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Abstract 
Soil herbicide persistence is the length of time the herbicide molecule remains active in soil and it is crucial to 
describe risks of diffuse contamination in agriculture. Persistence is characterized by “half-life”, which is the time 
it takes to reach half of the initial concentration supplied to soil. Half-life is estimated as a function of the 
dissipation curve parameters. Analytic quantification is costly for obtaining dissipation curves at many sites. 
Methodological tools to predict half-life in a continuous spatial domain, from a sample of dissipation curves, 
become crucial in regional studies. Since herbicide persistence in the environment depends on sites variables, 
model-based predictions of half-life as function of environmental features, are pursuit. The objective of this work 
was to design a statistical workflow for digital modeling of soil herbicide persistence at regional scale. From a 
regional soil survey, a sample of sites was drawn using the cLHS method. Samples were fortified with the herbicide 
atrazine and incubated for 21 days. Herbicide concentrations were measured at days 0,3,7,14 and 21 on each soil 
by liquid chromatography coupled to tandem mass spectrometry (LC-MS / MS) using QuEChERs. A two-step 
procedure was proposed for digital mapping of herbicide persistence in the environment. First, an exponential 
model with a random site effect, associated to the decay rate, was fitted to derive atrazine half-life for each 
sampled soil. Second, a Bayesian regression with a site random effect relating the resulting half-life values with 
soil and land-use values was adjusted to predict the spatial distribution of atrazine persistence at un-sampled sites 
for mapping. The addition of a random effect on the decay rate produced a better fit than a fixed exponential 
model and allowed us to explore half-life variability among soils. Atrazine persistence was mainly explained by the 
agricultural use of land (sites with previous grass crops had higher decay rates than other land-uses). The two- 
step procedure made possible to accurate map the spatial variability of atrazine persistence in soil and enhanced 
its environmental understanding. 
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Introduction 
Anticipate fate of pesticides released into the environment is necessary to minimize adverse impacts of 
agricultural activities. Mobility and persistence of a pesticide in soil are dynamical processes that explain the 
potential losses of a pesticide into environment. A measurement named as half-life characterizes herbicide soil 
persistence and represents the time necessary to reach half of the initial pesticide concentration supplied to soil. 
A variety of chemical, physical and biological soil properties affect the persistence of herbicides in soil. It can occur 
through abiotic and biotic mechanisms, being microbial degradation, the most relevant aspect contributing 
pesticides soil dissipation (Mamy et al., 2015). Such degradation depends on the acting microbial community 
structure, its functionality and its metabolic activity (Nannipieri et al., 2003) which are influenced by agriculture 
land uses. The existing microflora adaptation to mineralize some herbicides frequently used on grass crops has 
been widely documented. Therefore, the understanding of herbicide persistence through the analysis of half-life 
variability across sites in a region requires the knowledge of site-specific characteristics, mainly those related to 
soil chemical and physical properties, climate, and land-uses. The regression of half-life values on environmental 
features would provide knowledge and predictions to support decisions focused on mitigating impacts of 
pesticides released into soil. 
Half-life quantification for a soil under lab conditions demands the modeling of dissipation curves from data 
obtained by incubation experiments where the concentration of an herbicide supplied to soil is repeatedly 
monitored in time. The exponential function is commonly used to describe the decay of the pesticide 
concentration in time (Gustafson and Holden, 1990). Once the dissipation curve is estimated the half-life is derived 
from a simple function of its parameters. Unfortunately, this procedure cannot be applied to a large collection of 
soil samples because the herbicide analytic quantification along time is costly. Therefore, methodological tools to 
predict persistence in a continuous spatial domain, from a sample of dissipation curves, become crucial in regional 
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studies. Assuming that a sample of different sites is available, we propose to address model fitting with non-linear 
mixed models (Davidian, 2017) including random effects associated with one or more of the exponential model 
parameters to account for serial correlations among herbicide concentrations coming from the same site. Mixed 
models would broaden the possibilities of inference, since it would be possible to infer the average population 
soil dissipation but also on the site-specific dissipation. A collection of half-life values will be obtained after the 
site-specific dissipation curves are obtained. This way it would be possible to quantify the variability of the 
dissipation process among soils. 
Since herbicide persistence in the environment depends on sites variables, model-based predictions of half-life as 
function of environmental features, will be pursuit. The spatial variability of the dissipation process can be studied 
through the characterization of the spatial variability of site-specific half-life using Bayesian regressions with 
random site effects. Bayesian framework allows the implementation of algorithms to speed the fitting of spatial 
regression models. The computation objectives are the marginal posterior distributions for each fixed model 
parameter (regression coefficients) and for each hyper-parameter (the variance component of a random site 
effect, the variance component of the model error and the parameters of the function modeling the spatial 
dependence). Rue et al. (2009) proposed deriving the posteriori distribution of such spatial regression model by 
using an Integrated Nested Laplace Approximation. Based on the implementation of this approach in the language 
of R programming (R-INLA), applications of Bayesian regression have become popular for spatial modeling 
(Blangiardo and Cameletti, 2015). R-INLA handles latent Gaussian models in which fixed effects and structured 
and unstructured Gaussian random effects are combined linearly. The sparse precision matrices such us the 
covariance matrix of spatially correlated data are computational achieved using Stochastic Partial Differential 
Equations (SPDE) (Lindgren and Rue, 2015; Krainski et al., 2018). 
The aim of this work was to couple sampling estimation of site-specific half-life with Bayesian spatial regression 
for digital mapping of herbicide persistence in environment at a regional scale. 

