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Abstract. The number of cores in multicore computers has an irre-
versible tendency to increase. Also, computers with multiple sockets to
insert multicore chips are based on a complex hardware design and are
becoming more common. To parallelize the algorithms that run on this
type of computers in order to obtain a higher performance rate, is a goal
that can only be achieved by taking into account hardware architecture.
As hardware evolves, so must software. This leads to old parallelization
strategies quickly become obsolete. This paper presents a series of alter-
natives for parallelization the LU factorization algorithm and its results
intended to running on a multicore system. Simple strategies lead to poor
results. This study presents complex strategies that merge double levels
of parallelism with asynchronous scheduling whose results reach up to
the State-of-the-art in the field and even go further.

1 Introduction

In linear algebra one of the most popular algorithms is the LU matrix factoriza-
tion algorithm, which is used to solve linear equation systems. LU is also used
in the LINPACK benchmark to measure the computation power of a computer
system. The algorithm factorizes a square Matrix M in the form M = PLU ,
where L is a unit lower triangular matrix, U is an upper triangular matrix and
P is a permutation matrix.

Most LAPACK library implementations compute LU by dividing the matrix
in column blocks and then following a series of steps to complete the processing
[1]. Basically, the algorithm performs panel factorization and submatrix update

operations. The xGETRF function is used for panel factorization; for update,
the xLASWP, xSTRSM and xGEMM functions are used, where x = {S|D}
according single or double precision functions are used. Details can be seen in
[2, 3]. xGEMM is the function that performs matrix multiplication and is the
predominant one in the algorithm. This causes LU to have O(n3) order.

The algorithm parallelization follows the outline of LAPACK by dividing
data in column blocks and using the functions cited before, and assigning tasks
to different processors to improve performance. Data dependency between tasks
imposes limits to parallelism, and is the major obstacle to overcome.
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Raw swapping constitutes an important data dependency imposed by nu-
merical accuracy. The swap pattern is defined after the panel factorization, and
must be applied to the rest of the matrix, before any update is performed. De-
spite the fact that swapping involves only data interchange, it generates a strong
limitation for parallelization, because the remaining submatrix must be swapped.

On the other hand, the latest advances in microprocessors have been the
development of chips with multiple cores; therefore, the existence of computers
with a single core is becoming less frequent. This fact changes the programming
paradigm by imposing the development of parallel programs in order to obtain
the maximum possible performance of the new processors. In multicore architec-
ture, all processors share the same memory space of the computer and for this
reason this architecture is called “shared memory model”.

Currently, the most common technique for programming parallel algorithms
in a shared-memory computer is OpenMP [4], available in almost avery cur-
rent FORTRAN or C compiler. OpenMP simplifies launching and managing of
parallel threads, synchronization and data sharing.

The cache memory is an important factor in getting good performance in
parallel programming. Unlike the main memory, the cache memory is shared
only by a subset of cores. This generates problems like cache misses and cache
coherency. These problems affect performance when the selection of a set of
processors to run parallel task is not done properly, since the loss of spatial
locality has a negative impact on the result.

Parallel execution of some linear algebra library routines on multicore sys-
tems presents scalability problems. The crucial point that motivates this research
is the decreasing rate of speedup values obtained when increasing the number
of cores. As an example, table 1 shows DGETRF function execution times in a
32-core system using ACML on four AMD 6128 dies of eight cores each and 48
GBytes RAM, running with different numbers of cores. Speedup increases until
a given number of used cores are used, which depends on the matrix size. Above
that limit, the speedup begins to decrease reaching an extreme point when the
use of all available cores yields not positive speedup.

Matrix

Range

12000 18000 24000

Cores Time SpeedUp Gflops Time SpeedUp Gflops Time SpeedUp Gflops

1 160,94 1,00 7,16 536,74 1,00 7,24 1262,76 1,00 7,30
2 88,07 1,83 13,08 406,73 1,32 9,56 781,53 1,62 11,79
4 109,01 1,48 10,57 275,49 1,95 14,11 570,56 2,21 16,15
8 59,29 2,71 19,43 223,60 2,40 17,39 505,13 2,50 18,24
16 120,94 1,33 9,53 207,87 2,58 18,70 357,90 3,53 25,75
32 497,61 0,32 2,31 760,11 0,71 5,11 821,61 1,54 11,22

Table 1: DGTREF function performance, ACML library, 32 cores AMD 6128 proces-
sors, double precision, time in seconds.
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As for the low scalability problems cited before, this study has the purpose
of researching two topics which are supposed to be the cause of the scalability
problems: cache faults in multicore systems and the synchronization points of
the parallel algorithm. The hypothesis is that by executing an adequate data
division and managing task synchronization, speedup can be improved.

