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Epmemologia e H1stona de la C1enaa • Yolumen 16. 2010 

Metaphysics, Metamathematics and Metabiology 

Gregory Chat!m * 

Abstract 

In tlus essay \ve presentan mformatton-theoretlc perspecttve on eptstemology usmg software 

models. We shall use the not10n of algonthrmc mformation to d1scuss what 1S a physicallaw, to 

detenrune the lmuts of the a..uomatlc method, and to analyze Darwm's theory of evolutton. 

Weyl, Leibniz, complexity and the principie of sufficient reason 

The b~~t ~~;y to ;;;¿e~stand rl1e deep concept of conceptual compleXJty and algondllllic 

m forma non, which 1s our baste tool, ts ro see how it evolved, to know lts long lustory, Let's start 

Wlth Hermano Weyl and ilie great phliosopher/ mathemannan G. W. Le1bniz That everyrlung 

that 1s true 1s true for a reason 1s ranonahst Leibruz's famous pnnctple of suffiaent reason. The· 

bus of Q seem to refute rlus fundan1ental pnnc1ple and also the 1dea that everytlung can be 

proved starnng from self-ev1dent facts. 

What is a scientific theory? 

The startmg pomt of algonthrmc mformanon theory, wh1ch 1s ilie subject of tlus essay, 1s tlus 

toy model of the sc1ennfic meiliod. 

theory / program/01 O ---> Computer ---> expenmental data/ output/1101 00101 

A se1enrific theory ts a computer program for exactly productng the expentnental data, and 

bod1 theory and data are a fimte sequence of bus, a bu sttmg. Then we can define d1e complexlty 

of a theory to be tts stze tn btts, and we ~~-?: ~ampare the stze tn b1ts of a theory With the stze Iri 

bus of tl1e experunental data that 1t accounts fÜr. 

That the simplest ilieory 1s best, means that we should piCk ilie smallest program that explams 

a g:tven set of data Furthermore, tf the theory ts the same stze as the data, then tt ts useless, 

because there· 1s always a theory that ts the same stze as the data that lt explatns. in other words) a 

theory m~st be a compress10n of the data, and the greater the cmnpresswn, tl1e better the theory. 

Explananons are compress10ns, comprehenston ts compresswn! 

Furthermore, tf a btt stnng has absolutely no structure, tf tt 1s completely random, then there 

wtll be no theory for It that 1s smaller than 1t is. !vfost btt strmgs of a gtYen stze are mcompresstble 

*' IBI\-[ \\i'atson Research Center, Yorkrown Hetghts 
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and therefore mcomprehenstble, s1mply because there are not enough smaller theones to go 

ru:ound 

Thts software model of sctence 1s not new: lt can be traced back vta Hermann Weyl (1932) to 

G W. Letbmz (1686)! Let's start wtth Weyl In hts htde book on plulosophy The Ope11 Wór!d: Time 

Lect11res 011 the Metapfryszcal Imphcahons oJ S czence, Weyl pomts out that ¡f arbmanly comp!e,.; laws 

are allowed, then the concept of law becomes vacuous, because there 1s always a law! In hts VIew, 

tlus 1mphes that rhe concept of a phySlcallaw and of complextty are mseparable, for there can 

be no concept of law "'~thout a correspondmg complextty concept. Unfortunately he also pmnts 

out that m sptte of tts tmportance, the concept of complextty ts a shppery one and hard ro define 

mathemancally m a convincmg and ngorous fashwn 

Furthermore, Weyl attnbutes these tdeas to Letbmz, to the 1686 Dzsco11rs de milapleJ>szq~te What 

does Leibntz have ro say about complexrty m hts Drsco11rs? The material on complextty ts m 

Secnons V and VI of the Dzscatm 

In Secnon V, Letbmz explams why sctence 1s posstble, why the world 1s comprehenstble, 

lawful. I t ts, he says, beca use God has created the best posstble, the most perfect world, m 

that the greatest posstble dtverstty of phenomena are governed by the smallest posstble ser of 

tdeas. God s1multaneously maXlffilzes the nchness and dlverstty of the world and nunnmzes the 

complextty of the tdeas, of the mathemancallaws, d1at deternune dus world. That ts why soence 

1s posstble! 

