
Multi-match Packet Classification on
Memory-Logic Trade-off FPGA-based Architecture

Carlos Zerbini
Universidad Tecnológica Nacional

Department of Electrical Engineering, Córdoba, Argentina
czerbini@electronica.frc.utn.edu.ar

Jorge M. Finochietto
Universidad Nacional de Córdoba – CONICET

Digital Communications Lab, Córdoba, Argentina
jfinochietto@efn.uncor.edu

Abstract—Packet processing is becoming much more chal-
lenging as networks evolve towards a multi-service platform.
In particular, packet classification demands smaller processing
times as data rates increase. To successfully meet this require-
ment, hardware-based classification architectures have become
an area of extensive research. Even if Field Programmable Logic
Arrays (FPGAs) have emerged as an interesting technology for
implementing these architectures, existing proposals either exploit
maximal concurrency with unbounded resource consumption, or
base the architecture on distributed RAM memory-based schemes
which strongly undervalues FPGA capabilities. Moreover, most of
these proposals target best-match classification and are not suited
for high-speed updates of classification rulesets. In this paper,
we propose a new approach which exploits rich logic resources
available in modern FPGAs while reducing memory consumption.
Our architecture is conceived for multi-match classification, and
its mapping methodology is naturally suited for high-speed,
simple updating of the classification ruleset. Analytical evaluation
and implementation results of our architecture are promising,
demonstrating that it is suitable for line speed processing with
balanced resource consumption. With additional optimizations,
our proposal has the potential to be integrated into network
processing architectures demanding all aforementioned features.

I. INTRODUCTION

As packet networks need to support an increasing number
of services, classification of their traffic into flows for differ-
entiated processing becomes essential. To this end, steadily
increasing data from the packet header must be evaluated
at line speed, which traduces in more demanding processing
architectures. In particular, the classification task has the
potential to become the major bottleneck due to the fact that the
available processing time decreases as the data rate increases.
Indeed, in 100 Gbps networks a packet of 64 bytes has to be
processed (i.e., classified) in about 5 ns.

In general, a packet classifier analyzes header fields of each
packet to take decisions on it. Each field value is used as a
key to access one of the k dimensions of a set of n rules.
Each dimension corresponds to one of the header fields, over
which each rule specifies an arbitrary range of values. A rule
is said to match a given packet if its resulting keys are within
the ranges defined over their k dimensions.

The problem of packet classification is similar to that of a
geometric point location problem. In general, each rule defined
over k fields represents an hyperrectangle over a k-dimensional
search space. In unidimensional (1D) classification, a rule

defines a line segment, while for bidimensional (2D) classifica-
tion it generates a rectangle. In this context, a packet represents
a point in space defined by its keys (i.e., field values) as
coordinates, which can belong to one or more hyperrectangles
(i.e., rules) since overlaps can occur. These overlaps divide the
search space in hyperregions, each of which has an associated
set of rules. The main goal of a packet classifier is to identify
the hyperregion a packet belongs to.

Moreover, two different classification problems are of
interest: best-match and multi-match. The former only returns
the highest priority matching rule, while the latter, all match-
ing rules. Best-match has been widely studied and multiple
approaches adopt it as motivation due to its use in longest
prefix match for IP lookup, which is the main mechanism
enabling the Internet up to date. However, a growing num-
ber of applications such as traffic balancing and accounting,
differentiated services, Network Intrusion Detection Systems
(NIDS), etc. are pushing the need for high-performance multi-
match classification schemes.

In this paper, we consider the use of FPGA-based ar-
chitectures for multi-match packet classification, where the
classifier is asked to return the set of rules matched by a given
packet. In particular, we consider the aggregation stage needed
to determine this set of rules from partial matches on each
dimension. We propose a novel aggregation scheme for this
stage based on logic in contrast with most available solutions in
the literature which are memory-based. This scheme is suitable
for implementation on FPGAs, where logic resources are abun-
dant through the use of logic blocks containing look-up-tables
(LUTs) and registers, leaving RAM memory resources avail-
able for partial 1D lookups and additional processing tasks. As
a result, our proposal provides a trade-off implementation for
packet classifiers which can better exploit available resources
on FPGAs. Besides, our aggregation scheme provides 1-cycle
computation time and preserves a simple structure for updating
rules.

