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Abstract—In this work, we present a new segmentation
algorithm for remote sensing images based on two-dimensional
Hidden Markov Models (2D-HMM). In contrast to most
2D-HMM approaches, we do not use Viterbi Training,
instead we propose to propagate the state probabilities
through the image. Therefore, we denote our algorithm
Complete Enumeration Propagation (CEP). To evaluate the
performance of CEP, we compare it to the standard 2D-HMM
approach called Path Constrained Viterbi Training (PCVT).
As both algorithms are not restricted to a certain emission
probability, we evaluate the performance of seven probability
functions, namely Gamma, Generalized Extreme Value,
inverse Gaussian, Logistic, Nakagami, Normal and Weibull.
The experimental results show that our approach outperforms
PCVT and other benchmark algorithms. Furthermore, we
show that the choice of the probability distribution is crucial
for many segmentation tasks.

Resumen—En este trabajo se presenta un nuevo algoritmo
de segmentación de imágenes de teledetección basado en
modelos ocultos de Markov de dos dimensiones (2D-HMM).
En contraste con la mayorı́a de los enfoques 2D-HMM, no
se utiliza Viterbi Training, en cambio proponemos propagar
las probabilidades de estado a través de la imagen. Por lo
tanto, denotamos nuestro algoritmo Complete Enumeration
Propagation (CEP). Para evaluar el desempeño del CEP, lo
comparamos con el algoritmo estándar 2D-HMM llamado
Path Constrained Viterbi Training (PCVT). Como ambos
algoritmos no están restringidos a una cierta probabilidad
de emisión, se evalúa el desempeño de siete funciones de
probabilidad, a saber, Gamma, Valor Extremo Generalizado,
Gauss inversa, Logı́stica, Nakagami, Normal y Weibull. Los
resultados experimentales muestran que nuestro enfoque
supera PCVT y otros algoritmos de referencia. Además, se
muestra que la elección de la distribución de probabilidad es
crucial para muchas tareas de segmentación.

I. INTRODUCTION

The segmentation of images plays an important role in
many fields of computational intelligence [1], [2]. In this
work, we try to segment satellite images of rural areas. On
one hand, our goal is to determine the type and state of crops
in agricultural regions in order to predict market prices of
local stock exchange. On the other hand, we try to detect
forest fires at an early stage [3].

To segment remote sensing images we present two al-
gorithms based on the theory of Hidden Markov Models
(HMM). In the last years HMM were successfully applied

to one-dimensional problems like speech recognition [4] or
the analysis of biometric data [5]. In contrast to that, the
pixels of an image are a representation of two-dimensional
data. Hence, we have to extend the classical HMM to two
dimensions. Mathematically this extension is straightforward
but the standard method of parameter estimation for one-
dimensional HMM, the Baum-Welch algorithm [6], is not
feasible for higher dimensions. So the main question for
two-dimensional Hidden Markov Models (2D-HMM) is:
How can the computational complexity be reduced in order
to make the n-dimensional HMM feasible?

The firsts attempts to extend the HMM framework to two
dimensions were the so called pseudo 2D-HMM. Pseudo
2D-HMM use superstates to represent the rows of an image,
while the columns are connected by a simple Markov Chain
[7]. Some years later, the Viterbi Algorithm was applied
to obtain a feasible version of a true 2D-HMM [8]. This
algorithm was successfully applied to segment man-made
landscape like roads or cities from natural areas [9]. Still,
this approach is only feasible for blocks of 8× 8 pixels.

In order to segment whole images without dividing them
into blocks, the Path Constrained Viterbi Training (PCVT)
was developed on the basis of the Viterbi Algorithm [10].
Since then, the PCVT has been used by many researchers for
different image processing tasks [11], [12] where it showed
good results compared to benchmark algorithms [13].

Even so the PCVT is a widely accepted segmentation
algorithm, it has a notable drawback. Before decoding a
2D-HMM it is necessary to pre-select a small number of
possible states. In other words, we are throwing away most
of the possible states of every pixel, before we actually
use the 2D-HMM. To avoid this problem, we present a
new, feasible approach to 2D-HMM that propagates the
state probabilities through the image without discarding any
state. We denominate our algorithm Complete Enumeration
Propagation (CEP) [14].

