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Metaphysics, Metamathematics and Metabiology

Gregory Chaitin'

Abstract

In this essay we present an information-theoretic perspective on epistemology using software
models. We shall use the notion of algonthmuc mformation to discuss what 1s a physical law, to
determine the limits of the axiomatic method, and to analyze Darwin’s theory of evolution.

Weyl Leibniz, ¢ complexity and the principle of sufficient reason,

The best way to understand the deep concept of conceptual complexity and algonithmuc
information, which 1s pur basic tool, 1s to see how it evolved, to know 1ts long history. Let’s start
with Hermann Weyl and the great philosopher/mathematcian G. W, Letbniz. That everything
that 15 true 15 true for a reason 1s rattonahst Leibruz’s famous prinaple of sufficient redson. The
bits of £ seem to refute this fundamental principle and also the 1dea that everything can be
proved starting from self-eviderit facts. '

What is a scientific theory?
The starung pomt of algonthrnic information theory, which 1s the subject of this essay, 1s this
toy model of the scientific method.

theory/program/010 — Computer — expenimental data/outpur/110100101.

A scientfic theory 1s 2 computer program for exactly producing the expernnental data, and
both theory and data are a finite sequence of bus, a bit string, Then we can define the complexity
of a theory to be 1ts size in bits, and we can compare the size in bats of a theory wath the stze in
buts of the experimental data that 1t accounts for

That the simplest theory 15 best, means that we should pick the smallest program that explains
a given set of data Furthermore, if the theory 1s the same size as the data, then i1t 15 useless,
because there 1s always a theory thiat'ss the same $1ze as the data that 1t explains. In other words; a
theory must be a compression of the data, and the greater the compression, the better the theory.
Explanations are compressions, comprehension 1s compresston!

Furthermore, if a bit string has absolutely no structure, 1f st i3 cornpletely random, then there
will be no theory for 1t that 1s smaller than st is. Most bit strings of a given s1ze are incompressible
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and therefore incomprehensible, stmply because there are not enough smaller theores to go
around.

Ths software model of science 18 not new: It can be traced back via Hermann Weyl (1932) to
G W Letbmz (1686)! Let’s start with Weyl. In his litde book on phulosophy The Openr World: Thiee
Lectires on the Metaphysical Impheatrons of Science, Weyl pomrs out that iof arbitranly complex laews
ate allowed, then the concept of law becotnes vacuous, because there 1s always a law! In hus view,
this mmplies that the concept of a physical law and of complexity are inseparable, for there can
be no concept of law without a corresponding complexiry concept. Unfortunately he also poinits
out that 1 spite of 1ts importance, the concept of complexity 1s a slippery one and hard to define
mathemaucally 1n a convincng and ngorous fashion.

Furthermore, Weyl attributes these ideas to Leibniz, to the 1686 Duscorrs de metaphyseque What
does Leibtuz have to say about complexity in his Disconrs? The matettal on complexuty s 1n
Sections V and VI of the Dusconrs

In Secuon V, Leibmz explains why science 1¢ posstble, why the world 15 comprehensible,
lawful Tt 15, he says, because God has cteated the best possible, the most perfect world, 1
that the greatest posstble diversity of phenomena are governed by the smallest possible set of
1deas. God simultzneously maxirmizes the richness and dwversity of the wozld and minimuzes the
complexaty of the tdeas, of the mathematscal taws, that determine this world. That 1s why scienice
ts possible!

A modetn festaternent of thig 1déa 15 that science 15 possible because the world seems very
complex but 1s actually governed by a-small set of laws having low conceptual complexity

And 1n Section VI of the Dusconrs, Leibmz touches on randomness. He pents our that any
finite set of pownts on a plece of graph paper always seems to follow a law, because there 15 always
a mathematical equation passing through those very points. But there 1s a law only 1f the equation
15 stmple, not 1f 1¢ 15 very comphlicated. This 1s the tdea that impressed Weyl, and 1t becomes the
defimition of randomness m algonthmic information theory!

Finding elegant programs

So the best theoty for something 15 the smallest program that calculates 1t. How can we be
sure that we have the best theory? Let’s forget about theones and just call a program elegant 1f 1t
1s the smallest program that produces the output that 1t does. More precisely, a program is elegant
if no smaller program written in the same language produces the same cutput.