1.1 Previous research

In the case of a multicore system with multiple processor sockets, it is obvious
that cache problems will arise when performing parallel processing of a common
data block using more cores (threads) than those physically existent in a single
die. The number of cores contained in a single die sets the theoretical limit for
attaining a reasonable speedup in a single task. The proposed approach is to
run different tasks with different data sets on each socket. This solution follows
the Multiple Instruction, Multiple Data (MIMD) parallel programming style. In
this case, task management becomes more complex because of data dependencies
that should be taken into account.

Tiled algorithms emerge as a solution to the problem of load balancing for
dense linear algebra algorithms on multicore processors [5]. This kind of algo-
rithms have evolved from column block or row block-based algorithms to “tiles“
of data, i.e. small square blocks. Tiled algorithms present, as many other LA-
PACK algorithms, two fundamentals steps: panel factorizations and updates of
trailing submatrix.

PLASMA is a project developed by the University of Tennessee [6, 7] that
aims at optimizing dense linear algebra functions running on multicore archi-
tectures, is based on two main concepts, termed as “tile blocks” and “dynamic
scheduling”. The project is oriented to improving CPU usage, and performs
parallelism based on preexisting BLAS / LAPACK libraries.

By using “tile blocks”, PLASMA evolves from previous column or row block
division to small square blocks which are more efficiently managed by cache
memory and define a fine-grain granularity of tasks, determining a large number
of tasks to improve parallelism. Large numbers of tasks must be managed by a
scheduler that launches tasks “dynamically” -as opposed to fork-join scheduling-
in order to keep many cores processing in parallel.

Two points that are not clear in the PLASMA implementation of LU. First,
small square data blocks are not in line with the requirements of LU algorithm
to swap rows for numerical accuracy [8]. Second, the swap pattern can only be
correctly determined by considering the whole column; thus, tile data blocks
would leave parts of the column without consideration [9].

A scheduling can be considered “dynamic” when the time to launch a task
is defined during runtime according to the evolution of execution. The scheduler
of PLASMA is based on a directed acyclic graph (DAG) of data dependency
which defines an “out of order” task execution flow. Nevertheless, the selection
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criteria to launch tasks has not been explained, particulary when many tasks
are available to run and they are out of the “critical path” of the DAG [8].

This paper presents a series of parallel algorithms that evolve from fork-join
algorithms to double granularity ones, with an asynchronous task scheduler. This
configuration clearly explains the performance improvement, that reach State-
of-the-art PLASMA performance levels, and points to future research aimed at
further performance improvements.

2 LU Factorization Optimizations

With the aim of obtaining better performance in the LU algorithm on a multicore
computer, this research is focused on how to divide data and how to schedule the
tasks determined by the algorithm. LU was chosen because of its strong data
dependency. Each task is one of the four BLAS / LAPACK functions named
before, and it is executed by using the specific function implemented by the
linear algebra library. The primary strategy used to divide data is tile division.

Since the starting point of this research is the loss of scalability associated
with the use of a higher number of processors, the set of processors is divided
in two levels: the first level determines a set of groups that will execute tasks in
parallel, and the second determines the number of cores to be used in parallel
to execute each task. Since all cores must to be used, there are few possible
group/core combinations in a 32 cores computer: 1 x 32, 2 x 16, 4 x 8 and so
on. A key point to determine in the research is the optimal number of cores
to be used for the execution of each task. Internally, each task is executed in
parallel using the parallel version of the library. The parallel implementation of
each function is used as provided by the library and will not be analyzed in this
research.

The computer system used in this work, has 4 AMD Opteron 6128 microchips
with 8 cores each, 64 GB of main memory. The size of the L3 cache of these
processors is 12MB but it is split in two blocks of 6MB which are shared among
4 cores. In order to reduce communication costs between processors, cores that
share the same cache memory are made to work together. The Blas / Lapack
implementation used was ACML 5.1, also from AMD [10].