The paper is organized as follows. Section II reviews rele-
vant work related to our proposal, while Section III discusses
the main drivers for it. A detailed description of the proposed
architecture is presented in Section IV, with particular empha-
sis on the aggregation stage which is required to reduce overall
memory consumption. This stage is evaluated and compared
with other approaches in Section V, highlighting existing trade-
offs. Finally, we conclude the paper and discuss future work
in Section VI.

II. RELATED WORK

Approaches for multi-dimensional packet classification can
be coarsely divided in trie-based and decomposition-based [1].
As our work follows the latter, we briefly review existing
work, specially aiming at the aggregation stage where two
main research lines can be identified:

Bitmap intersection1 or region-based approach (REG).
This approach is essentially based on the identification of
distinct regions which can be associated to a set of matched
rules. In its seminal work, Parallel Bit Vector (BV) [2], all
rules are projected on each dimension and a maximum of
2n−1 non-overlapping intervals are identified. Unidimensional
searches can be made, for example, through binary search.
A set of matched rules is stored for each region as an n-bit
map (bitmap). Due to this biunivocal bit-rule mapping, the
intersection between all partial results reduces to an extremely
simple AND (i.e., conjunction) operation between each bit
vector. The simplicity of the intersection comes at the cost
that global information regarding the complete set of rules
must be stored for each dimension. BV bitmap requires n bits
per each of the 2n− 1 (i.e., O(n)) possible intervals on each
of the k dimensions, trading unfavorable space requirement of
O(kn2) for O(k log n + n/w) time complexity, when using
binary-search on each field and memory of width w [2].

Recursive Flow Classification (RFC) [3], while still based
on bitmap intersection, states a turning point in the aggre-
gation stage by adopting a distributed approach based on
minimum-size labels representing unique hyperregions. Dur-
ing classification, these labels are combined recursively into
intermediate ones until that representing the decision for the
packet is obtained. Updating algorithms (commonly running
on general-purpose processors) keep lists of bitmaps on each
dimension for pre-computing the respective labels to be stored
in limited, classifier-embedded memory. This fundamental
change in aggregation methodology aims at optimization of
memory consumption. Space requirement is reduced to O(tn2)
(t=aggregation stages) with O(k) time complexity. However,
the simplicity of original BV algorithm is lost by considering
ruleset-specific pre-computation; that is, the correspondence
between stored bits and global rules is no longer transparent,
but must be established by pre-processing. Such algorithms
are implemented in software, while aggregation is tied to se-
quential access to big memory blocks with limited concurrent
operation opportunities.

Crossproducting- or value-based approach (XPROD).
Originated from the seminal contribution by [4], this approach
is based on the identification of unique single values de-
fined from the projection of rules on each dimension. For
aggregation, an optimized precomputed hash table is built
storing the best rule match for each possible combination of
single-field matches (i.e., crossproducts). During lookup, best
matches for each field are obtained and used for accessing
this table in a single step. However, due to the multiplicative
nature of crossproducts, many pseudorules must be stored for
resolving rule overlappings. These pseudorules are filters not

1The terms Bit Vector and Bitmap are frequently interchangeably used in
the literature. We adopt the term Bitmap for the general case where one bit
biunivocally represents some kind of match, while we reserve Bit Vector to
explicitly refer us to the BV approach.

present in the original ruleset, defined by single values from
overlapped rules. This effect leads to exponential increase in
memory requirements. In the worst case, space consumption
is O(nk) with time requirements O(d log n+1). This scheme
was implemented in software running on a general-purpose
processor based system.

To overcome crossproducting drawbacks, Distributed
Crossproducting of Field Labels (DCFL) [5] exhaustively
analyzes sample real rulesets and extracts following features:

a) the maximum number of unique field values is signif-
icantly less than the number of filters. This is due to unique
field values being shared by multiple filters.

b) the maximum number of unique field values matching
any packet is strongly limited and remains relatively constant
for various filter set sizes.

c) the maximum number of unique combinations of field
values matching any packet is bounded by twice the maximum
number of matching single-field values.

