HSD que muestran las diferencias estadísticamente significativas. Los cementos que obtuvieron los valores más altos de F sin diferencia estadísticamente significativa entre ellos pero si del resto fueron KM y EF (Tabla VI.89). Se observó más cantidad de flúor en la zona gingival, las diferencias entre esta zona y las restantes resultaron estadísticamente significativas (p<0,05) (Tabla VI.90).





En la Tabla VI.91 y en la Figura VI.41, se observan los niveles de Sr según cada cemento y cara. En las Tablas VI.92 se observa el análisis de ANOVA de dos vías y el Test de Tukey Kramer HSD que muestran las diferencias estadísticamente significativas. Todos los cementos que obtuvieron los valores semejantes de Sr diferenciandose estadísticamente de KM quien registró la menor cantidad de Sr (Tabla VI.93). Se observó más cantidad de flúor en la zona gingival seguido de la distal sin difrerencias estadisticas, pero sí entre estas zonas y la mesial (p<0,05) (Tabla VI.94).

Flúor (F): Estadísticos descriptivos según CEMENTO y CARA

| Marca     | Cara         | Media | DE    | n  |
|-----------|--------------|-------|-------|----|
|           | Distal (D)   | 109,6 | 85,0  | 7  |
| EQUIA FIL | Mesial (M)   | 281,7 | 189,2 | 11 |
| EQUIA FIL | Gingival (G) | 264,3 | 189,7 | 13 |
|           | Total        | 235,5 | 180,6 | 31 |
|           | Distal (D)   | 88,3  | 82,3  | 19 |
| FUJI IX   | Mesial (M)   | 157,3 | 107,1 | 19 |
| FOJITA    | Gingival (G) | 126,9 | 70,3  | 12 |
|           | Total        | 123,8 | 93,5  | 50 |
|           | Distal (D)   | 221,4 | 132,4 | 14 |
| IONOFIL   | Mesial (M)   | 126,6 | 93,1  | 16 |
| MOLAR     | Gingival (G) | 211,9 | 126,2 | 15 |
|           | Total        | 184,5 | 122,9 | 45 |
|           | Distal (D)   | 297,7 | 138,1 | 15 |
| KETAC     | Mesial (M)   | 202,7 | 170,0 | 15 |
| MOLAR     | Gingival (G) | 427,2 | 340,3 | 9  |
|           | Total        | 291,0 | 222,6 | 39 |
|           | Distal (D)   | 212,9 | 135,1 | 21 |
| VITREMER  | Mesial (M)   | 42,0  | 23,3  | 12 |
| VIIREWER  | Gingival (G) | 287,8 | 134,5 | 11 |
|           | Total        | 185,0 | 147,0 | 44 |

**Tabla VI.87:** Nivel de Flúor detectado según cemento y cara: Media, Desviación estándar (DE) y Recuento de mediciones (n).



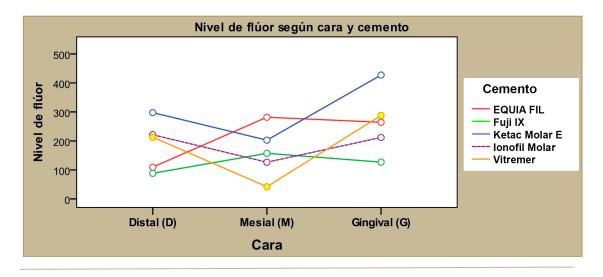



Figura VI.40: Cantidad de Flúor detectado según cemento y cara: Valores medios

#### **Contraste Estadístico**

Para evaluar la influencia de los factores sobre los niveles de flúor, se analizaron los datos aplicando un modelo lineal univariante o ANOVA multifactorial de dos vías:

Variable dependiente: Niveles de Flúor

Factores: Cemento; Cara

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС       | F     | Sig.<br>(p-valor) |
|---------------------------------------------------|-------------|-----|----------|-------|-------------------|
| Cemento                                           | 745154,5    | 4   | 186288,6 | 9,157 | <0,001            |
| Cara                                              | 350019,8    | 2   | 175009,9 | 8,603 | <0,001            |
| Cemento * Cara                                    | 654489,8    | 8   | 81811,2  | 4,022 | <0,001            |
| Error                                             | 3946597,3   | 194 | 20343,3  |       |                   |
| R cuadrado = 0,290 (R cuadrado corregida = 0,238) |             |     |          |       |                   |

**Tabla VI.88:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

El determinante R<sup>2</sup> (23,8%), indica que el ajuste del modelo es escaso, aun así, se verificó que ambos factores (cemento y cara) resultaron significativos en cuanto a los niveles de flúor, así como la interacción entre ellos (p<0,05 en todos los casos). Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores cemento, zona, etapa y profundidad



# Contraste múltiple entre cementos:

| Cemento        | n  | Subconjunto |        |        |  |
|----------------|----|-------------|--------|--------|--|
| Cemento        |    | 1           | 2      | 3      |  |
| FUJI IX        | 50 | 123,78      |        |        |  |
| IONOFIL MOLAR  | 45 | 184,53      | 184,53 |        |  |
| VITREMER       | 44 | 185,02      | 185,02 |        |  |
| EQUIA FIL      | 31 |             | 235,55 | 235,55 |  |
| KETAC MOLAR    | 39 |             |        | 291,03 |  |
| Sig. (p-valor) |    | 0,301       | 0,491  | 0,403  |  |

**Tabla VI.89**: Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de cantidad de flúor en los cementos en subconjuntos homogéneos.

# Contraste múltiple entre zonas:

| Zona           | n  | Subconjunto |       |  |
|----------------|----|-------------|-------|--|
|                |    | 1           | 2     |  |
| Mesial (M)     | 73 | 159,7       |       |  |
| Distal (D)     | 76 | 190,5       |       |  |
| Gingival (G)   | 60 |             | 252,5 |  |
| Sig. (p-valor) |    | 0,414       | 1,000 |  |

**Tabla VI.90**: Cuadro resumido de la prueba DHS de Tukey para el factor CARA. Se muestran las medias de cantidad de flúor en los cementos en subconjuntos homogéneos.

# Estroncio (Sr): Estadísticos descriptivos según CEMENTO y CARA

| Marca     | Cara         | Media  | DE     | n  |
|-----------|--------------|--------|--------|----|
|           | Distal (D)   | 732,0  | 266,1  | 7  |
| FOLUA FIL | Mesial (M)   | 1317,8 | 548,9  | 11 |
| EQUIA FIL | Gingival (G) | 1342,7 | 621,0  | 13 |
|           | Total        | 1196,0 | 577,8  | 31 |
|           | Distal (D)   | 746,1  | 451,8  | 19 |
| FUJI IX   | Mesial (M)   | 1817,4 | 764,0  | 19 |
| FUJI IX   | Gingival (G) | 946,2  | 358,2  | 12 |
|           | Total        | 1201,2 | 749,5  | 50 |
|           | Distal (D)   | 1742,9 | 516,0  | 14 |
| IONOFIL   | Mesial (M)   | 1201,6 | 958,4  | 16 |
| MOLAR     | Gingival (G) | 1592,9 | 774,7  | 15 |
|           | Total        | 1500,4 | 798,0  | 45 |
|           | Distal (D)   | 916,6  | 326,9  | 15 |
| KETAC     | Mesial (M)   | 660,3  | 193,0  | 15 |
| MOLAR     | Gingival (G) | 847,6  | 365,5  | 9  |
|           | Total        | 802,1  | 308,0  | 39 |
|           | Distal (D)   | 1768,8 | 866,9  | 21 |
| VITREMER  | Mesial (M)   | 152,3  | 70,3   | 12 |
| VIIRENIER | Gingival (G) | 2163,3 | 564,1  | 11 |
|           | Total        | 1426,5 | 1036,3 | 44 |

**Tabla VI.91:** Nivel de estroncio detectado según cemento y cara: Media, Desviación estándar (DE) y Recuento de mediciones (n).



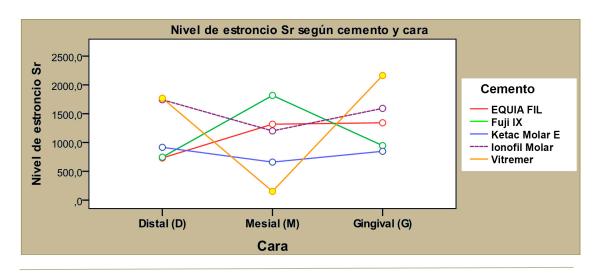



Figura VI.41: Cantidad de Estroncio detectado según cemento y cara: Valores medios.

Los cementos KM, IM y V registraron menor cantidad de estroncio en la cara mesial, resultado que se contrapone con los valores de los otros dos cementos (EF y FIX), que en mesial registraron los mayores niveles de estroncio.

#### **Contraste Estadístico**

Para evaluar la influencia de los factores sobre los niveles de Sr, se aplicó un modelo lineal univariante o ANOVA multifactorial de dos vías:

Variable dependiente: Niveles de Estroncio

Factores: Cemento; Cara

| Origen<br>(fuente del efecto)                     | SC tipo III | gl  | МС      | F      | Sig.<br>(p-valor) |
|---------------------------------------------------|-------------|-----|---------|--------|-------------------|
| Cemento                                           | 11236796    | 4   | 2809199 | 7,714  | <0,001            |
| Cara                                              | 3873246     | 2   | 1936623 | 5,318  | <0,001            |
| Cemento * Cara                                    | 42245308    | 8   | 5280664 | 14,500 | <0,001            |
| Error                                             | 70650502    | 194 | 364178  |        |                   |
| R cuadrado = 0,446 (R cuadrado corregida = 0,406) |             |     |         |        |                   |

**Tabla VI.92:** Pruebas de los efectos inter-sujetos. De izquierda a derecha: Origen o factor; Suma de cuadrados (SC tipo III); grados de libertad (gI); Media cuadrática (MC); Estadístico de Fisher (F); significación estadística (p-valor) y determinante R<sup>2</sup>.

El determinante R<sup>2</sup> (40,6%), indica que el ajuste del modelo fue aceptable. Se verificó que ambos factores (cemento y cara) resultaron significativos en cuanto a los niveles de estroncio, así como la interacción entre ellos (p<0,05 en todos los casos).





Se complementó el análisis mediante pruebas de comparaciones múltiples entre categorías correspondientes a los factores cemento, zona, etapa y profundidad:

# Contraste múltiple entre cementos:

| Cemento        | _  | Subconjunto |        |  |  |
|----------------|----|-------------|--------|--|--|
| Cemento        | n  | 1           | 2      |  |  |
| KETAC MOLAR    | 39 | 802,1       |        |  |  |
| EQUIA FIL      | 31 |             | 1195,9 |  |  |
| FUJI IX        | 50 |             | 1201,2 |  |  |
| VITREMER       | 44 |             | 1426,5 |  |  |
| IONOFIL MOLAR  | 45 |             | 1500,4 |  |  |
| Sig. (p-valor) |    | 1,000       | 0,157  |  |  |

**Tabla VI.93**: Cuadro resumido de la prueba DHS de Tukey para el factor CEMENTO. Se muestran las medias de cantidad de estroncio en los cementos en subconjuntos homogéneos.

