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Simple formal languages and the structure of spacetime
Osvaldo M. Moréschi*

1. Introduction

The-description of any physical system makes always reference to a spacetime. For exam-
ple, in classical physics one. refers to the Galilean spacetime; in special relativity one refers
to Minkowski spacetxme in general relativity one refers to a 4-dimensional Lorentzian
manifold; in Kaluza-Klein theories and string theories one refers to higher dimensional
metric manifolds.

The technigue of assummg a smooth manifold to construct the. framework for the de-
scription of physical systems is so common that very rarely one stops to think whether it is
completely justified. But it is in the study of quantum gravity that this question acquires
strong relevance. There exist many indications that make one to think that probably the
structure of the spacetime is very different from the smooth one that has been assumed. For
example, there are works in which the quantum operator associated to the area of a closed
2-surface has been caleulated, and it was found that it has a discrete spectrum [[]. This work
has also been extended to the case of volume: operator and’ length operator.

This seems to indicate that to construct the theoretical framework appropriate for the
description of quantum gravity, the assumption of a smooth manifold for the basic siructure
of the spacetime is unjustified; and furthermore, it would probably lead to the wron_g direc-
tion.

If one accepts the 1dea that probabiy the quantum su'ucture of the spacetlme Is dlscrete

Our suggestion for this task is that 1f one stdies a very smiall portmn of the spacenme
then the description must necessarily be simple. To specify more what we mean by this
statement, let us recall that in other works we have study the implications of some realistic
reasonable assumption in the context of the early Universe; 'the assumption-been that {41;

P 1.1 It is possible to completely describe a finite sysiem in temts of a finite sentence of a
Jormal language.

Tlns apparent miild assumptlon has important physical- CONSEquUEnces, as-we have shown

agreement with the- chscrete expected nature of the spacet}me that i 1s suggested by the stud
ies of quantur gravity.

When one takes the above principle, and apphes it:to-small systems, like:a small portion 4
of the spacetime, one is led to think that not only the sentence of the formal language re-
quired to describe the small system would be rather short; but also that the structure of the
formal language required would not be too complex; in. other words it should be simple.

Therefore in this work we present an approach to the description. of the structure of the
spacetime, coming from the study of the construction of simple formal languages.
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Since the description of any physical system makes always reference to a spacetime, we
consider that the description of the structure of the spacetime is one. of the most profound
philasophical and physical questions.

In section 2 we present the minimum structure of a simple formal language. The struc-
ture of what we call elementary cells, are worked out in section 3. The implicit structure of
natural numbers is described in section 4, This structure is included in the lahiguage in sec-
tion 5. A particular case of a four atomic relatmn is presented in section 6. We reserve the
last section 7 for some questions.

2. A simple formal language
To define a formal language [2] we need to determine at least the alphabet, the rule of com-
position and the set.of accepted sentences.

We will assume that we have at our disposal a colection of symbols that form the ai-
phabet, and we will use Latin and Greek letters to denote the elementary symbols. -

In order to construct a language it is convenient to. have in mind an idea about what the
symbols of the alphabet refer to, sometimes also called an interpretation. We will think of
each symbol as a relation; in particnlar given any pair of relations 4 and B, there is another
relation 2 which connects 4 with B. Graphically

A £ B ‘
that is u has a direction, from 4 to B. So it is observed that u is completely characterized by
the pair “4 B”, in this order. In other words, this defines the constructive relation, or from
the point of view of formal languages, the constructive operation.

It is then convenient fo assign a symbol to this eperation; we will use *, and:we will
write

u:A*B,
to indicate that u is the letter that represents (is the elementary symbol of) the relation
A*B,

Note that the symbols “:> is used to define an assignment.

We will say that A4 is the first argument of the relation #, and B its second argument.

We see that 4, B, and » arc all relations; but in the previous considerations we did not
care what 4 (or B) was telating. On the contrary we know that « relates 4 with B. In this
situation we call 4 and B atomic relations, and u a relation (not atomic). Whenever possible
we will try to refer to atomic rélations by capital letters and to relations by lower case let-
ters.

Given another relation C, we can relate # with C, or in other words, we can apply the
consiructive operation * to wand C. Let gdenote this new relation, that is

H:u*C

In order to be able to represent  in terms of the atomic relations, we now introduce the

use of parenthesis, and write

HiA*B)*C,
which defines u as the elementary symbol of the relation that relates 4 * B with C. The
need for the use of parenthesis is obvious from the meaning of the above expression.

Now let v denote the relation between B and C, and lef x denote the relation between A
and C. Graphically we have

381



B
u A NV
A S5 ¢

We now introduce more struchiré by defining a new relation out of # and v, the com-
p051te relation, or we could refer to the composmon operatlon denoted by

ul)

Note that the composition operation “” is only deﬁned between relatmns % and o,
where the second argument of #, coincides with the first argnment of 0.