This paper is organized as follows: In Section II we
present the mathematical background of 2D-HMM and
explain why further assumptions are necessary to make the
2D-HMM feasible. Thereafter, we present PCVT and CEP
in detail and show how both algorithms can be used with an
arbitrary probability density function as an emission prob-
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ability. In Section IV we present the experimental results
of PCVT, CEP and two benchmark algorithm for three test
images. Before we draw the conclusions in Section VI we
discuss some important advantages of CEP over PCVT in
Section V.

II. EXTENSION OF HIDDEN MARKOV MODELS TO TWO
DIMENSIONS

In this section, we describe the theoretical background
of 2D-HMM. A Hidden Markov Model is a probabilistic
model, that is used to analyze and describe correlated noisy
data. Given an image I of size M×N , the main goal of
the segmentation process is to find the hidden state si,j ∈
1, 2, . . . , S of every pixel (i, j) with i ∈ 1, 2, . . . ,M and
j ∈ 1, 2, . . . , N .

So, how can we find the hidden state of a pixel? Clearly
there are several factors that influence the choice of the
hidden state. First of all, we will talk about contextual
information. Let us suppose that the image is a Markov
Random Field. This means, that, given the image, the hidden
state of pixel (i, j) is conditionally independent of the pixels
outside a certain neighborhood. Obviously this is a very
reasonable assumption. For example the hidden state of a
pixel in a crop field is definitely independent of a pixel in
city that lies many kilometers away.

Hence, the first thing we have to do is to define a
neighborhood for every pixel. Keep in mind, that one-
dimensional hidden Markov models use “past” states as
contextual information. In other words, the state st at time
t depends on the previous state st−1 according to a certain
transition probability. But how can we introduce “past” for
two-dimensional data like the pixels of an image?

For pixel (i, j) we define (i
′
, j
′
) ≺ (i, j) if i

′
< i or

i
′
= i and j′ < j. It can be shown, that under the Markov

assumption this definition leads to a 2nd order Markov Mesh
which specifies for state si,j :

P (si,j |si′ ,j′ : (i
′
, j
′
)≺(i, j))=P (si,j |si,j−1, si−1,j).

The two pixels (i, j−1) and (i−1, j) can be understood as
the “past” of pixel (i, j) as shown in Figure 1. As a result we
are moving from the top-left pixel to the bottom-right pixel.
Along this way, we assume, that the transition probabilities
from states si,j−1 and si−1,j to state si,j do not depend
on the current pixel. Therefore, we can gather all transition
probabilities in a matrix A where

am,n,l = P (si,j = l|si,j−1 = m, si−1,j = n)

for l,m, n ∈ 1, 2, . . . , S. The exact formula for the transition
probabilities am,n,l is given by

am,n,l =

∑
i,j Hm,n,l(i, j)

∑S
l′=1

∑
i,j Hm,n,l′ (i, j)

. (1)

In equation (1), Hm,n,l(i, j) is the probability of a transition
from states m and n to state l at pixel (i, j) for any possible
hidden state map. Without going into detail, note, that there
are SMN possible hidden state maps. Thus, it is impossible
to calculate Hm,n,l(i, j) even for small images with few
states. In the next section we discuss this topic with more
detail.

(i,j)(i,j-1)

(i-1,j)

Fig. 1. Transitions among states in a 2nd order Markov Mesh. The gray
and the black pixels fulfill (i

′
, j
′
) ≺ (i, j) but the two black pixels are

sufficient statistics for pixel (i, j) under the Markov assumption.

Besides the contextual information, the state of pixel (i, j)
depends obviously on the pixel intensity. We suppose that
all hidden states are observed through a certain emission
probability. Hereby we would like to point out, that the
mathematical framework of 2D-HMM does not require a
particular probability distribution to be used as an emission
probability. Still, most researchers use the normal distri-
bution because it is a well known distribution with two
meaningful parameters [10], [15].

