
Algorithm model and execution based on Petri

Nets in an heterogeneous parallel computer

Gustavo Wolfmann1 and Armando De Giusti2

1 Laboratorio de Computación - Facultad Cs. Exactas Físicas y Naturales
Universidad Nacional de Córdoba - Córdoba - Argentina

gwolfmann@efn.uncor.edu
2 III LIDI - Facultad de Informática

Universidad Nacional de La Plata - La Plata - Argentina
degiusti@lidi.info.unlp.edu.ar

Abstract. Multicore - MultiGPU systems are frequently used in super-
computers design. The heterogeneity between both types of processors is
a source of problems for the parallel programming: disparity in process-
ing throughput and memory availability. While some problems are faster
executed in a GPGPU, when its data size exceeds the memory available,
data partition must to be done in order to resolve, and become desir-
able to use both types of processors. In this paper we present a solution
based on Petri Nets to model the algorithm and to guide the execution,
balancing the load between the CPUs cores and GPGPUs. The matrix
multiplication algorithm is used as testbed. Tests confirm the goodness
of the model and highlight the difficulties to address the problem.

1 Introduction

Currently, supercomputers are frequently based on nodes with a mix of multi-
cores and GPGPUs[1]. These last are emerged as processing devices with a higher
performance . Besides, the GPGPUs are dependents on the main computer, thus,
the CPU processors are idle while the GPGPUs are processing.

The use of both kind of processors in parallel has two main problems: differ-
ent throughput and memory size. While the system clock in CPU is generally
faster than the clock in GPGPUs, the throughput for tasks related with vecto-
rial processing is better in GPGPU. The counterpart is that GPGPUs devices
have its own memory to allocate data, which is one order of magnitude smaller
than memory available in the main system. The data size problem is resolved
by dividing data and processing partially in the device.

To use simultaneously all the processing units available in a computer effi-
ciently, each kind of processor must to be settled with its own set of parameters
of data size and tasks to be executed. Thus, an asynchronous model must to be
used in order to optimize the execution.

Petri Nets (PN) are well know as a tool to model parallel execution due its
natural way of represent concurrency. Nevertheless, limited research was done

in the past to use it as an execution model in parallel programming. In previous
works [11, 12] we have developed a technique to model algorithms based on PN’s.

The gap between the algorithm model based on PN and the parallel execu-
tion is covered by a new parallel model of execution. The model is founded in
two concepts. First, algorithm representation into PN is based in the concept
that routines and their parameters are represented by transitions and places re-
spectively. Second, in order to execute, processors are added to the model as the
execution units. Simple linear algebra operations over the matrix representation
of the PN model guide the execution.

A framework based on the model execution described before was developed
and it is used as execution framework. The challenge is to model and execute
an algorithm in an heterogeneous machine with parameters that allow to define
execution options. This paper presents the results of tests done in an machine
with two types of processors, multiples CPUs cores and two GPGPUs. By setting
the parameters, as the division of data, the type and number of processors and
the tasks associated with each one, several parallel configurations were executed,
and confirms the goodness of the model.

The rest of the paper is organized as follows: the next section presents a brief
summary of the Petri Net model. Section three introduces the execution model.
The results and the conclusions are presented in the last sections.

2 The Petri Net Model

2.1 High Level Petri Net Model

A Petri Net (PN) is a bipartite directed graph consisting of places and transition
nodes. Usually, places represent “states“ and transitions “actions“. Arcs always
link a place to a transition (acting as input) or vice versa (acting as output).
There are tokens, which only exist in places, and represents “facts“. The overall
state evolves when a transition is ”fired“, moving tokens from input places to
output places. A transition can be fired when all input places have enough tokens
[5]. This net is also known as Token Petri Net (TPN).

The Coloured Petri Net (CPN) is a type of Petri Net defined as ”High Level
Petri Net“. The difference with TPN is that tokens have different values (”colors“)
from a domain. This allows to model with a high level of abstraction. Here,
transitions are enabled by having enough tokens in their input places respecting
the ”color“ defined. The CPN definition is followed from [5, 8].