Se conformaron dos subconjuntos homogéneos según el esquema mostrado en la Tabla VI.96: KM por un lado (con valores Sr por debajo que el resto) y los cuatro cementos restantes por otro lado.

#### Contraste múltiple entre zonas:

| Cara           | n  | Subconjunto |        |  |
|----------------|----|-------------|--------|--|
|                |    | 1           | 2      |  |
| Mesial (M)     | 73 | 1095,7      |        |  |
| Distal (D)     | 76 | 1244,6      | 1244,6 |  |
| Gingival (G)   | 60 |             | 1402,1 |  |
| Sig. (p-valor) |    | 0,318       | 0,278  |  |

**Tabla VI.94:** Cuadro resumido de la prueba DHS de Tukey para el factor CARA. Se muestran las medias de cantidad de estroncio en los cementos en subconjuntos homogéneos.



# Correlación entre niveles de flúor y estroncio según cemento

En el diagrama de dispersión de la Figura VI.42 queda de manifiesto las diferencias entre cementos, destacándose el cemento KM (en rojo). También el cemento EF mostró una respuesta propia (en verde), en tanto que los tres grupos restantes: KM, V y FIX, fueron similares, situación que se aprecia gráficamente porque los conglomerados de valores se superponen dentro de un mismo espacio.

Se verificaron correlaciones significativas entre los valores de flúor y los de estroncio en cada uno de los cementos evaluados, a mayor cantidad del elemento flúor, mayor cantidad del elemento estroncio. Para el cálculo de correlación se llevaron a cabo pruebas de correlaciones bivariadas de Pearson (p<0,05 en todos los casos).

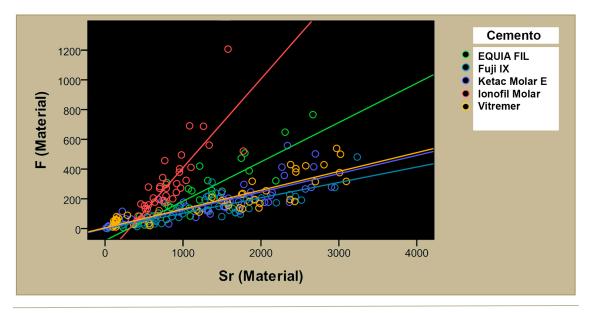



Figura VI.42: Gráfico de dispersión: Niveles de F vs niveles de Sr según cemento (en Material).





# ANÁLISIS GENERAL DE LAS PROPIEDADES DE LOS CEMENTOS ESTUDIADOS

En la siguiente tabla se resumen los mejores resultados alcanzados por los materiales en estudio de los ensayos realizados sobre las propiedades físicas y biológicas, la influencia del material de recubrimiento y el grupo control utilizado.

|           |                              |                          | Grupo   |
|-----------|------------------------------|--------------------------|---------|
| PROPIEDAD | Mejores Resultados           | Efecto del Recubrimiento | Control |
| RC        | V y KM con vaselina          | NO                       | RC      |
| RF        | V y grupos con recubrimiento | SI                       | RC      |
| RD        | EF                           | NO                       | PMMA    |
| RS        | KM, IM, EF                   | NO                       | PMMA    |
| HV        | EF Y KM                      | SI                       | RC      |
| RTA       | EF Y KM                      |                          |         |



# CAPÍTULO VII

# **DISCUSIÓN**







#### VII. DISCUSIÓN

El análisis de las propiedades de los CIV utilizados para el TRA a través de su evaluación en pruebas in vitro permite caracterizar el comportamiento de estos materiales en condiciones controladas. Las conclusiones de este análisis serán un punto de partida para considerar una posible transferencia a situaciones clínicas. En tal sentido, las variables evaluadas tienen una correlación con los requerimientos que deben cumplir los cementos para restauración indicados para el TRA.

La RC de los diferentes materiales en función del tiempo mostró un incremento a las 24 hs y luego se mantuvo constante a los 7 días como lo expresan otras investigaciones (Kleverlaan 2004) (Bresciani 2008) (Peez 2006). Este comportamiento estaría relacionado con los tiempos de fraguado en la reacción química de los cementos de ionómero vítreo, en la cual a partir de las 24 horas aproximadamente se produce la formación de sales de policarboxilato de Calcio y Aluminio, mejorando la maduración de estos cementos.

De acuerdo al análisis estadístico, el recubrimiento superficial no tuvo influencia positiva en cuanto al aumento de la RC de los CIVs evaluados. Estos resultados coinciden con Bonifacio 2012 en relación al comportamiento de KM aunque difieren en las variaciones de FIX GP Extra.

Los valores más elevados de RC y RF se obtuvieron para V. Estos resultados coinciden con otros autores como Xie D y col. quienes evalúan las RC y RF de CIV convencionales e híbridos obteniendo resultados más altos de los segundos (CIVH). Esto podría deberse al sistema de triple curado y la incorporación de resinas de estos cementos.

Se ha demostrado que el ensayo de flexión en 3 puntos puede representar la situación clínica (Mitra 1994) en donde una cúspide se enfrenta a los dientes opuestos y ejerce fuerzas sobre la restauración. Las normas ISO 9917-1 para los cementos dentales a base de agua incluye sólo la resistencia a la compresión como una propiedad mecánica. La resistencia a la flexión se incluye en la norma ISO 9917-2 (cementos dentales a base de agua activados por luz). Estos estándares fueron diseñados en un momento en que el CIV convencional era limitado para su uso en cavidades oclusales y proximales (Sunnegardh 2003) y el CIV de alta viscosidad todavía no se había desarrollado. Sin embargo, los ensayos de la resistencia a la flexión parecen ser más apropiados que la resistencia a la compresión, debido a que





la fractura es una de las razones principales de fracaso de las restauraciones con CIV a nivel proximal (Sunnegardh 2003, Qvist 2004). Además, las pruebas de resistencia a la comprensión según las normas ISO 9917-1, presentan dificultad para estandarizar las variables de preparación y evaluación de las muestras. Por lo tanto, la dispersión en los resultados publicados por diversos autores es considerable y le resta confiabilidad a esta prueba como referente de las propiedades mecánicas de los CIVs (Fleming y Dowling 2012).

La prueba más eficaz para evaluar las propiedades mecánicas de los CIV que Fleming sugiere es la resistencia flexural biaxial, pero en este estudio se utilizó la resistencia flexural lineal para poder comparar los resultados con otros estudios similares.

Los valores más altos de RF se registraron para Vitremer que es un CIV Hibrido, resultado que coincide con otros autores (Xie 2000) quienes reportan valores 200% más altos de RF para los CIV híbridos en comparación con los CIV convencionales. Las microestructuras más integradas de los CIV, es decir, una mejor partícula de vidrio en unión con la matriz, estarían relacionados con los valores más altos de resistencia a la flexión, resistencia a la tracción diametral y resistencia al desgaste (Xie 2000).

En relación a los grupos con recubrimiento G-Coat Plus y Adper Single Bond mostraron un aumento significativo de los valores de RF en comparación con sus homólogos sin recubrimiento.

Estos resultados coinciden en parte con los de Bonifacio y col. 2012 quienes reportan un aumento significativo en la resistencia a la flexión con G-Coat Plus para Fuji IX, pero sin diferencia significativa para Ketac Molar.

Bonifacio y col 2009 obtienen valores de RF a las 24hs para FIX y KM un 13% y 26% inferiores que en estas investigaciones . La única variante utilizada es la máquina de medición de ensayos (Mini Instron 4442, USA).

Xie y col 2000 informan valores de RC un 78% más bajos que en nuestros estudios para Vitremer, y un 42% menores para Ketac Molar para diferentes tamaños de los especímenes utilizados (4mm de ancho X 8mm de alto) y en la máquina de medición de ensayos (Mini Instron 4442, USA).

Peez 2006 obtiene valores de RF para KM, FIX y IM muy próximos a nuestros ensayos, utilizando una maquina Zwick GmbH & Co-KG.Ulm;Germany para tal fin.

En el ensayo de flexión de 3 puntos, la tensión más alta está en el lado opuesto de la fuerza aplicada. La aplicación de un coating en este lado podría prevenir los

171





defectos existentes para servir como áreas de concentración de tensiones y la propagación de grietas (Bonifacio 2012). Una vez que una grieta pone en marcha, el espécimen se rompe debido a su naturaleza frágil. Al parecer, la grieta comienza desde adentro de la muestra y no de la superficie, lo que significa que la capa no juega un papel importante cuando se aplica sobre los materiales que son intrínsecamente más resistentes a la flexión. Para algunos materiales de restauración, se observa una correlación entre el daño de la superficie y la resistencia a la flexión (Wang 2008).

Existen muchos métodos para provocar desgaste (Lambrechts 2006) pero ninguno universalmente aceptado que simule totalmente la pérdida de masa por medio del cepillado dental, debido al inconveniente para reproducir experimentalmente condiciones tan variables y complejas como las de la cavidad bucal. A causa de la dificultad para acceder a una aparatología homologada internacionalmente para este tipo de ensayo como la descripta por algunos autores (Freitas CA 2011, Almeida CT 2007, Pontons Melo JC 2010), se recurrió a un diseño ad-hoc que permite evaluar el desgaste de las muestras.

En el presente estudio EQUIA FIL, el grupo 1 A, presentó el menor desgaste. La pérdida de masa de este material fue menor que la del grupo control (PMMA) Esto podría estar relacionado con el material de recubrimiento (G- Coat Plus) quien se une químicamente al cemento de ionómero vítreo llenado las porosidades y haciendo la superficie mas lisa y mas resistente (Marquezan 2010).

Con el objetivo de analizar el efecto del G-Coat Plus en relación al desgaste se elaboró el grupo 1 A sin coat. Los resultados con respecto a la tasa de desgaste, también fueron muy bajos, un poco mayor que el PMMA pero sin existir diferencia estadísticamente significativa entre ellos. Esto podría sugerir que la fabricación de este cemento de ionómero vítreo alcanza una mayor performance con respecto a los otros determinando el menor desgaste (Bonifacio 2012).

Con respecto a los grupos con y sin recubrimiento G-Coat Plus, (los grupos 2 B, 3 B, 4 B y 2A, 3 A, 4 A respectivamente) no hubo diferencia estadísticamente significativa. Estos resultados coinciden con Bonifacio en relación al Ketac Molar E (grupo 3 A y 3 B), pero difieren con respecto al Fuji IX (grupos 2 A y 2 B) quien publica que si encontró diferencia estadísticamente significativamente entre las muestras con y sin G Coat Plus. Esta observación podría deberse a que el recubrimiento no interactúa químicamente con estos materiales (KM, FIX, IM), sólo penetra superficialmente al





ionómero, formando una capa exterior (Bonifacio 2012), que fue totalmente eliminada en el experimento de desgaste.