In the following, we show exemplary how to estimate the
parameters of a normal distribution, but keep in mind that the
estimation of other probability functions is straightforward,
too. Let’s suppose we have observed state l ∈ 1, 2, . . . , S
through a normal distribution with mean µl and standard
deviation σl. The emission probability of state l is than given
as

bl(x) = P (x|si,j = l) =
1

σl
√
2π

exp

{
−1

2

(
x− µl

σl

)2
}
.

The mean µl and the standard deviation σl of bl(x) can be
estimated by

µl =

∑
i,j Ll(i, j)Ii,j∑
i,j Ll(i, j)

(2)

σl =

∑
i,j Ll(i, j) (Ii,j − µl) (Ii,j − µl)

T

∑
i,j Ll(i, j)

(3)

where Ll(i, j) indicates the probability of pixel (i, j) being
in state l for any possible hidden state map. And just like in
case of Hm,n,l(i, j) we are facing computational problems
when calculating Ll(i, j) because of the very high number
of possible hidden state maps.

Note, that equations (1), (2) and (3) can be derived
directly from the Expectation-Maximization algorithm (EM)
[16]. Hence, there is a theoretical prove, that an iteration of
the 2D-HMM parameters converges.

Before we describe in the next section how the parameters
of the 2D-HMM can be estimated, we like to give a formal
representation of the optimal segmentation s∗:

s∗ = argmax
s

P (s|I, θ). (4)

In equation (4), θ are the parameters of the 2D-HMM, such
as the initial probabilities πl, the transition probabilities
am,n,l and the emission parameters µl and σl of each state.
Please keep in mind, that the s in equation (4) stands for
all possible hidden state maps which is usually a infeasible
high number.
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III. IMPLEMENTATIONS OF TWO-DIMENSIONAL HIDDEN
MARKOV MODELS

In the previous section we pointed out, that some parame-
ters of the 2D-HMM are infeasible even for small images.
In this section we investigate the complexity problems with
more detail and show different ways of how the exact 2D-
HMM can be approximated. Note, that by using approxima-
tions instead of exact formulas, we leave the EM framework
and thus have no more a theoretical guarantee that our 2D-
HMM converges. Still, it is our only choice if we want to
come up with a feasible model that – at least – approximates
the optimal hidden state map as defined by equation (4).

A. Parameter estimation

Before we show approximations of the exact 2D-HMM,
we like to illustrate some computational problems when
trying to calculate Hm,n,l(i, j) and Ll(i, j). Let’s think of
a really small image of size 10× 10 with three states. This
would mean that you have to sum up 310∗10 ≈ 5.2 ∗ 1047
elements to get Hm,n,l(i, j). Even if every element of the
sum would take only one millisecond to calculate, it would
still take billions of millenniums until we found Hm,n,l(i, j).
The same is valid for the computation of Ll(i, j).

In order to reduce the computational burden, we propose
an approximation of the transition probabilities am,n,l and of
the emission parameters µl and σl. Instead of summing over
all possible state maps we suggest to estimate all parameters
by using only the state map of the current iteration. For
am,n,l in iteration step p+ 1 we get

a
(p+1)
n,m,l =

∑N
i=1

∑M
j=1I

(
s
(p)
i−1,j=n, s

(p)
i,j−1=m, s

(p)
i,j = l

)

∑N
i=1

∑M
j=1 I

(
s
(p)
i−1,j = n, s

(p)
i,j−1 = m

) ,

(5)
where I(·) is the indicator function. For the means and
standard deviations of each state l we use

µ
(p+1)
l =

∑N
i=1

∑M
j=1 I

(
s
(p)
i,j = l

)
Ii,j

∑N
i=1

∑M
j=1 I

(
s
(p)
i,j = l

) (6)

σ
(p+1)
l =

∑N
i=1

∑M
j=1I

(
s
(p)
i,j = l

)
(Ii,j−µl)(Ii,j−µl)

T

∑N
i=1

∑M
j=1 I

(
s
(p)
i,j = l

) .

(7)
One can think of these simplified formulas as “count instead
of evaluate”, because we are only taking into account our
currently best guess of the hidden state map instead of eval-
uating all possible state maps. Therefore, the approximations
presented in equations (5), (6) and (7) are computationally
extremely simple. All we have to do, is to process the state
and the observation of each pixel.