Based upon these observations, a label-based aggregation
scheme using Bloom filters and memory indexing was de-
veloped. Through distributed aggregation, combinations not
present in the ruleset (i.e., pseudorules) are “filtered” at
early stages, propagating only valid combinations for further
crossproducting. Implementation results are not reported in
this case, while focusing on extensive evaluation of memory
consumption for sample rulesets.

While DCFL could be intuitively associated to RFC, a
fundamental difference must be noted. RFC stores labels rep-
resenting distinct filter overlapping regions in a k-dimensional
aggregation stage. DCFL, meanwhile, assigns labels to unique
field values. Both types of labels are illustrated for 1D in Fig. 1
for a typical 2D aggregation case.

Later work by Jedhe et. al. [6], specially aimed at reconfig-
urable hardware (i.e., FPGA technology), goes a step further
bounding n to 128, a) to 32 and b), c) to ≤ 5. On this basis,
a pure memory-based approach (without use of Bloom filters)
is implemented. The number of sequential memory accesses
(SMAs) is strongly tied to the maximum number of matched
labels for any packet, which in this case is supposed to be
≤ 5. Implementation on FPGAs is reported in this case which
makes strong use of memory resources, achieving 50 Mpps
for 128 rules on a Xilinx Virtex II Pro FPGA.

An important scalability metric of these distributed
schemes is the ratio between effective matches obtained in an
aggregation stage and the number of SMAs needed for it. At
a certain stage, SMAs are the product of effective matches
of previous stages, while according to c) the number of
effective matches obtained is bounded by twice the maximum
of matches of previous stages. This leads to increasing cost
for higher dimensions. For example, if 7 single-field matches
are considered, 7 × 7 + 14 × 14 = 245 memory acceses can
be required to obtain just 14 × 2 = 28 effective matches. As
SMAs cause the pipeline to stall, this fact can turn into an
important issue.

Pre-computation required in both REG and XPROD ap-
proaches can be divided into two main stages: 1) single-field
matching, and 2) aggregation. Single-field matching usually

Fig. 1. Regions versus unique values for 2D aggregation case

involves moderate pre-computation of 1D regions [1]. In BV,
1D regions are then biunivocally mapped to n-bit vectors
for pre-computing-free stage 2). XPROD, on the opposite
end, maps 1D regions to field-local values, so stage 2) is in
complete charge of mapping them to specified rules, requiring
extensive pre-computation. RFC distributes pre-computation
between both stages, since it considers k-D regions at both 1)
and 2). XPROD techniques advantage REG ones when their
aforementioned conditions are met, as they enable considerable
memory savings with proper throughput. If the number of
matching labels on each field where large, excessive latency
would override memory savings in favor of REG techniques.

III. MOTIVATION

From the preceeding analysis, and aiming hardware-
assisted implementation on FPGAs, we can state the following
premises:

a) BV bitmap makes very inefficient use of memory
resources due to its intrinsic 1rule/1bit mapping scheme.
Considering rule properties is certainly the way out from
BV bindings. Label-based approaches, however, extremely
alter this simple aggregation scheme requiring hardware-
unfriendly, computation-intensive algorithms for rule/label
mapping. Moreover, labels dictate the use of memory-based
architectures with limited possibilities of concurrent operation.
From this considerations, bitmap-based aggregation schemes
which can take advantage of rule properties seem to strike a
convenient balance.

b) Pre-computation present at aggregation stage should be
addressed, rather than pre-computation at 1D stages.

c) XPROD labels should be used, as they scale to n for n
rules defined on k dimensions. REG labels, meanwhile, scale
to the number of k-D regions, which is 2rj ≤

∑n
i=1 i. That is,

XPROD labels scale better than REG labels. This is because
k-D regions are disjoint, while k-D unique values can overlap
with each other.

d) Current FPGA-based work adopts either logic-intensive
[5] or memory-intensive [6] approaches. While the former can
suffer from degraded performance due to large routing paths,

the later ignores rich and optimized logic resources available in
FPGAs. We intend to achieve a balance by taking advantage of
both kinds of resources. This also allows us to relax memory
consumption constraints in favor of enhanced throughput.