Petri Nets can be used to model algorithms, where operations (kernels to
execute) are represented by transitions and data is represented by places. Input
parameters are represented by arcs that go from places to transitions, and op-
erations results, by arcs from transitions to places. The algorithm dependencies
are implicit from the output arcs of transitions

Related to CPN, DAG’s of task dependencies with many blocks divisions
(tiled algorithms) are difficult to understand due to their large number of nodes
(see Fig. 10 of LAWN 243 [7]). The CPN permit to model complex nets in a

simple manner. To model tiled algorithms [4], the main domain used to define
colors is tile position, represented by the row-column pair.

The strategy to model a tiled algorithm is:

1. Each operation in the algorithm is represented by one transition
2. For each transition, there are as many input places as data blocks parameters

are involved in the operation.
3. No more places or transitions are used.
4. Output arcs represent data dependency.

To specify conditions in places, we extend or restrict the data-block domain.
Also, multisets are used to represent repetitions of blocks, and function arc
expressions, to limit token flowing [8].

As the elected algorithm to test the model in the heterogeneous computer is
Matrix Multiplication (MM), it is used as example to explain the CPN model
strategy. Data division in MM is the key to execute in parallel, and there are
many patterns to divide the data involved in the computation.

It will be considered three square matrixes of the same range, A,B,C, with
C = A × B. There are two frequently used ways to divide data, band division
and tile division [4]. Band division divide A in n horizontal bands, B in n vertical
bands, producing a division in C of n × n square blocks, such Ci,j = Ai × Bj .
Tile division divide all the matrix in n × n square blocks (tiles), such Ci,j =
ΣkAi,k ×Bk,j . From the parallel execution point of view, tile division produces
data dependency, as the final value of each block Ci,j is the sum of n matrix
with partial results. The kernel elected to execute is the xGEMM routine from
BLAS library[2].

The fig. 1 has pictures of the banded data division, the CPN algorithm and its
place domains. Transitions are named with the name of the routine represented.
The name of the places follows the number of the block used in each operation.
Multiset repetitions of tokens are represented as {x}. Fig. 2 shows the same three
pictures for the tiled division. The domains are represented by a pair < i, j >

indicating row and column. There is an output link from transition gemm to
place gemm3 representing data dependency: the third parameter in its domain
(q) indicate the number in the sequence of the partial computations.

2.2 The Executable Petri Net Model

In order to execute the algorithm, the overhead required to represent CPN do-
mains and function arcs in an executable way is expensive in terms of high
performance computing, and it is impractical to use it directly. Nevertheless,
the CPN developed like this, meets the definition of well-formed CPN’s [5].
They can be easily transformed into a TPN, which has a simpler computational
implementation and is light to execute.

The unfolding of a CPN to a TPN is defined in Diaz et.al. [5]. Each place
Pj in a CPN has an associated Domain D(Pj); thus, its unfolding produces as
many places in the TPN as the cardinality of D(Pj), preserving the repetitions

of the multiset. Hence, each place in the TPN has an association with a unique
value from the pairs (color, place) in CPN and only one token can live on it.

Transitions are unfolded by generating as many transitions in TPN as the
cardinality of the Cartesian Product of all the elements of its domain in the CPN.
The cardinality of the multiset in each place must to be preserved. Hence, each
transition in TPN is associated with a unique combination from the Cartesian
Product of the domains of its input places, preserving multiset cardinality. Only
guards with true values produce results. In this way, each unfolded transition
represents an individual event, associated with a single task.

An unfolded example of the tiled division is depicted in fig. 3. It shows the
series of tasks necessary to produce one resulting tile block of matrix C, under the
assumption that the block is divided in 4 tiles. Each subtask mmi, i = 1 . . . 4, has
three input places, the respectives blocks of matrixes A,B and C. There is one
output place in each task, to the third parameter of the next task, excepting in
the last task, which produces the final result. This is due the data accumulation
of partial results on C.

The unfolding exemplified must to be replicated for any tile block of matrix
C, producing a big graph to be showed. Nevertheless, due each task is done only
once, and each place is used for only one task, the TPN can be easily represented
by a matrix notation, with incidence matrixes with only zeros and ones. These
matrixes, jointly with the mark vector, form the elements to be used in the
execution of the parallel algorithm, to be explained in next section.