A modern testatement of this tdea 1s that sClence 1s posstble because the world seems vcry 

complex but 1s actually governed by a 'mal! ser of laws havmg low conceptual complextty 

And m Sectlon VI of the Dtscours, Le1bmz touches on randomness. He pblJlts out that any 

fimte set of pomts on a ptece of graph paper always seems ro follow a law, because there 1s always 

a mathemancal equanon passmg d1tough those very pomts. But there 1s a law only tf the equanon 

1s sunp.le, not tf lt ts very comphcated. Thts 1s the tdea that 1mpressed Weyl, and lt becomes the 

defimtion of randomness 1n algonthm1c mformauon theory. 1 

Finding elegant programs 

So the best d1eory for somethmg ts the smallest program that c~lculates rt. How can we be 

sure that we have the best theory? Let's forget about theones and ¡ust cal! a program elegant ¡f lt 

ts d1e smallest program that produces d1e output that 1t does. More prectsely, a program ts elegant 

1f no smaller program wntten m the same language produces the same output. 

So can we be sw::e that a program 1s eleganr, that 1t 1s the best theory for· its output? Ama.z1ngly 

enough, we can't: Ir rurns out that any formal ax10matlc theory A can prove that ar most firutely 

many programs are elegant, m spue of the fact that d1ere are mfirutely 1nany elegant programs. 
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More prectsely, 1t takes an N-blt theory A, one havmg N btts of axmms, havmg complextty N, to 

be able to prove that an md1Vldual N-btt program 1s eleganL And we don't need to know much 

about the formal ax10mat1c theory A m order ro be able to prove that 1t has tlus lmut:.1t1on. 

What is a formal axiomatic theory? 

All we need to know about the a.uomanc theory A, 1s the cruc1al reqmrement emphas1zed 

by Da.1d Hllbert that tl1ere should be a proof-checkmg algonthm, a mechamcal procedure for 

dee1dmg ¡f a proof 1s corrector not.. It follows that we can systematically run through al! posstble 

proofs, al! posstble stnngs of characrers m the alphaber of the tl1eory A, m stze order, checkmg 

wluch ones are vahd proofs, and thus dtscover· all the theorems, all the provable assertmns m d1e 

theory A. 2 

That's all we need to know abour a formal axtomaoc theory A, that there 1s an algonthm for 

generatlng al! the rheorems of the theory Thts 1s the software model of the ax10mat1c metl1od 

stuched m algonthnuc mformatlon theory. If the software for producmg al! the theorems 1s N 
b1ts m s1ze, then the complextty of our tl1eory A ts defined to be N btts, and we can lmut A's 

power 10 terms of 1ts complextty H(A) = N Here's how: 

Why can't you prove that a program is elegant? 

Suppose tharwe have an N-b1t theoryA, rhaus, thar H(A) =.N, and tl1at1t 1s always poss1ble 

ro prove that tndtvtdual elegant programs are m fact elegant, and that 1t 1s never possible to prove 

thar melegant programs are elegant Constder the followmg paradox1cal progran~ P: 

P runs through all posstble proofs 111 the formal ax10manc theory A, searchmg for the 
first proof m A that an individual program Q is elegant for which It is also the case d1at 
the size of Q in bits 1s larger than the size of P in btts. And v.:hat does P do when it finds 
Q? lt runs Q and rhen P produces as its output rhe ourput of Q. 

In other words, the ourput of P 1s rhe same as the ourput of the first provably elegant program 

O thar 1s larger than P But tl11S contrachcts the defimtton of elegance! P ¡s too small ro be able 

ro calcula te the ourput of an elegant program Q rhar 1s larger than P ~We seem ro have arnved ar 

a contraillct10n! 

But do not worry~ there 1S no contradJcnon. What we have actually preved 1s that P can never 

find O. In orher words, rhere IS no proof m tl1e formal axlOmattc theory A that an mch\1dual 

program Q !S clegant, not ¡f Q ts larger rhan P. And how large 1s PI Well, just a fixed number of 

bitS e larger than N, rhe complexlty H(A) of rhe formal ax1omatlc rheory A P cons1srs of a small, 
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fixed matn program e b1ts m S!Ze, followed by a hu:ge subrounne H(A) b1ts m s1ze for generanng 

all the theorenns of A 
The only thmg tncky about tlus proof !S that 1t reqwres P to be able to know 1ts own s1ze m 

b1ts And how well we are able to do tlus depends on the detruls of the parncular programnung 

language rhat we are usmg for the proof So to get a neat result and to be able to carry out rl11s 

sunple, elegant proof, we have to be sure to use an appropnate programnung language. Tlus 1s 

one of the key 1ssues m algonthrruc mformanon theory, wluch programnung language to use.' 