In this context, we explore a convenient tradeoff between
the simplicity (but intensive resource consumption) of the
original BV scheme and the resource efficiency (but intensive
pre-computation) of RFC and XPROD-based schemes. To
this end, from observation c), we detect regions at early
stages and map them to disjoint bitmaps of unique values.
1D lookup incurs acceptable pre-computation according to b),
while bitmaps reduce pre-computation at aggregation stages as
intended, according to a).

Our proposal has similarities with work by Sun et al. [7],
however a fundamental difference exists between both. Sun et
al. aims at compressing BV bitmaps by the use of a bounded
number of concatenated rule values. Their aggregation array
reduces to multiple, concurrent conjunctions as is the case
of BV, accordingly requiring each single-field lookup to re-
turn k-dimensional rule numbers. We instead employ unique-
field values, completely local to single-field lookup engines.
Our aggregation array, therefore, must be able to perform
distributed classification through incremental aggregation of
partial results.

IV. PROPOSED ARCHITECTURE

In previous work, described in detail in [8], we imple-
mented the simple aggregation method of BV while using
indexing on chunks for single-field lookup on FPGAs. We
enhance that implementation through the new aggregation
architecture to bring our present ideas to practice and test
its performance on state-of-the-art FPGA devices. We briefly
review relevant aspects of the general architecture, in order to
introduce the proposed aggregation stage.

A. Unidimensional lookup stage

Unidimensional lookups are implemented through block
memory indexing, where the resulting key from the packet
is used as a memory address to fetch the associated set of
matched rules. To avoid address space explosion, the key can
be divided in chunks of fixed size [3] [9].

Our previous implementation [8], where no pre-
computation at all is required, is based on key/rule mapping
memory blocks. That is, the matching state of each rule
is stored for each key value. This approach, named CAM
emulation, is completely ruleset-agnostic, even more than the
BV scheme. It requiresdfj/ce × 2c × n storage, where fj=
key width for field j [bits], c = chunk width [bits], and n =
number of rules.

A straightforward enhancement resembles the BV ap-
proach, by introducing a first key/region mapping memory
stage. For each dimension j, region labels of width rj are
defined and mapped by a first memory block named reg mem.
Each region is, in turn, linked to a unique rule bitmap
through a second region/rule memory block, bmp mem. As
rj ≤ n, the total memory consumption is so reduced to
dfj/ce × 2c × rj + 2rj × n. Both unidimensional schemes
are illustrated in Fig. 2(a) and (b) respectively for the match
case shown in Fig. 1.

Fig. 2. General architecture: (a) CAM emulation scheme, (b) BV scheme,
(c) proposed scheme

The address space of reg mem is given by 2fj (or 2c if
c < fj). From the condition rj ≤ n, it contributes with a small
percentage to the 1D stage memory consumption. Address
space of bmp mem is strongly bounded by the number of
regions resulting in a positive global balance, but it still con-
tributes with most of the storage due to its required width n for
aggregation purposes. Regarding address space of bmp mem,
previous work [10] proposes encoding of ranges into multiple
primitive ranges by setting bounds on the number of overlaps.
The main goal of that approach is to avoid update complexity
of RFC while reducing the excessive resource requirements
of Parallel BV. This proposal can be easily applied to our
implementation, with obvious pre-computation penalities.

We hereafter focus on reducing the word width of
bmp mem. As stated in our proposal, unique value bitmaps can
be used in order to explore a tradeoff between label- and rule
bitmap-based aggregation approaches. This in turn requires a
suitable aggregation stage, which we analyze and evaluate in
the rest of the paper. A general view of the proposed scheme

is shown in Fig. 2(c).

B. Aggregation stage

Aggregation in our previous work consisted on simple,
pipelined bit-level conjunction (AND) of n-bit bitmaps from
unidimensional bmp mem blocks. These bitmaps represent
global rules which tend to demand much memory resources.
Instead, we propose to store bitmaps which are local to each
dimension (i.e. field), with its bit positions representing unique
field values. As a result, memory consumption can be reduced
at the cost of increasing the complexity of the aggregation
stage. Indeed, the combinations of their elements (i.e., bits)
rather than their conjunction must be now checked. Two states
are related to the combination of bitmap elements: valid, which
is stored during rule updating, and match, to be set during
classification.

