
S Y M M E T R I E S I N A U T O M AT E D R E A S O N I N G
alejandro ezequiel orbe

the case of modal logics and satisfiability modulo theories

PhD. Thesis
Facultad de Matemática, Astronomía y Física

Universidad Nacional de Córdoba

Advisor: Carlos Areces

Marzo 2014

Alejandro Ezequiel Orbe: Symmetries in Automated Reasoning, The case of Modal
Logics and Satisfiability Modulo Theories, © Marzo 2014

A Ceci y Nacho.

A mi vieja y mi viejo.

A mis hermanos Ruben, Fernando y Roberto.

A B S T R A C T

The study of symmetries has received much attention during the last years in the
automated reasoning community, especially in propositional satisfiability solving
(SAT solving), as they can help in solving many hard problems. In automated rea-
soning, the presence of symmetries in a problem’s search space may increase the
difficulty of finding a solution by forcing a search algorithm to explore symmetric
subspaces that do not contain solutions. Intuitively, if a problem has symmetries
and we are able to identify them, we might use them to reduce the difficulty of rea-
soning by directing a search algorithm to look for solutions only in non-symmetric
parts of the search space.

In this thesis we investigate symmetries for modal logics and Satisfiability Mod-
ulo Theories (SMT).

For modal logics, we develop the theoretical framework for the study of sym-
metries in modal logics by generalizing the notion of symmetries of propositional
formulas in conjunctive normal form to modal formulas. We prove two key re-
sults for the basic modal logic: that symmetries of a basic modal formula partition
the model space into equivalence classes such that each equivalence class contains
only models or only non-models, and that symmetries can be used as an inference
mechanism, and therefore, they can be used to strengthen existing reasoning mech-
anisms. Then we extend these results to a broad range of modal logics using the
framework of coinductive modal models and introduce a more flexible notion of
symmetry, called layered symmetry, for those modal logics that have the tree model
property.

We then present two graph-based symmetry detection algorithms to detect sym-
metries in modal formulas and evaluate them empirically in modal benchmarks.

Finally, we present a modal tableau calculus for the basic modal logic with a
blocking mechanism that takes advantage of symmetry information about the input
formula to restrict the application of the (3) rule. We prove completeness of the
calculus and evaluate it empirically in different modal benchmarks.

For SMT, we focus on the symmetry detection problem. We develop a graph-
based symmetry detection algorithm that is able to detect general symmetries in-
volving uninterpreted symbols. We implement the algorithm and evaluate it em-
pirically on several benchmarks from the SMT-LIB.

v

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

- C. Areces, and E. Orbe. Dealing with Symmetries in Modal Tableaux. In Proceed-
ings of the International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX). Nancy, Francia. 2013.

- C. Areces, D. Deharbe, P. Fontaine, and E. Orbe. SyMT: finding symmetries in
SMT formulas. 11th International Workshop on Satisfiability Modulo Theories
(SMT 2013), Helsinki, Finlandia. 2013

- C. Areces, G. Hoffmann, E. Orbe. Symmetries in Modal Logics. Post-Proceedings
of the Seventh Workshop on Logical and Semantic Frameworks, with Appli-
cations, Rio de Janeiro, Brasil, vol. 113. 2013.

- C. Areces, G. Hoffmann, E. Orbe. Symmetries in Modal Logics: A Coinductive
Approach. Seventh Workshop on Logical and Semantic Frameworks, with Ap-
plications, Rio de Janeiro, Brasil. 2012.

vii

A C K N O W L E D G M E N T S

I would like to thank my advisor, Carlos Areces, for guiding me during the last
three years and for the thousands of advices that he shared with me. I am pretty
sure that guiding me wasn’t an easy task, and required a lot of patience and time
from Carlos. Thanks a lot Carlos.

I will always be in debt with Gabriel Infante-Lopez. Gabriel was the one who
gave me the opportunity to enter the academic world and encouraged me to go for
my Phd. Thanks for the talks, advices and your friendship.

Academy also gave me the chance to get to know some of my dearest friends.
In particular I would like to thank to Martin, Camper and Diego, for the many
“asados” that we have shared and the talks about science and life. I am very con-
fident that we still have a lot of “asados” to eat. I don’t want to forget to mention
Franco, Chun, Guillaume and Raul, thank you guys for helping me through these
five years.

This thesis would have not been possible without the support of my family.
Thanks Vieja and Viejo for everything, for being there whenever I needed, for all
the love that you gave me. Viejo, I know that you must be really proud, wherever
you are. I really miss you. Many thanks to my brothers, Ruben, Fernando y Roberto.
You, as usual, have been a constant source of advice and I just don’t know what
would I do without you.

Finally, I want to thank the loves of my life: Ceci and Nacho. You are the source
of my many smiles, and the ones who had to deal with me when things didn’t go
as expected. All this wouldn’t be possible without you. I love you.

Córdoba, 13/02/2014.

ix

C O N T E N T S

i introduction 1

1 symmetries in automated reasoning 3

1.1 Symmetries in Modal Logics and Satisfiability Modulo Theories 7

2 the basic modal logic 9

2.1 Syntax and Semantics 9

2.2 Expressive power 11

2.2.1 Bisimulations 11

2.2.2 Model Constructions 13

2.3 Modal Logic and First-order Logic 15

2.4 Computational Properties: Decidability and Complexity 18

2.5 Extensions 21

3 symmetries in modal logics 25

3.1 Symmetries in Basic Modal Logic 25

3.2 Beyond Basic Modal Logic 32

3.2.1 Coinductive Modal Models 32

3.2.2 A Generalized Theory of Symmetries 38

3.2.3 Layered Permutations 42

3.3 Summary 46

4 satisfiability modulo theories 47

4.1 Motivation 47

4.2 Background 48

4.2.1 First-order Logic 48

4.2.2 First-order Theories 50

4.3 Lazy SMT 54

4.3.1 SAT Solvers 55

4.3.2 Theory Solvers 56

4.3.3 Integration of a DPLL Engine and T -solvers 57

4.3.4 Combination of Theories 59

4.4 Symmetries in SMT 60

5 empirical testing of decision procedures 63

5.1 Why Empirical Testing? 63

5.2 The Quality of Empirical Testing 63

5.3 Empirical Testing in Modal Logics 64

5.3.1 The Logics Workbench Test Set 65

5.3.2 The 3CNF2m Random Test Set 66

5.3.3 The New_3CNF2m Random Test Set 68

5.3.4 The Modalized Test Set 69

5.3.5 The Random QBF Test Set 70

5.4 Empirical Testing in Satisfiability Modulo Theories 71

5.4.1 The SMT Library 71

xi

xii contents

ii detecting and exploiting symmetries 79

6 symmetry detection 81

6.1 Graph-based Symmetry Detection 81

6.1.1 The Graph Automorphism Problem 81

6.1.2 Reduction Algorithms 87

6.2 Formula-based Symmetry Detection 94

7 symmetry detection for modal logics 97

7.1 Definitions 97

7.2 Detecting Global Symmetries 98

7.3 Detecting Layered Symmetries 103

7.4 Experimental Evaluation 105

7.4.1 Reduction Algorithms for the Basic Modal Logic 106

7.4.2 Implementation 107

7.4.3 Benchmarks 107

7.4.4 Results 109

7.5 Summary 115

8 symmetry detection for satisfiability modulo theories 117

8.1 Definitions 117

8.2 Detecting Symmetries 119

8.3 Experimental Evaluation 122

8.3.1 Implementation 122

8.3.2 Results 123

8.4 Summary 124

9 symmetries in modal tableaux 125

9.1 Labeled Tableaux for the Basic Modal Logic 125

9.2 Symmetry Blocking 129

9.2.1 Completeness 131

9.3 Experimental Evaluation 133

9.3.1 Implementation 134

9.3.2 Results 134

9.4 Summary 137

iii conclusions 139

10 final thoughts and future work 141

10.1 Symmetries in Modal Logics 141

10.2 Symmetries in Satisfiability Modulo Theories 143

iv appendix 145

a group theory 147

a.1 Groups 147

a.2 Subgroups 148

a.3 Group Generators 148

a.4 Permutation Groups 149

b from qbf to modal logic 151

b.1 Definitions 151

b.2 Evaluating QBF formulas 151

b.3 Ladner’s Translation 152

contents xiii

b.4 Collapse Translations 154

bibliography 157

L I S T O F F I G U R E S

Figure 2.1 ModelM = 〈W, R, V〉. 11

Figure 2.2 Bisimulations between models. 12

Figure 2.3 Unravelling of modelM. 14

Figure 2.4 Disjoint union of modelsM and N . 15

Figure 2.5 Generated submodel ofM. 16

Figure 3.1 A Kripke model and its equivalent coinductive model. 33

Figure 3.2 A model and its symmetric model. 41

Figure 3.3 Induced layering on a model and a formula. 43

Figure 4.1 Schema of a conflict-driven DPLL procedure [Sebastiani, 2007]. 55

Figure 4.2 Basic architectural schema of a lazy Satisfiability Modulo
Theories (SMT) procedure [Sebastiani, 2007]. 57

Figure 4.3 Offline integration schema [Sebastiani, 2007]. 58

Figure 4.4 Online integration schema [Sebastiani, 2007]. 59

Figure 4.5 Some SMT solvers and the pigeonhole problem [Déharbe et
al., 2011]. 61

Figure 5.1 Example plots for a test set [Patel-Schneider and Sebastiani,
2003a]. 67

Figure 5.2 Half-dome shape due to trivial unsatisfiability [Patel-Schneider
and Sebastiani, 2003a]. 68

Figure 5.3 Formula in the SMT-LIB language. 72

Figure 5.4 The Core theory declaration. 75

Figure 5.5 The QF_IDL logic declaration. 76

Figure 5.6 A typical SMT-LIB script (eq_diamond2.smt2). 77

Figure 6.1 Graph isomorphism example. 82

Figure 6.2 Graph automorphism example. 82

Figure 6.3 Ordered partition refinement [Sakallah, 2009]. 84

Figure 6.4 Basic flow of the ordered partition refinement procedure
[Sakallah, 2009]. 86

Figure 6.5 Crawford I reduction algorithm example. 89

Figure 6.6 Crawford II reduction algorithm example. 90

Figure 6.7 Boolean consistency violation using the Crawford II reduc-
tion algorithm. 90

Figure 6.8 2xEDGES reduction algorithm example. 91

Figure 6.9 MIN3C reduction algorithm example. 92

Figure 6.10 DAC02 reduction algorithm example. 93

Figure 6.11 Graph representation of a QBF formula. 94

Figure 7.1 Global reduction algorithm example. 99

Figure 7.2 Global reduction algorithm example using indexed modali-
ties. 99

Figure 7.3 Graph using additional vertices to represent E2-edges. 104

Figure 7.4 Graph representation of ϕ using the layered reduction algo-
rithm. 105

xiv

List of Figures xv

Figure 7.5 Output of the sy4ncl tool. 108

Figure 7.6 Graph construction time on Collapse1-translated instances. 113

Figure 7.7 Automorphisms search time on Collapse1-translated instances. 114

Figure 7.8 Graph construction time on Collapse2-translated instances. 114

Figure 7.9 Automorphisms search time on Collapse1-translated instances. 115

Figure 7.10 Percentage of symmetric instances in random formulas us-
ing global detection. 116

Figure 7.11 Percentage of symmetric instances in random formulas us-
ing layered detection. 116

Figure 8.1 Graph representation of f (a, b)∨ f (b, a) (f is commutative). 120

Figure 8.2 Graph representation of f (a, b) ∨ f (b, a) (f is not commuta-
tive). 120

Figure 8.3 Graph representation of ∀x. f (x, a). 121

Figure 9.1 Tableau calculus for propositional logic. 126

Figure 9.2 Tableau for the formula ϕ = ((p ∨ q) ∧ ¬p) ∧ ¬q. 127

Figure 9.3 Tableau for the formula ϕ = ((p∨ q)∧¬p)∧ (¬q∨ q). 127

Figure 9.4 Labeled tableau calculus for the basic modal logic. 128

Figure 9.5 Tableau for the formula ϕ = 2(p ∨ q) ∧ ¬2r ∧ ¬2s. 129

Figure 9.6 Tableau for the formula ϕ = 2(p ∨ q) ∧ ¬2r ∧ ¬2s. 130

Figure 9.7 Performance of HTab vs. HTab+SB on all formulas. 135

Figure 9.8 Performance of HTab vs. HTab+SB: Satisfiable formulas. 136

Figure 9.9 Performance of HTab vs. HTab+SB: Unsatisfiable formulas. 137

Figure B.1 Quantifier tree for ∀p∃q(p↔ ¬q). 152

L I S T O F TA B L E S

Table 3.1 Defining conditions for the universal modality and hybrid
operators. 35

Table 5.1 Results for DLP 3.1 on the Logics Workbench (LWB) test set
[Horrocks et al., 2000]. 65

Table 5.2 SMT-LIB Theories. 73

Table 5.3 SMT-LIB Logics. 74

Table 5.4 SMT-LIB Commands. 76

Table 6.1 Reduction algorithms comparison. 93

Table 7.1 Symmetries in the LWB_K test set. 109

Table 7.2 Symmetries in the LWB_K test set detailed by problem class. 110

Table 7.3 Symmetries in the QBF-LIB test set. 110

Table 7.4 Symmetries in the QBF-LIB test set translated using the Collapse1
translation. 111

Table 7.5 Symmetries in the QBF-LIB test set translated using the Collapse2
translation. 112

Table 8.1 Symmetries in the SMT-LIB. 124

Table 9.1 Total Times with (HTab+SB) and without (HTab) symmetry
blocking. 134

Table 9.2 Symmetry blocking applications. 135

xvi

Part I

I N T R O D U C T I O N

“Symmetry as wide or as narrow as you may define its meaning, is
one idea by which man through the ages has tried to comprehend and
create order, beauty and perfection.”