So can we be sute that a program 1s elegant, that 1t 15 the best theory for its output? Amazingly
enough, we car’t: Tt turns out that any formal axtomatic theory A can prove that at most fimeely
many proggams are elegant, 1n spite of the face that there are infinrely many elegant programs.
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More precisely, it takes an N-bit theory .4, one having N bits of axioms, having complexity N, to
be able to prove that an mdwvidual N-bit program 1s elegant. And we don’t need to know much
about the formal axiomatic theory .4 10 order to be able to prove that it has dus limitation.

What is a formal axiomatic theotry?

All we need to know about the axiomatic theory A, 1s the crucial requirement emphasezed
by David Hilbere that there should be a proof-checking algonthm, a mechantcal procedure for
dectding if a proof 1s correct or not. It follows that we can systematcally run through all possible
proofs, all possible strings of characters in the alphabet of the theory 4, in s1ze order, checking
which ones are vahid proofs, and thus discover all the theorems, all the provable assertions 1n the
theory .A*

That’s all we need to know about a formal axiomatic theory 4, that there 1s an algorithm for
generating all the theorems of the theory This 1s the software model of the axiomanc method
studied 1n algonthime mformation theory. If the software for producing all the theorems s N
bits in size, then the complexity of our theory .4 1s defined to be IN bits, and we can Lt s
powet 1n terms of its complextty H(4) = N. Here’s how:

Why car’t you prove that a program is elegant?

Suppose that we have an IN-but theory. 4, that 15, that H{4) = N, and that 1t 15 always possible
to prove that mdividual elegant programs are in fact elegant, and that 1t 15 never possible to prove
that mnelegant programs are elegant. Consider the following paradoxical program P

P runs through 2l possible proofs 1 the formal axiomatic theory A, searching for the
first proof 1n A that an individual program (3 is elegant for which it is also the case that
the size of Q in bits 15 lazger than the size of P in bits. And what does P do-when it finds
Q? It runs Q and then P produces as its output the output of Q.

In other words, the output of P1s the same as the output of the first provably elegant program
O that 1s larger than P But this contradicts the defimtion of elegancel P s too small to be able
to calculate the outpur of ari elegant program Q that 1s larger than P We seem to have artived at
a contradictron!

But do not worty, thete 1s no contradicion, What we have actually proved 1s that P can never
find Q. In other wotds, there 15 no proof in the formal axiomatic theory »4 that an mdividual
program £ 15 elegant, not 1f O 1s larger than P. And how large 15 P? Well, just a fixed number of
bits ¢larger than N, the complexity I(-1) of the formal axiomatic theory A4 P consists of a small,
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fixed matn program ¢ bits 1n size, followed by a large subroutine H{A) bits i size for generadng
all the theorems of A.

The only thing tnicky about this proof 1s that it requires P 1o be able 1o know 1ts own size m
bits. And how well we are able to do thus depends on the details of the parucular programming
language that we are using for the proof. So to get a neat result and to be able to carry out this
stmple, elegant proof, we have to be sure to use an appropriate programming language. This 1s
one of the key 1ssues 1 algonthmic information theory, which programmung language to use.?

Farewell to reason: The halting probability Q *

So there are mfinttely many elegant programs, but there are only finitely many provably elegant
programs 1n any formal axiomatic theory 4. The proof of thus 1s rather straightforward and
short. Nevertheless, thus 1s a fundamental mformation-theoretic incomplereness theorem that 15
rather different 10 style from the classical incompleteness results of Godel, Tunng and others.

An even mote imporeant incompleteness result 1 algonthmic informaoon theory has to do
with the haltng probability €, the numencal value of the probabihty that a program p-whose
successtve bits are generated b\, mdependent tosses of a farr coin will eventually haic.

Q= Zﬂlmm F=tsixe ia biss of g}

Fo be able to define this probabihity Q, st 1s also vety mmportant how you chose your
programmung language. If you are not careful, this sum will diverge instead of being <1 like 2
well-behaved probability should. :

Turing’s fundamental result 15 that the halung problem m unsolvable In algorithrme
information theory the fundamental result 1s that the halung probability Q 1s algorithr;mcally
irreductble or random. It follows that the bits of £ cannot be compressed into a theory less

co'méhcated than they are. They are wrreducibly complex It takes N bits of axioms to be able to
determune N bits of the numerical vatue

Q= 1101011, !

of the halung probability. If your formal axiomanc theory A has H(A) = N, then you can
determine the values and positions of at most N + ¢ bits of £

In other words, the bits of £ ate logically 1rreducible, they cannot be proved from anything
simpler than they are Essentially the only way to determune what ate the bits of Q 1s to add these
bits to your theory .4 as new axioms. But you can prove anything by adding 1t as a new axiom,
That’s not using reasoning!