Let us consider two field bitmaps A and B of widths (i.e.,
number of unique values) vA and vB respectively, resulting
in an aggregated bitmap C of width vC . From possible vA ×
vB combinations of their possible values (i.e., their cartesian
product), only those which are (a) valid in the set of rules
and (b) matched by the incoming packet header will result in
relevant outcomes. Combinations which obey both conditions
are extremely limited, as argued for disregarding SMAs of
XPROD-based approaches [5]. For our present purposes, we
only take advantage of condition (a) for assuming some vC <
vA × vB and cover such combinations through high-speed,
concurrent matching.

In order to keep Processing Elements (PEs) as simple as
possible and to keep routes short on FPGA, a number of
possible pipelining schemes are applicable with varying space-
time tradeoffs [11]. A simple 1-dimensional (1-d)2, bit-grained
(1-b) aggregation pipeline, is illustrated in Fig. 3(a) for the case
of two 3-bit bitmaps A and B. In this figure, points stand for
delay elements (DE) implemented through flip-flops, V stands
for valid state (valid unique-field combination in ruleset), and
M stands for match state of each combination. For vA = 3 and
vB = 3 unique field values in A and B fields respectively, the
1-d 1-b aggregation pipeline consists of vA× vB = 3× 3 = 9
PEs. The number of input DEs, meanwhile, is 2×

∑vA×vB
i=1 i.

An essential aspect of this scheme regards the aggregation
bitmap to be used. Unlike similar pattern-matching pipelines
proposed in [12], where just one bit (match) is propagated,
we must keep track of multiple matches against valid rules.
For sake of hardware simplicity, we implemented aggregation
bitmaps on shift registers. If valid=1, the register is shifted one
place with the match state for the particular combination, as
shown in the PE of Fig. 3(b). An aggregation example through
this scheme is also illustrated for the ruleset of Fig. 3(c) and
packet PA=a,B=b.

The scalability of this simple scheme soon degrades, but
can be improved as follows. Given that bit combinations
internal to A and B are not considered for aggregation,
unique values in A can be checked in parallel against those
in B, obtaining parallel partial results of width vA after vA
clock cycles. At the output of each of the so-defined rows,
a barrel shift controlled by the number of valids=1 prepares

2We use 1D to refer to unidimensional classification, while 1-d to refer to
1-dimensional pipeline

Fig. 3. 1-d, 1-b architecture: (a) aggregation, (b) PE, (c) Match case

Fig. 4. 2-d, 1-b architecture

the partial bitmap for final aggregation. Finally, an output
stage aggregates the partial results from each row through
union (ORing) into a match vector of width vC . As one of
the ports is broadcasted, as shown in Fig. 4, we will refer
to this architecture as 2-d 1-b semi-systolic [11]. A further
improvement involves 2-d pipelining and fine-grain pipelining
of the output OR stage as shown in additional grey points
of Fig. 4. This architecture will be called 2-d 1-b pure-
systolic. Unlike [7], aggregation bitmaps must not only return
single matches for each row but all valid matches on it;
therefore smaller, row-local shift register-based bitmaps are
again adopted.

From Fig. 3(b), we can observe that computation at PEs
is trivial, while significant overhead is required to aggregate
results at bit-level. We can achieve a better balance by adding
processing capability at elements and accordingly relaxing
aggregation granularity G. Resource consumption, latency and
speed are improved at cost of slight increase of PE complexity.
Aggregation bitmap, meanwhile, is slightly changed to support
variable-sized shifts at each PE. This modification is illustrated
for G = 2 bits in Fig. 5(a), resulting in 2-d 2-b semi-
(black) and pure-systolic (black + grey) schemes. High-level
implementation of the new processing element is shown in

Fig. 5. 2-d, 2-b architecture: (a) aggregation datapath, (b) processing element

Fig. 5(b).