Hermann Weyl. Symmetry. 1952

1
S Y M M E T R I E S I N A U T O M AT E D R E A S O N I N G

Symmetry is a familiar notion for us: we recognize it when we see it. The term
symmetry is used in a very broad sense not only as a mathematical notion, but as
something bridging disciplines, cultures, sciences and arts. Since it first uses by the
ancient Greeks the concept of symmetry has been shaped in a long, slow process
(see [Brading and Castellani, 2013; Darvas, 2007; Hon and Goldstein, 2008] for an
historic review on the evolution of the concept of symmetry).

In its most general setting, we can speak about symmetry if “under any kind of
transformation at least one property of the object is left invariant” [Darvas, 2007].
However, it is the group-theoretic definition of symmetry the one that has been
proved most useful, and upon which this thesis rely.

Informally, we can state the group-theoretic definition of symmetry as “invari-
ance under a specified group of transformations” [Brading and Castellani, 2013].
This definition unveils a close connection between the notions of symmetry, equiv-
alence and group. A symmetry group induces a partition, of the elements that are
exchanged, into equivalence classes such that elements exchanged with one an-
other by the symmetry transformations are related by an equivalence relation, thus
forming an equivalence class.

Symmetry has many uses. We can not only study the symmetric properties of
an object (geometric, mathematical, etc.) to understand its behavior, but also derive
specific consequences regarding the object under study based on its symmetry
properties, i. e., using a “symmetry-based argument”.

This type of argument is of common usage in mathematical reasoning. Mathe-
matical proofs sometimes state that a certain assumption can be made “without
loss of generality”. This phrase suggests that although making the assumption at
first sight only proves the theorem in a more restricted case, this does nevertheless
justify the theorem in full generality [Harrison, 2009].

The idea underlying this type of argument is that structurally similar problems
(i. e., symmetrically related problems) must receive correspondingly similar solu-
tions, i. e., that a solution must respect the symmetries of the problem [van Fraassen,
1989].

Therefore, if one can identify the symmetries of a problem, one might use them to
reduce the difficulty of reasoning by analyzing in detail only one of the symmetric
problems (cases) and then generalizing the result to the others. This is exactly what
we try to do when using the symmetries of a problem in automated reasoning.

Many problem classes and, in particular, those arising from real world applica-
tions, display a large number of symmetries. In automated reasoning, the presence
of symmetries in a problem’s search space may increase the difficulty of finding a
solution by forcing a search algorithm to explore symmetric subspaces that do not
contain solutions. If we are able to recognize that such symmetries exist, we can
use them to direct a search algorithm to look for solutions only in non-symmetric
parts of the search space, thus reducing the overall difficulty [Sakallah, 2009].

3

4 symmetries in automated reasoning

Now, what do we mean when we talk about the “symmetries of a problem”
in classical automated reasoning? We can define a symmetry of a problem as a
permutation of its variables (or literals) that preserves its structure (its syntactic
form) and, hence, its set of solutions (its models).

Depending on which aspect of the problem is kept invariant, we classify sym-
metries into semantic or syntactic [Benhamou and Sais, 1992]. Semantic symmetries
are intrinsic properties of the function that are independent of any particular rep-
resentation, i. e., a permutation of variables that does not change the value of the
function under any variable assignment. Syntactic symmetries, on the other hand,
correspond to the specific algebraic representation of the function, i. e., a permuta-
tion of variables (or literals) that does not change the representation. A syntactic
symmetry is also a semantic symmetry, but the converse does not always hold.

Whereas interest in semantic symmetries was primarily motivated by the desire
to optimize the design of logic circuits and to speed up their verification [Sakallah,
2009], interest in syntactic symmetries arose in the context of constraint solving,
specifically Propositional Satisfiability (SAT).

The earliest reference to the potential benefits of using syntactic symmetries in
logical reasoning is attributed to Krishnamurthy [Krishnamurthy, 1985] who intro-
duced the principle of symmetry (or symmetry rule) to strengthen resolution-based
proof systems for propositional logic and showed that, using it, it is possible to
obtain short proofs for certain “tricky mathematical arguments” (e. g., checkboard
puzzles, Ramsey’s theorem and the pigeonhole principle [Urquhart, 1999]).

The intuition underlying the symmetry principle is that in the course of a math-
ematical proof, one often uses an arbitrary element of a set as a representative of
the set, provided the set possesses sufficient symmetry so that the ensuing argu-
ments equally apply to all other elements of the set. In a similar spirit, this principle
allows one to recognize that a tautology remains invariant under certain permuta-
tions of variable names and uses that information to avoid repeated independent
derivations of intermediate formulas that are merely permutational variants of one
another.

Actually [Krishnamurthy, 1985] introduces two inference rules: the global symme-
try rule and the local symmetry rule. Given a set of propositional clauses Γ (i. e., a set
of sets of propositional literals) and a permutation σ that maps literals to literals, if
we derive a clause C from Γ, the global symmetry rule allows us to infer the clause
σ(C) provided that σ is a symmetry of Γ (i. e., σ(Γ) = Γ). On the other hand, the
local symmetry rule allows us to infer σ(C) provided that for every clause A in Γ
used in the derivation of C, σ(A) is also in Γ.

Notice that the difference between the two rules lies in the fact that the former
requires that the permutation maintains invariant the whole set of clauses Γ, while
the latter only requires that the symmetric clauses of clauses used in a derivation
belong to the set of clauses Γ. Thus, the local symmetry rule may be applicable
even in cases where the global symmetry rule is not and, therefore, it is strictly
more powerful than the global symmetry rule [Arai and Urquhart, 2000].

In spite of showing the usefulness of the symmetry rules for some problems [Kr-
ishnamurthy, 1985] presents no algorithm to search for the symmetries of a set of
clauses. Neither does it discuss in detail how the resolution procedures should use
the symmetry rules.

symmetries in automated reasoning 5

The first reference on how to use symmetries in a backtrack search algorithm
is due to [Brown et al., 1989]. In this work, symmetries are used dynamically by
the search algorithm to restrict its search to the equivalence classes induced by the
symmetries of the formula which are assumed to be given.

In [Benhamou and Sais, 1992; Benhamou and Sais, 1994] a symmetry detection
algorithm and search algorithms to exploit symmetries are presented. Symmetry
detection is done directly on the input formula by deriving formula-preserving
variable permutations incrementally (see Chapter 6.2 for more details). Once the
symmetries are detected, the authors show how to use them in two search algo-
rithms: the SLRI [Cubadda, 1988] algorithm (a variant of the SL resolution algo-
rithm [Kowalski and Kuehner, 1972]) and the semantic evaluation [Oxusoff, 1989]
algorithm.

For both algorithms, the key to profit from symmetries during deduction is a
property that establishes that a literal l has a model in a set of clauses S (i. e., there
is a valuation v satisfying S such that v(l) = true) if and only if for every symmetric
literal l′ (i. e., every literal such that σ(l) = l′ for a symmetry σ) there exists a model
v′ of S such v(l′) = true. For example, in the case of SLRI, instead of refuting
each literal separately, using symmetries it is possible to refute symmetric literals
simultaneously, e. g., let C = {l1, l2, . . . , li−1, li, . . . , ln} be a clause, and suppose that
the literals l1, l2, . . . , li−1 have been refuted and that li is the literal we try to refute.
If li is symmetric to one of the previous literals, then it will be directly refuted
by the symmetry property. The more symmetric literals in a clause, the bigger the
cut in the resolution tree that we can make. Similarly, in semantic evaluation if the
algorithm assigns the value true or false to a literal and it generates the empty
clause, then we insert in the model that is being built the opposite of that literal,
together with all the other opposites of its symmetric literals.

In [Crawford, 1992] a different approach to symmetry detection is presented. It
shows that symmetry detection can be polynomially reduced to the colored graph
automorphism detection problem and present a reduction algorithm to create a col-
ored graph from a propositional formula in conjunctive normal form (CNF). Then
the symmetry group (in fact, a subgroup of the symmetry group) of the formula
is detected by detecting the automorphism group of the resulting graph (see Chap-
ter 6.1 for more details). [Crawford, 1992] also shows how to assess the effects of
symmetries on the set of truth assignments by using Polya’s Theorem [Pólya and
Read, 1987] to count the number of equivalence classes in the set of truth assign-
ments under a set of symmetries of a formula. However no practical algorithm for
exploiting symmetries is provided.

Later, in [Crawford et al., 1996], a method for exploiting symmetries is pre-
sented. Instead of modifying the search algorithm to use symmetry information,
the method modifies the problem being solved by adding a symmetry-breaking predi-
cate (SBP) for each symmetry. These predicates are built in such a way that they are
true in exactly one valuation in each of the equivalence classes induced by the sym-
metry group; the resulting formula is equisatisfiable to the original. An ordering
on the set of variables is established and used to construct a lexicographic order on
the set of assignments. Then, the symmetry-predicates are built in such a way that
they are true of only the smallest model (the lex-leader) within each equivalence
class under this ordering. Intuitively, we can think of the valuations as binary num-

6 symmetries in automated reasoning

bers, and the predicates performing a bit-wise comparison between models and
selecting the smaller (as binary numbers) of the two.

Given that, in general, breaking every symmetry in the symmetry group, i. e.,
doing complete symmetry-breaking, can result in a formula exponentially larger than
the original one (because of the size of the symmetry group and the presence of
redundant clauses in the SBPs), the authors propose to break just some of the
symmetries, i. e., to do partial symmetry-breaking by pruning a symmetry tree built
from the symmetries in the symmetry group. This however does not always pre-
vent redundant clauses neither does it ensures that the resulting formula is only
polynomially larger than the original.

In [Aloul et al., 2003b] improvements on the work in [Crawford, 1992; Crawford
et al., 1996] are presented. They present new graph constructions that are able
to detect more symmetries (see Chapter 6.1) than the construction in [Crawford,
1992; Crawford et al., 1996]. They also improve on the symmetry-breaking predicate
generation. Similarly to [Crawford et al., 1996], this work explores partial symmetry-
breaking by building symmetry breaking predicates that do not select only the
smallest valuations to satisfy them. Symmetry-breaking predicates are built in a
per-symmetry basis, only doing so for the irredundant set of generators of the
symmetry group of the formula [Seress, 1997] computed using their symmetry
detection technique. By breaking generator symmetries only, they do not break all
symmetries, but they achieve significant pruning. Symmetry-breaking predicates
are formulated in terms of cycles of a permutation, i. e., the predicates are built
for each individual cycle in a symmetry, instead of the entire set of variables. This
results in smaller SBPs. Later, in [Aloul et al., 2003a; Aloul et al., 2006] a more
systematic and efficient construction of symmetry-breaking predicates is presented.
This construction takes into account the cycle structure of symmetry generators,
which typically involves very few variables, to drastically reduce the size of the
generated SBPs.