To take advantage of this hardware cofiguration, computation is distributed
among 8 teams of 4 threads each. These teams are created using OpenMP parallel
pragmas and C language, which defines a first level of parallelism. The second
level is given by the use of the parallel version of ACML routines.

It has already been mentioned that in order to avoid cache misses, threads
should be mapped to processors. This is done by using affinity masks; thus, the
execution has one-to-one correspondence. Additionally, to allow multiple thread
divisions, nested parallelism capability should be set. At the moment of starting
this work, these two functionalities for AMD processors were only available using
the gcc compiler, version 4.7.2 [11].

One of the consequences of Amdahl’s law is that the speedup atained in a
system by the parallelization of one of its components is directly proportional to
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the fraction of time this component is used. Therefore, the optimization efforts
should be focused on those functions that take more computing time. In blocked
LU factorization, the dominant function is matrix multiplication for matrix up-
date at each iteration.

In order to get the best performance for each operation, is necessary to find
the optimal block size for minimizing L3 cache misses. Since the computer used
has has blocks of 6MB of this kind of memory, and the function uses 3 different
matrices, the range of each one should be less than 480 double precision numbers.
This decision is also limited by the fact that small blocks need more iterations to
complete the algorithm, which implies that block size should be the biggest that
fit into L3, namely 480 elements in this case. Table 2 confirms this: a maximum of
103.84 Gflops is reached in matrix multiplication performed in parallel by 8 teams
of 4 cores each, using ACML’s DGEMM function. The theoretical performance
peak of the machine used is 256 Gflops.

Block range 300 400 480 500

Time in secs. 687.30 281.17 266.25 350.32

Gflops. 40.23 98.33 103.84 78.91

Table 2: Matrix multiplication times, ACML DGEMM function, range 24000, 8 tasks,
4 cores each.

In a tiled data division, the data unit is a block of the matrix and the tasks
take this units as their input. Figure 1 shows two different approaches to comput-
ing LU factorization of a matrix. The first one uses square blocks and presents
more parallelization opportunities whereas the second one uses columns and

a)Tile block swap area b)Column block swap area

Fig. 1: Tiled data and tasks division. Differences in the swap area according to data
division are noticeable.
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yields more accurate results. We explain the block algorithm in the first place
because optimizations are more visible; next we will cover the column algorithm.

The block algorithm consists of a serie of iterations that carry out the same
steps for every row. First, the diagonal block will be LU-factorized using the
xGETR2 function, i.e. panel factorization. Next, those blocks that are in the
same row at the right of the diagonal block and the blocks in the same column
under the diagonal will be updated using the xTRSM function. Finally, matrix
multiplications should be performed on the blocks in the remaining inferior right
part of the matrix. The last two functions perform the matrix update.

In this algorithm, every operation of a given step can be parallelized. The
scheduler is static and synchronous, compounding a fork-join style parallel algo-
rithm. Figure 2 shows an execution timeline for this case using static scheduling
with OpenMP pragmas. This graphic shows that there is much time during
which processors are idle because of synchronization barriers at the end of every
steps, which are represented by white areas. On the right side of the figure, a
data column shows the rate of activity of the processors. It is evident the there
is a poor load balance and that the processors have to wait a long time for the
factorization of a diagonal block.

Fig. 2: Static and synchronous scheduling timeline. Range: 4800. BlockSize: 480.

2.1 Dynamic Scheduling

Tiled algorithm is aimed at avoiding delays caused by synchronous tasks execu-
tion by increasing the number of tasks availables for running in parallel and by
running them “out-of-order“. For example, LU factorization of a main diagonal
block can be computed as soon as the matrix multiplication from the previous
iteration is completed. This allows an execution of the algorithm in which tasks
can be performed once their dependencies are satisfied.
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Since the input of this algorithm is the tile data block, numerical accuracy is
disregarded because the swap operation is performed only among the rows within
the tile height. Nevertheless, it is presented in order to compare the results, since
the number of operations is the same as if the whole column where taken into
account to define the swap, which shows the difference between both algorithms.