It is worth to note that all proposed schemes preserve 1
rule/1 bit mapping. Inserting/changing a rule implies simple
decoding of its fields and accordingly setting valid bits. At
the same time, they trade high memory consumption of BV
for rich logic resources available in FPGAs. This simplicity is
possible thanks to the massive concurrency of our fine-grain
pipeline architecture.

V. RESULTS

Main performance metrics for packet classifiers are,
namely, (a) resource consumption, (b) speed, and (c) updating
capabilities. Metric (a), in turn, can be divided in (a1) registers,
(a2) combinational logic (LUTs), and (a3) memory blocks
(i.e., SRAM). Metric (a) will be analyzed in detail in the first
subsection, while it is checked along with (b) on real FPGA
implementation in the second one. Even if updating capabili-
ties are already implemented in our aggregation architecture,
analysis of metric (c) also requires complete implementation
of preprocessing at 1D stage. Such algorithms are common
to all REG and XPROD schemes, and at the time of writing
are added to our platform for complete evaluation of updating
capabilities. As we were intentionally careful in preserving
1rule/1bit mapping, however, moderate updating complexity
(i.e., similar to that of BV) is to expect.

A. Performance analysis

For sake of clarity, we must narrow our performance
analysis to a representative trade-off configuration. Our first,
1-d 1-b pipeline, on the one hand, has poor scalability as
discussed so it is not further analyzed. On the opposite end,
pure-systolic architectures demonstrated modest returns for
our medium-sized test cases on FPGAs, even if they should
be the best option for larger cases. We will then focus our
present analysis on semi-systolic architectures whithout loss
of generality.

In order to evaluate gains as aggregation granularity varies,
we first concentrate on aggregation architecture and compare
its resource consumption for 1-b, 2-b, 3-b, and 4-b aggregation
granularities. Both LUT and register consumption vary with
changing granularity. LUT consumption, however, is not sim-
ple to estimate for coarse granularities, since synthesis tools
would optimize LUT usage. We thus evaluate register con-
sumption at this subsection, while in the following subsection
we check that register estimations are correct and that LUT
consumption is not a limitation. In following analysis, we
will refer to our proposal as Distributed Crossproduct of Field
Values (DCFV) as opposed to DCFL which is based on labels.

As it can be checked in Fig. 4, the 2-d 1-b semi-systolic
implementation consumes

∑vA
i=1 i+vB+vAvB+vB

∑vA
i=1 i+

vBvC + vC + vAvB registers, while the 2-d 2-b semi-systolic
version of Fig. 5(a) reduces it to

∑vA
i=1 i + vB + d vA2 evB +

d vB2 e
∑d vA2 e

i=1 4i+d vB2 evC+vC+4d vA2 ed
vB
2 e registers. Coarser

granularity cases (i.e., 3-b, 4-b, and so on) can be similarly
checked. Consumptions of (from top to bottom) 1-b, 2-b, 3-
b and 4-b granularities are compared in Fig. 6(a) for typical
values vA = vB = 16 (four bottom curves), vA = vB = 32
(four middle curves), vA = vB = 64 (four top curves),
and 0.1 ≤ vC

vAvB
≤ 0.5. For vA = vB = 32, e.g., vC ≤

.5×32×32 = 512 is covered, which represents quite realistic
overlappings. In Fig. 6(b), meanwhile, storage consumption is
evaluated for a mean case vC = 100 with varying vA and vB .
In this case, vA and vB are controlled so that b vAvB

vC
c = 1;

i.e., the cartesian product stays as near to the crossproduct
as possible. As shown, the 2-d 1-b aggregation clearly has
the highest resource consumption in both cases. 3-b and 4-
b aggregation, meanwhile, trades modest resource reduction
for steadily increasing PE complexity. Thus, we chose 2-b
aggregation for further evaluation.