A different approach to exploit symmetries is presented in [Sabharwal, 2005]. It
presents a modification to the SAT solver zChaff [Moskewicz et al., 2001] that al-
lows it to branch on a set of symmetric variables rather than on single variables. For
instance, given a set {x1, x2, . . . , xk} of k symmetric variables, a k + 1-way branch
sets x1, . . . , xi to 0 and xi+1, . . . , xk to 1 for each i ∈ [0, k]. This reduces the num-
ber of partial assignments that must potentially be explored from 2k to k + 1. The
identification of symmetric variables is assumed to be available from high-level
descriptions of a problem and provided to the solver as an additional input.

In [Benhamou et al., 2010], a technique that combines symmetry reasoning with
clause learning [Ryan, 2004] in Conflict-Driven Clause Learning SAT solvers [Een
and Sörensson, 2003] is presented. The idea is to augment clause learning by us-
ing the symmetries of the problem to learn the symmetric equivalents of conflict-
induced clauses. Here the focus is not on guiding the search algorithm directly
but instead enriching a complementary process to provide more information to the
search algorithm.

So far, we have provided a brief survey of the most important works on sym-
metries in SAT solving. However much more research has been done on the sub-
ject. Despite their differences, we can group all of them into two different cate-
gories: dynamic symmetry breaking [Brown et al., 1989; Benhamou and Sais, 1992;

1.1 symmetries in modal logics and satisfiability modulo theories 7

Benhamou and Sais, 1994; Sabharwal, 2005] and static symmetry breaking [Crawford,
1992; Crawford et al., 1996; Aloul et al., 2003b; Aloul et al., 2003a; Aloul et al., 2006].

In dynamic symmetry breaking the idea is to use symmetry information to dynami-
cally restrict the search space, while in static symmetry breaking, symmetries are elim-
inated from the problem statement before using a SAT solver, in a preprocessing
step. The former is solver dependent but it can take advantage of symmetries that
emerge during search, while the latter can be used with any solver. Despite their
differences they share the same goal: to identify symmetric branches of the search
space and guide the SAT solver away from symmetric branches already explored.

Symmetries have been also extensively investigated and successfully exploited in
other domains. In Constraint Satisfaction Problem (CSP) (see [Gent et al., 2006] for a
detailed survey) much work has being done, in particular, to provide correct defini-
tions of what exactly are the symmetries of a constraint programming problem [Co-
hen et al., 2005]. In Integer Programming, algorithms have been adapted to exploit
large symmetry groups [Margot, 2002; Margot, 2003]. In Planning, attempts to in-
tegrate symmetry reasoning to a state-of-the-art planner have been done in [Fox
and Long, 1999; Fox and Long, 2002], and it has been pointed out that symme-
try detection during search, and the presence of “almost-symmetries”, is very im-
portant due to the nature of planning problems. There have also been substantial
efforts in Model Checking over some years [Clarke et al., 1996; Ip and Dill, 1996;
Sistla et al., 2000; Bošnački et al., 2002]. These works have tended to assume that
users recognize the symmetry, and they have also been limited to simple cases
of symmetry rather than using the power of computational algebra. In Quanti-
fied Boolean Formulas (QBF), [Audemard et al., 2004] presents a hybrid approach
that handles QBF and symmetry-breaking predicates. In the context of QBF pure-
propositional SBPs cannot be conjunctively added to the original formula, because,
as variables are quantified, one can obtain clauses with all its variables universally
quantified, and consequently the QBF becomes not valid. To avoid such drawback,
the authors proposed to consider the SBP formula as independent from the QBF
one. A hybrid solver is then designed to deal simultaneously with the QBF and the
SBP formulas. They also present a symmetry detection algorithm for QBF formu-
las that extends the graph-based detection algorithms used in SAT solving. A more
practical SBP generation technique for QBF is presented in [Audemard et al., 2007a;
Audemard et al., 2007b].

1.1 symmetries in modal logics and satisfiability modulo theo-
ries

As the keen reader will have noticed, this thesis is about symmetries in modal
logics and Satisfiability Modulo Theories. So a natural question would be: what is
the situation about symmetry research in these domains? Let us begin to answer it.

In the case of modal logics research has been done on how to exploit symmetries
in model checking for the temporal logic LTL [Clarke et al., 1996; Donaldson and
Miller, 2005; Miller et al., 2006; Donaldson, 2007], and temporal-epistemic logic [Co-
hen et al., 2009]. However, to the best of our knowledge, the use of symmetries
in satisfiability and automated theorem proving for modal logics remains largely
unexplored.

8 symmetries in automated reasoning

The situation in SMT is somehow better as there have been attempts to exploit
symmetries in SMT-based model checking [Audemard et al., 2002b] and SMT solv-
ing [Roe, 2006; Déharbe et al., 2011] (see Chapter 4.4 for more details). In particular
in [Déharbe et al., 2011] an algorithm for detecting and breaking symmetries is
presented and implemented in the state-of-the-art SMT solver veriT [Bouton et al.,
2009]. However, the symmetry detection technique is rather heuristic and the sym-
metry breaking technique works for only certain classes of problems.

In this thesis we have two main objectives. First, we aim at providing a com-
plete presentation on how to exploit symmetries in modal logics by providing the
theoretical background to use symmetries, and techniques to detect and use them.

Second, for SMT, we focus on improving the work in [Déharbe et al., 2011], by
developing a general detection technique that is able to detect more symmetries
than the techniques known so far.

2
T H E B A S I C M O D A L L O G I C

In this chapter we introduce the Basic Modal Logic (BML). We start by presenting
its syntax and semantics (Section 2.1). Then we present the concept of bisimulations,
that is key to investigate the expressive power of the logic (Section 2.2), and investi-
gate the relation between basic modal logic and first-order logic by presenting the
standard translation (Section 2.3). Then we turn our attention to the computational
properties of the basic modal logic, by presenting its decidability properties and
its computational complexity (Section 2.4). We finish the chapter by presenting a
number of extensions (Section 2.5).

For a comprehensive treatment and for references to the extensive literature on
the subject we refer the reader to [Blackburn et al., 2001; Blackburn et al., 2006].

2.1 syntax and semantics

The basic modal language is a propositional language extended with sentential op-
erators, i. e., operators that take a sentence to deliver another. We call this operators
modalities or modal operators.

Definition 2.1 (Syntax). Let PROP = {p1, p2, . . .} be a countable infinite set of propo-
sitional variables and MOD = {m, m′′, . . .} a set of modality symbols. We call the pair
S = 〈PROP,MOD〉 a modal signature (or similarity type). The set of basic modal
formulas FORM over the signature S is defined as

FORM ::= p | ¬ϕ | ϕ ∨ ψ | [m]ϕ,

where p ∈ PROP, m ∈ MOD, and ϕ, ψ ∈ FORM. > and ⊥ stand for an arbitrary
tautology and contradiction, respectively. We will also use classical connectives such as
∧,→ taken to be defined in the usual way. For each m ∈ MOD we have a dual operator
〈m〉 (diamond) defined as 〈m〉ϕ = ¬[m]¬ϕ. When MOD is a singleton, i. e., in the mono-
modal case, we simply write 2 and 3 for the box and diamond operators.

The diamond and box operators can be read in several ways, and different read-
ings suggest different semantics and proof systems. For example, the formula 2ϕ

can be read as “necessarily ϕ”, and, under this reading 3ϕ can be read as “it is not
necessarily that not ϕ”, i. e., “it is possibly the case that ϕ”. In the context of epis-
temic logic, where the basic modal language is used to reason about knowledge, 2ϕ

(usually written as Kϕ) is read as “the agent knows that ϕ”. Finally, in provability
logic, 2ϕ is read as “it is provable (in some arithmetical theory) that ϕ”. To make
this readings clearer let us introduce the semantics of the basic modal logic.

We can think of the basic modal logic as a tool for talking about structures or
models. What these structures are depends on the semantic interpretation we are
interested in. In this work we focus on the relational semantics, also known as
Kripke semantics [Kripke, 1959; Kripke, 1963], of modal logics. Under this view,
modal languages let us describe and reason about relational structures (graphs).

9

10 the basic modal logic

Definition 2.2 (Models). A (Kripke) model M is a triple M = 〈W, {Rm}m∈MOD, V〉
such that:

i) W, the domain, is a non empty set. Elements of W are called points, states, worlds,
etc.

ii) Each Rm, an accessibility relation, is a binary relation on W.

iii) V, the valuation, is a function that assigns to each element p ∈ PROP a subset
V(p) ⊆ W. Informally, we think of V(p) as the set of states where the propositional
symbol p is true.

The first two components of M (〈W, {Rm}m∈MOD〉) are called the frame underlying the
model. In the mono-modal case we simply writeM = 〈W, R, V〉.
Remark. So far, we have defined the syntax and models for the multi-modal case,
i. e., for an arbitrary number of modalities. For simplicity sake, in what follows
we restrict ourselves to the mono-modal case, i. e., to the case where MOD is a
singleton and just one relation exists in the model. Nevertheless, the results we
present extend naturally to the multi-modal case.

Let us define the notion of a formula ϕ being satisfied (or true) in a modelM at
point w.

Definition 2.3 (Semantics). LetM = 〈W, R, V〉 be a model and ϕ a modal formula. We
inductively define the notion of ϕ being satisfied (true) inM at point w ∈W as

M, w |= p iff w ∈ V(p) for p ∈ PROP,

M, w |= ¬ϕ iff M, w 6|= ϕ,

M, w |= ϕ ∨ ψ iff M, w |= ϕ orM, w |= ψ,

M, w |= 2ϕ iff M, v |= ϕ, for all v s.t. wRv.

Definition 2.4 (Semantic Consequence). A formula ϕ is a semantic consequence of a
set of formulas Σ if for all modelsM and all points w inM, ifM, w |= Σ thenM, w |= ϕ,
and in such case we write Σ |= ϕ. Instead of writing {ϕ} |= ψ we write ϕ |= ψ.

A formula ϕ is globally satisfied in a model M if it is satisfied at all points in M.
If this is the case we write M |=g ϕ. A formula ϕ is valid if its globally satisfied
in all models. If this is the case we write |= ϕ. A formula is satisfiable in a model
M if there exists a point in M in which ϕ is satisfied and ϕ is satisfiable if there
exists a point in a model at which it is satisfied. These definitions are lifted to sets
of formulas in the obvious way.

Example 2.1. Consider the modelM = 〈W, R, V〉 of Figure 2.1, where W = {w1, w2, w3,
w4, w5}, wiRwj if and only if j = i + 1, V(p) = {w2, w3} and V(q) = {w1, w2, w3, w4,
w5}. In this model we have that M, w1 |= 32p, M, w1 6|= 32p → p, M, w2 |=
3(p ∧ q) andM, w1 |= q ∧3(q ∧3(q ∧3(q ∧3q))).

Definition 2.3 highlights some interesting facts. First, notice the internal character
of the semantic definition of the basic modal logic: modal formulas are evaluated in-
side models at some particular point. A modal formula is like an automaton placed
inside a structure at some point w, and forced to explore the structure by making
transitions to accessible points. Second, we can think of diamond and boxes as
macros that encode quantification over R-accessible states in a variable-free nota-
tion. Third, note that Kripke models can be thought of as directed graphs.

2.2 expressive power 11

{q} {p, q}

w1 w5w4w3w2

{p, q} {q} {q}

Figure 2.1: ModelM = 〈W, R, V〉.

2.2 expressive power

The expressive power of a language is usually measured in terms of the distinctions
it can draw. In modal logics, the basic concept to investigate expressivity is that of
a bisimulation between two models.

2.2.1 Bisimulations

The notion of bisimulation, first formulated for modal languages in [van Benthem,
1977; van Benthem, 1983], states that two models related by a bisimulation are
modally equivalent, i. e., they make the same modal formulas true.

Definition 2.5 (Bisimulation). A bisimulation between models M = 〈W, R, V〉 and
M′ = 〈W ′, R′, V ′〉 is a non-empty relation Z ⊆ W ×W ′ such that whenever wZw′ we
have the following properties:

i) w ∈ V(p) iff w′ ∈ V ′(p), for all p ∈ PROP. [Atomic Harmony]

ii) If wRv then there exists v′ ∈W ′ such that vZv′ and w′R′v′. [Zig]

iii) If w′R′v′ then there exists v ∈W such that vZv′ and wRv. [Zag]

If there is a bisimulation between two modelsM andM′ then we say thatM andM′ are
bisimilar and write M↔M′. Moreover, we say that two states w and w′ are bisimilar
and write w↔w′ if they are related by some bisimulation.