Next, the model of the algorithm must to be adjusted to our heterogeneous
environment. Both models of banded and tiled data division are introduced as
a basis of the algorithm to be used in the heterogeneous system. The computer
used in tests has four dies AMD opteron 6344 with with twelve cores each, 48
Gigabyte RAM, using only one memory channel, and a clock rate of 2400 Mhz.
Each die has two blocks of L3 cache memory associated to a block of six cores.
For floating point operations, the die has Fused Multiplication Addition (FMA)
units shared by two cores. Each FMA performs concurrently one addition and
one multiplication on vectors of 256 bits divided in records of 32 or 64 bits. Since
there is an ACML version that is optimized for these FMA units, it was used,
restricting the number of processors units to 24. As well as, the computer has

(a) division (b) Coloured PN

gemm1 gemm2 gemm3

gemm

< i >

< j >

< i, j >

(c) Domains

Place Domain

gemm1 < i >, i = 1 . . . n{n}
gemm2 < j >, j = 1 . . . n{n}
gemm3 < i, j >, i, j = 1 . . . n

Fig. 1: Banded division: Graphic, Coloured Petri Net and Domains of the Places.

(a) division (b) Coloured PN

gemm1 gemm2 gemm3

gemm

< i, j >

< j, k >
< i, k, q >

< i, k, q + 1 >

(c) Domains

Place Domain

gemm1 < i, j >, i, j = 1 . . . n{n}
gemm2 < j, k >, j, k = 1 . . . n{n}
gemm3 < i, k, q >, i, j, q = 1 . . . n

Fig. 2: Tiled division: Graphic, Coloured Petri Net and Domains of the Places.

mm11

mm12

mm13

mm21

mm22

mm23

mm1

mm31

mm32

mm33

mm2

mm41

mm42

mm43

mm3 mm4

Fig. 3: Unrolled CPN of Fig. 2, for one resulting tile block, a generic Ci,j

two boards Nvidia GTX 680 mounted on the PCI bus of the board. Each one
has 2 GByte of RAM and 1536 parallel threads of execution at a clock of 1006
MHz. Cublas library provide the kernel xGEMM.

To overcome the problem of heterogeneous processors, data blocks that pro-
duce the best performance on each kind of processors should be used. The differ-
ent data size for each kind of processors requires dividing data in blocks of two
sizes and synchronize the execution of each kind of processor. The solution is
achieved by using both data divisions, one smaller to be used for the CPUs and
one bigger to be used by the GPGPUs, and defining the smaller as a fraction of
the bigger, in the idea that, CPU processors act as a set and can compute any
bigger block by parts. The balance of load is based on this double division.

The double data division is done by a first tiled level and then a banded
division over each tile. Thus, each tile is divided following the banded division.
The double level division has the sense that, having a tile division of n×n blocks
which defines n3 tasks, each block can be computed by a GPGPU or by a set of
cores of CPU. In the last case, if we define r as the number of band divisions for
each tile, then, the complete tile is calculated by r × r bands multiplications.

Figure 4 shows the CPN that represents the double data division. The places
that represent the three data blocks (gemm1, gemm2 and gemm3) are input
places of two tasks: the gemm task, to be done by one GPGPU and the partition

task, to be done by a core in CPU. This last subdivides each tile block in r

bands, used by the gemms task (with a final ”s“ of subdivision). Partition is a
virtual task because does not make any processing, only produces a set of logical

(a) Domains

Place Domain

gemm1 < i, j >, i, j = 1 . . . n{n}
gemm2 < j, k > j, k = 1 . . . n{n}
gemm3 < i, k, j >, i, k, j = 1 . . . n

gemms1 < x >, x = 1 . . . r{r}
gemms2 < y > y = 1 . . . r{r}
gemms3 < x, y >, x, y = 1 . . . r

orig < i, k, j >, i, k, j = 1 . . . n

count < 1 >

free < 1 >

(b) CPN

gm1 gm2 gm3

gemm

< i, j >
< j, k >

< i, k, j >

< i, k, j + 1 >

gms1 gms2 gms3 orig

freepartition
< 1 >

< i, j >
< j, k > < i, k, j >

< x > {r}
< y > {r}

< x, y >

< i, k, j >

countgemms

< x >
< y >

< x, y >

< 1 >
unif

< 1 > {r × r}

< i, k, j + 1 >

< 1 >

Fig. 4: Domains of the places for the CPN with tiled and banded divisions.