To implement this algorithm, a task table is used, which contains information
about the function, state, blocks involved and dependencies of each task. This
table is inspected by 8 threads that look for a task that is ready for execution,
guaranteeing that every task will be executed as soon as its dependencies have
been computed and there is an available processor.

The task dependency table has a specific order that defines the priority when
two tasks are enabled to be executed. When the sequence of the tasks prioritiza-
tion follows the static parallelization execution flow, the results are very similar
for both schedulers. This is due to the fact that operations of the same iteration
have the same time of execution and therefore, once all matrix multiplication
of an iteration have been computed, there is only one LU factorization whose
dependencies have been completed, and a “bottleneck effect” occurs. Therefore,
task prioritization is very important to obtain performance improvements.

When the execution of tasks prioritize the computation of LU factorization
for diagonal blocks and their dependencies, higher speed up values are obtained
because processors are constantly solving tasks whose dependencies have been
completed and do not have to wait for other synchronization barriers. These
results are shown in table 3.

DGETRF 1 Thread Static Sched Dynamic Sched

Matrix

Range

Time Speed
Up

Gflops Time Speed
Up

Gflops Time Speed
Up

Gflops

12000 160.94 1.00 7.16 36.47 0.88 31.59 15.13 2.11 76.13
18000 536.74 1.00 7.24 115.58 1.39 33.64 6.92 3.43 82.86
24000 1262.761.00 7.30 302.99 6.66 30.42 120.00 16.81 76.80

Table 3: Static and Dynamic performance for block computation of LU factorization.
Matrix Range: 24000. Double precision. Time in seconds.

2.2 Column based LU Factorization

Although the tiled version of the algorithm produces good speedup through dy-
namic scheduling, the output lacks numerical accuracy. After panel factorization,
matrix rows are pivoted in order to avoid making divisions by small numbers.
In blocked execution, the largest number is searched by using only the rows of
the tile. A more precise algorithm use the entire column, thus guaranteeing that
the maximum number will be used when swapping rows.
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The tasks in this algorithm is shown in fig. 1b). There are two major changes:
first, columns are not updated through the xTRSM function anymore and sec-
ond, xGETRF and xLASWP are applied over the entire column. Using whole
columns to compute row swaps implies more dependencies between tasks and
therefore less parallelization to exploit. Figure 3 shows a tasks dependencies
graph.

When using dynamic scheduling, the algorithm yielded poor speed up values
as compared to those presented in previous section. The decrease in performance
was first attributed to the existence of more synchronization points; but upon
inspection of a particular execution, it was observed that there is a factor that
has a higher impact: growing cache misses.

The block size selected before had been dependent on the matrix multiplica-
tion operation. In this case, LU factorizations take so much time because columns
do not fit in cache L3 anymore. For instance, in a matrix with a range of 12000
and using blocks of 480 elements, the first factorization would be computed us-
ing 12000 x 480 double precision elements, which occupy approximately 44MB,
several times bigger than the available L3 cache memory.

Fig. 3: Tasks dependencies graph of LU algorithm, 3 tile division, columns swaps
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2.3 Double Granularity Algorithm

To solve the problem of high cache misses in the whole column based algorithm,
a different implementation of parallelization is proposed, which has two levels
of granularity in the computation of LU factorization. All operations, except
for the panel factorization task, use the same tile size as before. For the panel
factorization, another granularity is applied when the routine xGETF2 is called.
The LU factorization is calculated appliyng the column-based data partition
with a smaller column width, so as to allow the whole column to fit in the L3
cache, and thus to avoid misses. This algorithm is called ”Double Granularity”
because there are two block sizes: tile blocks, used for matrix updates, and
narrow columns, used for panel factorizations.

The use of “Double Granularity” can be seen graphically in fig. 4. It is as-
sumed that the first row and column matrix blocks have already been computed.
The charts in the first row of the figure show tasks that have been executed with
tile block granularity. The second row of charts shows the steps followed by the
algorithm when executing a panel factorization of chart 1, using the second level
of granularity. In the example, the second column is subdivided in narrower
columns, which determines a sequence of subtaks needed to complete the panel
factorization, following algorithm dependency.