Intuitively, a bisimulation between two models relates points such that both carry
the same atomic information (atomic harmony) and whenever it is possible to make
a transition in one model, it is possible to make a matching transition in the other
(zig and zag).

Example 2.2. Figure 2.2 shows three models:M, N and R with distinguished points w1,
v1 and u1 respectively.

We are interested in bisimulations relating the distinguished points in each model. It is
easy to verify that the relation

Z = {(w1, v1), (w3, v1), (w2, v2), (w4, v2)}

is a bisimulation between models M and N such that w1↔ v1. However, there is no
bisimulation between models N and R such that v1↔ u1: a move from u1 to u3 has no
matching move in N . We cannot move from v1 to v2, because v2 has no successor (is an
endpoint) whereas u3 has it, neither move reflexively from v1 to itself, as one can move from
v1 to an endpoint, which cannot be done in u3.

12 the basic modal logic

w1

w2

w3

w4

v1

v2

u1

u2

u3

u4

M N R

Figure 2.2: Bisimulations between models.

An important consequence of two models being related by a bisimulation is
that they make the same formulas true, or more formally, that modal satisfiability
is invariant under bisimulations. First let us define the notion of two points being
(modally) equivalent.

Definition 2.6 (Modal Equivalence). Let M and M′ be models of the same signature
S , and let w and w′ be states in M and M′ respectively. The S-theory of w is the set
of all S-formulas satisfied at w: {ϕ | M, w |= ϕ}. We say that w and w′ are (modally)
equivalent (notation:w! w′) if they have the same S-theories. The S-theory of the model
M is the set of all S-formulas satisfied by all states inM: {ϕ | M |= ϕ}. ModelsM and
M′ are called (modally) equivalent (notation:M!M′) if their S-theories are identical.

Proposition 2.1 (Bisimulation Invariance Lemma). Let M = 〈W, R, V〉 and M′ =
〈W ′, R′, V ′〉 be models of the same signature S . Then, for every w ∈ W and w′ ∈ W ′,
w↔w′ implies w! w′.

Proof. By induction on ϕ. The case for propositional symbols follows directly by
atomic harmony. The Boolean cases are straightforward from the inductive hypoth-
esis. For formulas of the form 2ϕ we have that M, w |= 2ϕ iff for all v such that
wRv, M, v |= ϕ. Then we have to analyze two cases: a) if there is no v such that
wRv, as w↔w′ there is no v′ such that w′R′v′ andM′, w′ |= 2ϕ trivially; b) if there
is v such that wRv and M, v |= ϕ, then as w↔w′, there exists v′ such that w′R′v′

and v↔ v′. By the inductive hypothesis, M′, v′ |= ϕ and therefore, M′, w′ |= 2ϕ.
The converse direction follows a similar argument.

Proposition 2.1 states that bisimulation implies modal equivalence. But what
about the converse: does modal equivalence imply bisimilarity? In the general case
the answer is no. However, the result holds for image-finite models.

Definition 2.7 (Image-finite Model). A modelM is image-finite if for each state w in
M and each relation R inM the set {v | wRv} is finite.

Proposition 2.2 (Hennessy-Milner Theorem). LetM andM′ be two image-finite mod-
els. Then, for every w ∈W and w′ ∈W ′, w↔w′ if and only if w! w′.

2.2 expressive power 13

Proof. The direction from left to right follows from Proposition 2.1. For the right
to left direction we will prove that the relation ! of modal equivalence is itself
a bisimulation. We define the bisimulation relation Z by wZw′ iff w ! w′. We
now verify that Z is indeed a bisimulation. It is immediate that Z satisfies atomic
harmony. Let us prove by contradiction that the zig condition holds. Assume that
wZw′ and wRv and there is no v′ in M′ such that w′R′v′ and vZv′. Let S′ = {u′ |
w′R′u′}. Now, as w has an R-successor, we have that M, w |= 3>. As wZw′, we
haveM′, w′ |= 3> too, hence S′ is non-empty. Furthermore, asM′ is image-finite,
S′ must be finite too, so we can write it as {u′1, . . . , u′n}. By assumption, for every
u′i ∈ S′ there exists a formula ψi such that M, v |= ψi but M′, u′i 6|= ψi. It follows
that

M, w |= 3(ψ1 ∧ . . . ∧ ψn) andM′, w′ 6|= 3(ψ1 ∧ . . . ∧ ψn),

which contradicts our assumption that wZw′. Hence Z satisfies zig. A similar argu-
ment holds for the zag condition. Therefore Z is a bisimulation.

What Proposition 2.2 tells us is that, on finite models, the expressive power of
the basic modal language matches up exactly with bisimulation invariance.

2.2.2 Model Constructions

Bisimulation is a powerful tool that can be used in a number of ways. In particular
we can use it to build models from other models. In this thesis, we are interested
in three model constructions based on bisimulations: model unravelling, disjoint
unions and generated submodels (see [Blackburn et al., 2001; Blackburn et al., 2006]
for more model constructions).

model unravelling Reasoning about trees is often easier than reasoning
about arbitrary graphs, so it would be of considerable utility to find a way to
represent arbitrary models as trees without losing information in the process.

Model unravelling [Sahlqvist, 1975] is a model construction based on bisimula-
tions that does exactly that: given a model M, it constructs a tree-like model M′

bisimilar to the original modelM. Let us define this construction more formally.

Definition 2.8 (Paths in a model). Given a modelM = 〈W, R, V〉 and a point w0 ∈W,
a (finite) path rooted at w0 is a sequence π = (w0, v1, . . . , vn) such that 0 ≤ n, and there
exists a path w0Rv1 . . . Rvn from w0 to vn in M. For a path π = (w0, v1, . . . , vn) we
define first(π) = w0, last(π) = vn, and length(π) = n. For a path π = (w0, w1, . . . , wn)

and a point v ∈ W such that wnRv, by πv = (w0, w1, . . . , wn, v) we denote the extension
of π by v. We denote the set of all paths rooted at w0 as Π[w0].

Definition 2.9 (Model Unravelling). Given a modelM = 〈W, R, V〉 and a point w0 ∈
W , the unravelling of M around w0 is the model T (M) = 〈Π[w0], R′, V ′〉 where
R′ = {(π, π′) | exists v ∈ W s.t. πv = π′, π 6= π′}, for π, π′ ∈ Π[w0], and π ∈ V ′(p)
if and only if last(π) ∈ V(p).

Notice that model unravelling constructs a tree model by treating paths trough
M as first-class citizens.

14 the basic modal logic

v1

v2

(a)M.

(v1)

(v1, v1)

(v1, v1, v1)

(v1, v2)

(v1, v1, v2)

(v1, v1, v1, v2)
...

(b) T (M).

Figure 2.3: Unravelling of modelM.

Example 2.3. Figure 2.3a shows an arbitrary modelM. Its unravelling around the point
v1 is the infinite comb-like model T (M) of Figure 2.3b.

It is easy to verify that for any model M, M and T (M) are bisimilar, e. g., the
mapping f : (w0, v1, . . . , vn) 7→ vn defines a bisimulation. A direct consequence of
this is the so called tree model property.

Corollary 2.1 (Tree model property). Every satisfiable modal formula in the basic modal
logic is satisfiable in a tree-like model.

disjoint unions The idea underlying disjoint union, is that given a set of mod-
els, we can combine them to construct a bigger model by putting the component
models side by side without any relational link between them. A condition to do so
is that the models need to be disjoint, i. e., their domains must contain no common
elements. If the given models are not mutually disjoint then we first take mutually
disjoint isomorphic copies and then form the disjoint union of the copies.

Definition 2.10 (Disjoint Unions). Given mutually disjoint models Mi = 〈Wi, Ri, Vi〉
(i ∈ I, for I an indexing set), their disjoint union is the structure

⊎Mi = 〈W, R, V〉,
where W =

⋃
i∈I Wi, R =

⋃
i∈I Ri and for all p ∈ PROP, V(p) =

⋃
i∈I Vi(p).

It follows directly from Definition 2.10 that any component model Mi of the
disjoint unionM is bisimilar toM, e. g., just take the identity relation as the bisim-
ulation relation.

Example 2.4. Figures 2.4a and 2.4b show the disjoint modelsM andN . Figure 2.4c shows
their disjoint union M]N . The model M]N gathers together all the information in
the two smaller models unchanged: no links between models are added nor the valuations
modified.

2.3 modal logic and first-order logic 15

v1 v2

(a)M.

w1 w2 w3 w4

(b) N .

v1 v2 w1 w2 w3 w4

(c)M]N .

Figure 2.4: Disjoint union of modelsM and N .

generated submodels Disjoint unions are useful to make bigger models
from smaller ones, generated submodels do the reverse. Generated submodels
enable us to throw points away from a satisfying model without compromising
satisfiability. The intuition behind this is that, in basic modal logic, satisfiability
is only concerned with the set of points reachable from the evaluation point (see
Definition 2.3).

Definition 2.11 (Generated Submodels). LetM = 〈W, R, V〉 andM′ = 〈W ′, R′, V ′〉
be two models: we say that M′ is a submodel of M if W ′ ⊆ W, R′ is the restriction of
R to M′ (R � W ′) and V ′ is the restriction of V to M′ (V � W ′). M′ is a generated
submodel ofM (notationM′�M) ifM′ is a submodel ofM and for all the points w
the following closure condition holds: if w is inM′ and wRv, then v is inM′.

A generated submodel is bisimilar to the model that gave rise to it, e. g., the
identity relation relates the two models in the appropriate way.

Example 2.5. Figure 2.5a shows the model M = 〈Z,<, V〉, i. e., the integers with their
usual order and an arbitrary valuation. Figure 2.5b shows the generated submodelM+ that
we obtain by omitting the negative numbers and restricting the valuation to the numbers
that remain. It is clear that M+ is closed under the accessibility relation and that every
formula ϕ that holds in a point m ofM holds at the same point n inM+ because the only
points that are relevant to the satisfiability of ϕ are those greater than n, and all such points
belong toM+.

2.3 modal logic and first-order logic

So far we have presented the basic modal logic as an isolated formal system, how-
ever, it has a tight relation with first-order logic.

Consider a Kripke model M = 〈W, {Rm}m∈MOD, V〉. It is what model theorist
call a relational structure. It has a domain of quantification (W), a collection of bi-
nary relations over this domain ({Rm}m∈MOD), and a collection of unary relation
as well (V). To talk about a model M = 〈W, {Rm}m∈MOD, V〉 we can make use of
a first-order language with a binary relation symbol Rm for every m ∈ MOD, and

16 the basic modal logic

�3 �1 0 1 2�2 3
.

(a)M.

0 1 2 3
. . .

(b)M+.

Figure 2.5: Generated submodel ofM.

a unary relation symbol P for every p ∈ PROP. Modal logicians have a name for
this language: the first-order correspondence language. It is called the correspondence
language because every basic modal formula (in the language over PROP and MOD)
corresponds to a first-order formula from this language via the standard translation.

Definition 2.12 (Standard Translation). Let x be a first-order variable. The standard
translation STx taking modal formulas to first-order formulas is defined as

STx(p) = P(x)

STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ)

STx([m]ϕ) = ∀y(Rm(x, y)→ STy(ϕ)).

The standard translation maps propositional symbols to unary predicates, com-
mutes with Boolean connectives, and handles boxes and diamonds by explicit first-
order quantification over Rm-accessible points. The variable y used in the clauses
for diamond and boxes is chosen to be any new variable (i. e., one that has not
been used so far in the translation). We remarked earlier that diamonds and boxes
were essentially a simple macro notation encoding quantification over accessible
states; the standard translation expands these macros. Note that STx(ϕ) always
contains exactly one free variable (namely x). This free variable is what allows for
the internal perspective, typical of modal logic: assigning a value to this variable is
analogous to evaluating a modal formula inside a model at certain point.

Example 2.6. Consider the formula ϕ = p→ 3p. The standard translation of ϕ is

STx(p→ 3p) = STx(p)→ STx(3p)

= P(x)→ STx(3p)

= P(x)→ ∃y(R(x, y) ∧ STy(p))

= P(x)→ ∃y(R(x, y) ∧ P(y))

An easily verifiable consequence of the standard translation is that a modal for-
mula ϕ is satisfiable if and only if STx(ϕ) is satisfiable.

2.3 modal logic and first-order logic 17

Proposition 2.3. For any basic modal formula ϕ, any modelM, and any point w inM
we have thatM, w |= ϕ if and only ifM |= STx(ϕ)[x ← w]1.

Proof. Trivial by induction on ϕ.