blocks, < x >,< y >, and < x, y >, used by gemms task. In order to avoid to
do a partition of a new tiled block while there are not finished all the gemms
tasks produced in a previous one, a control place free is added as an input to
the partition transition which also acts as output place of unification transition.
This last determines the completion of all gemms pending task, enabling a new
partition, if necessary. In this way, the model to execute in the heterogeneous
system is completed with a run time balancing. The next section describes the
parallel execution model used to run in parallel the algorithm.

3 The Execution Model

The previous section shows how to model the algorithm with Coloured Petri Nets
(CPN). Unfolding the CPN to a simple Token/Place Petri Net (TPN) transform
a compact net into a bigger but simpler one to execute. This section shows how
to execute a parallel algorithm based on TPN.

The Parallel Execution Model (PEM) is defined as a tuple:

PEM = (P, T, I−, I+,M,Mf , Π, χ) (1)

where P is a finite set of places Pi, with cardinality |P | = p, i = 1 . . . p; T is a
finite set of transitions Tj, with cardinality |T | = t , j = 1 . . . t; I− and I+ are
the negative and positive incidence matrixes of the TPN, with dimension p × t

(I− and I+ ∈ N
p×t); M is the Mark Vector for places, p × 1 (M ∈ N

p); Mf ,
is the Final Mark Vector, p × 1 (Mf ∈ N

p); Π is a finite set of Processors Πi,
with cardinality |Π | = π, i = 1 . . . π and each Πi has a boolean variable e (Πi.e),
which is set as either true or false to indicate if it is running or if it is idle; and
finally, χ is a Boolean variable that implements a mutual exclusion mechanism

over M that allows each Πi to update M securely. The initial state of the net
has M = M0, the initial mark of the TPN; χ = true, the exclusion is free; and
Πi.e = true , i = 1 . . . π, because all processors are idle.

The PEM is very close to Timed Petri Nets [10]. Both share the concept
that firing a transition is not instantaneous because there is a time elapsed
between the start and the end of the firing. The same as in PEM, the firing
action represents the execution of a task, but the difference is that in PEM
firing is not done autonomously once the transition is enabled. An idle processor
is responsible to fire the transition selected among all the enabled ones.

The implementation of this execution model needs one Mutual Exclusion
(mutex) mechanism to avoid concurrent reading and writing operations over
vector M , which is the one that defines the algorithm state. In this sense, the
processors act serially to select the next transition to fire.

The Pseudo-code of the PEM execution is presented in Fig. 5. In round-robin
format, each idle processor, searches for a task to execute based on the Petri Net
model of the algorithm. To determine which transitions are enabled, only simple
linear algebra operations are needed. In effect, if we call I−j and I+j the j-th

column (transition) in I− and I+ respectively, the j-transition is enabled if the
vectorial subtraction M − I−j does not have any negative value. Computing the
vectorial subtraction for all the columns determines all the enabled transitions
ready to be fired at one point of the execution.

To determine the task to be executed, a dynamic scheduler was developed.
Each processor uses in run-time a valuation function that is applied to the set
of enabled transitions, selecting the transition with highest valuation, Tk. The
valuation function is the key for the parallel processing performance, because it
can be particular to each type of processor in order to select to most appropriate
task. By example, the faster processors can select tasks that will keep the larger
number of tasks enabled in parallel, avoiding “bottlenecks” in the execution, and
the slower processors select non-priority tasks.

Additionally, it is used a mapping between transitions and tasks to be exe-
cuted, and another mapping between places and data blocks. To execute a task,

1 While main algorithm not finished

2 If can hold the mutual exclusion

3 Compute h function

4 Select one task to execute

5 Update M by absorbing tokens

6 Free the exclusion

7 Task execution

8 Inject tokens in M

9 Else

10 Delay

11 Endif

12 End

Fig. 5: Pseudo-code of the task selection algorithm.

the processor selects the task related to the transition to be fired and its data
parameters from the first and second mapping respectively.