Farewell to reason: The halting probability Q 4 

So there are mfimtely many elegam programs, but there are only fimtely many provably elegant 

programs 1n any formal axwmatic theory A. The proof of tlus !S rather straightfmward and 

short Nevertheless, thls 1s a fundamental mformanon-theorenc mcompleteness theorem that 1s 

rather cl.!fferent m style from the class!cal!ncompleteness results of Gódel, Tunng and others. 

An even more unportant mcompleteness result m algond1rmc 1nformanon theory has to do 

w1th the halnng probab1hty Q, the numencal value of the probability that a program p whose 

successiVe blts are generated by mdependent tosses of a farr com wdl eventually hale 

n = L 2-(•i•c in bi" ,( p) 
phah• 

To be able ro define tlus probab1hty Q, !t !S also very 1n1portant how you chose your 

programrmng language. If you are not careful, th1s sum will d1verge mstead of bemg :S 1 like a 

well·behaved probabihty should. 

Tur1ng's fundamental result 1s that the halnng problenn m unsolvable. In algor¡thrruc 
' mformation theory the fundamental result !S that the halnng probab!l!ty Q 1s algorithtp~cally 

IrreduCible or random. lt follows that the b1ts of Q cannot be compressed mto a theory less 

comphcated than they are. They are 1rreduC!bly complex It takes N bits of axwms to be able to 

deternune N b1ts of the numerical value 

Q = 1101011. 

of the halnng probability If your formal axwmanc d1eory A has H(A) = N, then you can 

deterrmne the values and posltlotÍs of at most N+ e bus of .Q 

In other words, the b1ts of Q are log>cally meduc1ble, they cannot be proved from anytlung 

sunpler than they are Essenually the only way to determme what are the b1ts of .Q 1s to add these 

btts to your theory- A as new axtoms. But you can prove anythmg by addmg 1t as a new ax1om. 

That's not usmg reasomng! 
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So the b1ts of O refute Letbruz's pnnaple of sufñaent reason: they are true for no reason :, 

More prectsely, they are not true for any reason stmpler than themselves" Tlus ts a place where 

mathemattcal truth has absolutely no strucrure, no pattern, for wluch there ts no theory! 

Adding new axioms: Quasi-empirical mathematics5 

So mcompleteness follows tmmedtately from fundarnentalmformatton-theorettc hm1tattons" 

What to do ahout mcompleteness? Well, ¡ust add new axtoms, mcrease the complextty HVJ.) of 

your theory A! That ts the only way to get around mcompleteness" 

In other words, do mathemaocs more llke phystcs, add new axwms not because they are 

self-evrdent, bur for pragmattc reasons, because they help mathemanaans to orgaruze thetr 

mathemattcal expenence ¡ust ltke phystcal theones help phystasts to orgaruze thetr physttal 

expenence" After all, Maxwell's equanons and the Schrodinger equatton are not at all self-evrdent, 

but they work! And dus 1s JUSt what mathemanaans have done m theoretlcal computer soence 

w1th the hypothests that P * NP, m mathemattcal cryptography wtth the hypothests that factonng 

ts hard, and m absrract axwmatlc ser theory \Vtth the new a.xwm of pro¡ecnve dererm1nacy 6 

Mathematics, biology and metabiology 

We've d!scussed physical and m.athematical theones, now let's turn to btology) the most 

exctttng field of sctence at thts ttme, but one where mathemattcs ts not very helpfuL Btology ts 

very different -from phystcs~ -Theteo 1'S- rto "Slh1ple- e-quatron for your spouse. Iliology 1s the doinam 

of the complex There are not many universal rules. There are always excepnons. l'viath 1s very 

tmporrant m theorettcal phystcs, but rhere ts no fundamental mathemattcal theorettcal btology 

Tlus 1s unacceptable. The honor of mad1emancs requttes us to come up wuh a mathematical 

theory of evolunon and e1ther preve that Darw:m was wrong or 11ght! We want a general, abstract 

theory of evolutton, notan tmmensely comphcated theory of actual btolog~cal evolutton. And we 

want proofs, not computer sunulattons! Sq we've got to keep our model very, very simple. 