The standard translation shows that each modal formula ϕ corresponds to a first-
order formula STx(ϕ) containing a free variable x. However, the converse does not
hold: some first-order formulas in the correspondence language are not modally
definable. A typical example is the formula ¬R(x, x) that defines irreflexivity.

Thus, viewed as a tool for talking about models, modal logics are strictly less
expressive than the full first-order correspondence language. Given that a modal
language is essentially a fragment of the corresponding first-order language, the
question now is exactly which fragment it is. To answer this question we need to
introduce a preliminary definition.

Definition 2.13. A first-order formula ϕ(x) is invariant for bisimulation if for all models
M and M′, and all points w in M and w′ in M′, and all bisimulations Z between M
andM′ such that wZw′, we have thatM |= ϕ[x ← w] if and only ifM′ |= ϕ[x ← w′].

Now the main result: basic modal languages correspond to the fragment of their
first-order correspondence language invariant for bisimulation.

Theorem 2.1 (Modal Characterization Theorem). The following are equivalent for all
first-order formulas ϕ(x) in one free variable x:

i) ϕ(x) is invariant for bisimulation.

ii) ϕ(x) is equivalent to the standard translation of a basic modal formula.

Proof. See [van Benthem, 1977; van Benthem, 1983] for a complete proof.

The standard translation also gives us a bridge between basic modal logic and
first-order logic that can be used to transfer meta-theoretic results for first-order
logic to basic modal logic.

Proposition 2.4. The basic modal logic has the compactness property. If Σ is a set of basic
modal formulas, and every finite subset of Σ is satisfiable, then Σ itself is satisfiable.

Moreover, the basic modal logic has the Löwenheim-Skölem property. If a set of basic
modal formulas Σ is satisfiable in at least one infinite model, then it is satisfiable in models
of every infinite cardinality.

Proof. Let us show that the basic modal logic has the Löwenheim-Skölem property.
Suppose that Σ is a set of basic modal formulas that has at least one infinite model.
Let STx(Σ) be the set of (first-order) formulas obtained by translating all the for-
mulas in Σ using the standard translation. Now, as Σ has an infinite model, by
Proposition 2.3 so does STx(Σ). But first-order logic has the Löwenheim-Skölem
property, hence STx(Σ) has a model of every infinite cardinality. But, again by ap-
peal to Proposition 2.3, each of these models satisfies Σ, so basic modal logic has the
Löwenheim-Skölem property too. A similar argument holds for the compactness
property.

1 [x ← w] means assign w to the free variable x.

18 the basic modal logic

Another easy consequence of the standard translation is that the set of validities
(in basic modal languages) is recursively enumerable. A basic modal formula ϕ is
valid if and only if STx(ϕ) is a first-order validity, and the set of first-order validities
is recursively enumerable.

These examples show that basic modal logic and first-order logic are analogous
in many ways. However, transfer of meta-theoretic properties is not automatic. For
example, consider the Craig Interpolation property:

If ϕ |= ψ then there exists a formula θ whose vocabulary is included in
that of both ϕ and ψ such that ϕ |= θ and θ |= ψ.

Does the same result hold for basic modal formulas ϕ and ψ such that ϕ |= ψ?
Appealing to the result for first-order logic gives us a first-order formula θ such
that STx(ϕ) |= θ and θ |= STx(ψ). But nothing guarantees that this interpolant is
modally definable. Interpolation does in fact hold for the basic modal logic, but
additional work is needed to prove this.

2.4 computational properties : decidability and complexity

One of the reasons that make modal logics so interesting is that they provide a
good balance between expressivity and computational costs.

We have already talked about the expressivity of the basic modal logic. We now
turn our attention to its computational properties, in particular to the computa-
tional properties of the satisfiability (validity) problem.

The satisfiability problem for the basic modal logic can be formulated as follows:

Given a basic modal formula ϕ, is ϕ satisfiable?

Notice that the satisfiability and the validity problems are dual: a modal formula
ϕ is valid if and only if ¬ϕ is not satisfiable.

The first thing that we can say about the basic modal logic is that it is decidable.
This can be read as a shorthand for the claim that the satisfiability problem for the
basic modal logic is decidable, i. e., it is possible, ignoring constraints of time and
space, to write a computer program which takes a basic modal formula as input,
and halts after a finite number of steps and correctly tells us whether or not it
is satisfiable. This follows directly from the fact that basic modal logic has the
bounded finite model property, i. e., if a modal formula is satisfiable on an arbitrary
model, then it is satisfiable on a bounded finite model.

Theorem 2.2 (Bounded Finite Model Property). Let ϕ be a basic modal formula. If ϕ

is satisfiable, then it is satisfiable on a finite model containing at most 2S(ϕ) points, where
S(ϕ) is the number of subformulas of ϕ.

If a modal formula ϕ is satisfiable at all, it is satisfiable on a model containing
at most 2S(ϕ) points. As there are (up to isomorphism) only finitely many such
models, exhaustive search through them all will settle the issue of ϕ’s satisfiability.
In other words, the basic modal logic does not have the expressive strength to
force the existence of infinite models. Contrast this with what happens in first-
order logic where it is quite easy to write a formula that forces the existence of an

2.4 computational properties : decidability and complexity 19

infinite model, e. g., the formula ∀x¬R(x, x) ∧ ∀xyz(R(x, y) ∧ R(y, z) → R(x, z)) ∧
∀x∃yR(x, y) has only infinite models.

Now that we know that we can write an algorithm to decide if a formula is
satisfiable or not, we would like to know how complex is the problem, in particular,
what resources of time, i. e., computation steps, or space, i. e., memory, are needed
to carry out the required computations.

Recall that the basic modal logic is an extension of propositional logic therefore
its satisfiability problem is at least as hard as the one of propositional logic, i. e., it
is NP-hard. However the added expressivity of basic modal logic (with respect to
propositional logic) suggests that its satisfiability problem should be harder than
for the propositional case. In fact, the satisfiability problem for the basic modal logic
is PSPACE-complete [Ladner, 1977], i. e., given a modal formula ϕ, it is possible to
write an algorithm to determine whether or not ϕ is satisfiable that uses an amount
of computer memory that is only polynomial in the size of ϕ. How do we design
a PSPACE-algorithm for modal satisfiability? A detailed answer is out of the scope
of this thesis, but we can point out the underlying theoretic tools needed to build
one.

First let us introduce a key syntactic notion: the modal depth of a formula.

Definition 2.14 (Modal depth). The modal depth of a formula ϕ (notation md(ϕ)) is a
function from formulas to natural numbers defined as:

md(p) = 0, for p ∈ PROP

md(¬ϕ) = md(ϕ)

md(ϕ ∨ ψ) = max{md(ϕ), md(ψ)}
md([m]ϕ) = 1 + md(ϕ).

In words, the modal depth of a formula is the the maximum nesting of modal op-
erators, e. g., md(〈m〉(p ∧ q ∧ p)∧ [m][m]¬r) = 2, and it is often taken as a measure
of its complexity. Its appeal lies in that it estimates and summarizes in a single
value several aspects of complexity like the expressive power of the formula, the
computational cost of evaluating the formula in a model, the minimum size of a
model for the formula, among others.

Second, we have the notion of n-bisimulation. An n-bisimulation is a way of
finitely approximating a bisimulation that builds upon the fact that modal satis-
faction is intrinsically local, i. e., modalities only scan those points accessible from
the current point. Therefore, there is a relation between the modal depth of a for-
mula and how much from a model it can see from the evaluation point.

Definition 2.15 (n-Bisimulation). Let M = 〈W, R, V〉 and M′ = 〈W ′, R′, V ′〉 be
models and w and w′ be states ofM andM′ respectively. An n-bisimulation between w
and w′ (w↔n w′) is a sequence of binary relations Zn ⊆ . . . ⊆ Z0 (Zi ⊆ W ×W ′) with
the following properties (for i + 1 ≤ n):

i) wZnw′. [Root]

ii) If vZ0v′ then v ∈ V(p) iff v′ ∈ V ′(p), for all p ∈ PROP. [Atomic Harmony]

iii) If vZi+1v′ and vRu, then there exists u′ ∈W ′ such that uZiu′ and v′R′u′. [Zig]

20 the basic modal logic

iv) If vZi+1v′ and v′R′u′ then there exists u ∈W such that uZiu′ and vRu. [Zag]

If there is an n-bisimulation linking two states w inM and w′ inM′ we say that w and
w′ are n-bisimilar and we writeM, w↔nM′, w′. If there is some n-bisimulation between
two modelsM andM′ we say thatM andM′ are n-bisimilar and writeM↔nM′.

The intuition is that, if w↔n w′, then w and w′ bisimulate up to depth n, i. e., an
n-bisimulation preserves modal formulas of modal depth at most n.

Proposition 2.5 (n-bisimulation Invariance Lemma). LetM = 〈W, R, V〉 andM′ =
〈W ′, R′, V ′〉 be models of the same signature S . Then for every w inM and w′ inM′, the
following are equivalent:

i) w↔n w′.

ii) w and w′ agree on all modal formulas ϕ such that md(ϕ) ≤ n.

Proof. The implication (i) → (ii) may be proved by induction on n. For the con-
verse implication one can use an argument similar to the one used in the proof of
Proposition 2.2.

Clearly if w↔w′, then w↔n w′ for all n.
Third, the following result, which highlights an expressivity weakness of the

basic modal logic, is key to show the existence of a PSPACE-algorithm.

Proposition 2.6. LetM = 〈W, R, V〉 be a model, let w ∈ W, let n be a natural number,
let Sn,w be a subset of W containing w and all points in W reachable from w by making at
most n R-transitions, and let N be a submodel 〈Sn,w, R � Sn,w, V � Sn,w〉 where R � Sn,w

and V � Sn,w are the restrictions of R and V respectively to Sn,w. Then, for all basic modal
formulas ϕ such that md(ϕ) ≤ n, we have thatM, w |= ϕ if and only if N , w |= ϕ.

Proof. Follows directly by the fact thatM, w↔nN , w.

Proposition 2.6 tells us that modal formulas have a shallow vision, i. e., if we take
a model M, and extract a submodel N from it by throwing away all points that
are more than n steps away from w, then no formula with modal depth of at most
n can distinguish the two models at w.

Combining Proposition 2.6 with what has already been learned about finite mod-
els we obtain the following result.

Theorem 2.3. Every satisfiable formula ϕ in the basic modal language is satisfiable in a
model based on a finite tree of depth at most md(ϕ).

Proof. As the basic modal logic has the finite model property (see Theorem 2.2), if
a modal formula is satisfiable, then it is satisfiable on a finite model M at some
point w. Now consider the model unravelling of M around w, T (M). We do not
necessarily obtain a finite model, but, as M is finite, we do obtain a model based
on a tree with a finite branch factor, and this model satisfies ϕ at the root. If we
then chop off all points more than md(ϕ) away from the root we obtain a finite
model which, by Proposition 2.6, satisfies ϕ at its root.

2.5 extensions 21

Theorem 2.3 tells us that every satisfiable basic modal formula is satisfiable on a
tree, and also puts us in a position to appreciate how PSPACE algorithms for modal
satisfiability work. In essence, they construct shallow trees branch by branch. If a
branch is successfully constructed (something which takes only space polynomial
in the size of the input formula, as the length of the branch is bounded by md(ϕ))
the branch is discarded (thus freeing up the memory) and the next branch is then
constructed. There may be many branches, so it may take exponential time to con-
struct them all, but as all branches are discarded once they have been constructed,
such algorithm uses only polynomial space.

One thing to keep in mind is that the previous PSPACE decidability result con-
cerns satisfiability (validity) of the basic modal language on the class of all mod-
els. If we impose restrictions on the class of models or work with richer modal
languages (or both) there is no reason to suppose that the satisfiability (validity)
problems over such model classes will remain in PSPACE, or even that they will be
decidable. Indeed, in many cases they are not.

In some cases, restricting the attention to a certain class of models may lower the
computational complexity. For example, if we restrict the attention to the class of
models in which R is a partial function, then satisfiability becomes NP-complete,
i. e., no worse than the satisfiability problem of propositional logic. But restrict-
ing the attention to other classes of models can easily result in undecidable prob-
lems. For example, if we consider the class of grid-like models (models that con-
tain regions that look like N×N under two orderings: the horizontal ordering,
(j, k)Rk(j + 1, k), and the vertical ordering (j, k)Rk(j, k + 1)), even weak languages
can be undecidable, as it is possible to encode the N×N tiling problem that is
known to be undecidable.