In-order to completely define the structure of the composition operation, we demand x
to be identical with u - v. In other words, we are mtroducmg a new relatlon, the :dentlty
relation between x and - v, which is expressed in symbols by

x=ury, o PR ¢))
and which means that whenever x appears inan expresszen, it can be replaced by u - v, and
vice versd.

Let us note that we have just introduced anotherconstant of cur alphabet, the symbol =
We will assume the transitivity property; that is, if & = § and = ythen a = 7 Also the
relation “=" has the symmetnc property; that is, if = fthen § = a.

If the relation 4 appears in an expression; 1 for example

u:4* B,
and we know that
A D
thenthe new expression
' u:D*B,

is said to be deduced from the previous ones.
Let us consider the following relations

p:C*D, g:d*D, v B*D, g {2)

then |
(u-t)p=x-p=q €)
and S ‘
u-(v-p)=u-r=g, ()
so we have
- 0)-p=u:(v-p) G

in other words, the composition operation “” is associative, aud therefore we can omit the
parentliésis in the above éxpréssions, and write

u-v-pi{a-u)p. {6)
Note that although the symbols “.” and “=" seems to behave in a similar way, they have
quite different meanings. In particular whenever “:” is used no new structure is introduced.
On the contrary “=" is considered to be the first structure constructing symbol. The use of
“=* between non a priori identical relations changes the structure of the language.
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The use of “:” is reserved for giving a new name to what is written to the right of “,
for example r : B * D can be read: “r is the name used for the relation B*D” Andu-v'p:
(u~ v)* p can be read: “u - v p can be used to represent.(z - v) * p in any expression”.

From this we hiave that if w: , thenw=1.

3. Working out the structure of elementary cells
Let us now deduce the information contained in thie primitive structure introduced before by
making use of first order constructive operation “*>. ’

Consider first the case of a single atomic relation 4.

3.1. Case [A] :
Now we write all possible relations which can be deduced from 4. From the constructive
relations we obtain
y:A*A

and nothing else.

Then, by making use of the compogite relation we obtain the expression

i1 ig
and it can be immediately dediiced that
=y iy 9
It is also easy to see that no new information can be deduced at this order in this case,
Therefore let us consider now the case of a pair of atomic relations 4 and B.

3.1. Case [AB):
Applying now the constructive relation in first order, we obtain
isA*4, u:A*B, i:B*B, z:B¥A4, )
which completes the list of first order relations; as it can be seen from figure 1.
U
ool
iA ® L ] [B
AZ___“B
F4

Figure 1: The atomic relations A and B-are represented as dots; while lowercase labels re-
fer to the possible relations; which are.shown as arrows.

‘Then, by using the composite operation we obtain the following relations

vy = iy 9
iru=u 10
U ip= U an
U~z =iy {12)
igiyg = Iz (13)
ig*z =z (14)
Zely =z (15)
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z =1l (16)
A natural step now would be to consider the case of a triple of atomic relations and to

carry out the same calculation; but instead we will continue the study of this' system with
the introduction of more structure.

How do we introduce more structure? By making certain identifications among somie of
these relations. So next we will consider one particular case; for reasons of space we can
not enumerate the complete series here.

32.1. Case[AB;u=2z]:
Now let us consider the case in which we assume that = z; which leads to the relatlons

vy = Iy V)
igmu=u (18)
utip =u ' (19)
uwen =iy : 20)
ipriyg = ip (21)
ru=u {22)
uriy=1u (23)
uru =i 24
from which it is deduced that ip = . '
Then, using the notation o
I:iy and T:m
the set of relations becomes :
I-f=1 {25)
I-r=T (29)
r-r=1 @7
r-1=T. (28)

It is observed that interpreting thie “~* operation as a nivultiplication, “F’ behaves as an
identity and the system agrees with the muliiplication table of the Clifford Algebra in one
dimension. However we do not have yet the sim operation in our system.

4. Implicit natural structure

After the consideration of the case [AB], it would be naturai to study the case [ABC]; and
so repeating the same step as we did from the case [A] to that of [AB). n other words, in
our constructive method for different structures, we apply an operation to a previous level

of structure to construct the next one. This indicates the presence of the structure of a pro-
gression in the formal language; namely:

#* A isasymbol
& everysymbol has a unique successor-and the snccessor is a symbol
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s A isthe first symbol

e every symbol except 4 has a predecessor

» the alphabet is formed by all the successors of 4 _
Therefore we recognize the structure of addition “+™ among relations; and the existence of
natural numbers; which in our construction are a special kind of relations.

After recognizing the intrinsic structure of natural numbers in the procedure, it is ad-
vantageous to generalize to the structure of integer numbers,

It is then convenient to recapitulate and add the structure of integers numbers to the
cases dlscussed in the previous section.