En relación a la pérdida de masa entre los CIV convencionales y el CIV hibrido, el grupo que sufrió mayor desgaste fue este último (5 A), coincidiendo con Farida Abesi y col 2011 quien realiza un estudio de desgaste comparando CIV convencionales, modificados con resina y resina compuesta. La razón por la que la pérdida de masa fue mayor en los CIV híbridos en comparación con los CIV convencionales probablemente sea debido a la formación de la matriz. La matriz de CIV convencional consiste de una red iónicamente reticulada de polialquenoato resultante de una reacción ácido-base. Los cementos híbridos tienen la red reticulada de polialquenoato parecida, pero ésta es enredada con cadenas poliméricas de HEMA. El mayor desgaste reportado por el material de CIV modificado con resina puede indicar que la coherencia de las partículas de carga incrustadas en las matrices de polialquenoato y el polímero es inferior a la de las partículas en la matriz convencional (Davidson 1999).

Esto puede ser debido a la sustitución parcial de la red rígida de polialquenoato por las cadenas de polímeros flexibles. El aumento de la deformación de la superficie impuesto por la carga de masticación, como es simulada en la máquina de desgaste, puede conducir a la formación de microfisuras en la superficie de la matriz con la consiguiente pérdida de la coherencia y estos fenómenos pueden exacerbar el proceso de desgaste en los CIV híbridos (Abesi 2011).

Al analizar el desgate sufrido por los grupos a los cuales se le colocó un recubrimiento fotopolimerizable (2 B, 2 C, 3 B, 3 C, 4 B y 4 C) en relación a sus pares sin esta cobertura (2 A, 2 D, 3 A, 3 B, 4 A y 4 D) la pérdida de masa fue mayor en los primeros. Estos resultados se podrían atribuir a que esta película no interactúa químicamente con el CIV, sólo forma una capa exterior que fue eliminada en la prueba de desgaste.

Las Normas ISO 14569-1 exigen que en cualquier análisis de desgaste de los materiales de restauración a través de cepillado, el PMMA sea el material de referencia, que es una resina acrílica sin agentes de reticulación. Por lo tanto, el índice de agresividad (capacidad de promover desgaste) en diferentes investigaciones permitiría la comparación de sus resultados. Sin embargo, generalmente esta comparación no se puede realizar, debido a que los factores que influyen son muy variados, tales como cepillo de dientes, la carga que se aplica en las muestras, el dentífrico abrasivo que se utiliza, la velocidad, tiempo y frecuencia



de la maquina, y la temperatura durante el proceso. Además de esto no se encontraron investigaciones que comparen tanta variabilidad de grupos en un mismo ensayo. Es por ese motivo que solo se puede comparar los resultados parciales de este estudio con otros autores.

La microscopia confocal de reflexión es un método no destructivo en la adquisición de imágenes y ha ido ganando terreno en los últimos años en el estudio de superficies de materiales opacos, duros o semiduros. En dicho instrumento, la imagen es formada por el reflejo del láser que incide sobre la superficie de la muestra y no con la luz que proviene de la muestra (fluorescencia) como ocurre en la microscopia confocal convencional. Empleando la reflexión es posible obtener la topografía del material semejante a lo que sería una imagen obtenida en un microscopio electrónico de barrido, con la ventaja de que no es necesario realizar una preparación previa de la muestra (Mas C. 2013). La utilización de un microscopio confocal aporta poderosas herramientas para el análisis cuantitativo de la superficie como la rugosidad superficial de los CIV; sin embargo, no se encontraron referencias sobre su uso para analizar estas propiedades en la literatura odontológica. En el presente estudio este microscopio fue empleado para reconstruir en 3D la superficie de los materiales dentales utilizados en el TRA antes y después del desgaste simulado por el cepillado dental. Posteriormente los perfiles de altura de dichos trazos fueron obtenidos y analizados y comparados cuantitativamente en diversos puntos mediante el software del microscopio con el propósito de verificar diferencias entre ellos.

Los resultados obtenidos en esta investigación muestran una disminución del Ra en todos los materiales analizados luego del desgaste mecánico, lo que coincide con otros autores (Bala O 2012, Heintze SD 2005) pero difiere, en que éstos utilizan un perfilómetro en vez del láser confocal. En las publicaciones en que los especímenes son sometidos a sustancias químicas como gaseosas, fluoruros, ácidos, etc; (Briso ALF 2011, Hamouda I 2011, Ozdemir-Ozenen D 2013) la Ra aumenta luego del desgaste químico utilizando un perfilómetro para su medición.

Tirali R y col. en el 2013 evalúan la Ra de diferentes materiales estéticos luego de la aplicación de pastas anti erosivas obteniendo como resultados para lonofil U un aumento de la rugosidad superficial luego de este procedimiento.





Silva RCD y col. en el 2006 analizan Ra de diferentes CIV utilizados en el TRA e informan los valores más bajos para Ketac Molar E., lo que coincide con nuestros estudios.

La rugosidad superficial de los materiales de restauración tiene varias implicaciones clínicas y se utilizan para determinar el desgaste de un material. El aumento de la rugosidad puede ser un factor predisponente a la colonización microbiana, lo que podría aumentar el riesgo de enfermedades orales. Además, el aumento de la rugosidad superficial podría indicar deterioro del material (Yip K 1999, 2001).

Bollenl CML y col. consideraron que la rugosidad media aritmética crítica (*Ra*) para la colonización bacteriana de los materiales dentales debía ser superior a 0,2 micras. En este estudio, Ketac Molar E. es el único que presenta un valor de Ra inferior; EQUIA FIL e Ionofill Molar lo igualan y Vitremer, Fuji IX y PMMA, lo superan. Aunque la rugosidad de la superficie superior a 0,2 micras predispondría a aumentar la adhesión bacteriana, la maduración de la placa dental y el riesgo de caries, los CIV presentan un recurso anticariogénico debido a la liberación y almacenamiento de flúor por lo cual se minimizan estos inconvenientes (Yip HK 2001, Duque C 2005, Da Silva RC 2007, Smales RJ 2005).

Los valores más bajos de Ra se registraron en los cementos Ketac Molar E, Ionofill Molar y EQUIA FIL, y los materiales con mayor Ra se registraron para PMMA, Vitremer y Fuji IX. El tamaño de las partículas de los CIV podría estar relacionado con la rugosidad de la superficie. Algunas investigaciones han informado los valores mas elevados de Ra en los materiales con mayor tamaño de partículas (Gladys S 1997, Reis AF 2003). Sin embargo, esto no coincide con los resultados de otros autores como Bala O. y col. quien informa valores de Ra para Ionofil Molar (partícula de 5µm) mayores que para Fuji IX (particula de 10µm). Para comparar estos resultados con nuestras investigaciones, se calculó el tamaño de las partículas de los materiales ensayados luego de su fraquado con el láser confocal obteniendo para EQUIA FIL, Ionofil Molar, Ketac Molar E, Fuji IX, Vitremer y PMMA valores promedio de 3,1; 4,4; 5,6; 8,8; 12,6 y 32,2 respectivamente. Por lo tanto podemos afirmar en términos generales, que los valores mas bajos de Ra se registraron en los cementos con partículas de menor tamaño, pero debido a la gran disparidad de tamaños en una misma área, se deberían evaluar además otros parámetros tales como las diferencias en la forma, distribución y número de partículas, unión entre partículas y la interfase entre partículas y matriz.





El efecto del desgaste influyó significativamente para el grupo control PMMA quién registró valores de Ra un 65% menor luego del desgaste. Estos resultados podrían deberse a la naturaleza química distinta y la consiguiente mayor porosidad debido a la evaporación del monómero sin reaccionar, en comparación con el restos de los grupos (Phillips C, Cap IV pag 723-742).

En este ensayo no se diferenciaron los grupos con recubrimiento G-Coat Plus y Adper Single Bond ya que habíamos observado en la investigación anterior de desgaste, el desprendimiento de este cobertor durante el proceso, lo cual podría deberse a que el recubrimiento no interactúa químicamente con estos materiales (KM, FIX, IM), sólo penetra superficialmente al ionómero, formando una capa exterior (Bonifacio CC 2012), que fue totalmente eliminada en el experimento de desgaste.

En relación a Vitremer que fue considerado un sub control por tratarse de un CIV híbrido, se registraron valores altos de Ra en comparación con el resto, con excepción de Fuji IX. La razón por la que Ra fue mayor en los CIV híbridos en comparación con los CIV convencionales podría relacionarse con la estructura química. Ésta, en los CIV convencionales, consiste de una red iónicamente reticulada de polialquenoato resultante de una reacción ácido-base. Los cementos híbridos tienen un reticulado de polialquenoato similar, pero esta entrecruzada con cadenas poliméricas de HEMA. El mayor desgaste reportado por el material de CIV modificado con resina puede indicar que la cohesión de las partículas de carga incrustadas en las matrices de polialquenoato y el polímero es inferior a la de las partículas en la matriz convencional (Davidson CL 1999).

En esta investigación se analizaron variados parámetros: rugosidad media aritmética (Ra), rugosidad parcial (Rz), sesgo o asimetría (Rsk), curtosis (Rku), rugosidad total (Rt), rugosidad de cresta o de pico (Rp) y rugosidad de valle (Rv); que no se encontraron en otras publicaciones similares ya que la mayoría de ellas solo analiza la rugosidad media aritmética. Sumado a esto la utilización de confocal laser en donde no se encontraron publicaciones que analicen la RS con este instrumento, permite comparar nuestros resultados de forma parcial con otros autores.

En relación a las pruebas de Microdureza Vickers, la carga que se utilizó fue de 500gf. Este valor fue más elevado comparándolo con otros autores (Moshaverinia A 2010, Tuzuner T 2012, Elsaka SE 2011, Hamouda I 2011, Bala O 2012) debido a que en un ensayo piloto se observó que con cargas inferiores no se podían medir





correctamente las diagonales mientras que con cargas superiores, se deformaba el material.

Los valores más altos de HV se registraron para EQUIA FIL, superando al grupo control Rc. Esto podría estar relacionado con el material de recubrimiento (G-Coat Plus) el cual se une químicamente al cemento de ionómero vítreo cubriendo las porosidades y haciendo la superficie más lisa y resistente (Marquezan M 2010) o bien, podría deberse a que la fabricación de este cemento de ionómero vítreo alcanza una mayor performance con respecto a los otros determinando mayor dureza (Bonifacio CC 2012).