To finish this section we briefly mention another important reasoning task: the
model checking problem. The model checking problem can be formulated as follows:

Given a (finite) model M, a point w in M, and a basic modal formula
ϕ, is ϕ satisfied inM at w?

This reasoning task has become of great practical importance, as a wide range of
practical tasks can be modeled in a computationally natural manner, and efficiently
solved, via model checking, e. g., hardware verification. Also, model checking for
basic modal logic is a computationally tractable task, i. e., there exists a polynomial
algorithm for model checking. This is in contrast with model checking in first-order
logic, which is PSPACE-complete.

2.5 extensions

So far we have been working with the basic modal language. It is time to explore
stronger languages. Many modal languages built upon the basic modal language
retain its nice properties. In what follows we briefly describe just a few of them,
namely those that are relevant to this thesis and refer the reader to [Blackburn et
al., 2006] for a more complete list of modal languages. We present the universal
modality, the difference modality, the converse modality and hybrid logic.

22 the basic modal logic

universal modality The universal modality [Goranko and Passy, 1992] incor-
porates the notion of global satisfiability to the basic modal language. Given the
basic modal language, we add a new modality E and its dual A (Aϕ = ¬E¬ϕ),
and fix the interpretation of E and A such that in any modelM = 〈W, R, V〉, both
modalities must be interpreted using the universal relation W×W. The satisfaction
definition for these modalities is

M, w |= Eϕ iff there is a u ∈W such thatM, u |= ϕ,

M, w |= Aϕ iff for all u ∈W we haveM, u |= ϕ.

Notice that Eϕ scans the entire model for a point that satisfies ϕ, while Aϕ

asserts that ϕ holds everywhere. The E operator is called the universal diamond and
the A operator the universal box. If it is irrelevant whether we mean E or its dual,
we simply talk of the universal modality. From a computational point of view, the
increase of expressiveness comes at the cost of a much harder satisfiability problem.
In fact, the satisfiability problem for the basic modal language enriched with the
universal modality is EXPTIME-complete [Spaan, 1993].

difference modality The difference modality [Segerberg, 1980] refers to the
existential difference modality D and its dual, the universal difference modality B. The
semantics< for these modalities is defined as

M, w |= Dϕ iff there is v 6= w andM, v |= ϕ,

M, w |= Bϕ iff for all v such that v 6= w,M, v |= ϕ.

Intuitively, Dϕ means elsewhere, ϕ holds, whereas Bϕ means everywhere else, ϕ

holds. The difference operator is strong enough to define the universal modality E,
since ϕ ∨Dϕ is equivalent to Eϕ and ϕ ∧ Bϕ to Aϕ, but D cannot be defined using
E, i. e., it is strictly more expressive [Gargov and Goranko, 1993].

converse modality The converse modality is sometimes called the past modal-
ity and the logic obtained is also sometimes called tense modal logic, as a reference
to the past tense of natural languages like English. The semantics of the new modal
connector 〈m〉− (and its dual [m]−) is defined as

M, w |= 〈m〉−ϕ iff for some v ∈W, vRmw andM, v |= ϕ.

Adding these operators to the basic modal logic causes no shift in complexity,
i. e., checking satisfiability remains a PSPACE-complete task. This can be explained
by the fact that the converse modality remains local, contrary to E and D. Adding
the converse modality to the modal logic that includes the universal modality also
leaves the obtained logic EXPTIME-complete.

hybrid logic Basic modal languages have an obvious expressive weakness:
they cannot name points. This implies that we cannot say “this happened then”,
or that some particular individual has some property. The basic hybrid language
overcome this limitation by adding nominals to the language.

Nominals are propositional symbols that act as univocal names for states in a
model by being forced to be true at exactly one state, i. e., for any valuation V and

2.5 extensions 23

nominal i, V(i) must be a singleton set. This simple addition results in a more
expressive logic. For example, consider the following modal formula:

3(r ∧ p) ∧3(r ∧ q)→ 3(p ∧ q).

This formula can be falsified, as the p-witnessing and q-witnessing points given by
the antecedent may be distinct. But now consider the following hybrid formula:

3(i ∧ p) ∧3(i ∧ q)→ 3(p ∧ q).

It is identical to the preceding formula, except that we have replaced the proposi-
tion symbol r by the nominal i. However, the resulting formula is valid. For now
we have extra information: the p-witnessing and the q-witnessing successors both
make i true, so they are true at the same point, namely the denotation of i. Addi-
tionally, hybrid logic also involves new modal operators: the satisfaction operators
@i. The formula @i ϕ asserts that ϕ is satisfied at the unique point named by the
nominal i, i. e.,

M, w |= @i ϕ iffM, u |= ϕ, where u is the denotation of i.

Notice that @i is a global operator like E and A.
One important point about satisfaction operators is that they give us a modal per-

spective on the equality relation. To see this consider the formula @i j. This formula
says that “at the denotation of i, the nominal j is satisfied”, or put it another way,
“the point named i is identical to the point named j. Hence the following schemas
are valid:

i) @ii. [Re�exivity of equality]

ii) @i j→ @ji. [Symmetry of equality]

iii) @i j ∧@jk→ @ik. [Transitivity of equality]

iv) @i ϕ ∧@i j→ @j ϕ. [Replacement]

Thus, basic hybridisation is a mechanism for equality reasoning in propositional
modal logic. From a complexity point of view, the addition of nominals to the basic
modal language (including the satisfaction operators) makes no difference in the
complexity of the satisfaction problem, i. e., it remains PSPACE-complete [Areces
et al., 2000a]. However, adding nominals to the basic modal language with the
converse modality makes the satisfaction problem to be EXPTIME-complete.

A number of stronger hybrid languages have also been explored. One of the
most interesting extensions adds the downarrow binder ↓. This operator binds
occurrences of nominals within its scope to the point of evaluation, i. e., to evaluate
M, w |=↓ i.ϕ, we evaluateM, w |= ϕ but with all occurrences of the nominal i that
were bound by ↓ now interpreted as naming w. In other words, ↓ lets us create a
name for here, and this immediately increases the expressive power at our disposal.
This comes at the cost of turning the logic undecidable.

3
S Y M M E T R I E S I N M O D A L L O G I C S

After a long, but necessary, introduction we finally get to talk about symmetries
in modal logics. In Chapter 1 we saw that symmetries have been extensively in-
vestigated for propositional satisfiability and other logics. However they remain
uninvestigated in the field of automated theorem proving for modal logics. In this
chapter we start filling the gap by developing the theoretical foundations that en-
able the exploitation of symmetries in modal logics. We do so gradually, by present-
ing first the definitions and results for the basic modal logic, and then extending
them to the more powerful coinductive modal models framework.

We start by showing how permutations of literals can be used to define symme-
tries for basic modal formulas in clausal form and how they share many similar
properties with symmetries for the propositional case (Section 3.1). Then we ex-
tend the results to a broad range of modal languages (Section 3.2). To do so, we
present the coinductive modal models framework (Section 3.2.1). Then we generalize
the notion of symmetries to modal formulas in clausal form for different modal
logics including the basic modal language over different model classes (e.g., reflex-
ive, linear or transitive models), and logics with additional modal operators (e.g.,
universal and hybrid operators) using the framework of coinductive modal mod-
els (Section 3.2.2). Finally, in cases where the modal language has the tree model
property, we develop a more flexible notion of symmetry that enables us to find
symmetries that would not be found otherwise (Section 3.2.3).

The results presented in this chapter were published in [Areces et al., 2012].

3.1 symmetries in basic modal logic

In what follows we work with the language presented in Definition 2.1. As we
are interested in the syntactic symmetries of modal formulas, we normalize their
syntactic representation.

Definition 3.1 (Literals and Modal CNF). A propositional literal l is either a propo-
sitional variable p or its negation ¬p. The set of literals over PROP is PLIT = PROP ∪
{¬pi | pi ∈ PROP}. A modal formula is in modal conjunctive normal form (modal
CNF) if it is a conjunction of modal CNF clauses. A modal CNF clause is a disjunction of
propositional and modal literals. A modal literal is a formula of the form [m]C or ¬[m]C
where C is a modal CNF clause.

We say that two formulas are equisatisfiable if the first formula is satisfiable when-
ever the second is and vice versa; in other words, either both formulas are satisfiable
or both are not. Every modal formula can be transformed into an equisatisfiable
formula in modal CNF in polynomial time [Patel-Schneider and Sebastiani, 2003b].

From now on, we assume that modal formulas are in modal CNF, and we will
refer to them as modal CNF formulas. Also, we often represent a modal CNF
formula as a set of modal CNF clauses (interpreted conjunctively), and each modal

25

26 symmetries in modal logics

CNF clause as a set of propositional and modal literals (interpreted disjunctively).
With the set representation we can disregard the order and multiplicity in which
clauses and literals appear. This will be important when we define symmetries
below.

Example 3.1. The modal formula ϕ = 3(p ∧ q ∧ p) ∧ 22¬r is equisatisfiable to the
modal CNF formula ϕ′ = ¬2(¬p ∨ ¬q ∨ ¬p) ∧ 22¬r. The set representation of ϕ′ is
{{¬2{¬p,¬q}}, {2{2{¬r}}}}.

To ease the definition of symmetry below, from now on we are going to work
with a slightly modified definition of models.

Definition 3.2 (Models). A model (or Kripke model)M is a tripleM = 〈W, {Rm}m∈MOD,
V〉 such that:

i) W, the domain, is a non-empty set. Elements of W are called points, states, worlds,
etc.

ii) Each Rm is a binary relation on W.

iii) V, the valuation, is a function that assigns to each element w ∈W a subset V(w) ⊆
PROP. Informally, we think of V(w) as the set of propositional variables that hold at
w.

Notice that Definition 2.2, introduced earlier, differs from that of Definition 3.2
in how it defines the valuation function. In the former, the valuation function is
interpreted as the set of states in which a propositional symbol holds, i. e., V is
a function V : PROP 7→ P(W). In the latter, the valuation function is interpreted
as the set of propositional symbols that hold at a given state, i. e., V is a function
V : W 7→ P(PROP).
Remark. As in Chapter 2, we are going to restrict ourselves to the mono-modal case.
All the results we present extend naturally to the multi-modal case.

Definition 3.3 (Pointed Models). A pointed model is a model with a distinguished ele-
ment, e. g., given a modelM = 〈W, R, V〉 and an element w of W, then, the corresponding
pointed model is the tupleM = 〈w, W, R, V〉. If a pointed modelM satisfies a formula ϕ

we writeM |= ϕ.

We now define the semantics for modal CNF formulas.

Definition 3.4 (Semantics for modal CNF formulas). Let M = 〈w, W, R, V〉 be a
pointed model and ϕ a modal CNF formula. We inductively define when a formula ϕ is
satisfied (true) inM as

M |= ϕ iff for all clauses C ∈ ϕ we haveM |= C,

M |= C iff exists a literal l ∈ C such thatM |= l,

M |= p iff p ∈ V(w) for p ∈ PROP,

M |= ¬p iff p 6∈ V(w) for p ∈ PROP,

M |= 2C iff 〈v, W, R, V〉 |= C, for all v such that wRv,

M |= ¬2C iff M 6|= 2C.

3.1 symmetries in basic modal logic 27

Given a formula ϕ, Mods(ϕ) = {M | M |= ϕ} is the set of all models of ϕ.
In what follows we work with sets of propositional literals, therefore the follow-

ing definitions are necessary.

Definition 3.5 (Complete, Consistent and Generated sets of propositional literals).
A set of propositional literals L is complete if for each p ∈ PROP either p ∈ L or ¬p ∈ L.
It is consistent if for each p ∈ PROP either p 6∈ L or ¬p 6∈ L. Any complete and consistent
set of propositional literals L defines a unique propositonal valuation v ⊆ PROP as p ∈ v
if p ∈ L and p 6∈ v if ¬p ∈ L. For S ⊆ PROP, the consistent and complete set of
propositonal literals generated by S (notation LS) is S ∪ {¬p | p ∈ PROP\S}.

Next, let us introduce the basic notions of group theory that we need to work
with symmetries. We refer the reader to Appendix A for more details on the subject.

Definition 3.6 (Permutation). A permutation of a set A is a bijection σ : A 7→ A.

The set of all permutations of any given set A forms a group with function
composition as product and the identity as neutral element.

Theorem 3.1 (Permutation Group). Given a non-empty set A, let SA be the set of all
permutations of A. Then SA is a group under function composition.