When appliyng these improvements, the execution behaves as shown in the
timeline of fig. 5, where it can be seen that the decrease in execution time at each
LU factorization enables more parallelization in the computing process. Results

Fig. 4: Double Granularity graphic. First row and column matrix are already computed.
Charts 1 and 2 show operations at tile block level. Charts 1a, 1b and 1c show the
subtasks needed to complete panel factorization of chart 1
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of the application of this algorithm to matrices of different size are presented
in table 4. It also shows PLASMA running time, using the same ACML library
version. PLASMA is presented in both static and dynamic versions in order to
make a complete comparison. It is highlighted that the performance attained
by using a double granularity algorithm is similar to or better than the best of
PLASMA, which is the point this research aims at demonstrating.

Fig. 5: Timeline double granularity, 24000 range, 480 block range, 8 groups, 4 cores
each. Effective work is the time dedicated to computing the algorithm.

PLASMA static PLASMA dynamic Double Granularity

Matrix

Range

Cores Time Speed
Up

Gflops Time Speed
Up

Gflops Time Speed
Up

Gflops

12000 1 184.1 1.00 6.26 219.8 1.00 5.24 167.8 1.00 6.86
12000 8 47.2 3.90 24.42 50.0 4.39 23.03 38.1 4.40 30.19
12000 16 21.9 8.42 52.67 21.9 10.04 52.62 21.1 7.95 54.54
12000 32 20.6 8.93 55.87 20.6 10.68 55.98 15.4 10.90 74.85

18000 1 726.5 1.00 5.35 717.7 1.00 5.42 780.1 1.00 4.98
18000 8 186.9 3.89 20.81 187.8 3.82 20.70 128.4 6.08 30.28
18000 16 67.4 10.79 57.72 71.1 10.10 54.69 77.2 10.10 50.33
18000 32 65.7 11.07 59.22 66.6 10.78 58.41 48.6 16.04 79.96

24000 1 1802.2 1.00 5.11 1851.9 1.00 4.98 1860.4 1.00 4.95
24000 8 487.3 3.70 18.91 481.1 3.85 19.16 272.5 6.83 33.82
24000 16 151.6 11.89 60.79 155.2 11.93 59.39 187.1 9.94 49.25
24000 32 114.8 15.69 80.25 127.5 14.52 72.27 116.1 16.02 79.37

Table 4: PLASMA and double granularity times and performance, 32 cores AMD 6128
processors, double precision, time in seconds.
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3 Conclusions and Future Work

In this work, we show the significant impact of good or bad uses of the cache
memory. This can be observed in two different situations. First, adequate as-
signment of tasks to cores that are physically close decreases internal communi-
cation costs. Second, choosing the correct data set size minimizes cache misses.
The compiler plays a major role in providing affinity and nested parallelism, two
functionalities that make these performance improvements feasible.

Nested parallelism is proposed as a way of efficiently using hardware archi-
tecture. Multiple cores over multiple dies imply that the software should use a
double level of task division in order to get the maximum possible performance.

After a certain number of attempts, two important marks have been reached
in performance and scalability. Almost 80 Gflops in a machine with a theoretical
peak of 256, with LU algorithms, is not easy to improve with the tools used.
Speedups values of 10 and 16 using 16 and 32 cores, respectively, show that
algorithm is effective.

It is also remarkable that rows swap produces an impact in overall perfor-
mance. In this algorithm, numerical accuracy imposes not only more data de-
pendency but also increases difficulties in data division, thus bringing about the
need for double granularity, as a way to solve cache memory problems.

Optimized parallel software design must be carried out in accordance with
the hardware architecture on which the software will be used. To reach state-of-
the-art performance, or even to go further is not impossible provided hardware
details are taken into account and data division is properly defined.

A potential problem detected in this research is the complexity posed by
the number of tasks and the dependencies between them, which the parallel
algorithm must manage. As the number of blocks into which data is divided
changes, so do the number and dependencies of tasks, thus making the algorithm
hard to optimize. To overcome this problem, research in modeling algorithms
with colored Petri Nets will be done in the future.

Finally, finding high performance dedicated computers that are configured
with an heterogeneous set of multicore and multigpu devices, is becoming easier.
GPU units are faster than CPU, but their memory capacity is lower. Also, a
scheduler that is able to combine efficiently tasks launched on CPUs with tasks
launched on GPUs is an object of study for future research.
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