 
Materials and Methods 
Data & Proposed Statistical Workflow 
The dissipation experiments were made for the herbicide atrazine on a sample of soils obtained from a regional 
soil survey of Cordoba, Argentina that counts with a broad ancillary environmental information (edaphic, climatic 
and agronomic) for a total of 355 geo-referenced sites. A samples of n=60 sites were selected by conditionate 
Latin Hypercube method (cLHS, Minasny and McBratney, 2006) to capture the underlying edaphoclimatic 
variability in the study region (Brus, 2019; Minasny and McBratney, 2006). Dissipation data were obtained 
fortifying with atrazine and incubating for 21 days at 28ºC. Each soil was fortified with a concentration of atrazine 
equivalent to an application of 3 L ha-1, and the amount of water to reach 80% of water holding capacity. Atrazine 
concentration were measured at days 0,3,7,14 and 21 by liquid chromatography coupled to tandem mass 
spectrometry (LC-MS/MS) using QuEChERs procedure to extract and clean up. 
A two-step procedure was performed for data analysis: First, we estimated the decay of atrazine along time with 
a mixed nonlinear model including a random site effect on the decay rate; and second, a site-specific statistical 
modeling of half-life as function of soil, climatic and land-use covariates by a Bayesian spatial regressions. 
Step 1. Half-life derived from site-specific dissipation curves 
For each soil sampled, atrazine concentration along the dissipation experiment was modeled as follows: 

𝐶𝑖(𝑡) =  𝐶0 𝑒−(𝑘+𝑢𝑖) 𝑡 𝑢~𝑁(0, 𝜎2) 

where 𝐶𝑖(𝑡) is the percentage of atrazine concentration (expressed as relative to the observed concentration at 
time 0) remaining at the time 𝑡 (expressed as days from the incubation beginning) for the soil 𝑖, 𝑘 is the decay rate 
of the population of soils, 𝑢𝑖 is the random effect for the soil 𝑖 expressed as the deviation from de population decay 
rate. 𝐶0 is the intercept representing the concentration at 𝑡=0. The random effect 𝑢 is assumed normally 
distributed with zero mean and variance 𝜎2 and assumed to be independent of the error term. Direct likelihood 
was used to estimate the curves with the nlme package in R (Pinheiro et al., 2017). The maximum likelihood 
estimates for the decay rate in the population of sites and the best linear unbiased prediction (BLUP, 𝑢𝑖) of the 
random site effect. Significance tests for 𝜎2 was evaluated by comparing the nonlinear mixed model with the 
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analogous nonlinear fixed effect model using a likelihood ratio test (LRT) with 0.5 degrees of freedom 
(Molenberghs & Verbeke, 2007). AIC and BIC criteria were also used for model selection. Site-specific half-life (𝑡1/2 

𝑖
) was calculated from the dissipation curve at each soil: 

𝑙𝑛(0.5) 
𝑡1/2 𝑖 

= 
−(𝑘 + 𝑢 ) 

Step 2. Modeling site-specific half-life and spatial prediction 
A selection of explanatory variables was made based on deviance information criteria (DIC, (Huang et al., 2017)) 
to fit a Bayesian regression including random site effects spatially correlated. The distribution of log half-life for 
the ith soil is: 

ln (𝑡 ) ∼ 𝑁(𝜂 , 𝜎2) 𝜂 = 𝛽 + ∑𝑝 𝑥 𝛽 + 𝜉(𝑠 ) 

1/2 𝑖 𝑖     𝑒 𝑖 0 𝑗=1 𝑖𝑗   𝑗 𝑖 

where 𝛽0 is the intercept; 𝛽𝑗 is the fixed regression coefficient for the explanatory variable 𝑥𝑗; 𝑥𝑖𝑗 is the value of 

𝑥𝑗 at site 𝑖; and 𝜉(𝑠𝑖) is a random site effect that is assumed to be the realization of a latent Gaussian field 
𝐺𝐹𝜉(𝑠𝑖)~𝑀𝑉𝑁(0, Σ), with Σ being the covariance matrix of site effects defined by the Matérn spatial covariance 

function. Within R-INLA, the estimation of Σ inverse (precision matrix) is solved by SPDE (Krainski et al., 2018). 
Predictive ability was performed with a Jackknife validation to obtain a global measurement of error (root mean 
square prediction error, RMSPE) and a pointwise site-specific error (site-specific residual expressed as percentage 
of the site mean, SSE). Using the fitted model, atrazine half-life was obtained for a prediction grid of 2.5×2.5 km 
resolution. The random spatial effect estimated by SPDE was projected in the prediction domain following Krainski 
et al., 2018. The spatial prediction was re-expressed in the original scale and uncertainty of predictions were 
obtained from the 95% credibility intervals of the prediction at each site. 