En el presente estudio el CIV híbrido (Vitremer) fue el que registró los valores más bajos de HV, resultados que coinciden con otros autores (Xie D 2000, Aliping-McKenzie M 2003). Con esta observación se podría afirmar que la incorporación de resinas a los CIV, no mejora la microdureza en los CIV híbridos (Ellacuria J 2003).

Con respecto a los grupos con y sin recubrimiento fotopolimerizable, hubo diferencias estadísticamente significativas para Ketac Molar E y EQUIA FIL, quienes mostraron una mayor HV en aquellos grupos recubiertos, Pero no hubo diferencia en los otros grupos (Fuji IX, Ionofil Molar). El aumento de la HV en otros grupos como el 1.A, 3.B y 3.C comparando con los que no recibieron este tratamiento, podría deberse a un aumento de la madurez del material ocasionado por la aplicación del calor durante la fotopolimerización del barniz (Kleverlaan CJ 2004, Van Duinen RN 2011) más que por el efecto del recubrimiento, ya que como comprobamos en los ensayos de desgaste, la capa se pierde durante el proceso de pulido previo al ensayo de Microdureza.

En relación a la observación que el agente de recubrimiento se eliminaba antes de la prueba, se realizó un segundo ensayo colocando los recubrimientos G-Coat Plus y Adper Single Bond en los grupos que correspondieran luego del pulido de las muestras empastilladas. Los valores de HV disminuyeron en términos generales, hasta casi la mitad de los valores del primer ensayo. Esto podría indicar que el indentador solo midió la HV del *coating* sin llegar al material de restauración y que el material de recubrimiento *per se*, no produciría ningún efecto en la HV.

Comparando los resultados con otros autores (Bala O 2012, Moshaverinia A 2010, Tuzuner T 2012, Elsaka SE 2011, Hamouda I 2011, Xie D 2000, Bonifacio CC 2009 y Briso ALF 2011), obtenemos en nuestros ensayos de microdureza, valores mayores que ellos. Sin embargo, esta comparación se puede hacer de manera parcial, ya que





hay muchas variables que no coinciden (materiales utilizados, máquina de medición, carga y tiempo empleado, preparación y almacenamiento de las muestras, etc).

La Microscopia Electrónica de Barrido (SEM) fue una de las primeras técnicas utilizadas para medir in vitro la resorción de tejidos duros dentales, y todavía es ampliamente utilizado en la actualidad. SEM dispersa electrones en la superficie de la muestra, y la señal resultante que se recibe proporciona información sobre topografía de la superficie y composición (Field J 2010). La sonda de microanálisis que tiene el SEM es una herramienta indicada para este estudio, ya que además de brindar una mapeo general de las muestras nos permite conocer la cantidad de F y Sr que ha penetrado en la dentina, que serian uno de los indicadores de los procesos de remineralización.

Los CIV de Alta Viscosidad tienen mayor cantidad de fluoruros (F) y estroncio (Sr) con variaciones según cada material. El F se libera del material en forma iónica para unirse a la hidroxiapatita (Ling Zhou S 2012) previniendo y remineralizando las lesiones de caries (Francisconi LF 2009) (Luo J 2009). El Sr, que fue incorporado al cemento para aumentar la radiopacidad, también tiene propiedades cariopreventivas. En un estudio realizado durante diez años en Ohio (EE.UU), Curzon señaló una reducción de CPOD en una población expuesta a agua potable que contenía Sr. En el presente estudio, los CIV registraron mayor cantidad de F y Sr en el material que en los tejidos dentarios. Se analizó la penetración de F y Sr ya que según una investigación de HNgo 2011 los valores de Ca y P no registraron diferencia entre los grupos experimental y control, por lo tanto no serian indicadores de la remineralización.

En esta investigación, la cantidad de F y Sr aumentó con el paso del tiempo, lo que coincide con otros autores (HNgo 2011, Ab-Ghani, Z 2007) aunque estos realicen sus ensayos en un tiempo máximo de 21, 24 días respectivamente en vez de 90 días como nuestro estudio. Y teniendo en cuenta la zona de medición, la gingival mostró mayor penetración de estroncio, lo cual podría deberse a que en dentina la difusión es mayor que en esmalte.

Comparando resultados con otros autores en la literatura odontológica. (Smales, R. J 2005, Aykut- Yetkiner 2014, Baliga 2010, HNgo 2006, Zhou SL 2012, Bezerra A 2012) indican también que hay penetración de iones de F y Sr en la dentina desmineralizada y que esos valores son mayores cerca de la interfaz que a mayor





profundidad, aunque solo podemos hacer una comparación parcial, ya que usan otras técnicas, materiales e instrumentos de medición.

En el presente estudio, el CIV hibrido (Vitremer) fue el que registró los valores más bajos de F y Sr, resultados que coinciden con otros autores (Baliga 2010, Aykut-Yetkiner 2014), sin embargo Bezerra indica que no hay diferencia estadísticamente significativa entre V y FIX. Con esta observación se podría suponer que la incorporación de resinas o las diferencias químicas los CIV Hibridos con respecto a los convencionales, no mejoraría la disponibilidad de iones para penetrar en los tejidos dentarios. Además el primer fotopolimerizable de Vitremer constituiría una barrera impidiendo la migración de F y Sr desde el material hacia los tejidos dentarios.

El objetivo de este estudio fue realizar una comparación en la penetración de F y Sr de los diferentes CIV. Sumado a esto, la inexistencia de alguna Norma ISO para tal ensayo, no se incluyó un grupo control. Investigaciones similares (Baliga 2010, Zhou San Ling 2012, Ngo 2006, Aykut Yetkiner 2014) comparan la remineralizacion entre materiales sin incluir un grupo control como nuestro ensayo, presentan diferencias como se detallan a continuación:

- BALIGA 2010: compara la remineralización del esmalte en caries proximales utilizando otros materiales: amalgama (Fusion Alloy), CIV (KETAC FILL) Y RC (Heliomolar), el análisis lo realiza con MO y SEM.
- ZHOU SL 2012: analiza remineracion comparando diferentes materiales que contienen fluoruros (Climpro, Fluor V, T Mouse, Fuji IX, Base Cement) sobre dientes bovinos. Otra diferencia es que analiza la remineralización con diferentes métodos (Fluorescencia, Microdureza, Rugosidad y SEM).
- NGO 2006: evaluó remineralización en ED permanentes que luego de 3 meses de obturarlos con Fuji IX los extraia para medir penetración de F, Sr, Ca y P con SEM.
- AYKUT YETKINER 2014: compara la remineralizacion en ED temporarios obturados con Fuji IX y Surefil. Luego de 2 años los extrae y analiza mediante Microdureza y SEM.

En el presente trabajo de investigación pudimos observar migración de iones de F y Sr a los tejidos adyacentes en las muestras obturadas con CIV, variando la cantidad según el material y el tiempo de almacenamiento. Sin embargo al ser un estudio in vitro, es difícil determinar cuál sería la profundidad y concentración necesaria de penetración de estos iones para una remineralización significativa. Además, no sólo la capacidad remineralizante, sino también una buena capacidad de sellado, contacto



intimo entre el material de restauración y el diente y adecuadas propiedades mecánicas de los materiales, son necesarias para obtener altas tasas de supervivencia en restauraciones clínicas.

Si bien en este estudio no hay un solo material que posea las mejores propiedades analizadas (RC, RF, RD, RS, HV y RTA), el desarrollo de materiales de restauración que reúna todas estas propiedades en un futuro próximo sería un gran avance en la odontología restaurativa.

Finalmente, es importante señalar que en los últimos años se han publicado resultados de estudios clínicos que demuestran porcentajes de sobrevida superadores en relación a reportes previos de CIV de alta viscosidad en restauraciones TRA (Gurgan S 2015, Calvo AF 2016, Hesse D 2016). Estos datos se correlacionan con los hallazgos in vitro del presente trabajo.





# CAPÍTULO VIII CONCLUSIONES





#### VIII. CONCLUSIONES

De acuerdo a los resultados de esta investigación y la metodología aplicada, el material que presentó mayor RC fue el grupo 5.A (Vitremer) seguido del grupo 3.D (Ketac Molar E + vaselina sólida) con valores de 95,43MPa y 78,15 MPa respectivamente y la mayor RF fue para Vitremer (80,75MPa), seguido de los materiales con recubrimientos superficiales G-Coat Plus y Adper Single Bond (entre 54,19 y 64,71 MPa). El material que presentó menor desgaste fue el EQUIA FIL (0,34mg). La pérdida de masa de este material fue menor que la del grupo control PMMA (0,91mg). Los materiales que presentaron menor Ra luego del desgaste simulando el cepillado dental fueron Ketac Molar E, lonofil Molar y EQUIA FIL (0.16, 0.23 y 0.29µm respectivamente), y los materiales con mayor Ra se registraron para PMMA, Vitremer y Fuji IX (0.58, 1.06 y 1.37µm respectivamente), sin diferencia estadísticamente significativas antes y después del proceso, excepto para PMMA quien disminuyo un 65% el valor de Ra. El grupo que presentó mayor Dureza Vickers fue el 1 A (EQUIA FIL) con 110,6 HV, seguido por el grupo 3.C (Ketac Molar E. + Adper Single Bond 2) con 104,2 HV.

El efecto del recubrimiento superficial no mostró diferencia significativa para la RC ni para la RD pero si para la RF, HV donde los valores más altos se registraron en los grupos con protección.

La penetración de F y Sr en los tejidos dentarios varió según el material y el tiempo. Los materiales que presentaron mayor cantidad de F y Sr fueron respectivamente: EQUIA FIL (media: 342,9) y Ketac Molar Easymix (media: 394,5). Los valores más altos se registraron a los 90 días y en los tramos superficiales y medio.

La posibilidad de remineralización de dentina afectada por caries a partir de la penetración de F y Sr desde el material de restauración depende del material restaurador y del tiempo en que éste ha permanecido en contacto con el tejido dentinario. Sin embargo, no es posible determinar in-vitro el impacto que esta migración de iones pudiera tener sobre respuestas biológicas en los procesos cicatrizales de dentina afectada por caries.

En función de todos los materiales restauradores, sus distintas combinaciones y recubrimientos evaluados en este trabajo, no existe uno en particular que se destaque en todos los ensayos por presentar los mejores valores. No obstante,



analizando las propiedades más importantes de un material para TRA, es posible afirmar que EQUIA FIL y Ketac Molar Easymix son los materiales de elección para este abordaje, recomendándose realizar el recubrimiento superficial, principalmente en cavidades de múltiples superficies.

Recientes estudios clínicos demuestran porcentajes de sobrevida de restauraciones TRA con CIV de alta viscosidad que mejoran los resultados obtenidos anteriormente. La introducción de innovaciones tecnológicas en la composición de estos materiales es uno de los factores a los cuales se atribuye tal superación.