Steps 5 and 8 of the pseudo-code algorithm represents the evolution of the
execution. The tokens are absorbed and injected from the Mark Vector M at
two times. In step 5 the tokens from the input places of Tk are absorbed, and in
step 8, they are injected to their output places. Both steps are made with linear
algebra operations and, after injection, new transitions become enabled. The
cycle is repeated until the end of the algorithm, which occurs when M = Mf .

The overhead introduced by the parallel execution is defined by three factors.
First, the mutual exclusion mechanism, which uses few cycles of clock. Second,
matrix and vector operations, which are highly optimized to run in milliseconds
with current processors. Third, the selection policy, which must be guided by a
balancing among selection load and overall algorithm performance. In fact, the
sum of the time of three factors is several orders of magnitude smaller than the
routine execution, which means a minimum overhead.

The settings of mappings between transitions and places with routines and
data blocks must not to be unique for all the processors, and is the key to adapt
the model to an heterogeneous system. In our case, as there are two types of
processors, each type has it own mapping settings, CPUs with ACML routines
and small data blocks, and GPGPUs with CUBLAS routines and bigger data
blocks. There is no need to synchronize both types of processors.

4 Experiments

The experiments were done on the multicore - multiGPU machine cited before,
using gcc 4.7.2 as compiler and ACML 5.0 and CUBLAS 6.0 as BLAS imple-
mentation for the CPUs and the GPGPUs, respectively. The ACML version used
was the tuned for use the FMA units in sequential mode based on two reasons:
to get many logical processors to test the model and the poor speedup of the
ACML parallel implementation. Thread affinity is used in order to assign the
FMA units to the logical processors. A numerical single precision was used. The
ranges of matrixes tested are 24000, 36000 and 48000.

The table in fig. 6a shows the results of use only one or two the GPGPUs,
reaching more than 2 Tflops when the number of tiles is the small possible that
allow fit data into the board. The results using only the FMA4 units are shown
in fig. 6b, with a peak performance of 400 Gflops. The table in fig. 7 shows the
results using both type of processors. The results of these test are not expected
in the sense that the performance obtained is smaller than using only GPGPUs,
with a best performance of 1.7 Tflops. The explanation for this is based on
the bandwidth limitations of the memory channel and the PCI 2.0 bus in the
motherboard. This conclusion is based on the irregular execution time observed
in the execution of similar tasks when the data block is big, due to the channel
saturation. Only the most meaningful results are shown in the tables.

Aditionally, the fig. 8 shows a timeline execution when two GPGPUs (light
gray) and 16 cores or FMA4 units (dark gray) are running in parallel. The white

(a) GPGPU

tiles n n = 2 n = 3 n = 4 n = 5

ran gps secs gflps secs gflps secs gflps secs gflps
24K 1 23.0 1202 26.7 1035
24K 2 13.7 2018 15.5 1784 18.1 1527
36K 1 76.3 1223
36K 2 39.8 2344 49.2 1897 52.8 1767
48K 2 96.2 2299 114.8 1927

(b) CPU

bands r r = 1 r = 2 r = 3

ran secs gflops secs gflops secs gflops
6K 1.51 286.1 2.20 196.3 2.29 188.6
12K 8.6 401.8 9.9 349.1 11.9 290.4
24K 77.7 355.6 64.8 426.7 88.0 312.2
36K 430.9 216.5 515.9 180.9

Fig. 6: Time in seconds and gflops from tests with several matrix ranges and
divisions, two NVIDIA GTX 680 GPU’s and 16 cores using FMA4.

tiles/bnds r = 3 r = 4 r = 5 r = 6

range gpus cpus n secs gflops secs gflops secs gflops secs gflops
24000 2 16 2 23.8 1161.6 19.3 1434.7 19.7 1403.4 20.8 1329.2
24000 2 16 3 24.4 1133.1 24.0 1152.0
36000 2 16 2 136.5 683.6 160.3 582.1 95.7 975.0
36000 2 16 3 60.7 1537.2 87.5 1066.4 54.7 1705.8 52.6 1774.0
36000 2 16 4 64.5 1446.7 74.0 1261.0 82.7 1128.3
48000 2 16 3 139.1 1590.1 188.6 1170.9
48000 2 16 4 139.7 1583.3 195.1 1133.7 165.1 1339.7 306.3 721.4
48000 2 16 5 213.6 1035.5 269.6 820.4