For n ∈ Z≥1 and σ a permutation, we denote the composition of σ with itself n
times by σn. σ0 denote the identity permutation, σ−1 the inverse of σ, and σ−n, for
n ∈ Z≥1 is the n-times composition of σ−1 with itself.

Each permutation σ of a set A determines a natural partition of A into equiva-
lence classes with the property that a, b ∈ A are in the same equivalence class if
and only if b = σn(a) for some n ∈ Z.

Definition 3.7 (Orbits of a permutation). For a permutation σ of a set A, the equivalence
classes in A determined by σ are the orbits of σ.

Permutations defined over finite sets can be succinctly written using cycle nota-
tion.

Definition 3.8 (Cycle Notation). Let A be a finite set and let a1, . . . , an be distinct ele-
ments of A. The expression (a1 a2 . . . an) is a cycle and denotes the action of mapping
a1 7→ a2, a2 7→ a3, . . . , an−1 7→ an, an 7→ a1. An element not appearing in the cycle is
understood to be left fixed by the cycle. A cycle with only two elements is called a transpo-
sition.

As cycles define permutations, they can be composed. Therefore, every finite
permutation can be expressed as the product of disjoint cycles.

Theorem 3.2 ([Fraleigh and Katz, 2003]). Every permutation σ of a finite set is a product
of disjoint cycles.

Proof. Let B1, B2, . . . , Br be the orbits of σ, and let µi be the cycle defined by

µi(x)

{
σ(x) for x ∈ Bi

x otherwise.

Clearly σ = µ1µ2 . . . µr. Since the equivalence-class orbits B1, B2, . . . Br being distinct
equivalence classes, are disjoint, the cycles µ1µ2 . . . µr are also disjoint.

28 symmetries in modal logics

Example 3.2. σ = (p ¬q)(¬p q) is the permutation over {p, q,¬p,¬q} that makes
σ(p) = ¬q, σ(¬q) = p, σ(¬p) = q and σ(q) = ¬p; σ = (p q r)(¬p ¬q ¬r) is the
permutation σ(p) = q, σ(q) = r and σ(r) = p and similarly for the negations.

In what follows, we deal with permutations of propositional literals.

Definition 3.9 (Permutation of propositional literals). A permutation of proposi-
tional literals is a bijective function σ : PLIT 7→ PLIT. For L a set of propositional literals,
σ(L) = {σ(l) | l ∈ L}.
Remark. Notice that Definition 3.9 defines permutations over the infinite set PLIT.
However, in practice we only deal with permutations over a finite subset A of PLIT,
i. e., the set of propositional literals occurring in the formula at hand. Therefore, we
can use all the results on permutations over finite sets introduced previously. Also
notice that we can easily extend a permutation over a finite subset A of PLIT to a
permutation over PLIT by mapping every element not in A to itself.

In what follows we assume that every permutation is a permutation of proposi-
tional literals and just call them a “permutation”.

Definition 3.10 (Permutation of a formula). Let ϕ be a modal CNF formula and σ a
permutation. We define σ(ϕ) recursively as

σ(ϕ) = {σ(C) | C ∈ ϕ} for ϕ a modal CNF formula

σ(C) = {σ(A) | A ∈ C} for C a modal CNF clause

σ(2C) = 2σ(C)

σ(¬2C) = ¬2σ(C).

Given a set of propositional literals, we only are interested in those permutations
that are consistent.

Definition 3.11 (Consistent Permutation). A permutation σ is consistent if for every
propositional literal l, σ(∼l) = ∼σ(l), where ∼ is a function that returns the complement
of a propositional literal, i. e., ∼p = ¬p and ∼¬p = p.

Consistency guarantees that a permutation will interact nicely when applied to
set of literals, e. g., if we have a consistent set of literals it will remain consistent
after applying a consistent permutation to it. Notice that, from a group theoretic
perspective, consistent permutations form a subgroup of the group of all permuta-
tion over a given set, as the composition of two or more consistent permutations is
again a consistent permutation.

Definition 3.12 (Symmetry). Let ϕ be a modal CNF formula. A consistent permutation
σ is a (consistent) symmetry for ϕ if ϕ = σ(ϕ), when conjunctions and disjunctions in
ϕ are represented as sets.

Example 3.3. Trivially, the identity permutation σ(l) = l is a consistent symmetry of any
formula ϕ. More interestingly, consider ϕ = {{¬p, r}, {q, r}, {r, 2{¬p, q}}}, then the
permutation σ = (p ¬q)(¬p q) is a consistent symmetry of ϕ.

We now have in place the necessary tools to start talking about symmetries in
basic modal logic. Let us begin with the key concept of the forthcoming theory:
σ-simulations.

3.1 symmetries in basic modal logic 29

Definition 3.13 (σ-simulation). Let σ be a permutation. A σ-simulation between models
M = 〈w, W, R, V〉 andM′ = 〈w′, W ′, R′, V ′〉 is a non-empty relation Z ⊆W ×W ′ that
satisfies the following conditions:

i) wZw′. [Root]

ii) If wZw′ then l ∈ LV(w) if and only if σ(l) ∈ LV′(w′). [Atomic Harmony]

iii) If wZw′ and wRv then exists v′ such that w′R′v′ and vZv′. [Zig]

iv) If wZw′ and w′R′v′ then exists v such that wRv and vZv′. [Zag]

We say that two pointed modelsM andM′ are σ-similar (notationM�σM′) if there
is a σ-simulation Z between them.

Notice the resemblance with the definition of a bisimulation (Definition 2.5). A
σ-simulation is in fact a bisimulation that relaxes the atomic harmony condition to
incorporate the effect of permutations. However, in the general case, a σ-simulation
is a non-symmetric relation: we can haveM�σM′ but notM′�σM.

Example 3.4. Consider the models M = 〈w, {w}, ∅, V〉 and M′ = 〈w′, {w′}, ∅, V ′〉
where V(w) = {p, s} and V ′(w′) = {q, s} respectively. Let σ = (p q r)(¬p ¬q ¬r)
be a consistent permutation. That M�σM′ is straightforward: just consider the set
LV(w) = {p,¬q,¬r, s}, then we have that σ(LV(w)) = LV′(w′) and the atomic harmony
condition holds. However it is not the case that M′�σM. To see this, consider the set
LV′(w′) = {¬p, q,¬r, s}, then σ(LV′(w′)) = {¬q, r,¬p, s} 6= LV(w) and the atomic har-
mony condition fails.

Notice that if we restrict ourselves to permutations that can be defined as the
product of disjoint transpositions then the σ-simulation relation is indeed symmet-
ric.

From the definition of σ-simulations it intuitively follows that while they do not
preserve validity of modal formulas (as is the case with bisimulations) they do
preserve validity of permutations of formulas.

Proposition 3.1. Let σ be a consistent permutation, ϕ a modal CNF formula and M =

〈w, W, R, V〉, M′ = 〈w′, W ′, R′, V ′〉 models such that M�σM′. Then M |= ϕ iff
M′ |= σ(ϕ).

Proof. The proof is by induction on ϕ.

Base Case:

- Suppose ϕ = p. Then, M |= p iff p ∈ V(w) iff p ∈ LV(w) iff, by definition of
σ-simulation, σ(p) ∈ LV′(w′) iffM′ |= σ(p).

- Suppose ϕ = ¬p. Then,M |= ¬p iff p 6∈ V(w) iff ¬p ∈ LV(w) iff, by definition
of σ-simulation and consistency of σ, σ(∼p) = ∼σ(p) ∈ LV′(w′) iff σ(p) 6∈
V ′(w′) iffM′ |= ¬σ(p).

Inductive Step:

- When ϕ = C, with C a clause or a conjunction of clauses, the proof follows
by induction directly.

30 symmetries in modal logics

- Suppose ϕ = 2ψ. Then M |= 2ψ iff 〈v, W, R, V〉 |= ψ for all v ∈ W such
that wRv. Given that M�σM′, for all v exists v′ ∈ W ′ such that w′R′v′

and vZv′, and, by inductive hypothesis, 〈v′, W ′, R′, V ′〉 |= σ(ψ). Therefore,
M′ |= 2σ(ψ) = σ(2ψ). The converse follows by using Zag and the inductive
hypothesis.

- Suppose ϕ = ¬2ψ. ThenM |= ¬2ψ iff there exists v ∈W such that wRv and
〈v, W, R, V〉 |= ¬ψ. Given that M�σM′, exists v′ ∈ W ′ such that w′R′v′

and vZv′. By inductive hypothesis, 〈v′, W ′, R′, V ′〉 |= σ(¬ψ) = ¬σ(ψ) iff
M′ |= ¬2σ(ψ) iff M′ |= σ(¬2ψ). The converse follows by using Zag and
the inductive hypothesis.

We also need to consider the effect of applying permutations to models. If ϕ is
true in a modelM, we intuitively want σ(ϕ) to be true in the model obtained from
lifting σ toM.

Definition 3.14 (Permutation of a model). Let σ be a permutation andM = 〈w, W, R, V〉
a model. Then σ(M) = 〈w, W, R, V ′〉, where,

V ′(w) = σ(LV(w)) ∩ PROP for all w ∈W.

LV(w) is the consistent and complete set of literals generated by V(w). For M a set of
models, σ(M) = {σ(M) | M ∈ M}.

A consequence of the previous definition is that M and σ(M) are always σ-
similar.

Proposition 3.2. Let σ be a consistent permutation andM = 〈w, W, R, V〉 a model. Then
M�σ σ(M).

Proof. We show that the identity relation is a σ-simulation betweenM and σ(M).

- Atomic Harmony: We have to check that given a literal l, we have that l ∈
LV(w) iff σ(l) ∈ LV′(w). From the definition of σ(M), LV′(w) = σ(LV(w)), hence
if l ∈ LV(w) then σ(l) ∈ σ(LV(w)). Moreover, σ(LV(w)) is a complete set of
literals because LV(w) is a complete set of literals and σ is a consistent permu-
tation, and hence the converse also follows.

- Zig and Zag: These conditions are trivial as the relation in both models is the
same.

Proposition 3.3. Let σ be a consistent permutation, ϕ a modal CNF formula and M =

〈w, W, R, V〉 a model. ThenM |= ϕ if and only if σ(M) |= σ(ϕ).

Proof. It follows directly from Proposition 3.1 and Proposition 3.2.

Interestingly, if σ is a symmetry of ϕ then for any modelM,M is a model of ϕ

if and only if σ(M) is. This is a direct corollary of the previous propositions in the
particular case when σ is a symmetry and hence σ(ϕ) = ϕ.

3.1 symmetries in basic modal logic 31

Corollary 3.1. If σ is a symmetry of ϕ then M ∈ Mods(ϕ) if and only if σ(M) ∈
Mods(ϕ).

Corollary 3.1 tells us that, in the basic modal logic, symmetries have the same
effect on models as they have in propositional logic. The group of symmetries of a
formula ϕ acting on the set of models partitions the set in such a way that equiv-
alence classes (orbits) contain only models or only non-models of ϕ. As a result
of this fact we can avoid looking for a solution in the complete model space and
focus just on the representatives from each equivalence class, provided that we can
compute them. Remember that the static symmetry breaking approach described
in Chapter 1 is based on this fact, as we generate formulas that select one represen-
tative model from each equivalence class.

Besides partitioning the model space, symmetries also provide us with a “cheap”
inference mechanism.

Theorem 3.3. Let ϕ and ψ be modal formulas and let σ be a consistent symmetry of ϕ.
Then ϕ |= ψ if and only if ϕ |= σ(ψ).

Proof. We first show that under the hypothesis of the theorem the following prop-
erty holds

Claim: Mods(ϕ) = σ(Mods(ϕ)).

[⊇] Let X ∈ σ(Mods(ϕ)) and let M ∈ Mods(ϕ) be a model such that X = σ(M).
ThenM |= ϕ and by Corollary 3.1 σ(M) |= ϕ and σ(M) ∈ Mods(ϕ).

[⊆] Let M ∈ Mods(ϕ), then M |= ϕ. By Corollary 3.1 σ(M) |= ϕ, therefore,
σ(M) ∈ Mods(ϕ). Since σ is a permutation exists n ∈N, n ≥ 1, such that σn(M) =

M and henceM ∈ σ(Mods(ϕ)).

Now, we have to prove that ϕ |= ψ if and only if ϕ |= σ(ψ). By definition, ϕ |= ψ

if and only if Mods(ϕ) |= ψ. By Proposition 3.3, this is the case if and only if
σ(Mods(ϕ)) |= σ(ψ).