# CAPÍTULO IX

# REFERENCIAS BIBLIOGRAFICAS





#### IX. REFERENCIAS BIBLIOGRAFICAS

- Abesi, F., Safarcherati, H., Sadati, J. and Kheirollahi, H., 2011. In vitro wear of lonofil Molar AC quick glass-ionomer cement. *Indian Journal of Dental Research*, 22(5), p.731.
- Ab-Ghani, Z., Ngo, H. and McIntyre, J., 2007. Effect of remineralization/demineralization cycles on mineral profiles of Fuji IX Fast in vitro using electron probe microanalysis. *Australian dental journal*, *52*(4), pp.276-281.
- Algera, T.J., Kleverlaan, C.J., Prahl-Andersen, B. and Feilzer, A.J., 2006. The influence of environmental conditions on the material properties of setting glassionomer cements. *dental materials*, 22(9), pp.852-856.
- 4 Aliping-McKenzie, M., Linden, R.W.A. and Nicholson, J.W., 2003. The effect of saliva on surface hardness and water sorption of glass—ionomers and "compomers". *Journal of Materials Science: Materials in Medicine*, *14*(10), pp.869-873.
- Almeida, C.T., Freitas, C.A., Freitas, M.F.A. and Imai, L.J., 2007. Desgaste dos cimentos de ionômero de vidro Vidrion R e ChemFlex™, promovido pelos dentifrícios infantis Tandy a Baby Barney™ em máquina de escovação. *RPG rev. posgrad*, 14(1), pp.45-51.
- Amaral, M.T., Guedes-Pinto, A.C. and Chevitarese, O., 2006. Effects of a glassionomer cement on the remineralization of occlusal caries: an in situ study. *Brazilian oral research*, 20(2), pp.91-96.
- American Dental Association, 1989. Council on Dental Materials and Devices. American National Standard. Specification n. 66 for dental glass ionomer cements. J Am Dent Assoc.;119(1):205
- Aykut-Yetkiner, A., Simşek, D., Eronat, C. and Ciftçioğlu, M., 2014. Comparison of the remineralisation effect of a glass ionomer cement versus a resin composite on dentin of primary teeth. *European journal of paediatric dentistry: official journal of European Academy of Paediatric Dentistry*, 15(2), pp.119-121.
- 9 Bala, O., Arisu, H.D., Yikilgan, I., Arslan, S. and Gullu, A., 2012. Evaluation of surface roughness and hardness of different glass ionomer cements. *Eur J Dent*, *6*(1), pp.79-86.
- Baliga, M.S. and Bhat, S.S., 2010. Effect of fluorides from various restorative materials on remineralization of adjacent tooth: An in vitro study. *Journal of Indian Society of Pedodontics and Preventive Dentistry*, 28(2), p.84.
- Banerjee, A., Kidd, E.A.M. and Watson, T.F., 2000. In vitro evaluation of five alternative methods of carious dentine excavation. *Caries research*, 34(2), pp.144-150.
- Bernal, C., Capetillo, G., Parra, C., Torres, E. and Diaz, M., 2014. Efectos del mercurio en el organismo por el uso de la amalgama dental. *de Cuerpos Académicos*, p.16.

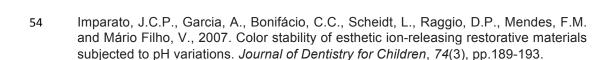




- Bezerra, A.C., Novaes, R.C., Faber, J., Frencken, J.E. and Leal, S.C., 2012. lon concentration adjacent to glass-ionomer restorations in primary molars. *Dental Materials*, 28(11), pp.e259-e263.
- Bollenl, C.M., Lambrechts, P. and Quirynen, M., 1997. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. *Dental Materials*, 13(4), pp.258-269.
- Bonifácio, C.C., Kleverlaan, C.J., Raggio, D.P., Werner, A., De Carvalho, R.C.R. and Van Amerongen, W.E., 2009. Physical-mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. *Australian dental journal*, *54*(3), pp.233-237.
- Bonifácio, C.C., Werner, A. and Kleverlaan, C.J., 2012. Coating glass-ionomer cements with a nanofilled resin. *Acta Odontologica Scandinavica*, 70(6), pp.471-477.
- Bresciani, E., Barata, T., Fagundes, T.C., Adachi, A., Terrin, M.M. and Navarro, M.F., 2008. Resistencia compresiva y tensil diametral de los cementos ionómero vítreos. *Journal of Minimum Intervention in Dentistry*, 1(2), pp.102-111.
- Briso, A.L.F., Caruzo, L.P., Guedes, A.P.A., Catelan, A. and Santos, P.D., 2011. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. *Operative dentistry*, 36(4), pp.397-402.
- Brito, C.R., Velasco, L.G., Bonini, G.A., Imparato, J.C.P. and Raggio, D.P., 2010. Glass ionomer cement hardness after different materials for surface protection. *Journal of Biomedical Materials Research Part A*, 93(1), pp.243-246.
- 20 CALVO, A.F.B., KICUTI, A., TEDESCO, T.K., BRAGA, M.M. and RAGGIO, D.P., 2016. Evaluation of the relationship between the cost and properties of glass ionomer cements indicated for atraumatic restorative treatment. *Brazilian oral research*, 30(1).
- Chiayi Shen. Cementos Dentales. Phillips Ciencia de los Materiales Dentales. Ed 11º Grafos S.A. Barcelona, España 2008, pp 471- 484.
- Curzon, M.E.J., 1983. Combined effect of trace elements and fluoride on caries: changes over ten years in northwest Ohio (USA). *Journal of dental research*, *62*(2), pp.96-99.
- Da Silva, R.C., Zuanon, A.C.C., Spolidorio, D.M.P. and Campos, J.A.D.B., 2007. Antibacterial activity of four glass ionomer cements used in atraumatic restorative treatment. *Journal of Materials Science: Materials in Medicine*, 18(9), pp.1859-1862.
- Davidson, C.L. and Mjör, I.A., 1999. *Advances in glass-ionomer cements*. Quintessence Publishing Co, Inc.
- del Carmen Sénchez—Quevedod, M. and Camposd, A., 2008. Hybrid cell death induced by exposure to 2-hydroxyethyl methacrylate (HEMA): an ultrastructural and X-ray microanalytical study. *J Adhes Dent*, *10*, pp.105-111.
- Dowling, A.H. and Fleming, G.J., 2008. Is encapsulation of posterior glass-ionomer restoratives the solution to clinically induced variability introduced on mixing?. *Dental Materials*, 24(7), pp.957-966.






- Dowling, A.H. and Fleming, G.J., 2009. Are encapsulated anterior glass-ionomer restoratives better than their hand-mixed equivalents?. *Journal of dentistry*, 37(2), pp.133-140.
- Dowling, A.H., Fleming, G.J., McGinley, E.L. and Addison, O., 2012. Improving the standard of the standard for glass ionomers: an alternative to the compressive fracture strength test for consideration?. *Journal of dentistry*, 40(3), pp.189-201.
- Duque, C., Negrini, T.D.C., Hebling, J. and Spolidório, D.M.P., 2005. Inhibitory activity of glass-ionomer cements on cariogenic bacteria. *OPERATIVE DENTISTRY-UNIVERSITY OF WASHINGTON-*, 30(5), p.636.
- Ellakuria, J., Triana, R., Minguez, N., Soler, I., Ibaseta, G., Maza, J. and Garcia-Godoy, F., 2003. Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements. *Dental Materials*, 19(4), pp.286-290.
- Elsaka, S.E., Hamouda, I.M. and Swain, M.V., 2011. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. *Journal of dentistry*, 39(9), pp.589-598.
- Ersin, N.K., Candan, U., Aykut, A., Eronat, C. and Kose, T., 2006. A clinical evaluation of resin-based composite and glass ionomer cement restorations placed in primary teeth using the ART approach: results at 24 months. *The Journal of the American Dental Association*, *137*(11), pp.1529-1536.
- Ewoldsen, N., Cacho, Z. and Callagan, S., 1999. Atraumatic restorative treatment using a mixture of glass ionomer cements. *Rev Asoc Dent Mex*, *56*, pp.8-11.
- F. McCABE, J., Yan, Z., T. Al NAIMI, O., Mahmoud, G. and L. ROLLAND, S., 2009. Smart materials in dentistry-future prospects. *Dental materials journal*, 28(1), pp.37-43.
- FDI World Dental Federation, United Nations Environment Programy. The FDI & UNEP-Global mercury partnership. World Dental Communiqué [internet]. 2010 Aug. http://www.fdiworldental.org/html/WDC/special. congress/english/story5utm\_source=newsletter&utmmedium=email&utm\_campaign=3.2010.htm.
- Field, J., Waterhouse, P. and German, M., 2010. Quantifying and qualifying surface changes on dental hard tissues in vitro. *Journal of dentistry*, *38*(3), pp.182-190.
- Fleming, G.J., Dowling, A.H. and Addison, O., 2012. The crushing truth about glass ionomer restoratives: exposing the standard of the standard. *Journal of dentistry*, *40*(3), pp.181-188.
- Francisconi, L.F., Scaffa, P.M.C., Barros, V.R.D.S.P., Coutinho, M. and Francisconi, P.A.S., 2009. Glass ionomer cements and their role in the restoration of non-carious cervical lesions. *Journal of Applied Oral Science*, 17(5), pp.364-369.
- Freitas, M.F.A.D., Imai, L.J., Freitas, C.A.D., Bianchi, E.C., Almeida, C.T.D. and Martins Filho, I.E., 2011. Abrasive wear of two glass ionomer cements after simulated toothbrushing. *RSBO (Online)*, *8*(3), pp.287-293.
- Frencken, J.E. and Holmgren, C.J., 1999. How effective is ART in the management of dental caries?. *Community dentistry and oral epidemiology*,27(6), pp.423-430.