That's why th1s proposed new field is JJJetab10/ogy, not btology. 

What kmd of math can we use to bmld such a theory? Well, tt's certamly not gomg to be 

chfferenttal equattons. Don't expect to find the secret of ltfe m a chfferenttal equanon; that's the 

wrong kmd of mathemattcs for a fundamental theoryof btology. 

In fact a umversal Turmg machme has much more to do wtth btology than a dtfferenttal 

" j 

equatton does. A umversal Turmg maclune ts a very comphcated new kmd of ob¡ect compared i¡" 
ro what carne prev10usly, compared wtth the sunple, elegant IdeaS m classtcal mathematlcs hke 

analys1s. And there are self-reproducmg computer prograrns, wh1ch 1s an encouragmg stgn. 
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There are m fact three areas m our current mathemancs that do have sorne fundamental 

connecnon Wlth biology, dut show pronuse for mad1 to connnue 1nov1ng m a bwlogt-cal 

chrecnon: 

Co111putatzon, Informatzon, Comp!extry. 
DNA !S essentially a programnung language that computes the orgamsm and lts funcnomng; 

hence the relevance of the theory of computanon for bwlogy 

Furthermore, DNA contatns bwlog¡cal mformanon. Hence the relevance of tnformaoon 

theory. There are tn fact at least four d1fferent theones of tnformanon: 

• Boltzmann stansncal mechamcs and Boltzmann entropy, 

• Shannon commumcanon theory and codmg theory, 

• algomhnuc tnformanon theory (Solomonoff, Kolrnogorov, Chamn), wlnch 1s the sub¡ect 

of tlns essay, and 

• quantum 1nformat1on theory and qubtts. 

Of the four, AIT (algonthrmc mformanon theory) 1s closest m spmt to bwlogy AITstud1es 

the s1ze m b1ts of the smallest program to compute somethmg. And the complexity of a l!vmg 

orgarusm can be roughly (very roughly) measured by the number of bases m 1ts DNA, m the 

bmlog1cal computer -program for calculaong lt. 

Finally, let's talk about complexlty. Complexuy 1s tn fact the most d!snngutshmg feature 

of bwlogical as opposed to phys1cal smence and mathernancs. There ru:e m:uzy computanonal 

defimnons of complexlty, usually concerned W1d1 computanon nrnes, but aga1n AIT, :vh!m 

concentra tes on progratn stze or conceprual compleXlty, 1s closest m sp1r1t to btology. 

Let's emphasize \Vhat we are not mterested m domg. We are certamly not trytng to do sy~tems 
bwlogy: large, complex real!snc smmlanons of bwlogical systems. And we are not mterested 1n 

anything that 1s at all l!ke F1sher-Wnght populanon genencs that uses d¡fferennal equanons to 

study the shtft of gene frequenctes m response to selecuve pressures. 

We want to use a suffic¡ent!y nch mathemancal space to model d1e·•space of all poss1ble des1gns 

for b10logical orgamsms, ro model bwlogical creatlvlty And the only space that 1s suffic1ently 

nch to do that 1s a software space, the space of all poss1ble algontlnns in a fixed programmmg 

language Otherw!se we have l!tmted ourselves ro a fixed ser of possible genes as in populanon 

genencs, and It ts hopeless to expect to model the ma¡or transtnons m biOlogtcal evolution such 

as from smgle ... celled ro mulucellular orgamsms, whtch ts a b1t hke taktng a mam program and 

makmg lt mto a subrounne that 1s called many urnes 
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Recall tbe cover of Stephen Gould's 117onderftt! ufo on the Burgess shale and .the Cambrtan 

explosmn? Around 250 prumnve orgarusms w1tb w!ldly dtffenng body plans, lookmg very much 

hke the combmatonal explora non of a software space .. Note that there are no mtermedtate forms; 

sríláll changes m soft\vare produce vast changes in output. 

So ro simpbfy matters and concentrare on the essennals, let's throw away the orgarusm. and 

¡ust keep tbe DNA Here 1S our proposal: 

Metab10logy: a field parallel to btology tbat srudtes the random evolunon of arnfiaal 
software (compurer programs) rarher than natural software (DNA), and rhatis sufficiently 
simple ro permit rigorous proofs or at least heuristic arguments as convincing as tl1ose 
that are employed in theorerical phys1cs. 