Fig. 7: Time in seconds and gflops from tests with matrix ranges of 24000, 36000
and 48000; differents tiles and bands divisions, two NVIDIA GTX 680 GPU’s
and 16 logical processors using FMA4 units.

spaces represent idleness of the processors. It can be shown that the execution
is good in terms of activity, but not optimal, with white areas between the CPU
processors, which is one of the reasons of the overall fall performance.

5 Related Works

The dynamic scheduler developed is related to Quark [13], but the our, in place
of to prioritize the data locality as Quark does, it prioritizes the availability of
parallel tasks.

StarPU is a runtime system developed at the INRIA institute that launches
tasks in parallel over a set of processors units, using a dynamic scheduler [3]. To

Elapsed time between 0 secs. to 19 secs.

1
gemm001001 gemm002001gemm002002 gemm002002gemm003001 gemm003001gemm003003 gemm003003 gemm002002 gemm003003

2
gemm001002 gemm001002gemm002001gemm002003 gemm001003gemm002003gemm003002 gemm003002gemm002001gemm002003gemm003002

3
gems002003 gems003002 gems001003 gems004003gems001002 gems004003

4
gems001003gege001003 gems002002 gems004002 gems001004gems001001 gems002002

5
gems004004geun001003 gems004003 gems004004gems004004 gems003001 gems003004

6
gems001002 gems002003 gems003001gems002004 gems002001 geun001003gege003001 gems002001 geun003001

7
gems002002 gems003001 gems003002gems001004 gems002003 gems003003

8
gems004002 gems003003 gems001004gems001003 gems002004 gems001004

9
gems003001 gems002004 geun001001gege001002 gems001001gems002001 gems004002 gems002004

10
gems003003 gems001003 gems004003 geun001002gege001003gems002003 gems001001 gems004004

11
gems001001gege001001 gems002001 gems002001gems003001 gems003002 gems002003

12
gems004003 gems004002 gems002002 gems001003gems002002 gems004001

13
gems002004 gems001002 gems003004gems003004 gems001002 gems001003

14
gems003002 geun001001gege001001 gems001001 gems002003gems004002 gems004001 gems003002

15
gems004001 gems004004 gems004001gems004003 gems003003 gems001001

16
gems002001 gems001004 gems003003gems003002 gems003004 gems004002

17
gems001004 gems003004 gems002004gems004001 gems004004 gems001002

18
gems003004 gems004001 gems001002gems003003 gems002002 gems003001

1

Fig. 8: Execution timeline, 24000 range, 16 processors,n = 2, r = 4

run the tasks, it uses kernels provided by the user that implement the solution
appropriate to each processor type. The scheduler uses estimated execution time
to select the task to execute. The system is based on a library with routines that
allows to define tasks, dependencies and data partition. These definitions must
to be coded in the source program. It allows change the granularity of data in
runtime and even use a granularity different for each type of processor, left to
the programmer definition. Changes in any of these involve changes in the code,
which is an important drawback.

XKaapi is another runtime system developed at Inria that launches tasks
in parallel [6], with a different approach: it works based on compiler directives
introduced in the source code that defines the tasks to run in parallel, like it does
OpenMP. The scheduler is dynamic following a FIFO order without considering
any other factor of optimization. Dependencies are automaticaly computed by
the system. As in StarPU, changes in data division implicates to change the
code. Besides, the task selection criteria between the set of available tasks is
common to all the processors.

Shetti et.al. implements the HEFT (Heterogenous Earliest-Finish-Time) sche-
duling algorithm in a CPU-GPU environment [9]. They obtain an almost optimal
performance on random DAG’s. This scheduler is static and it is based on task
priorities to select between them. It has the drawback to assign tasks priorities
before running, which is a problem when having hundreds or thousands of tasks.