- Frencken, J.E., Leal, S.C. and Navarro, M.F., 2012. Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview. *Clinical oral investigations*, 16(5), pp.1337-1346.
- Frencken, J.E., Pilot, T., Songpaisan, Y. and Phantumvanit, P., 1996. Atraumatic restorative treatment (ART): rationale, technique, and development. *Journal of public health dentistry*, *56*(3), pp.135-140.
- Frencken, J.E., Van't Hof, M.A., Van Amerongen, W.E. and Holmgren, C.J., 2004. Effectiveness of single-surface ART restorations in the permanent dentition: a meta-analysis. *Journal of dental research*, 83(2), pp.120-123.
- Frencken, J.E., Van't Hof, M.A., Taifour, D. and Al-Zaher, I., 2007. Effectiveness of ART and traditional amalgam approach in restoring single-surface cavities in posterior teeth of permanent dentitions in school children after 6.3 years. *Community dentistry and oral epidemiology*, 35(3), pp.207-214.
- Gladys, S., Van Meerbeek, B., Braem, M., Lambrechts, P. and Vanherle, G., 1997. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. *Journal of Dental Research*, 76(4), pp.883-894.
- Gupta, S.K., Saxena, P., Pant, V.A. and Pant, A.B., 2012. Release and toxicity of dental resin composite. *Toxicology international*, 19(3), p.225.
- Gurgan, S., Kutuk, Z.B., Ergin, E., Oztas, S.S. and Cakir, F.Y., 2015. Four-year randomized clinical trial to evaluate the clinical performance of a glass ionomer restorative system. *Operative dentistry*, 40(2), pp.134-143.
- Guzmán Baez HJ. Cementos de uso Odontológico en Biomateriales Odontológicos de uso Clínico. Ed: ecoe Ediciones. Santa Fe de Bogotá, Colombia 1999, pp 101-118.
- Hamouda, I.M., 2011. Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. *Journal of Esthetic and Restorative Dentistry*, 23(5), pp.315-322.
- Heintze, S.D. and Forjanic, M., 2005. Surface roughness of different dental materials before and after simulated toothbrushing in vitro. *OPERATIVE DENTISTRY-UNIVERSITY OF WASHINGTON-*, 30(5), p.617.
- Hesse, D., Bonifácio, C.C., Bönecker, M., Guglielmi, C.D.A.B., da Franca, C., van Amerongen, W.E., Colares, V. and Raggio, D.P., 2016. Survival Rate of Atraumatic Restorative Treatment (ART) Restorations Using a Glass Ionomer Bilayer Technique with a Nanofilled Coating: A Bi-center Randomized Clinical Trial. *Pediatric dentistry*, 38(1), pp.18-24.
- Hof, M.A., Frencken, J.E., Helderman, W.H. and Holmgren, C.J., 2006. The Atraumatic Restorative Treatment (ART) approach for managing dental caries: a meta-analysis. *International dental journal*, *56*(6), pp.345-351.
- Hübel, S. and Mejare, I., 2003. Conventional versus resin-modified glass-ionomer cement for Class II restorations in primary molars. A 3-year clinical study. *International Journal of Paediatric Dentistry*, *13*(1), pp.2-8.





- International Organization for Standardization 2007. Technical Report ISO/TR n. 14569-1. Dental materials: guidance on testing of wear. Part 1: wear by toothbrushing. Technical Report. Switzerland: International Organization for Standardization
- KEVIN, H., SMALES, R.J., GAO, W. and PENG, D., 2002. The effects of two cavity preparation methods on the longevity of glass ionomer cement restorations: an evaluation after 12 months. *The Journal of the American Dental Association*, 133(6), pp.744-751.
- Kleverlaan, C.J., van Duinen, R.N. and Feilzer, A.J., 2004. Mechanical properties of glass ionomer cements affected by curing methods. *Dental Materials*, *20*(1), pp.45-50.
- Kuhn, E., Chibinski, A.C.R., Reis, A. and Wambier, D.S., 2014. The role of glass ionomer cement on the remineralization of infected dentin: an in vivo study. *Pediatric dentistry*, *36*(4), pp.118E-124E.
- Lambrechts, P., Debels, E., Van Landuyt, K., Peumans, M. and Van Meerbeek, B., 2006. How to simulate wear?: overview of existing methods. *Dental Materials*, 22(8), pp.693-701.
- Lanata, E.J. and Gudiño-Fernández, S., 2015. Hacia donde debe ir la Operatoria Dental: la Mínima Invasión. Parte 1. Revisión Bibliográfica. *Revista Científica Odontológica*, 10(2).
- Lo, E., Holmgren, C.J., Hu, D. and Van Palenstein Helderman, W., 2007. Six-year follow up of atraumatic restorative treatment restorations placed in Chinese school children. *Community dentistry and oral epidemiology*, *35*(5), pp.387-392.
- Lo, E.C.M. and Holmgren, C.J., 2001. Provision of Atraumatic Restorative Treatment (ART) restorations to Chinese pre-school children—a 30-month evaluation. *International Journal of Paediatric Dentistry*, *11*(1), pp.3-10.
- Luo, J., Billington, R.W. and Pearson, G.J., 2009. Kinetics of fluoride release from glass components of glass ionomers. *Journal of dentistry*, 37(7), pp.495-501.
- Macchi RL. Ionómeros Vítreos en Materiales Dentales. Ed Medica Panamericana S.A. Buenos Aires, Argentina 2007, pp 149-156.
- Marquezan, M. and Raggio, D.P., 2009. Dental materials in daily pedodontics clinical practice. *Dental materials research. New York: Nova Science Publisher*, pp.71-88.
- Marquezan, M., Osorio, R., Ciamponi, A.L. and Toledano, M., 2010. Resistance to degradation of bonded restorations to simulated caries-affected primary dentin. *American journal of dentistry*, 23(1), pp.47-52.
- Mas, C., Cagliero, L. and Bock, J.D.Z., 2013. Microscopio confocal de reflexión: Un equipo dedicado y único en el país que brinda nuevas herramientas a líneas de investigación en materiales. Un caso en documentología forense-Reflection confocal microscope: A dedicated and unique in the country that. *Bitácora Digital*, 1(3).





- Massara, M.D.L.D.A., Alves, J.B. and Brandão, P.R.G., 2002. Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. *Caries research*, 36(6), pp.430-436.
- McLean, J.W. and Wilson, A., 1977. The clinical development of the glass-ionomer cement. II. Some clinical applications\*. *Australian dental journal*,22(2), pp.120-127.
- Mickenautsch, S., Yengopal, V. and Banerjee, A., 2010. Atraumatic restorative treatment versus amalgam restoration longevity: a systematic review. *Clinical oral investigations*, 14(3), pp.233-240.
- Mitra, S.B. and Kedrowski, B.L., 1994. Long-term mechanical properties of glass ionomers. *Dental Materials*, *10*(2), pp.78-82.
- Moshaverinia, A., Brantley, W.A., Chee, W.W., Rohpour, N., Ansari, S., Zheng, F., Heshmati, R.H., Darr, J.A., Schricker, S.R. and Rehman, I.U., 2010. Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements. *dental materials*, 26(12), pp.1137-1143.
- 73 Mount, G.J., 1998. Clinical performance of glass-ionomers. *Biomaterials*, *19*(6), pp.573-579.
- Mutis, M.J., Pinzón, J.C. and Castro, G., 2011. Las amalgamas dentales: un problema de salud pública y ambiental? Revisión de la literatura. *Universitas Odontológica*, 30(65).
- Ngo, H., Ruben, J., Arends, J., White, D., Mount, G.J., Peters, M.C.R.B., Faller, R.V. and Pfarrer, A., 1997. Electron probe microanalysis and transverse microradiography studies of artificial lesions in enamel and dentin: a comparative study. *Advances in dental research*, 11(4), pp.426-432.
- Ngo, H.C., Mount, G., Mc Intyre, J., Tuisuva, J. and Von Doussa, R.J., 2006. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. *Journal of dentistry*, *34*(8), pp.608-613.
- Ngo, H.C., Mount, G., McIntyre, J. and Do, L., 2011. An in vitro model for the study of chemical exchange between glass ionomer restorations and partially demineralized dentin using a minimally invasive restorative technique. *Journal of dentistry*, 39, pp.S20-S26.
- Ozdemir-Ozenen, D., Sungurtekin, E., Issever, H. and Sandalli, N., 2013. Surface roughness of fluoride-releasing restorative materials after topical fluoride application. European journal of paediatric dentistry: official journal of European Academy of Paediatric Dentistry, 14(1), pp.68-72.
- Palma-Dibb, R.G., de Castro, C.G., Ramos, R.P., Chimello, D.T. and Chinelatti, M.A., 2002. Bond strength of glass-ionomer cements to caries-affected dentin. *The journal of adhesive dentistry*, *5*(1), pp.57-62.
- 80 Palmer C. U.S. leadership amalgam ADA calls for on in mercury negotiations. international treaty ADA News [internet]. 22. 2011 Feb. Disponible en: http://www.ada.org/ news/5448.aspx.





- Peez, R. and Frank, S., 2006. The physical–mechanical performance of the new Ketac™ Molar Easymix compared to commercially available glass ionomer restoratives. *Journal of dentistry*, 34(8), pp.582-587.
- Percq, A., Dubois, D. and Nicholson, J.W., 2008. Water transport in resin-modified glass-ionomer dental cement. *Journal of biomaterials applications*.
- Peyton FA, Craig RG. Materiales Dentales Restauradores. Ed Mundi S.A. Buenos Aires, Argentina, 1974.
- Pontons Melo, J.C. Antunes de Freitas, C. Mondelli, J. CEPILLADO, E.D.D.P., 2010. Evaluación del desgaste por cepillado, in vitro, de una resina compuesta, fotopolimerizada por lámpara halógena, en dos tiempos diferentes. *Acta Odontológica Venezolana*, 48(4).
- Privada, P., 2011. ¿Son las restauraciones de resinas compuestas inertes y seguras? *Revista aDM*, 68(1), pp.25-29.
- Pulgar R, Gonzalez S, Vilchez MA. Cementos Dentales: Cementos de Ionomero de Vidrio e Híbridos en Arte y Ciencia de los Materiales Odontológicos. Toledano Perez M, Osorio R R, Sanchez Aguilera F, Osorio Ruiz E. Ed. Ibergraficas S.A. Madrid 2003, pp 239-251
- Qvist, V., Laurberg, L., Poulsen, A. and Teglers, P.T., 2004. Eight-year study on conventional glass ionomer and amalgam restorations in primary teeth. *Acta Odontologica Scandinavica*, 62(1), pp.37-45.
- Rabinowicz, E. and Tanner, R.I., 1966. Friction and wear of materials. *Journal of Applied Mechanics*, 33, p.479.
- Reis, A.F., Giannini, M., Lovadino, J.R. and Ambrosano, G.M., 2003. Effects of various finishing systems on the surface roughness and staining susceptibility of packable composite resins. *Dental Materials*, 19(1), pp.12-18.
- 90 Savarino, L., Breschi, L., Tedaldi, M., Ciapetti, G., Tarabusi, C., Greco, M., Giunti, A. and Prati, C., 2004. Ability of restorative and fluoride releasing materials to prevent marginal dentine demineralization. *Biomaterials*, 25(6), pp.1011-1017.
- 91 Scholtanus, J.D. and Huysmans, M.C.D., 2007. Clinical failure of class-II restorations of a highly viscous glass-ionomer material over a 6-year period: a retrospective study. *Journal of dentistry*, 35(2), pp.156-162.
- 92 Silva, R.C.D. and Zuanon, A.C.C., 2006. Surface roughness of glass ionomer cements indicated for atraumatic restorative treatment (ART). *Brazilian dental journal*, 17(2), pp.106-109.
- 93 Smales, R.J., Ngo, H.C., Yip, K.H. and Yu, C., 2005. Clinical effects of glass ionomer restorations on residual carious dentin in primary molars. *American journal of dentistry*, *18*(3), pp.188-193.
- Sunnegårdh-Grönberg, K., Peutzfeldt, A. and van Dijken, J.W., 2003. Flexural strength and modulus of a novel ceramic restorative cement intended for posterior restorations as determined by a three-point bending test. *Acta Odontologica Scandinavica*, 61(2), pp.87-92.