Thts analogy m.~y seem a bu far-fetcbed. But recall that Dal:\1,m himself was mspued by the 

analogy between artifiCial selecnon by plant and ammal breeders and natural sectton rmposed by 

malthustan hrmraaons. 

Furthermore, there are many tantahzmg analog1es between DNA and large, old p1eces of 

software. Remember bncolage, that Nature 1s a cobbler, a t:lnkerer? In fact, a human bemg 1s 

¡ust a very large pie<:e of software, one that 1s 3 x 109 bases ~ 6 X 109 bits"' one gtgabyte of 

sofn.vare that has been patched and modlfied for more than a bill10n years: a tremendous mess, 

m fact, wtth bits and pieces of fish and arnphibian design lnLxed m wtth that for a mamrnaL7 

For example, at one pomt m gesta non the human embryo has gills. As nme goes by, large human 

software pro¡ects also turn tnto a tremendous mess wtth many old b1ts and p1eces. 

The key pomt 1s that you can't start over, you've got to make do wtth what you have as best 

you can. If we could deSign a humau bemg from scratch we could do a mucb better ¡ob. But we 

can't start over. Evoluuon only makes small changes, mcremental parches, to adapt the e::astmg 

code to new envrronments. 

So how do we model dus? Well, th~ key Ideas are; 

Evolutton of mutattng software, 

and: 

Rcndo111 wolks m software space. 

That's the general Idea. And here are the spectfics of our current model, "\Vhich ts qUite 

renta ove. 
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We take an orgamsm, a smgle orgamsm, and perform random mutanons on 1t untll we get a 

fi.tter orgarusm. That replaces the origmal orgamsm, and then we connnue as before. The result 1s 

a random walk m software space Wlth mcreasmg fitness, a hdl-chmbmg algonthm m fact 8 

Fmally, a key elemem m our proposed model is the defimnon of fitness. For evolunon ro work, 

1t 1s unportant to keep our orgamsms from stagnaung. It 1s tmponant to gtve thetn somed1mg 

challengmg ro do. 

The stmplest posstble challenge to force our orgamsms ro evolve ts what !S called the Busy 

Beaver problem, wluch ts d1e problem of prm~dmg conose names for extremely lmge mteger·s. 

Each of our orgarusms produces a smgle postnve integer. The larger the mteger, the fitter the 

orgarusm. 9 

The Busy Beaver functton of N, BB(N), that ts used m AIT !S defined to be d1e largest 

postnve mteger that ts produced by a program d1at ts less dun or equal toN btts m stze. BB(N) 

grows fas ter than any computable funcnon of N and ts dosel y related to Turmg's famous halting 

problem, beca use tf BB(N) were computable, the halnng problem would be salvable. 10 

Dmng well on the Busy Beaver problem can unhze an unhrmted amount of mathemattcal 

creaunty. For example, "\Ve can start '\vith add!uon, then mvent muluphcanon, then exponenoanon, 

then hyper-exponenoals, and use thts to cone1sely na1ne large mtegers: 

N + N ---t N X N ---t N-.; ---t .J.'\1"' ---t 
N 

There are many- possible chmces for such an evolvmg software model: You can vary the 

computer programming language and therefore the software space, yo u can ch~?ge the m.utauon 

model, and eventually you could also change the fitness measure .. For a pamcular chmce of 

language and probabihty dlstttbunon of mutatlons, and keepmg the current fitness fun;cnon, 

lt ¡s posStble to show dut m t1tne of the order of 2N the fitness wlil grow as BB(N), ~vhtch 
grows faster than any computable funcnon of N and shows that genuine creatlv:tty is taklng 

place, for mechamcally changmg the orgamsm can only yteld fitness that grows as a computable 

funcnon. 11 

So '\Vlth randorn 1nuranons and JUSta smgle org_arusm we actually do get evolunon1 unbounded 

evolutton, whtch was prectsely the goal of metabiology! 