Our second analysis considers resource consumption
against those of typical REG and XPROD approaches, i.e.,
BV and DCFL (namely [6] for the FPGA case). For proper
evaluation, it is essential to target key differences with respect
to each of them. To this end, storage consumed by two generic
bmp mem blocks and one aggregation stage is considered for
each approach. Only memory consumption at bmp mem of
width vC is analyzed for BV, since aggregation implies just vC
parallel 2-input AND gates. For our proposal, meanwhile, two
bmp mem memory blocks of width vA and vB respectively
and registers at systolic array are considered separately. In
order to fairly compare against DCFL, finally, both of its
bmp mem blocks are supposed to have width 5× log2vA and
5× log2vB respectively according to mentioned considerations
of [6], while aggregation memory consumption is added to
them. In the same way as Fig. 6, vA and vB are kept constant
in Fig 7(a) for varying crossproduct vC , while in Fig. 7(b) vC is
constant against controlled-varying cartesian product vA×vB .
Regions defined in 1D, which affect bmp mem addressing
space, are considered rather pessimist 2vA − 1 and 2vB − 1
respectively in all cases.

BV shares with us the use of memories storing bitmaps
for simple bitwise aggregation. It however pays for extremely
simple aggregation by being unable to exploit size differences
between vA, vB and vC as clearly shown in Fig. 7. DCFL, on
the opposite end, exploits optimal log2vA, log2vB and log2vC
size labels at the cost of purely sequential accesses. That is, it is

TABLE I. 1-BIT AGGREGATION, SEMI-SYSTOLIC ARCHITECTURE

vA vB vC Mpps Registers LUTs

8 8 16 717 588 450

8 8 32 735 732 450

16 16 32 545 3352 1314

16 16 64 528 3896 1314

32 32 64 386 21552 4262

TABLE II. 2-BIT AGGREGATION, SEMI-SYSTOLIC ARCHITECTURE

vA vB vC Mpps Registers LUTs

8 8 16 704 254 62

8 8 32 714 356 82

16 16 32 717 1570 282

16 16 64 656 1896 322

32 32 64 493 10442 1202

completely unable to represent more than one unique value per
label. Our architecture, meanwhile, trades moderate additional
resource consumption for single-cycle multimatch operation.
It is also worth to note that, as we do not stick to observation
c) of DCFL, line speed multi-match operation is only bounded
by the considered maximum number vC of valid combinations
of field values, a much more tolerant consideration than the
maximum number of matched field values on which DCFL
bases its efficiency.

B. Performance evaluation on FPGA

In order to check previous analysis, and to explore speed
bounds on modern devices, semi- and pure-systolic, 2-d 1-b
and 2-d 2-b architectures were implemented, simulated and
synthethized on a state-of-the-art Altera Stratix V FPGA.
Available resources for our tests are 370000 LUTs, 740000
registers, and 2100x20 Kbit Static RAM memory blocks.
Implementation results are focused on our new aggregation
stage, since 1D lookup stage is mainly based on Static RAM
and already reported in [8]. In order to fix some bound for vC ,
it was supposed to be at most twice max(vA, vB).

Post place-and-route results are shown in Tables I and II
for 2-d semi-systolic 1-bit and 2-bit granularities respectively.
We effectively confirm that coarser granularity greatly reduces
register consumption to about one half, while additionaly
achieving optimal LUT consumption due to optimized syn-
thesis. Operation speed, meanwhile, keeps well above 310
Mpps (i.e., 100 Gbps @ 40-byte packets) for all considered
configurations. It should be noted that, due to the adopted
architecture, influence of vC on register consumption is mini-
mized, so variation of vC while keeping vA and vB constant
has minimal impact as shown. On the other side, variation of
vA or vB in steps G (2 in this case) strongly affects resource
consumption of the array.

VI. CONCLUSION

In this paper we proposed and discussed a novel multi-
match packet classification architecture which exploits both
rich logic resources as well as RAM memory ones available
in modern FPGAs. To assess its value, we performed analyt-
ical evaluation while comparing with existing results. From
implementation results, our architecture has demonstrated to

 1000

 10000

 100000

 1e+06

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
to

ra
g

e
 [

b
it
s
]

vC / (vA vB)

vA=vB=64
vA=vB=32
vA=vB=16

(a)

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

S
to

ra
g

e
 [

b
it
s
]

vA (vB=ceil(vC/vA))

DCFV-2d1b, vC=100
DCFV-2d2b, vC=100
DCFV-2d3b, vC=100
DCFV-2d4b, vC=100

(b)