- Taifour, D., Frencken, J.E., Beiruti, N., Van't Hof, M.A. and Truin, G.J., 2002. Effectiveness of glass-ionomer (ART) and amalgam restorations in the deciduous dentition: results after 3 years. *Caries research*, *36*(6), pp.437-444.
- Tirali, R. E., Cehreli, S. B., Yazici, R., & Yalçinkaya, Z. Restorative, U.U., 2013. Effect of two anti-erosion pastes on surface roughness of different restorative materials. *EUROPEAN JOURNAL OF PAEDIATRIC DENTISTRY*, *14*, p.135.
- Topaloglu-Ak, A., Eden, E., Frencken, J.E. and Oncag, O., 2009. Two years survival rate of class II composite resin restorations prepared by ART with and without a chemomechanical caries removal gel in primary molars. *Clinical oral investigations*, 13(3), pp.325-332.
- P8 Tüzüner, T. and Ulusu, T., 2012. Effect of antibacterial agents on the surface hardness of a conventional glass-ionomer cement. *Journal of Applied Oral Science*, 20(1), pp.45-49.
- Tyas, M.J., Anusavice, K.J., Frencken, J.E. and Mount, G.J., 2000. Minimal intervention dentistry—a review\*. *International dental journal*, *50*(1), pp.1-12.
- Van Duinen, R.N., 2011. New approach for handling glass ionomers in restorative dentistry. *Refu'at ha-peh veha-shinayim (1993)*, *28*(3), pp.8-13.
- van Duinen, R.N., Kleverlaan, C.J., de Gee, A.J., Werner, A. and Feilzer, A.J., 2005. Early and long-term wear of 'Fast-set'conventional glass-ionomer cements. *Dental Materials*, 21(8), pp.716-720.
- van Gemert-Schriks, M.C.M., Van Amerongen, W.E., Ten Cate, J.M. and Aartman, I.H.A., 2007. Three-year survival of single-and two-surface ART restorations in a high-caries child population. *Clinical oral investigations*, *11*(4), pp.337-343.
- Verdonschot, E., Angmar-Månsson, B., Ten Bosch, J.J., Deery, C., Huysmans, M.C.D.N.J.M., Pitts, N. and Waller, E., 1999. Developments in caries diagnosis and their relationship to treatment decisions and quality of care. *Caries research*, 33(1), pp.32-40.
- Wang, H., Aboushelib, M.N. and Feilzer, A.J., 2008. Strength influencing variables on CAD/CAM zirconia frameworks. *Dental materials*, 24(5), pp.633-638.
- Watson, T.F., Atmeh, A.R., Sajini, S., Cook, R.J. and Festy, F., 2014. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. *Dental Materials*, 30(1), pp.50-61.
- Wilson, A.D. and Kent, B.E., 1972. A new translucent cement for dentistry. The glass ionomer cement. *British dental journal*, *132*(4), pp.133-135.
- Xie, D., Brantley, W.A., Culbertson, B.M. and Wang, G., 2000. Mechanical properties and microstructures of glass-ionomer cements. *Dental Materials*, *16*(2), pp.129-138.
- Yip, H.K., Lam, W.T. and Smales, R.J., 1998. Surface roughness and weight loss of esthetic restorative materials related to fluoride release and uptake. *The Journal of clinical pediatric dentistry*, 23(4), pp.321-326.

192



#### LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO



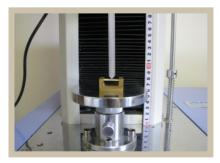
- Yip, H.K., Smales, R.J., Ngo, H.C., Tay, F.R. and Chu, F., 2001. Selection of restorative materials for the atraumatic restorative treatment (ART) approach: a review. *Special Care in Dentistry*, 21(6), pp.216-221.
- Yip, K., Lam, W. and Smales, R., 1999. Fluoride release, weight loss and erosive wear of modern aesthetic restoratives. *British dental journal*, *187*(5).
- Yip, K.H.K., Peng, D. and Smales, R.J., 2001. Effects of APF gel on the physical structure of componers and glass ionomer cements. *Operative dentistry*, 26(3), pp.231-238.
- Zhou, S.L., Zhou, J., Watanabe, S., Watanabe, K., Wen, L.Y. and Xuan, K., 2012. In vitro study of the effects of fluoride-releasing dental materials on remineralization in an enamel erosion model. *Journal of dentistry*, 40(3), pp.255-263.





# CAPÍTULO X

# **ANEXOS 1**


#### **ANEXO X.1: INSTRUMENTOS USADOS EN CADA PRUEBA**

1. MAQUINA UNIVERSAL DE ENSAYOS Digimess, modelo RS-8000-£





PRUEBAS DE RESISTENCIA COMPRESIVA



PRUEBAS DE RESISTENCIA FLEXURAL

2. CONVERTIDOR DE FRECUENCIA SERIE: CFW-07 SOFTWARE: VERSIÓN 3.XX 0899.3360 S/4



PRUEBA DE DESGASTE

195



#### 3. CONFOCAL LASER SCANNING MICROSCOPE OLYMPUS LEXT4000



PRUBA DE RUGOSIDAD SUPERFICIAL

4. MICRODUROMETRO VICKERS (LECO Corporation, Modelo LM-247AT, Serie N° XM0303, Date 11-2009, Michigan, USA









5. MICROSCOPIO ELECTRÓNICO DE BARRIDO (SEM) tipo FEG Marca Carl Zeizz Modelo Sigma con detector de rx SDD Marca Oxford Modelo X-Max 80mm²









# CAPÍTULO X

**ANEXOS 2** 





# ANEXO X.2: PLANILLA MODELO DEL CONSENTIMIENTO INFORMADO E INFORMACIÓN PARA EL PACIENTE

#### 1. CONSENTIMIENTO INFORMADO

| Yo                                        |
|-------------------------------------------|
| Lugar y fecha:  Firma:  Aclaración:  DNI: |

#### 2. HOJA DE INFORMACIÓN AL PACIENTE

#### TÍTULO DEL PROYECTO DE INVESTIGACIÓN

LOS CEMENTOS DE IONÓMERO VÍTREO DE ALTA VISCOSIDAD PARA EL ÉXITO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO

#### INTRUDUCCIÓN

Usted ha sido invitado a participar en este proyecto de Tesis Doctoral. Es importante que lea la descripción del estudio y su posible función en él en caso de que decida participar.

La/s pieza/s dentaria/s que se extraerán serán sometidas a pruebas de laboratorio con el fin de evaluar el comportamiento de diversos materiales dentales.

Asimismo, usted debe entender la naturaleza y los riesgos de su participación y proporcionar su consentimiento informado por escrito. Su decisión de participar es completamente voluntaria.



#### **OBJETIVO**

El propósito de la presente investigación es analizar mediante un estudio in vitro las siguientes propiedades: resistencia compresiva, resistencia flexural, dureza Vickers, rugosidad superficial, resistencia al desgaste y remineralización de los tejidos adyacentes, de diversos CIV de alta viscosidad con diversos materiales de recubrimiento superficial.

Este estudio ha sido revisado y aprobado por el Comité de Ética del Hospital Nacional de Clínicas y las Autoridades sanitarias que garantizan que los estudios de investigación no violen los derechos de las personas.

#### PROCEDIMIENTO DEL ESTUDIO

Si usted está de acuerdo en participar en vez de desechar su elemento dentario como residuo patógeno, este será utilizado con fines de investigación.

#### **POSIBLES RIESGOS E INCOMODIDADES**

No existe ningún riesgo para el paciente ya que los residuos que se generen posteriores al trabajo serán conservados y almacenados en la Cátedra de Materiales Dentales de nuestra Facultad con fines de estudio.

#### **BENEFICIOS POSIBLES**

La información que se obtenga del estudio puede ser importante para descubrir el material dental. De esta manera podremos determinar cuál de los cementos de ionómero vítreo utilizados en este estudio, sería el más indicado como material de restauración en el TRA.

#### **SEGURO**

La comisión provincial de investigación en Seres Humanos exige tener un seguro para aprobar los protocolos allí presentados

#### **GRATUIDAD**

La participación es en este estudio no tendrá costo para Usted.

#### CONFIDENCIALIDAD

Por ejemplo: mediante la firma del consentimiento informado, usted esta de acuerdo en permitir al personal de la investigación, las dependencias sanitarias del gobierno y los Consejos de Ética de la investigación, que examine su historia clínica. Su nombre se mantendrá como confidencial hasta el punto que la ley lo permita y a usted no se revelara su identidad. La información que Usted proporcione o que se recopile no será divulgada a terceros sin su permiso explicito.

#### PARTICIPACION VOLUNTARIA

Su participación en este estudio es plenamente voluntaria y Usted puede negarse a participar o puede retirarse del estudio en cualquier momento sin perder la atención médica que tiene derecho a recibir. Su participación puede ser interrumpida por su médico si se ha determinado que continuar participando podría dañar su salud.

El investigador lo informara si en cualquier momento del estudio

#### **OTRA INFORMACION**

Ante cualquier pregunta que tenga respecto a los procedimientos del estudio antes, durante o después del mismo, puede comunicarse con:

Nombre del/los investigador/investigadores: Laura Brain Lascano



Cargo: Jefe de Trabajos Prácticos, Cátedra Materiales Dentales UNC

Número cel: 3513862375

Si tiene duda acerca de sus derechos como paciente que participa en este estudio o sobre alguna lesión relacionada con la investigación, puede comunicarse con los miembros del Comité de Ética del Hospital Nacional De Clínicas

#### **CERTIFICACIÓN**

Confirmo que he explicado la naturaleza y objetivo del presente estudio, habiendo entregado al participante una copia completa de este documento informado que se obtiene en hoja aparte.

OD. LAURA BRAIN LASCANO M.P:6705





# CAPÍTULO X

# **ANEXOS 3**





## ANEXO X.3: PUBLICACIONES VINCULADAS DE LA PRESENTE TESIS DOCTORAL

#### 1) Artículos publicados en Revistas Científicas con Referato:

- MECHANICAL PERFORMANCE OF ENCAPSULATED RESTORATIVE GLASS-IONOMER CEMENTS FOR USE WITH ATRAUMATIC RESTORATIVE TREATMENT (ART). MOLINA, G.F., CABRAL, R.J., MAZZOLA, I., LASCANO, L.B. AND FRENCKEN, J.E. JOURNAL OF APPLIED ORAL SCIENCE, 21(3), PP.243-249.2013
- ➤ BIAXIAL FLEXURAL STRENGTH OF HIGH-VISCOSITY GLASS-IONOMER CEMENTS HEAT-CURED WITH AN LED LAMP DURING SETTING. FABIÁN MOLINA, G., CABRAL, R.J., MAZZOLA, I., BRAIN LASCANO, L. AND FRENCKEN, J.E. BIOMED RESEARCH INTERNATIONAL, 2013.