181




So the bits of Q refute Letbruz’s principle of suffictent reason: they are true for no reason.
More precisely, they are not true for any reason siumpler than themselves. This 15 a place where
mathematical truth has absolutely no structure, no pattern, for which there 1s no theory!

Adding new axioms: Quasi-empirical mathematics®

So mcompleteness follows immediately from fundamental informanon-theoretac hmurations,
What to do about incompleteness? Well, just add new axtoms, increase the complexity H(A4) of
your theory 4! That 1s the only way to get around incompleteness.

In other words, do mathematics more Itke physics, add new axioms not because they are
self-evident, bur for pragmatic reasons, because they help mathemancians to organize their
mathematical expemence just like physical theories help physicists to organize therr phiysscal
expenence. After all, Maxwell’s equanions and the Schrodinger-equation are not at all self-evidert,
but they work! And dus 1s just what mathematicians have done 1 theoretical comipurer sctence
with the hypothesis that P # NP, 1n mathemancal eryptography with the hypothesis that factoning
1s hard, and 1 abseract axiomatic set theory with the new axiom of projective determinacy.®

Mathematics, biology and metabiology

We’ve discussed physical and mathematical theoties, now let's turn to biology, the most
excitmng field of science at this ame, but one where mathematcs 1s not very helpful Biology 15
vety different-from phystes Thete 16 no simple equation fot your spouse. Biology 1s the domain
of the complex. There ate not many universal rules There are always exceptions. Math 1s very
important i theoretical physics, but there 15 no funidamental mathematcal theoretical biology.

This 1s unacceptable. The honor of mathematics requires us to come up with a mathematical
theory of evolution and erther prove that Darwin was wrong or night! We want a general, abstract
theoty of evolunon, not an immensely comphcated theory of actual biological evolution, And we.
want proofs, not computer sumulanons! So we've got to keep our model very, very simple.

That’s why this proposed new field 1s mérabiology, not biology.

What kind of math can we use to build such a theory? Well, it’s certamnly not going to be
differential equations. Don’t expect to find the secret of hfe m a diffetential equation; that’s the
wrong kind of mathemancs for a fundamental theory of biology.

In fact a umversal Turing machine has much more to do with bioiogy than a differenual
equation does. A unrversal Turing machine 1s a very complicated new kind of object compared
to what came previously, compared with the sumple, elegant sdeas 1n classical mathematics like
analyss, And there are self-reproducing computer programs, which 1s an encouraging sign.
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There ate in fact three areas in our current mathematics that do have some fundamental
connection with biology, that show promise for math to connnue moviag m a biological
direction:

Computatzon, Information, Complexity.

DNA. 15 essentially a programming language that computes the organism and its functoning,
hence the relevance of the theory of computation for biology.

Furthermore, DNA contamns biological informanon. Hence the relevance of mformation
theory. There are in fact at least four different theortes of mformation:

* Boltzmann stausucal mechamics and Boltzmann entropy,

* Shannon communicatnon theory and coding theory,

* algonthmic information theory (Solomonoff, Kolmogorov, Chammnj, which is the subject
of this essay, and

* gquanturn informatton theory and qubits.

Of the four, AIT (algorithmuc information theory) is closest in spirit to biology. AIT studies
the size 1n bits of the smallest program to compute something. And the complexity of a living
organism can be roughly (very roughly) measured by the number of bases mn 1ts DNA, 1n the
biological computer program for ealculaning 1t.

Finally, let’s talk about complexity Complexity 1s 1n fact the most distngurshing feature
of biological as opposed to- physical smence and mathemancs. There are many computanonal
defimuons of complexity, usually concerned with computaton times, but again ATT, which
concentrates on progran size or conceptual complexity, 18 closest 1n spirit to biology. !