Note, that switching to another emission probability – like
a Gamma or a Weibull distribution – is straightforward in
this context. All we have to do, is to replace equations (6)
and (7) by the corresponding parameter estimators. For max-
imum likelihood estimators of many common probability
distributions please refer to [17].

B. Evaluation of two-dimensional Hidden Markov Models

After solving the problem of parameter estimation in the
previous section, we are left with the problem of decoding
the 2D-HMM in order to obtain a hidden state map. There-
fore, remember our notion of “past” as shown in Figure 1.
So we can think of each bottom-left to upper-right diagonal
of the image as one step in time, starting with the top-left
pixel. The diagonals T0, T1, T2, . . . consist of

T0 = (s0,0);T1 = (s1,0, s0,1);T2 = (s2,0, s1,1, s0,2); . . .

Because we are dealing with a 2nd order Markov Mesh we
can make the Markov assumption and get

P (s) =P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3, . . . , T0)

=P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3).
(8)

Note in equation (8), that each diagonal operates as an
“isolating element” between neighboring diagonals. Hence,
we have transformed the complex two-dimensional model
into a pseudo one-dimensional HMM.

At this point, we could think of running a one-dimensional
HMM decoder like the Baum-Welch algorithm [6], but once
again we are facing computational issues. Remember, that in
a M ×N image the diagonals consist of up to min(M,N)
pixels. If there are S states, a diagonal can be in one
of Smin(M,N) superstates. So we are dealing with a one-
dimensional HMM with up to Smin(M,N) superstates at each
time step. Such a HMM is clearly not feasible.

Before we present two feasible 2D-HMM decoders we
have to make the assumption that the emission probability
of pixel (i, j) depends only on the current state and not on
neighboring states. Even though this assumption is reason-
able and not very restrictive, both approaches relay on it.

1) Path Constrained Viterbi Training: In the last years,
several approximations were proposed to make the 2D-
HMM feasible. One of the most promising approaches is
to cut down the superstates of each diagonal to a certain
number Z and then run the Viterbi algorithm [10]. This al-
gorithm is named Path Constrained Viterbi Training because
the number of superstates – and hence the number of paths
through the image – is constrained.

The selection of superstates is done by maximum likeli-
hood, which means, that superstates are discarded without
taking into account neighboring superstates. Thus, there is
no guarantee, that the chosen superstates are close to the
optimal hidden state map. At least the Viterbi algorithm
considers all dependencies among neighboring pixels when
evaluating the independently chosen superstates.

A sketch of the PCVT as presented by [10] is shown in
Algorithm 1. Note, that the computation of step 5) has order
O((M +N − 1)Z2) for an image of size M ×N , whereas
the other steps have negligible computational complexity.

2) Complete Enumeration Propagation: In the following
we present a new 2D-HMM decoding algorithm, that, in
contrast to the PCVT, does not discard any possible hidden
state and still is feasible. Instead of grouping the states of
a diagonal in a superstate, we use complete enumeration
to calculate the state probabilities of each pixel. Then we
propagate the state probabilities through the image until we
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Algorithm 1: Path-Constrained Viterbi Training (PCVT)
1) Initialize parameters µl and σl for l ∈ S.
2) Initialize state map using ML segmentation.
3) Calculate transition probabilities an,m,l for every

n,m, l ∈ S using equation (5).
4) Choose the Z best superstates for each diagonal

using Maximum Likelihood.
5) Run Viterbi algorithm.
6) Update parameters an,m,l, µl and σl using

equations (6), (7) and (5).
7) Iterate steps 4), 5) and 6) until convergence.

reach the bottom-right pixel. Therefore, we call our approach
Complete Enumeration Propagation.

Let’s start with the state probability of pixel (i, j) which
is given by

P (si,j |si,j−1, si−1,j , Ii,j) ∝ P (si,j , si,j−1, si−1,j , Ii,j) =
=P (si,j−1,si−1,j)P (si,j |si,j−1,si−1,j)P (Ii,j |si,j).

If we now replace P (si,j |si,j−1, si−1,j) by the transition
probability asi,j−1,si−1,j ,si,j and consider two diagonal pix-
els to be independent we can write

P (si,j |si,j−1, si−1,j , Ii,j) ∝
P (si,j−1)P (si−1,j)asi,j−1,si−1,j ,si,jP (Ii,j |si,j).

