
IP Core for Timed Petri Nets

Orlando Micolini
Laboratorio de Arquitectura

de Computadoras
FCEFyN-UNC

Córdoba, Argentina

omicolini@compuar.com

Julián Nonino
noninojulian@gmail.com

Carlos R. Pisetta
renzopisetta@gmail.com

Abstract—In this article, we present a Timed Petri Nets

Processor which can be directly programmed using vectors and

matrixes of Petri Nets formalism. This processor can leverage the

power of Petri Nets for modeling real-time systems and formally

verify their properties, which prevent programming errors.

The Petri Nets Processor was developed as an IP-core to be

inserted in a Multi-Core system. Therefore, we can model the

system requirements with Petri Nets, formally verifying all its

properties and using the IP-core to implement the system is

possible to ensure that all properties will be met.

Keywords—Multi-Core, Petri Net, Processor.

I. INTRODUCTION

The evolution of the processors is consequence of the
greater integration and composition of different types of
functionalities integrated into a single processor. The
availability of transistors has made possible to integrate several
processor cores on a single chip, which has resulted in the
development of Multi-Core technology [1].

Diminishing returns of Instruction Level Parallelism (ILP)
and the cost of the increase of frequency, mainly due to power
limitations (suggests that a 1% increase in clock speed results
in a power increase of 3%) [2], leads to the use of Multi-Core
processors to improve performance. This increase deficiency
results in lower run times, lower consumption, lower energy
density, lower latency and higher bandwidth inter-core
communications.

Therefore Multi-Core processors are a proposal to obtain
higher performance. This arises as a better performance of each
of those parameters. Furthermore, the heterogeneous Multi-
Core systems have the advantage of employing specialized
cores, each of them designed for specific tasks. That is,
optimized for a particular need. These processors have the
ability to use the available hardware resources when they are
specifically required by the software [3].

In order to increase performance, these systems make use
of multi-threading and/or multi-tasking allowing take
advantage of the Multi-Cores. However, it takes more effort to
design applications because they must provide solution to the
problems of concurrent systems.

That is the reason why with these processors, the parallel
programming is essential for improving the performance in all
segments of software development and even more so in the
segment of real-time systems.

Petri model is suitable to implement, validate and verify a
parallel system with concurrence, At the Computer
Architectures Laboratory of the FCEFyN-UNC a Petri
processor has been developed to directly execute ordinary Petri
Nets. In this article, we present a new Petri Nets Processor
capable to execute Timed Petri Nets and to be programmed
directly with the vectors and matrixes that define the system
and its state.

There are different ways to implement Petri Nets of
software and hardware. Its remarkable that, through our
research, it hasn’t been found works similar to ours. Here we
enumerate the most distinguished ones and the main difference
between them and our work.

 Gary A. Bundell only implements the shoot algorithm
of a transition [4].

 Hideki Murakoshi, Miki Sugiyama, and Guojun Ding
describe a matrix of Petri controller which it is not
programmable [5].

 Sergio C. Brofferio has implemented a controller
without using state equation [6].

 Ramón Piedrafita Moreno and José Luis Villarroel
Salcedo. They programmed a high level software
controller [7].

 Xianwen Fang, Zhicai XU y Zhixiang Yin don’t use the
state equation as a program. They only program with a
high level language [8].

 Another researchers:

o Murakoshi, Hideki [9].

o Wegrzyn, Marek; Wolanski, Pawel; Adamski [10].

o Aybar, Aydın and Iftar, Altuğ [11].

o Murakoshi, Hideki [12].

II. OBJECTIVES

A. Main Objective

The main objective of this work is to design and implement
a Petri Nets Processor capable to execute the Timed Petri Nets
semantics and to be programmed directly from the model’s
state equations.

B. Secondary Objectives

The secondary objectives are:

 Briefly describe Timed Petri Nets in order to implement
a processor capable of execute them.

 Keep executing ordinary Petri Nets with time
parameters on two processor clock cycles.

 Implement the Timed Petri Nets Processor as an IP-
core.

III. PETRI NETS CONSIDERING TIME

In the formalism of Ordinary Petri Nets, the time is not
considered and this results in indeterminism regarding time. It
is not specified when a sensibilized transition will be fired or
even if it will be fired. Neither can be said which transition
from a group of transitions in conflict will be fired.