Fig. 6. Resource consumption: (a) with varying vC , (b) with varying vA and vB

 10000

 100000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
to

ra
g

e
 [

b
it
s
]

vC / (vA vB)

BV (RAM), vA=32, vB=32
DCFV-2d2b (regs), vA=32, vB=32

DCFL (RAM), vA=32, vB=32
DCFV-2d2b (RAM), vA=32, vB=32

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70 80 90 100

S
to

ra
g

e
 [

b
it
s
]

vA (vB=ceil(vC/vA))

BV (RAM), vC=100
DCFV-2d2b (RAM), vC=100

DCFL (RAM), vC=100
DCFV-2d2b (regs), vC=100

(b)

Fig. 7. Resource consumption of BV vs. DCFV vs. DCFL: (a) with varying vC , (b) with varying vA, vB

be suitable for line speed processing whith balanced resource
consumption. On this basis, we can conclude that our approach
has interesting opportunities for application in modern packet
networks.

It must be mentioned that, even if unique-value bitmap
has reduced width with respect to BV, it still bases on bit
weights. It is as such unable to fit resource consumption to the
number of effectively matched rules as DCFL does, but fits
valid values on each dimension (no matter if matched or not).
As a consequence, unique-value based matched bitmaps can
be moderately sparse (i.e., contain several 0’s) as the second
stage of Fig. 2(c) shows, standing at a midpoint between
BV (Fig. 2(b)) and DCFL. As future work, utilization rate
could be enhanced by (a) allowing for multiple packets/cycle
classification, or (b) adopting hashing techniques.

ACKNOWLEDGMENT

This work was partially funded by the FONCyT-National
Technological University IP-PRH 2007 Posgraduate Grant Pro-
gram, FONCyT PICT 2011-2527 Research Grant, and Altera
Corporation.

REFERENCES

[1] G. Varghese, Network Algorithmics, Morgan Kaufmann, 2005.
[2] T. V. Lakshman and D. Stiliadis, High-speed policy-based packet for-

warding using efficient multi-dimensional range matching, in ACM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication SIGCOMM ’98, pp. 203-214, 1998.

[3] P. Gupta and N. McKeown, Packet classification on multiple fields,
in ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication SIGCOMM ’99, pp. 147-160,
1999.

[4] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, Fast and scalable
layer four switching, in ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication SIGCOMM
’98, pp. 191-202, 1998.

[5] D. E. Taylor and J. S. Turner, Scalable packet classification using
distributed crossproducting of field labels, in IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies IN-
FOCOM 2005, vol.1, pp. 269-280, 2005.

[6] G. S. Jedhe, A. Ramamoorthy, and K. Varghese, A scalable high
throughput firewall in FPGA, in 16th International Symposium on Field-
Programmable Custom Computing Machines FCCM ’08 , pp. 43-52,
2008.

[7] L. Sun, H. Le, and V. K. Prasanna, Optimizing Decomposition-Based
Packet Classification Implementation on FPGAs, in International Con-
ference on Reconfigurable Computing and FPGAs ReConFig 2011, pp.
170-175, 2011.

[8] C. Zerbini and J. M. Finochietto, Performance evaluation of packet
classification on FPGA-based TCAM emulation architectures, in IEEE
Global Telecommunications Conference GLOBECOM 2012, pp. 2790-
2795, 2012.

[9] T. Ganegedara and V. K. Prasanna, StrideBV: Single chip 400G+ packet
classification, in IEEE 13th International Conference on High Perfor-
mance Switching and Routing HPSR 2012, pp. 1-6, 2012.

[10] J. Van Lunteren and T. Engbersen, Fast and scalable packet classifi-
cation, in IEEE Journal on Selected Areas in Communications, vol. 21,
pp. 560-571, 2003.

[11] H. T. Kung, Why systolic architectures?, Computer, vol.15, no.1, pp.
37-46, Jan. 1982.

[12] M. J. Foster and H. T. Kung, The Design of Special-Purpose VLSI
Chips, Computer, vol. 13, no.1, pp. 26-40, Jan. 1980.