#### 2) Presentaciones a Reuniones Científicas:

- ➤ DISERTANTE. "ACTUALIZACIÓN SOBRE IONÓMEROS VÍTREOS DE RESTAURACIÓN". 2º CONGRESO INTERNACIONALES DE LA ASOCIACIÓN ODONTOLÓGICA DE PAYSANDÚ-URUGUAY. 24/09/09.
- ➤ DISERTANTE DE POSTER. "TRATAMIENTO RESTAURADOR ATRAUMÁTICO". 2º CONGRESO INTERNACIONALES DE LA ASOCIACIÓN ODONTOLÓGICA DE PAYSANDÚ-URUGUAY. 24/09/09.
- ➤ EXPOSITOR DE POSTER. "TRATAMIENTO RESTAURADOR ATRAUMÁTICO". 2º CONGRESO INTERNACIONALES DE LA ASOCIACIÓN ODONTOLÓGICA DE PAYSANDÚ-URUGUAY. 24/09/09.
- ➤ DISERTANTE DE MESA REDONDA." ACTUALIZACIÓN SOBRE CEMENTOS DE IONÓMEROS VÍTREOS DE RESTAURACIÓN". XX CONGRESO CIENTÍFICO ARGENTINO DE ESTUDIANTES DE MEDICINA (COCAEM)". CÓRDOBA- ARGENTINA. 28/10/09 AL 31/10/09
- EXPOSITOR DE PROYECTO DE INVESTIGACIÓN." VALORACIÓN DEL NIVEL DE CONOCIMIENTO DEL TRATAMIENTO RESTAURADOR ATRAUMÁTICO EN ODONTÓLOGOS". II JORNADAS CIENTÍFICAS DE INVESTIGACIÓN EN ODONTOLOGÍA. FACULTAD DE ODONTOLOGÍA. U.N.C. CÓRDOBA- ARGENTINA. 13/11/09 AL 14/11/09.
- ➤ INTEGRANTE DEL EQUIPO DE TRABAJO DE INVESTIGACIÓN. "META-ANÁLISIS SOBRE LA EFICACIA DE AGENTES REMINERALIZANTES, SELLADORES DE RESINA Y SELLADORES ART PARA LA PREVENCIÓN DE CARIES OCLUSALES EN PRIMEROS MOLARES PERMANENTES". CALZA T; CARRANZA ASTRADA C; BRAIN LASCANO L; MAZZOLA I; MOLINA G; CABRAL R. II JORNADAS CIENTÍFICAS DE INVESTIGACIÓN EN ODONTOLOGÍA. FACULTAD DE ODONTOLOGÍA. U.N.C. CÓRDOBA- ARGENTINA. 13/11/09 AL 14/11/09.

203





- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN: "PENETRACIÓN DE FLÚOR (F) Y ESTRONCIO (SR) EN DENTINA AFECTADA POR CARIES DESDE RESTAURACIONES DE IONÓMERO VÍTREO". MOLINA GF, MAZZOLA I, BRAIN LASCANO L, FARAH MA, SAINZ AJA M, CABRAL RJ. XLIII REUNIÓN ANUAL DE LA SAIO, LOS COCOS (CÓRDOBA), 08/10/2010.
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN: "RESISTENCIA COMPRESIVA DE DOS NUEVOS IONÓMEROS VÍTREOS ENCAPSULADOS DE ALTA DENSIDAD PARA TRATAMIENTO RESTAURADOR ATRAUMÁTICO. ESTUDIO PILOTO IN VITRO". BRAIN LASCANO L, MAZZOLA I, ZAYA M, CABRAL RJ, MOLINA GF. XLIV REUNIÓN ANUAL DE LA SOCIEDAD ARGENTINA DE INVESTIGACIÓN ODONTOLÓGICA. SAN JAVIER, TUCUMÁN, ARGENTINA.27 AL 29/10/11.
- Integrante de Equipo de Trabajo de Investigación: "Resistencia Flexural de dos Nuevos Ionómeros Vítreos Encapsulados de Alta Densidad para Tratamiento Restaurador Atraumático. Estudio Piloto In Vitro". Brain Lascano L, Mazzola I, Pascualini C, Cabral RJ, Molina GF. XLIV Reunión Anual de la Sociedad Argentina de Investigación Odontológica. San Javier, Tucumán, Argentina.27 al 29/10/11.
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN. "COMPARACIÓN DE ESTRATEGIAS PARA PREVENCIÓN DE CARIES EN EL PRIMER MOLAR INFERIOR PERMANENTE. ESTUDIO CLÍNICO PILOTO". MAZZOLA I, BRAIN LASCANO L, CARLETTO KORBER F, JIMENEZ MG, CABRAL RJ, MOLINA GF. RESÚMENES DE LA XLIV REUNIÓN ANUAL DE LA SAIO, SAN JAVIER (TUCUMÁN), 27 AL 29/10/2011.
- EXPOSITOR DEL TRABAJO." RESISTENCIA FLEXURAL DE DOS NUEVOS IONÓMEROS VÍTREOS ENCAPSULADOS DE ALTA DENSIDAD PARA TRATAMIENTO RESTAURADOR ATRAUMÁTICO. ESTUDIO PILOTO IN VITRO". BRAIN LASCANO L, MAZZOLA I, PASCUALINI C, CABRAL RJ, MOLINA GF. III JORNADAS DE INVESTIGACIÓN CIENTÍFICA EN ODONTOLOGÍA. FACULTAD DE ODONTOLOGÍA. UNC. CÓRDOBA, ARGENTINA. 17 AL 19/11/11.
- EXPOSITOR DEL TRABAJO. "RESISTENCIA COMPRESIVA DE DOS NUEVOS IONÓMEROS VÍTREOS ENCAPSULADOS DE ALTA DENSIDAD PARA TRATAMIENTO RESTAURADOR ATRAUMÁTICO. ESTUDIO PILOTO IN VITRO". BRAIN LASCANO L, MAZZOLA I, ZAYA M, CABRAL RJ, MOLINA GF. III JORNADAS DE INVESTIGACIÓN CIENTÍFICA EN ODONTOLOGÍA. FACULTAD DE ODONTOLOGÍA. UNC. CÓRDOBA, ARGENTINA. 17 AL 19/11/11.
- ➤ DISERTANTE DE LA CONFERENCIA: "TIPS PARA ALCANZAR EL ÉXITO EN EL TRA CON CEMENTOS DE IONÓMERO VÍTREO DE ALTA DENSIDAD". II JORNADAS INTERNACIONALES DE LA FACULTAD DE ODONTOLOGÍA DE LA UNC. CÓRDOBA, ARGENTINA, 14 AL 16 /06/12.
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN: "COMPRESSIVE STENGTH OF NEW CAPSULATED GICS FOR ATRAUMATIC RESTORATIVE TREATMENT". CABRAL RJ, MOLINA GF, BRAIN LASCANO L ,ZAYA LM, MAZZOLA I, FRENCKEN J.. 90TH IADR/LAR GENERAL SESSION & EXHIBITION. IGUACU FALLS, BRAZIL. JUNE 20-23, 2012.
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN: "FLEXURAL AND DIAMETRAL TENSILE STRENGTH OF CAPSULATED GICS FOR ART". MAZZOLA I, BRAIN LASCANO L, MOLINA G.F, FARAH MA, CABRAL R.J, FRENCKEN J. 90TH IADR/LAR GENERAL SESSION & EXHIBITION. IGUACU FALLS, BRAZIL. JUNE 20-23, 2012.





- EXPOSITOR DEL TRABAJO: "AUMENTO TÉRMICO POR APLICACIÓN DE LED DURANTE EL FRAGUADO DE CEMENTOS PARA ART". S.A.I.O. XLV REUNIÓN ANUAL. LOS COCOS, CÓRDOBA, 10/11/12.
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN: "BFS OF GICS FOR ART HEATED WITH LED DURING SETTING". MOLINA GF, MAZZOLA I., BRAIN LASCANO L., CABRAL RJ, FRENCKEN J. IADR WASHINGTON. MARCH 23, 2013
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN. "COMPOSICIÓN QUÍMICA Y ADAPTACIÓN A LA PARED PULPAR DE TRES CEMENTOS ENCAPSULADOS PARA RESTAURACIÓN". ROSAS C; HERNANDO L; RODRIGUEZ IA; BRAIN LASCANO L, MOLINA GF, URIBE ECHEVARRIA J. IV JORNADAS CIENTÍFICAS DE INVESTIGACIÓN EN ODONTOLOGÍA. FACULTAD DE ODONTOLOGÍA. U.N.C. CÓRDOBA- ARGENTINA. 28/11/13 AL 30 /11/13.
- EXPOSITOR. "RESISTENCIA AL DESGASTE DE LOS CEMENTOS DE IONÓMEROS VÍTREOS POR EL CEPILLADO DENTAL". BRAIN LASCANO L, CID M, GRINSCHPUN L, GARCIA A, MOLINA GF, CABRAL R J. IV JORNADAS CIENTÍFICAS DE INVESTIGACIÓN EN ODONTOLOGÍA. FACULTAD DE ODONTOLOGÍA. U.N.C. CÓRDOBA- ARGENTINA. 28/11/13 AL 30 /11/13.
- ➤ INTEGRANTE DE EQUIPO DE TRABAJO DE INVESTIGACIÓN. "CONTROL BIANUAL DE SOBREVIDA ACUMULADA DE RESTAURACIONES TRA Y CONVENCIONALES EN PACIENTES CON DISCAPACIDAD". MOLINA GF, MAZZOLA I, BRAIN LASCANO L., CABRAL RJ, FRENCKEN JE. XLVII REUNIÓN ANUAL SAIO. ARGENTINA. 2014
- EXPOSITOR DEL TRABAJO. "RUGOSIDAD SUPERFICIAL DE LOS CEMENTOS DE IONÓMEROS VÍTREOS USADOS EN EL TRA". BRAIN LASCANO L., MOLINA GF. XLVIII REUNIÓN ANUAL SAIO. TANTI. CÓRDOBA- ARGENTINA. 12/11/15 AL 14/11/15.
- EXPOSITOR DEL TRABAJO. "DUREZA VICKERS DE LOS CEMENTOS DE IONÓMEROS VÍTREOS USADOS EN EL TRA". BRAIN LASCANO L., MOLINA GF. XLVIII REUNIÓN ANUAL SAIO. TANTI. CÓRDOBA- ARGENTINA. 12/11/15 AL 14/11/15.