There are three different interpretations about how the time
should be consider. All of them have its focus on reducing the
indeterminism regarding time in Petri Nets [13]:

 Stochastic Petri Nets: Introduces a stochastic estimation
on the instant of firing of a transition.

 Timed Petri Nets: Introduces a time condition, which
specifies the duration of the transition.

 Time Petri Nets: Introduces temporary dimensions
between which the transition should be fired.

µ τ [a,b]

A) B) C)

Figure 1 Different ways to introduce time in Petri Nets

The temporal parameters associated with transitions can be
interpreted in these three different ways1:

1. Generalized Stochastic Petri Nets (GSPNs) [14]have
two different types of transitions: immediate transitions
and timed transitions. When a transition 𝑡 is sensitized,
its firing could be: a) with a duration equal to zero if the
transition 𝑡 is immediate. b) after a lapse of a random
time. This random time is expressed by an exponential
distribution. The A Net from the figure 1 graphically
represents a stochastic timed transition where its
probability to be fired is represented by µ.

2. Timed Petri Nets have two different types of transitions:
immediate transitions and timed transitions. When a
transition t is sensitized, its firing could be: a) with a
duration equal to zero if the transition t is immediate. b)

1• 𝑡 is the set of places that are inputs to a transition, mathematically defined

as: • 𝑡 = {𝑝 ∈ 𝑃: (𝑝, 𝑡) ∈ 𝐹}
𝑡 • is the set of positions that are outputs of a transition, mathematically

defined as: 𝑡 • = {𝑝 ∈ 𝑃: (𝑡, 𝑝) ∈ 𝐹}
𝐹 is the set of arcs, input and output to the transitions

with immediate removal of tokens from set •t but
placing the tokens in the 𝑡 • only after time 𝜏 has
elapsed. Meanwhile, the transition cannot be sensitized.
The B Net from the figure 1 graphically represents a
timed transition with a delay equal to τ.

3. Timed Petri Nets have two different types of transitions:
immediate transitions and time transitions. When a
transition 𝑡 is sensitized, its firing could be: a) with a
duration equal to zero if the transition 𝑡 is immediate. b)
if it is a time transition, at the time it is sensitized, a
timer starts. The transition can only be fired when the
timer value is between the limits of the interval [a, b].
Otherwise, the transition cannot be fired. Once the firing
was performed, the timer is restarted. The C Net from
the figure 1 graphically represents a time transition with
an associated interval equal to [a, b].

Should be noted that all the firings are performed in two
steps: a) the removal of the tokens from the set • 𝑡. This is an
atomic action and the amount of tokens removed from each
place is equal to the weight of the arcs joining each place in •t
with the transition 𝑡. b) The atomic action of placing in each
place of set 𝑡 • the amount of tokens indicated by the weight of
the arcs joining each place of t• with the transition 𝑡.

IV. TIMED PETRI NETS

In this nets, each timed transition has an associated
parameter 𝜏 which represents the duration of the transition. In
order to standardize the mathematical definition we will call
immediate those transitions where τ is zero.

A. Mathematical Definition

A Marked Timed Petri Net [13], is mathematically defined
as a8-tuple as follows:

{𝑃, 𝑇, 𝐼+, 𝐼−, 𝐻, 𝐶, 𝑚0 , 𝛤}

Where the terms {P, T, I+, I-, H, C, m0} represent a marked
Petri Net with inhibitors arcs and bounded places. 𝛤 is a vector
composed of the values of duration 𝜏 associated to each
transition.

The meaning of each term of the tuple is:

P: is a non-empty finite set of places

T: is a non-empty finite set of transitions, 𝑃 ∩ 𝑇 = ∅.

I+, I- : are the positive and negative incidence matrixes

𝑃𝑥𝑇 → 𝑍

H: is the inhibitors arcs matrix.

𝑃𝑥𝑇 → {0,1}

C: is a vector containing the values that represent the maximum
amount of tokens that each place of the net can hold.