(9)

This is the main formula to calculate the state probabilities
of pixel (i, j) given the observation and the two past
states. Note, that the main assumption here is to suppose
independence of the two past pixels. This assumptions may
seem restrictive but keep in mind, that the spatial relation
between neighboring pixels is already incorporated in the
transition probabilities am,n,l. Besides that, the only way to
leave out the independence assumption would be to estimate
the joint probability distribution of the pixels si,j−1 and
si−1,j . This could improve the segmentation in some cases
but especially in noise images the joint distribution could
also lead to worse results. Furthermore, PCVT has to make
the same assumption when searching for the Z superstates
of each diagonal.

Now, the main idea of CEP is to use equation (9) to
calculate P (si,j = l) for l = 1, 2, . . . , S for all possible
combinations of past states, i.e. si,j−1 = m, si−1,j = n for
m,n = 1, 2, . . . , S according to equation (10).

P (si,j = l|Ii,j) ∝
S∑

m=1

S∑

n=1

asi,j−1=m,si−1,j=n,si,j=l

P (si,j−1 = m)P (si−1,j = n)P (Ii,j |si,j = l).

(10)

This procedure is nothing else than complete enumeration
of P (si,j = l). Keep in mind, that before we can go on with
the next pixel, it is necessary to normalize P (si,j = l) such
that

∑S
l=1 P (si,j = l) = 1. For a schematic description of

CEP please see Algorithm (2).
When analyzing the computational complexity of CEP,

only the calculation of step 4) is worth mentioning. This
step is of order O((MN)S3) for an image of size M ×N
with S states.

A problem arises for the pixels on the left and upper edge
of the image because there are no past states si,j−1 or si−1,j .

Algorithm 2: Complete Enumeration Propagation (CEP)
1) Initialize parameters µl and σl for l ∈ S.
2) Initialize state map using ML segmentation.
3) Calculate transition probabilities an,m,l for every

n,m, l ∈ S using equation (5).
4) Find new state map using equations (9) and (10).
5) Update parameters an,m,l, µl and σl using equations

(6), (7) and (5).
6) Iterate steps 4) and 5) until convergence.

To solve this issue one can think of two possible solutions.
First, copy the first row and the first column and use
maximum likelihood to determine the probabilities of these
auxiliary pixels. Second, suppose a uniform distribution for
the nonexistent terms P (si,j−1 = m) and P (si−1,j = n).
This is equal to leaving out the corresponding terms in
equation (9). We prefer the second option, because otherwise
noisy observations on the edges are encouraged to stay in
a maximum likelihood state instead of adapting themselves
to their neighborhood.

Once we have calculated the probabilities of all the pixels
we assign each pixel the most probable state. The result is
a hidden state map which, for now, is our best guess of the
optimal hidden state map s∗ as shown in equation (4). From
this point on we use the formulas (5), (6) and (7) to update
the parameters of the emission probabilities. Then we iterate
this procedure until convergence.

C. Emission probabilities

As we have shown in Section III-A, PCVT and CEP allow
different probability distributions as emission probabilities.
To evaluate the influence of different probability functions
we run the two algorithms with the following seven distribu-
tions: Gamma, Generalized Extreme Value, inverse Gaussian
(also known as Wald distribution), Logistic, Nakagami,
Normal and Weibull as defined by [17]. By comparing
the segmentation results we try to determine the optimal
distribution for every remote sensing image.

IV. SEGMENTATION RESULTS

In this section we evaluate the different segmentation
algorithms. As mentioned in Section III, there is no the-
oretical guarantee that the two segmentation algorithms
converge. Hence, we set a maximum of 200 iterations for all
experiments, which, in few cases, stopped the segmentation
process. Nevertheless, we observed almost no changes of κ̂
for more than 150 iterations.

As benchmark methods we use Maximum Likelihood
(ML) as described in Algorithm 3 and Iterated Conditional
Modes (ICM) [18]. ML is a classical non-contextual seg-
mentation method and ICM is a well studied algorithm that
has been used for image segmentation tasks for over two
decades. Both approaches are used as benchmark algorithms
in many works [13], [15].