 

Results and Discussion 
Dissipation curve estimation 
The estimation of the dissipation curve, with and without a random site effect on the decay rate, are shown in 
Table 1. The AIC and BIC information criteria decreased under the random effect model, and the LRT test confirms 
that the model considering a random effect on the decay rate has a better fit. Random effect on other parameters 
of the exponential model did not improves the fit (data not showed). There is high variability among soils in the 
dissipation process (Fig 1). The population average curve describes a global behavior of atrazine persistence of 
Córdoba soils where half-life lasts 10 days ranged between 3 to 100 days with 75% of the soils associated with 
atrazine half-life lesser than 19 days. From an environmental point of view this is an encouraging result since it 
implies a low herbicide persistence in most soils. The fitted model includes a high serial correlation among atrazine 
concentrations measured in successive days of incubation of the same soil sample. The random site effect on the 
decay rate of the exponential function, improves the estimation of the dissipation curve and consequently the 
accuracy of half-life extending the possibilities of inference, since it allows inferring an average dissipation curve 
(in the population of soils samples) as well as the site-specific behavior (Fig 1). 
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Figure 1: Atrazine dissipation curves, population 
curve (in bold) and site-specific curves (in gray). 

Model fitted for digital mapping of half-life 
DIC prioritized the contribution of TvsPP (hydrological balance), potassium (K), clay content, electrical conductivity 
(EC) and land-use of soil. Table 2 shows the fitted regression model; the positive regression coefficient for other 
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   Table 1. Atrazine dissipation curve  
                                               Fixed-effect model  Random-effect model  

Model parameters   

𝐶0 98.11 ± 2.12 100.39 ± 0.88 
𝑘 -0.056 ± 0.003 -0.072 ± 0.007 
𝜎2 

𝑢 - 3.9×10-5 

Goodness of fit   

AIC 2748.46 2426.62 
BIC 2759.66 2441.53 
Loglikelihood -1371.23 -1209.31 

   LRT   161.92 (p-value<0,001)  
𝐶0, intercept; 𝑘, decay rate; 𝜎2, variance of random effects; AIC, Akaike information 

𝑢 

criterion; BIC, Bayesian information criterion; LRT, likelihood ratio test. 

 



land-uses with respect to grass crops indicate a lower atrazine half-life under grasses were the herbicide is 
historically applied (reference category). Soils covered by forest showed the highest values of atrazine half-life. 
Higher EC also increases atrazine half-life. On the contrary higher K and clay decreases the persistence of the 
molecule in soil. The global prediction error was 22.7%. Figure 2 shows the spatial model-based prediction of 
atrazine half-life within the spatial domain (Cordoba, Argentina 165.321 km2) and its standard deviation. 

 
Figure 2: Atrazine half-life in soil of Cordoba, Argentina 

 
Conclusion 
The addition of a random effect in the exponential model of herbicide dissipation in soil provided a useful tool to 
explore persistence (herbicide half-live) across a region. Bayesian spatial regression of half-life on environmental 
variables allowed to obtain predictions of half-live in a continuous domain. The two-step modeling workflow made 
possible to accurate map the spatial variability of atrazine persistence in soil and enhanced its environmental 
understanding. 
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   Table 2. Spatial regression model for atrazine hal-life on environmental variables  

   Model  Mean ± SD  
Regression coefficients  

Intercept 4,31±0,75 
TvsPP [C°mm-1] -5,82±2,84 
K [ppm] -0,0007±0,0004 
Caly [%] -0,02±0,01 
CE [dSm-1] 0,27±0,12 
Crop without grass† 0,26±0,15 
Pasture† 0,70±0,27 
Forest † 1,35±0,26 

Hyperparameters ††  

Range 24076.08 
Sill 0.38 

Cross-validation  

RMSPE relative to the mean 22,7% 
  Sites with RMSPE <25%  70,0%  

† Difference of means in terms of 𝑙𝑛(𝑡1/2 ) between grass crops and the other land uses. 
††Hyperparameters of Matérn function for the spatial autocorrelation function in the 
random effect. SD, standard deviation derived from the marginal posterior distribution of 
each parameter. RMSPE, root mean square prediction error relative to the mean. 
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