𝐶 → 𝑁

𝜞: is the set of static intervals associated with each transition

𝑇 → ℚ+ × (ℚ+ ∪ ∞)

For each transition𝑡 the associated value 𝑡𝑖𝑚𝑒𝑟𝑡 is:

𝛤 (𝑡) = 𝜏𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ 𝑇 𝑎𝑛𝑑 𝛤 → ℚ
+

𝑡𝑖𝑚𝑒𝑟𝑡 represents the time elapsed since the firing of the
transition start and its value is zero at any other moment. 𝜏𝑡 is
the duration of the transition. For that reasons, the following
conditions must be met:

0 ≤ 𝑡𝑖𝑚𝑒𝑟𝑡 ≤ 𝜏𝑡.

0 ≤ 𝜏𝑡 < ∞

m0: is the net initial marking and must fulfill that: Γ=0.

𝑃 → 𝑁

B. States of a Timed Petri Net

In these Petri Nets, the net state is defined by the marking
vector (𝑚𝑖) and a timer vector that indicates the timestamp of
each transition. Therefore the net state is:

S= (mi,𝑡𝑖𝑚𝑒𝑟)

C. Sensitization of the Transitions and Firing Rules

When we refer to transitions, we have to establish the
difference between an enabled or sensitized transition, a not
enabled or sensitized transition and the firing of a transition.

In a Marked Petri Net whose current mark is 𝒎𝒌, we say

that transition 𝑡𝑗 is enabled or sensitized if and only if 𝑡𝑖𝑚𝑒𝑟𝑡 =
0 and the amount of tokens in all places 𝑝𝑖 belonging to these

• 𝑡𝑗 is at least equal to the weight of the arc that connects them

with the transition 𝒕𝒋 (𝑤(𝑝𝑖, 𝑡𝑗)). Mathematically:

𝑝𝑖 ∈ • 𝑡𝑖, 𝑚(𝑝𝑗) ≥ 𝑤(𝑝𝑖 , 𝑡𝑗) ∧ 𝑡𝑖𝑚𝑒𝑟𝑡𝑗 = 0

In summary, every place connected to the transition 𝑡𝑗 has

at least the number of tokens indicated by the weight of the arc
and there is no firing in progress for that transition.

Sensitized transitions can be fired and every time the firing
of a transition is completed it generates a new marking for the
Petri Net. This means that the net changes its state.

The equation to calculate the new state or new marking

reached by the firing of 𝑡𝑗 is 𝜕 (𝑚𝑘 , 𝑡𝑗), and it is defined as:

𝜕 (𝑚𝑘 , 𝑡𝑗) =

{

𝑚𝑘+1(𝑝𝑖) = 𝑚𝑘(𝑝𝑖) − 𝑤𝑖𝑗 , ∀ 𝑝𝑖 ∈ • 𝑡𝑗

𝑡𝑖𝑚𝑒𝑟𝑡𝑗 𝑠𝑡𝑎𝑟𝑡 ;

𝑚𝑘+1(𝑝𝑖) = 𝑚𝑘(𝑝𝑖) + 𝑤𝑗𝑖 , ∀ 𝑝𝑖 ∈ 𝑡𝑗 • ∧

 𝑡𝑖𝑚𝑒𝑟𝑡𝑗 = 0; 𝑡𝑖𝑚𝑒𝑟 = 𝜏𝑗

𝑚𝑘+1(𝑝𝑖) = 𝑚𝑘(𝑝𝑖); 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡
 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒𝑠;

𝑡𝑖𝑚𝑒𝑟𝑡𝑗 is incremented in every clock cycle after the firing

of the transition has started.

D. Interpretation of the firing of transitions in the system

The Figure 2 represents a reactive system that responds to
events, which come from the environment, in other words the

system interacts with the environment. Those events are
directed to the Time Petri Nets Processor.

The responsibility of the processor is to arrange events
according to the system constraints. These constraints are
modeled by the Timed Petri Net which is used to program the
processor. On the other hand, Multi-Core system threads also
generate events (to request resources, to synchronize) that are
directed to the processor to be sorted according to system
constraints.

Module 1 from the Figure 2 receives unsorted events from
the environment and from the system itself. After sorting them,
the Timed Petri Nets Processor transmits the result to the
threads execution cores (module 2) of the system and the
proper actions are taken [15].

Environment Event

System

Timed Petri
Nets

processor

Cores running
Threads

Sorted Events to Threads

Thread's Events to event Controller

1 2

Figure 2 Reactive systems

In our system the fulfillment of program conditions is
associated to sensitized transitions, the resolution of a shot
represents the fulfillment of those restrictions and if we
associate the request for verification of the conditions to a shot
request, the resolution of a shot communicates that conditions
have been met.