6 Conclusions

We emphasize the advantages to implement the algorithm with the developed
model. First, as the number of data divisions is a parameter, the number of
subtasks and its dependencies derives from the structure of the PN, making
easier the analysis of the complexity and the performance of the parallel execu-
tion. Second, the unrolling process that transform the CPN to a TPN, hides the
complexity of the parallel execution. Third, the parallel execution framework
is configurable in order to execute differents algorithms in differents parallel
machines. By doing changes in the matrix representation of the net, a new par-
allel algorithm can be executed without programming. Also, by changing the
processors definitions, the execution can be ported to others parallel machines.
Compared with related systems, ours is more flexible and quickly adaptable to
changes. Few parallel systems can handle different data granularity according to
the best to each processor.

The objective of the paper was achieved, due that the developed model exe-
cute the algorithm in both type of processors, CPU’s and GPGPU’s, with a con-
vergent result. This paper, jointly with the ones done previously [11, 12], prove
that the model can be used for differents algorithms and machines. The model
helps to analyze, execute, and tune the execution, with a negligible overload.

Regrettably, an additive performance between both type of processors could
not be achieved, due the hardware configuration and the parallel structure of
the algorithm. Nevertheless, this was due on the extreme use of the processing
resources. An important conclusion is that the bottleneck is produced by limi-
tations in the memory channels and PCI bus, and that these factors must to be
taken into account when a high performance is desirable.

The tuning of the execution parameters to reach better performance and the
optimal execution on CPUs is left to next research, as also extending the model
to a distributed memory machine.

References

1. Top 500 supercomputer site. http://www.top500.org/
2. Basic Linear Algebra Subprograms Technical Forum Standard. Tech. rep., Univer-

sity of Tennessee (2001), http://www.netlib.org/blas/
3. Augonnet, C., Thibault, S., Namyst, R.: Starpu: a runtime system for scheduling

tasks over accelerator-based multicore machines. Technical Report 7240, INRIA
(Mar 2010), http://hal.inria.fr/inria-00467677

4. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Tech. Rep. 191, LAWN (Sep 2007)

5. Diaz, M.: Petri Nets: Fundamental Models, Verification and Applications. ISTE
Ltd - John Wiley & Sons, Inc., London, Hoboken (2009)

6. Gautier, T., Ferreira Lima, J.V., Maillard, N., Raffin, B.: XKaapi: A Runtime
System for Data-Flow Task Programming on Heterogeneous Architectures. In:
27th IEEE International Parallel & Distributed Processing Symposium (IPDPS).
Boston, Massachusetts, États-Unis (May 2013), http://hal.inria.fr/hal-00799904

7. Haidar, A., Ltaief, H., YarKhan, A., Dongarra, J.: Analysis of dynamically sched-
uled tile algorithms for dense linear algebra on multicore architectures. Tech. Rep.
243, LAPACK Working Note (Mar 2011)

8. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

9. Shetti, K.R., Fahmy, S.A., Bretschneider, T.: Optimization of the heft algorithm
for a cpu-gpu environment. In: Proceedings of the 2013 International Conference on
Parallel and Distributed Computing, Applications and Technologies. pp. 212–218.
PDCAT ’13, IEEE Computer Society, Washington, DC, USA (2013)

10. Wang, J.: Timed Petri Nets: Theory and Application. The International Series on
Discrete Event Dynamic Systems, Springer US (1998)

11. Wolfmann, G., DeGiusti, A.: Parallel asynchronous modelization and execution of
cholesky algorithm using petri nets. In: Proc. Int. Conf. on Parallel and Distributed
Processing Techn. and Appl. (PDPTA). Las Vegas, Nevada, USA (2013)

12. Wolfmann, G., DeGiusti, A.: Petri net based algorithm modelization and parallel
execution on symmetric multiprocessors. In: Proc. Int. Conf. on Parallel and Dis-
tributed Processing Techn. and Appl. (PDPTA). Las Vegas, Nevada, USA (2014)

13. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: Queueing and runtime
for kernels. Tech. rep., Innovative Computing Laboratory, University of Tennessee
(2011)