5. Including the structare of infegers
The first level of structure is that of casc [A], where a single nontrivial relation is obtained,
i g ig
To add the structure of integer numbers we now introduce the operation “x” between
numbers and relations such that if “«” is a number and “#™ a relation, then “& x #” is a new
relation, which will be read “the muitiplication of # by &”. In particular, integer numbers
are considered as atomic relations.
The multiplication operation also satisfy the following property: if v, w and z are rela-
tions which. satisfy
vew=z,

and ¢ and £ are two nataral numbers then the following relation is dednced
(axv)-(Bxwy={axfxz.

Since integer numbers ‘will be written with Jower case Greek letters, it is convenient for
notational purposes to omit the appearance of the symbol “x™ to denote the muitiplication;
s0 the above relation will be Written

(av) ~(Bw) = (af)z
It is deduced then that
(@f)z=(av)-(Bw)=(apv)- (W) =0)-(afw)=(B)-(aw)
and so we can omit the parenthesis without falling into ambiguities; that is we can just write
av-fw=apf z

We also introduce the operation “+” between relations such that, if & # and & are inte-
ger numbers which satisfy

) o atp =3
and u is a relation, then
autfu=putau=odu
In particular we need to define a universal relation 0; which has the property
u+0 = u 29)
u+(~u) =0 (30)

Let us remark that at this stage we have not defined yet the sum between two different
relations.
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Adding this structure to the case [A] does not give more than the structure of the natural
numbers. Let us consider then the cases of a pair of atomic relations.

51.Case [AB; u=z,+, x}:
The structure in this case also resembles a- Clifford Algebra since
F«r+I-r=21
and
T-I'=1
However we still have not defined the expression “T"+ .

52.Case [AB; u=~z,+,x]:
In this case the structure resembles a Clifford Algebra but with the negative signature;
namely
T-T+T-I=-21
and
r-r=-1

6. Structure of a cell with four atomic relations

6.1. Case [ABCD]
Using the constructing relation in this case one obtains the structure shown. in. figire 2.

Ic

Figure 2. The atomic-relafions AB.C and D -are represented by the dots; andﬂ\ear-
-1ows show tlie possible connecting relauens

Applying the composite operation gives further natural relauons
Let us next ¢onsider a particular case.

6.2. Case [ABCD; y=--z,v=—y,w=—x,u’=z,v' =y, w =2, +, %] :
Having now six pairs of atomic points, we are supposed to set six ﬁmdamenml relations.
Let us consider the structure constrocted out of the relations

u=-z #'=z, (€1)]
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v=-y, V=Y, 32)

Wy, Wiy, 33)
Applymg these relations and using the identifications

: Yo =X "x* y--wx v 2 (34)

Bo=Y yrz=-yx, G3)

Yw:z’ozaxx,_z’-y; (36)

one obfains Yxo = Y0 = Y0 ; S0 we will use the notation Yo = Y0 = ¥,0 =V -

It is observed that all relations are generated by four findamental ones, namely: ¥o, Y1 =
X, v =y and y; = z. There is an identity I; and using the notation a, b =0, 1,2, 3, it is casy
to see that they satisfy the equation

L¥e Yot o " Y= 2 M |5 G7

where 11,5 has the form of the Minkowskian metric, that 1s ng, = diag{1,- 1, - 1,-I); in
other words, ¥, are the generators of the Clifford algebra of the Minkowski metric.

The siructure of the case under consideration then implies the metric structure ai 2 point;
and we also recogpize then the spinor structure of the Minkowskian four dimensional
spacetime at a point.

1t is important to remark that the relativistic description of elementary particles, like the
electron, is made in terms precisely of this structure.

7. Some guestions

In ‘graph 2-there are 16-relations represented by arrows. The riumber of all possible pairs is
16 = 256. The equations in which a product between two relations is made equal to another

relation are associated to: triples of relations; which for the case [ABCD] amounts to a pos-

sible total of 16° = 4096 equations. If we allow to infroduce the structure of integers, as

explained before, this number immediately jamps to mﬁmiy

One natural question to ask is whether we have just been lucky in introducing an ap-
proach to the study of simple formal languages that has conduced us to precisely the struc-
ture of a Lorentzian spacetime at a point ofit 6f a priori very small probability, if we were
just playing at random.

In order to assert that we have not been lucky we should answer some questions. For
exampie; we have nsed our intuition to go through a path that we thought was fruitful; but:
is there a principle that can be stated and serve as a guide for the construction of simple
formal languages; which are useful for the description of the fundamental structure of the
spacefime?

Other questions: What is the most economical way to describe the connection among
neighboring cells that capture the structure of a 4-dimensional manifold? What is the
meaning of other possible structure for case [ABCD]? What is the meaning of the structure
[ABCDE}? And so0 en!
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Note

!'Length constraints have forced us to maintain the content of this article to a minimum, however, we intend to
publish a full fength version of this work in the public preprint #xooclant. gov/ site,
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