Definition: conditions for firing a transition from Timed
Petri Process:

1. The transition must meet the sensitization conditions of
section IV.C

2. The shot must be explicitly communicated by the
processes or implicitly recorded in the automatic shots
module.

3. Since it is possible that multiple transitions
simultaneously satisfy the conditions described in
paragraphs 1 and 2, the Timed Petri Nets Processor will
execute first the firing with higher priority.

Figure 3 show us how the Timed Petri Nets Processor is
connected in a Multi-Core system.

In case that the firing of the transition cannot be resolve, it
is queued in the input queue, as shown in Figure 3, until the
conditions of the system allows its resolution. The solution of
the firing is notified to threads through the system bus, using
the output queue. The threads of the system will execute the
proper actions as indicated by the firings that have been
resolved, since the resolution of the firings depends on the

Time Petri Nets Processor state, which itself represents the
state of the system.

Core n

Timed Petri
Nets

Processor

Input
queue

Output
queue

System bus

Multi-Core Processor

Core 2Core 1

Figure 3 Multi-Core with Timed Petri Nets Processor

The explicit shots require an external event, if this event
does not occur the system must contemplate it in the network
design. On the other hand the implicit shots automatically
generate events due to the fulfillment of the transition
conditions. In both cases it is necessary to take into account the
priorities, so a shot can be delayed for not being the one with
the highest priority. In both cases, the non-fulfillment of the
times, deadlock the system, for which the active system signal
is tested. This signal is included for debugging and / or to
recover the system from a deadlock.

V. TIMED PETRI NETS PROCESSOR ARCHITECTURE AND

OPERATION

The processor executes the state equation solving only one
firing of a transition at a time, this way it can solve all cases of
firings, the simple ones (single firings) and the multiple firings,
performing as a single-firing sequence, as a result, the
hardware is simpler.

The resolution of firings is requested by the threads running
on the cores through the system bus, as emerging requests that
system is running. These firing requests are received by the
Timed Petri processor and stored in the input queue. Each
transition has a FIFO queue, the output of each queue is a bit
the composition of all outputs, which are all shots, form a word
the output of this queue size is a word equal to the number of
transitions. This word has ones in the positions corresponding
to transitions with firings requested. The order of the bit in the
word equals the number of transition over which the firing is
requested. The bits that correspond to the transitions which
have no firing request are zero.

The output queue has a similar structure, but its function is
to communicate to the threads those firings that have been
resolved.

The data I/O module manages the access of the cores to the
matrixes and vectors that program the system. The module
manages the access of the cores to the matrixes and vectors that
program the system.

The matrixes and vectors described in the equation of state
are the system program. This allows us to program the
processor directly from the Timed Petri Net.

M
ul

ti
-C

o
re

 s
ys

te
m

 b
us

Output
queue

Input
queue

I/O Data

Matrix I+

Matrix I-

Matrix H

Bound of
place

Automatic
transition

Vector Γ

Vector
Timer

Calculation
of state

equation
module

Marking

Data
Structures

Transition
state

Calculated
next state

matrix

sensitized
state

Active net
signal

Timed Petri Net Processor

Priority
matrix

Interrupt
Module

Figure 4 Timed Petri Nets Processor

Here we have added the inhibitor arcs matrix and the vector
indicating the maximum number of tokens in the places. This
terms are not present in the state equations shown in this work
but you can consult work [16].

The module in charge of solving the state equation of the
Petri has the following responsibilities:

1. Calculating the new state that would result from each
transition firing only once, thereby generating a
number of vectors calculated states equal to the
number of transitions. Then, these vectors are stored.
This is performed by subtracting the current state
parallel to each column of 𝐼− and storing all resulting
vectors, which will be evaluated to determine if the
new state that each transition would produce is valid.
This operation is performed whenever you change the
timed Petri Nets Processor status (current marking
vector).

2. Determine which transition is sensitized. To do this,
take all vectors calculated in step 1 and verify that
there is no place to have a negative marking and
neither exceeding the limit2 of tokens it can hold.