Let’s emphasize what we are not mterested in doing, We are certamnly not trying to do syétems
biology. large, complex reabistic simulations of biological systems. And we are not mreerested 1n
anything that 1s at all ke Fisher-Wrght populanon genetics that uses differennal equations to
study the shift of gene frequencies m response to selecave pressures.

We want to use a sufficiently nch mathemancal space to model the'space of all possible designs
for biological orgamsms, to model biological creatvity. And the only space that 1s sufficiently
rich to do that 1s a software space, the space of all possible algorithms in 2 fxed programming
language. Otherwise we have himited ourselves to a fixed set of possible genes as in population
genetnics, and 1t 15 hopeless to expect to model the major transitons m brological evolunon such
as from single-celled to multicellular organisms, which 1s a bir like taking a main program and
making 1t into a subrouune that 1s called many tmes.
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Recall the cover of Stephen Gould’s WWonderfur/ Lsfe on the Burgess shale and the Cambrian
explosion? Around 250 pnimitive organisms with wildly differing body plans, looking very much
like the combinatorial exploration of a software space. Note that there are no intermediate forms;
sinall changes in software produce vast changes in cutput.

So to simplify matters and concentrate on the essentials, let’s throw away the organism and
just keep the DNA. Here 1s our proposal:

Metabiology: a field parallel to brology that studies the random evolution of arnficial
software (computer progtams) rather than natural software (DNA), and thac is sufficiently
simple to petmit tigorous proofs or at least heuristic arguments as convincing as those
that are employed in theoretical physics.

This analogy may seem a bit far-fetched. But recall that Darwin himself was mspired by the
analogy between artificial selection by plant and animal breeders and natural section imposed by
malthusian hmitatons.

Furthermore, there are many tantahzing analogies between DNA and large, old pieces of
software. Remember bricolage, that Narure is a cobbler, a ankerer? In fact, 2 human being 1s
just a very large piece of software, one that 15 3 X 109 bases = 6 X 109 bits = one gigabyte of
software that has been patched and modified for more than a billion years: a tremendous mess,
in fact, with bits and pieces of fish and amphibian design mixed m with that for a mammal.7
For example, at on’eipoi-nt in gestanon the human ernbzryo has gills. As ume goes by, large human
software projects also turn mnto a tremendous mess with many old bits and pieces.

The key pomt 1s that you can’t start over, you've got to make do with what you have as best
you can. If we could design 2 human being from scratch we could do a much better job. But we
can’t start over. Evolution only makes small changes, incremental patches, to adapt the existing
code to new environments,

So how do we model this? Well, the key 1deas are:

Evolution of mutanng sofrware,
and:

Randomr walks wn software space.

That’s the general 1dea. And here are the specifics of our current model, which 15 quite
tentatve.
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We take an orgamism, 2 single organism, and perform random mutations on it untl we get a
firter organism. That replaces the original organism, and then we conunue as before. The result 1g
a random walk 1n software space with increasing fitness, 2 hill-chmbing algonthm m fact®

Finally, a key elemnent in our proposed model is the defimtion of fitness. For evolution to wotk,
1t 15 umporeant to keep our orgamsms from stagnating. It 1s important to give themn something
challenging to do.

The simplest possible challenge to force our orgarusms to evolve 15 what 1s called the Busy
Beaver problem, which 1s the problem of prowiding concise names for extremely large integers.
Each of our organisms produces a single positive integer. The larger the integer, the fitter the
organism,’

The Busy Beaver function of N, BB(IN), that 15 used 1n AIT 15 defined to be the largest
posiave mteger that 1s produced by a program that 15 less than or equal to IV bits 1n s1ze. BB(IN}
Vgrows faster than any computable funczon of N and 1s closely related to Turing’s famous halting
problem, because 1f BB(IN) were computable, the halting problem would be solvable.'®

Dong well on the Busy Beaver problem can unlize an unlmited amount of mathematical
creatvity. For example, we can start with addinon, then invent multpheanion, then exponennaton,
then hyper-exponentials, and use this to concisely name large mtegers:

N+#N—=NXN-—NV— N

There are many possible choices for such an evolving software model: You can vary the
computer programming language and thetefore the software space, you can chg{lge the mutaton
model, and eventually you could also change the fitness measure. For a particular choice of
language and probability distnibution of mutations, and keeping the current finess funcuon,
it 15 possible to show that m ume of the order of 2N the fitness will grow 2s BBIN), which
grbwsfaster than any computable funcuon of N and shows that genuine creanwvity is taking
place, for mechamcally changing the organism can only vield fitness that grows as a computable
function."