A. Landsat 7 image

The first experiment is a Landsat 7 image of an agri-
cultural area in the humid pampa of Argentina. It shows
agricultural fields of different sizes and orientations and
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Algorithm 3: Maximum Likelihood Classification
1) Initialize parameters µl and σl for l ∈ S.
2) Calculate P (si,j = l|Ii,j , θ) = P (Ii,j |si,j = l, θ) for

each pixel (i, j) and for each state l.
3) Assign pixel (i, j) the label given by

si,j = argmaxl∈S P (Ii,j |si,j = l, θ).

Original Ground Truth

ML ICM

PCVT CEP

Fig. 2. Segmentation of band five of a Landsat 7 image using three
states. While ML has problems of merging corps fields, ICM is leading to
a segmentation with few details. The best result in terms of κ is obtained
by CEP as shown in Figure 3.

two center-pivot irrigations. In this case, the performance
is evaluated in the parts of the image that are shown in
Figure 2, since we only have ground truth labels for these
regions. We show some of the segmentation results in Figure
2 and in Figure 3 we plot Cohen’s κ̂ coefficient [19] of all
algorithms.

B. Landsat 8 image

In this experiment we try to identify burning forest in
a Landsat 8 image. Therefore we use the thermal infrared
band 10. In Figure 4 the segmentation results are shown.
Unfortunately we have no exact ground truth so we can not
calculate the κ̂ values.

Fig. 3. Above: Overall comparison of ML, ICM, PCVT and CEP. Below:
Performance of the worst, the median and the best emission probability
plugged into PCVT and CEP. In total, we run 12 experiments that we
generated by varying the initial values (four different initial values) and
by pre-filtering the original image (three different images: no filter, 3× 3
filter and 5 × 5 filter). The dots mark the mean κ̂ coefficients of the 12
experiments while the lines indicate the standard deviation.

Original ML

PCVT CEP

Fig. 4. Segmentation of burning forest in a Landsat 8 image. Note, that ML
leads to a very pixelated segmentation, while PCVT is not distinguishing
well between the burning region (black) and the smoky region (gray).

C. Cosmo-SkyMed image

Finally we use a Level 1B Cosmo-SkyMed image with
two bands to test our algorithms. This image has a very low
signal-to-noise ratio and the goal is to find two crop fields
as well as a center-pivot irrigation. The ground truth and the
experimental results are shown in Figure 5.

V. DISCUSSION

In this work, we presented a new approach to segmenta-
tion of remote sensing images and compared it with standard
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Original Ground Truth

ML, κ = 0.768 ICM, κ = 0.793

PCVT, κ = 0.885 CEP, κ = 0.891

Fig. 5. Crops segmentation using a noisy Cosmo-SkyMed image. At first
glance, all algorithms show good results but the κ coefficient reveals that
CEP works better then the other methods.

algorithms. Especially in the Landsat 7 and the Landsat 8
experiment one can see that CEP preserves more details of
the original image then PCVT and ICM and at the same time
merges crop fields much better then ML. The κ coefficients
of the Landsat 7 images as well as the Cosmo-SkyMed
image support this observation.

On the other hand it has to be said, that CEP has the
highest computational complexity. The main drawback is,
that the order of CEP depends linearly on the number of
pixels and to the power of three on the number of states.
Hence the number of states is crucial for the run-time of
CEP.

Finally, we like to point out, that CEP shows the best
results when using it with the Normal probability distribu-
tion, whereas PCVT is preferably used with other probability
distributions like the inverse Gaussian distribution. Note,
that in contrast to PCVT and CEP, the ICM framework
cannot be extended to other probability distributions without
leaving its theoretical foundations.

VI. CONCLUSIONS

With regard to the experimental results, we can conclude
that CEP has a very high capability of segmenting remote
sensing images. Still, one has to keep in mind, that CEP

requires more computational resources then its competitors.
Hence, you can think of CEP not only as a challenge to
other segmentation algorithms but also a complementary. In
future works, it would be interesting to extend the 2D-CEP
framework to higher dimensions.
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