3. From the group of sensitized transitions determined at
step 2 and its firing has been requested we select the
one with higher priority. This transition will be used

2 It is noted that this is a weak bound, since the marks in the squares are

incremented in step 4 and the limit is checked in step 2. This simplification

facilitates hardware implementation.

to determine the new state of the net. This update of
the marking vector will be perform by replacing of the
current vector with the one calculated in step 1
corresponding to the selected transition. At that
moment, in Timer Module, starts the timer
corresponding to the transition fired.

4. Compare each component of the 𝛤 vector with the
one in Timer vector and verify that it meets the
following condition:

Vector 𝛤𝑡 ≤ Vector Timer𝑡

5. The fulfillment of this condition means that the
transition 𝑡 has reached the delay time required. Then,
the transition of higher priority than meets the above
condition is chosen to update the marking vector. This
means, add to the current marking vector the column
of the matrix 𝐼+ corresponding to the transition t. At
the same time the position t of the 𝑇𝑖𝑚𝑒𝑟 vector is set
to zero (𝑇𝑖𝑚𝑒𝑟𝑡 = 0).

6. Execute the steps 1, 2, 3 and 4 as a continuous cycle.

The system also has a unit that detects when no transition is
sensitized and the 𝑇𝑖𝑚𝑒𝑟 vector is zero. When this happens,
the system generates an interruption notifying that the system
has finished its execution or is deadlocked. This feature is very
useful to verify the operation of the design and implementation
of the system.

VI. PERFORMANCE ANALYSIS

System implementation has been performed on a Atlys ™
Spartan-6 Digilent platform [17], cores used are the
MicroBlaze v8.40 [18] running an XilKernel v5.01a operating
system. Interconnected with Timed Petri Processor by AXI bus
[19].

To verify the correct operation and analyze the IP Core
synchronization times, measurements were made for different
numbers of iterations and number of threads trying to access a
shared variable in mutual exclusion. Then we compared the
Petri Processor with an implementation using semaphores, both
solving the same problem. The choice of this second
synchronization method is based on that they are the lightest
mechanism to perform these tasks.

Figure 5 Synchronization Speedup per iteration

From these measurements, Speedup was calculated. The
results are shown in Figure 5, where can be observed that for all
cases, the processor is on average between 15% and 30% faster
than use of semaphores to solve the trouble of synchronizing
multiple threads that want to accesses a shared resource and
even show peaks up to 70%.

 This paper establishes if could be obtain performance
improvements in synchronize with respect to semaphores and
compare the resources used by the Petri Processor with others
of the same kind.

Taking into account that the processing times are composed
by:

 Runtime: These correspond to the execution of
sequential operations.

 Waiting time: own of the algorithm, to synchronize, to
avoid race conditions, etc.

 Times to determine synchronization, race conditions,
etc.

Developing a Petri processor seeks to reduce this last
timeslot, which rely exclusively on Petri processor's ability to
perform this task (such as semaphores depend on OS
implementation). With incorporating temporal semantics, the
processors can check on execute conditions compliance own of
the algorithm. Currently this work is do with soft or hard timers
own of the microcontroller or outside. On the other hand the
execution times depend on the other processors of the Multi-
Core system for which we do not consider it in the analysis. To
evaluate the synchronization ability of our processor, the
execution times and waiting times must be zero. The result will
be compared to the time that semaphores consume to perform
the same synchronization task, which is done in the
performance analysis section.

As observed in Figure 6, the processor needs only one half-
clock cycle since the counter reaches the value τ until a shot is
placed in the output queue. The delay introduced is
insignificant in relation to the time takes a 𝛿𝑡 of one clock
cycle.

Figure 6 Running on hardware

VII. IP CORE GROWTH

The processor's growth was analyzed in function of the

parameters that it has. For this purpose, processors of 8x8,

16x16 and 32x32 (places x transitions) were generated, with

capacity of 7 bits by place and elements of time of 48 bits. The

results are plotted in Figure 7.

1,35

1,73 1,74

1,10
1,24 1,241,16 1,26

1,26

0,0

0,5

1,0

1,5

2,0

10 1000 10000

Sp
ee

d
 u

p

2 Writers

4 Writers

5 Writers

Figure 7 IP Core Growth

Is observed that the growth of IP Core is not something to
ignore, since the number of elements used grows quickly with
the product of places and transitions.