Thts theorem may seem encouragtng, but lt actually has a senous problem. The nmes 

mvolved are so large that our search process ts essennally ergodzc, whtch tneans that we are dotng 

an exhausove search Real evolutlon 1s not at all ergod1c, smce the space of all posstble destgns 1s 

much too unmense for exhaustlve searcho 
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Ir turns out that wtth tlus san1e model there ts actually a much qmcker tdea/ evoluttonao 

pathwoy that adueves fitness BB(N) 1n nme of the arder of N Tlus path is however unstable 

under randorn rnutanons, plus It IS rnuch too goodc Each orgarusrn adds only a smgle b1t to 

the preceding orgarusrn, and immediately aclueves near opnm2! fitness for an orgamsrn of Its 

stze, wh1ch doesn't seem to at all reflect the haphazard, frozen-accident narure of what acrually 

happens In bmlogtcal evolunon. 12 

So that 1s the current state of rnetabmlogy: a field With sorne pronuse, but not much actual 

content at the present time. The parncular detruls of our current model are not too 1mporrant. 

Sorne kmd of rnutanng software rnodel should work, should exh1b1t sorne kmd of bas1c biolog¡cal 

features. The challenge 1s to 1dennfy such a model, to charactertze us behavwr stansncally, 13 and 

to pr01•e that 1t does what 1s reqUlied. 

Notas 
Historical Note: Algonrhnnc mfonnanon rheory was first proposed m the 1960s by R Solomonoff; A N 

Kolmogorov, and G. J. Chairin. Solomonoff and Chru.rin considered this toy model of rhe soenrific method, and 
Kolmogorm and Chait111 proposed definmg randomness as algorirhmic incompress1bility 
2 Histoliml Note: The idea of running through all possible proofs, of creativity by mechamcally trymg all pos§ible 
combinations, can be tmced back through Leibniz to Ramon Llull m the 1200s. 
3 See the chapter on «The Search for d1e Perfect Language" m Chaitin, Mathemattcs, Comple.xt!J' tmd Phtlosopi?J, In 

press. 
4 Farewell to Reason 1s rhe ntle of a book by Paul Feyerabend, a wonderfully provocatJve plulosopher. We borrow 
hts title here for dramatlc effect, but he does not di.Kuss Q in this book or any of his other '\vorks. 
5 The tenn quasi-empirical is due to the philosopher Imre Lakaros, a fnend of ·Feyerabend. For more on dns 
school, including the original article by Lakatos, see the collection of quasi-empincal philosophy of math papers 
edtted by Thomas Tymoczko, Ne1z• Direction.r in t!Je Phzlosopi!Y r¿f ll.iatbmmhcs. 
6 See the article on «The Brave New \Vorld of Bodacious Assumptions in Cryprography'' ll1 the March 2010 15sue 
of the A?\lS Narices, and the <trPcle by W Hugh Woodm on "The Conrinuum Hypothes1s" m theJune/July 2001 
issue of the AMS Notices 
7 See Neil Shubin, lóm Imter Fuh; A ]o111nry ntto--thf-iSBtlbon··1éor Hz.sfOIJ' qf the I-llfmaH Bocfy. 
8 In arder to avoid getnng sruck on a local maximum, in arder to keep evolution from stoppmg, we snpulate tl1at 
there is a non-zero probability to go from any organism to an} other organism, and -log2 of the probabilit) of 
mutating from A to B defines an 11nportant concept, the JJif!fatioH diJtcmce, which is measured m bits 
9 .Altemcllitlf jbrmnlations: The organism calculares a. total.function-}(11)-of -a--single- non-neganve integer n and /(11) ts 
fitrer than g(n) if f(n)/g(n)-+ ro as n-+ oo, Or. the organism calculares a (constructive) Cantor ordinal number and 
rhe larger d1e ordinal, the fitter the orgarusm 
10 Consider BB'(N) defined to be the maximum nm-nme of any progrru.n that halts that ts less than or equal ro 
N bits in size. 
11 Note that to acn1ally stmulate our modelan oracle for the haltmg problem would have to be employed to av01d 
organi::;ms rhat ha\"e no fitness because rhey never calculare a positive integer. This also explains how the fitne% can 
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grow fasrer than any computable functton. In our evoluuon model, nnphc1t use ts bemg made of an oracle for the 
halting problem, wh1ch answers questions whose ans'\vers cannot be computed by any algorithmic process. 
12 The Nth organism in this ideal evolutionary pathway is essenoally just the first N bits of the numerical value of 

the halt111g probability .Q. Can you figure out how to compute BB(N) from this? 
13 For·instance~ will sorne kind of hierarchical strucrure emerge? Large human software pro¡ects are always wntten 

that way. 
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