So with random mutations and just a single organism we actually do get evolution, unbounded
evolution, wiuch was precisely the goal of metabiologyl

This theorem may seem encouraging, but it actually has a senous problem The tumes
involved are so large that our search process 1s essentially ergodse, which means that we are doing
an exhausuve search Real evolution s not at all ergodic, since the space of all possible designs 1s
much too immense for exhaustive search.
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It wrns out that with this same model there 1s actually a much quicker rdeal evolutionary
pathway that achieves fitness BB(IN) 1n time of the order of IN. This path is however unstable
under random mutations, plus 1t 15 much too good: Bach organism adds only a smgle bt to
the preceding orgamsm, and immediately achieves near optimal fitness for an orgasism of 1ts
size, which doesn’t seem to at all reflect the haphazard, frozen-accident nature of what actually
happens 1n biological evolution '

So that 1s the current state of metabiology: a field with some promuse, but not much actual
content at the present time. The particular details of our current model are not too mmportant.
Soine kind of mutating software model should work, should exhibit some kind of basic biological
features. The challenge 15 to identify such a model, to characterize 1ts behavior stausucally,'® and
tp prove that 1t does what is requured.

Notas

1 Historical Note: Algorithmuc informanon theory was first proposed mn the 1960s by R Solomonoff, A. N.
Kolmogorov, and G ]. Chaitin. Solomonoff and Chatin considered this toy model of the scentific method, and
Kolmogorm and Chaltn proposed defintng randomness as algorithmic incompressibility

2 Hiitorical Nete: The idez of running through zll possible proofs, of creativity by mechanically trying all poamblc
combm'mons cant be traced back through Leibniz 1o Ramon Llull m the 1200s.
3 See the chapter on “The Search for the Perfect Language™ n Chaitin, Matbematees, Conpplesaty and Phelosophy, m
press.
4 Farewell to Reason 15 the atle of a book by Paul Feyerabend, a wonderfully provocatve phidosopher. We borrow
his ttle here for dramatic effect, but he does not discuss £ in this book or any of his other works.
5 The term quasi-empirical is due o the philosopher Imre Lakaros, a friend 6f Feyetabend For moze on this
school, including the original article by Lakatos, see the collection of quasi-empirical philosophy of math papers
edited by Thomas Tymoczko, New Directions in the Plulosophy of Matbematies.
6 See the article on “The Brave New World of Bodacious Assumptions in Cryprography™ m the March 2010 1ssue
of the AMS Notices, and the arpicle by W Hugh Woodin on “The Continuum Hypothesis” in the June/July 2001
issue of the AMS Nedices
7 See Neil Shubin, Yo Lser Fesh: A Jonrney mite-the 3.5 Billron-Year Hustory of ihe Human Bady.
8 In order 1o avoid getting stuck on a local maximum, in order to keep evolution from stopping, we stpulate that
there is 2 non-zero probabiity to go from any organism to any other organism, and —log2 of the probabﬂm of
mutating {rom .4 to B defines an imporeant concept, the awiation distance, which is measured 1 bits.
9 Alrernative formaiations. The organism calculates.a total function. ) oF 4-singlenen-niegaave integer #.and ffi) 15
fitzer than gfn) if fi)/g(n} ~+ o as # — @ Or the organism calculates a {construcuve) Cantor ordinal sumber and
the larger the ordinal, the fitter the orgamsm
10 Consider BB'(N) defined to be the maximum run-time of any program that hals that 1s less thar or equal to
N bits in size,
11 Note that to acmally simulate our model] an oracle for the haltng problem would have to be employed to avotd
organisms that have no fitness because they never calcufate a positive integer. This also explains how the fitness can
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grow faster than any computable function. In our evolueuon model, mplicit use 15 being made of an osacle for the
halting problem, which answers questions whose answers cannot be computed by any algorithmic process,

12 The Nth organism in this ideal evolutonary pathway is essénnally just the first N bits of the numerieal value of
the halting probability £. Can you figure out how to compute BB(IV) from this?

13 Forinstance, will some kind of hierarchical structure emerge? Large human software projects are always wrtten
that way.
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