VIII. CONCLUSION AND CONTRIBUTIONS

In this paper, is developed a Timed Petri Processor, which
decouples the concurrency from sequential processing, it has
the following particularities:

 Development time can be reduced, since the system is
verified in analysis and design stages

 On tasks, where measurements have been done, the
processor allows synchronization of threads, with
improvements up to 70%.

 There is a direct relationship between the graph and the
processor program, since this is programmed with the
matrixes and vectors of the state equation.

 Are admitted multiple shots simultaneously in the same
transition.

 Allows priorities programming; since the shots are
solved in parallel and are selected according to
priorities module.

 Decides if the shot can be executed or not in 2 clock
cycles.

 The system programming is easier to do, since the
processes are decoupled from the concurrency.

 This processor can be programmed at run time, thus it

is possible to decrease the size of the matrix in

hardware by using spatial and temporal locality.
The difficulty of this implementation is because of the

growth of the resources needed by the increase of places and
transitions. It implies that is difficult to implement a system for
dimensions greater than 32x32 in ZedBoard, to mitigate this

difficulty new designs have been proposed and are being
worked on, these are: Petri Net Processor with pipeline
architecture and support for Hierarchical Petri Nets.

REFERENCES

[1] J. L. Hennessy, Computer Architecture A Quantitative Approach, Denise

E. M. Penrose, 2007.

[2] M. Domeika, Software Development for Embedded Multi-core Systems,

0 Corporate Drive, Suite 400, Burlington, MA 01803, USA: Linacre

House, Jordan Hill, Oxford OX2 8DP, UK., 2008.

[3] S. S. B. Sundararajan Sriram, EMBEDDED MULTIPROCESSORS,

Scheduling and Synchronization, Boca Raton, 2009.

[4] G. A. Bundell, «An FPGA Implementation of the Petri net Firing

Algorithm,» Department of Electrical and Electronic Engineering

Information Systems Engineering Research Group, The University of

Western Australia, 1997.

[5] H. Murakoshi y M. a. D. G. Sugiyama, «A High Speed Programmable

Controller Based on Petrinet,» Faculty of Engineering Yokohama

National University, Japan, 1966.

[6] S. Brofferio, «A Petri Net Control Unit for High-speed Modular Signal

Processors,» IEEE Transactions on Communications, 1987.

[7] R. Piedrafita Moreno y J. L. Villarroel Salcedo, «Adaptive Petri Nets

Implementation. The Execution Time Controller,» de Workshop on
Discrete Event Systems, Göteborg, Sweden, 2008.

[8] X. Fang y Z. a. Y. Z. Xu, A Study about the Mapping of Process-

Processor based on Petri Nets, Anhui University of Science and

Technology, 2006.

[9] H. Murakoshi, «Memory Reduction of Fire Unit for Petri Net Controlled

Multiprocessor,» IEEE, 1991.

[10] M. Wegrzyn, P. Wolanski y M. a. M. J. L. Adamski, «Coloured Petri Net

Model of Application Specific Logic Controller Programs,» de ISIE,

Portugal, 1997.

[11] A. Aybar y A. Iftar, «Deadlock Avoidance Controller Design for Timed

Petri Nets Using Stretching,» IEEE Systems Journal, vol. 2, nº 2, pp.

178-189, 2008.

[12] H. Murakoshi, «Hardware Architecture for Hierarchical Control of Large

Petri Net,» 1993.

[13] G. Izquierdo, Modelado e implementación de sistemas de tiempo real

mediante redes de petri con tiempo, Zaragoza, 1999.

[14] F. Bause y P. Kritzinger, Stochastic Petri Nets: An Introduction to the

Theory, Vieweg, 2002.

[15] J. L. Peterson, Petri Nets, ACM Computing Surveys: 223-252, 1997.

[16] O. Micolini, M. Pereyra, N. A. Gallia y M. A. Alasia, «Procesador de

Petri para la Sincronización de Sistemas Multi-Core Homogéneos,» de

CASE 2012, Buenos Aires, Argentina, 2012.

[17] Atlys, «Digilent,» 2012. [En línea]. Available: Digilent.com.

[18] Xilinx, «MicroBlaze (UG708),» 2012.

[19] Xilinx, «AXI Interconnect (DS768),» 2012.

0

20000

40000

60000

80000

8 16 32

Flip-Flops Timed Petri

LUTs Timed Petri