Given that σ is a symmetry of ϕ, by the Claim above σ(Mods(ϕ)) |= σ(ψ) if and
only if Mods(ϕ) |= σ(ψ), which, by definition, means that ϕ |= σ(ψ).

Theorem 3.3 provides an inexpensive inference mechanism that can be used in
every situation where entailment is involved during modal automated reasoning.
Indeed, applying a permutation on a formula is a calculation that is arguably com-
putationally cheaper than a tableaux expansion or a resolution step. Therefore, new
formulas obtained by this means may reduce the total running time of an inference
algorithm. In the case of propositional logic, the strengthening of the learning mech-
anism has already shown its results in [Benhamou et al., 2010]. In the case of modal
logic, it remains to be seen when cases of ϕ |= ψ occur during a decision proce-
dure, and how to better take advantage of them. We will discuss how to exploit
symmetries from a practical point of view in Chapter 9.

Both Corollary 3.1 and Theorem 3.3 are the core results that enable the exploita-
tion of symmetries in the basic modal logic. As a matter of fact, these results show
up in every logic where symmetries have been investigated.

32 symmetries in modal logics

3.2 beyond basic modal logic

So far we have been dealing with symmetries for the basic modal logic. Can we
generalize the obtained results to richer modal logics? The short answer is: yes. We
could, either, start from scratch for each modal logic for which we want to develop
a theory of symmetries and prove the results we discussed above, or we could
develop a generic framework applicable to a wide range of modal logics. The latter
approach enables us to be more concise at the cost of a higher level of abstraction.

In this thesis we choose the second alternative and to do so we use the framework
of coinductive modal models. Coinductive modal models were introduced in [Areces
and Gorín, 2010] to investigate normal forms for modal logics. Its main characteris-
tic is that it allows the representation of different modal logics in an homogeneous
form. Results obtained in the coinductive framework can be easily extended to
concrete modal languages by just selecting the appropriate model classes.

In what follows we present the syntax and semantics for the framework of coin-
ductive modal models, and provide several examples to show how we can use it.
We then develop a theory of symmetries for coinductive modal models, lifting the
results obtained for the basic modal logic.

3.2.1 Coinductive Modal Models

Let us start by defining the modal language we will be using throughout this sec-
tion.

Definition 3.15 (Modal formula). Let ATOM = {a1, a2, . . .} be a countable infinite set
of atoms and MOD = {m, m′, . . .} be a set of modal symbols. The set of modal formulas
over the signature S = 〈ATOM,MOD〉 is defined as

FORM ::= a | ¬ϕ | ϕ ∨ ψ | [m]ϕ,

where a ∈ ATOM, m ∈ MOD, and ϕ, ψ ∈ FORM. > and ⊥ stand for an arbitrary
tautology and contradiction, respectively. We will also use classical connectives such as
∧,→ and 〈m〉, taken to be defined in the usual way.

Notice that the language we just defined is the language of the basic multi-modal
logic that we introduced in Definition 2.1 but, as we will now see, we will be able
to cast other modal logics including, for example, hybrid operators right into this
same language in a natural way. How we do this will become clear once we provide
our definition of models.

For convenience, we will use pointed models (see Definition 3.3).

Definition 3.16 (Models). Let S = 〈ATOM,MOD〉 be a modal signature and W be a
fixed, non-empty set. ModsW , the class of all models with domain W, for the signature S ,
is the set of all tuples 〈w, W, R, V〉 such that:

i) w ∈W.

ii) R(m, v) ⊆ ModsW for m ∈ MOD and v ∈W.

iii) V(v) ⊆ ATOM for v ∈W.

3.2 beyond basic modal logic 33

Mods denotes the class of all models over all domains, i.e., Mods =
⋃

W ModsW .
We call w the point of evaluation, W the domain, V the valuation, and R the accessi-

bility relation. ForM an arbitrary model we write |M| for its domain, wM for its point
of evaluation, VM for its valuation and RM for its accessibility relation. We sometimes
write succsM(m) for the set RM(m, wM) of immediate m-successors of wM.

Notice that the main difference between Definition 2.2 (of Kripke models) and
Definition 3.16 lies in how we handle m-successors. In the latter, for each modality
m and each state w in a model, we define R(m, w), the successors of w through the
m modality, as a set of models (therefore, this definition of models is coinductive),
while in the former we define it as a set of points in the domain.

Example 3.5. Consider the pointed Kripke model in Figure 3.1a, and its equivalent coin-
ductive modal model in Figure 3.1b. The point of evaluation in each model is circled. The
main difference is that the relation of a coinductive model leads to another coinductive
model, whereas in a Kripke model the relation leads to another point of the same model.

w v

m

(a) Kripke model.

w v w v

m

(b) Coinductive model.

Figure 3.1: A Kripke model and its equivalent coinductive model.

Observe that for each W, ModsW is well-defined (coinductively), and so does Mods,
the class of all models. Being the class of all possible models, Mods enjoys some
nice closure properties that are useful when considering subclasses of Mods. In
particular, we are interested in investigating modal classes that are closed under
accessibility relations.

Definition 3.17 (Extension of a model). Given M ∈ ModsW , let Ext(M), the ex-
tension of M, be the smallest subset of ModsW that contains M and is such that if
N ∈ Ext(M), then RN (m, v) ⊆ Ext(M) for all m ∈ MOD, v ∈W.

Definition 3.18 (Closed class). A non-empty class of models C is closed under accessi-
bility relations (we will say that C is a closed class, for short) wheneverM ∈ C implies
Ext(M) ⊆ C.

The extension of a model is simply the class of models reachable via the transitive
closure of the union of its accessibility relations; and a class of models C is closed
if for every model M ∈ C the extension of M is also included in C. Clearly, Mods

is a closed class and, as we discuss below, it seems natural to restrict ourselves to
investigate only closed classes.

34 symmetries in modal logics

As for the basic modal logic case, we are going to work with formulas in modal
CNF form.

Definition 3.19 (Literals and Modal CNF). An atom literal l is either an atom variable
a or its negation ¬a. The set of literals over ATOM is ALIT = ATOM ∪ {¬ai | ai ∈
ATOM}. A modal formula is in modal conjunctive normal form (modal CNF) if it is
a conjunction of modal CNF clauses. A modal CNF clause is a disjunction of atom and
modal literals. A modal literal is a formula of the form [m]C or ¬[m]C where C is a
modal CNF clause.

Having properly defined what models are, the definition of the satisfiability re-
lation |= is straightforward.

Definition 3.20 (Semantics). Let ϕ be a modal CNF formula and M = 〈w, W, R, V〉 a
model in Mods. We define |= for modal CNF formulas, clauses and literals as

M |= ϕ iff for all clauses C ∈ ϕ we haveM |= C,

M |= C iff exists a literal l ∈ C such thatM |= l,

M |= a iff a ∈ V(w) for a ∈ ATOM,

M |= ¬a iff a 6∈ V(w) for a ∈ ATOM,

M |= [m]C iff M′ |= C, for allM′ ∈ R(m, w),

M |= ¬[m]C iff M 6|= [m]C.

If C is a closed class, we write C |= ϕ whenever M |= ϕ for every M in C, and we say
that ΓC = {ϕ | C |= ϕ} is the logic defined by C.

Inspecting the definition above, we can see that the semantic clause for [m] is
the classical condition defining a box operator [Blackburn et al., 2001]. But if we
restrict ourselves to the appropriate class of models, we can actually ensure that
[m] behaves in different ways. Let us see an example.

Example 3.6 (The universal modality A). Given a Kripke model M = 〈W, R, V〉 the
usual semantic clause for the universal modality A would be

M, w |= Aϕ iffM, w′ |= ϕ, for all w′ ∈W.

Instead, let S = 〈ATOM,MOD〉 with A ∈ MOD, and let CA be the largest class of models
in this signature such that

ifM ∈ CA, then RM(A, w) = {〈w′, |M|, RM, VM〉 | w′ ∈ |M|}.

The A-successors of w are those models identical to M except in that their point of
evaluation is an arbitrary element of the domain. Clearly, the semantic condition of [A]
in CA (as given in Definition 3.20) coincides exactly with the semantic definition of the
universal modality A over standard Kripke models.

By taking suitable classes of models, we can naturally capture many different
modal operators. Notice, though, that when defining model classes it seems natural
to require the classes to be closed. If a class C is not closed, the evaluation of some
modal formulas on a model in C might require the inspections of models which
are outside the class.

3.2 beyond basic modal logic 35

As shown in [Areces and Gorín, 2010], every closed class of models induces a
normal modal logic [Blackburn et al., 2001]. Moreover, the logic ΓMods (generated by
the class of all possible models) coincides with the basic multi-modal logic (also
known as K). In what follows we assume that every class is closed and that all of its
models conform to some particular, but arbitrary, signature.

Now, how can we restrict the model class? This can be done using defining condi-
tions.

Definition 3.21 (Defining conditions). Predicate P is a defining condition for C when-
ever C is the largest class of models such thatM ∈ C implies that P(M) holds.

We can use this notation to properly define standard relational modalities.

Definition 3.22 (Relational modalities: the classes CKm and CK). For each m ∈ MOD,
let CKm be the class defined by the following defining condition:

PK
m(M)⇐⇒ ∀v ∈ |M|, RM(m, v) ⊆ {〈v′, |M|, RM, VM〉 | v′ ∈ |M|}

Observe that PK
m is true in a model M if every successor of wM is identical to M except

perhaps on its point of evaluation. We will call m a relational modality when it is inter-
preted in CKm. Define the class of models CK over the signature S = 〈ATOM,MOD〉 as
follows: M ∈ CK if and only if for every modality m ∈ MOD, M ∈ CKm. That is, all
modalities are interpreted in CK as relational modalities.

3.2.1.1 Some Modal Logics and their Associated Classes

We now introduce a number of closed model classes by means of their defining
conditions. This model classes capture different modal operators, like the ones
from hybrid logics (see Section 2.5).

Consider the signature S = 〈ATOM,MOD〉 such that

ATOM = PROP∪NOM, and

MOD = REL∪ {A} ∪ {@i | i ∈ NOM} ∪ {↓i | i ∈ NOM},

where PROP = {p1, p2, . . .}, NOM = {n1, n2, . . .} and REL = {r1, r2, . . .} are mutu-
ally disjoint, countable infinite sets. In what follows, we are interested in sublan-
guages of the language defined over S by Definition 3.15.

We define the following closed classes via their defining conditions. Table 3.1
shows the defining conditions for the universal modality A discussed in Exam-
ple 3.6 and for different operators from hybrid logics [Areces and ten Cate, 2006].

Class Defining condition

CA PA(M) := RM(A, w) = {〈v, |M|, RM, VM〉 | v ∈ |M|}
C@i P@i(M) := RM(@i, w) = {〈v, |M|, RM, VM〉 | v ∈ V(i)}, i ∈ NOM

C↓i P↓i(M) := RM(↓i, w) = {〈w, |M|, RM, VM[i 7→ {w}]〉}, i ∈ NOM

CNOM PNOM(M) := VM(i) is a singleton, ∀i ∈ NOM

Table 3.1: Defining conditions for the universal modality and hybrid operators.

36 symmetries in modal logics

Notice, though, that the defining conditions we introduced above are of different
kinds. Predicates PA and P@i , for instance, define the accessibility relation by im-
posing conditions on the point of evaluation of the accessible models (and hence,
the classes defined this way are subclasses of the class of relational modalities). This
is just another way to state the fact that the semantics of the universal modality A,
and satisfiability operators @i can all be captured on Kripke models by restricting
evaluation to the class of models where the relation is, respectively, the total rela-
tion (∀xy.R(x, y)) and the “point to all i” relation (∀xy.R(x, y)↔ i(y)). Observe that
whenever the atom i is interpreted as a singleton set, the “point to all i” relation
becomes the usual “point to i” relation (∀xy.R(x, y)↔ y = i) of hybrid logics.

Predicate P↓i, on the other hand, imposes conditions on the valuation. In partic-
ular, C↓i is not a subclass of CK↓i (i. e., the class where [↓i] would be interpreted as
a relational modality). For example, uniform substitution fails for C↓i: while it is
clear that C↓i |= [↓i]i, the uniform substitution of atom i by p yields the formula
[↓i]p which is not C↓i-valid.

Finally, predicate PNOM turns elements of NOM into nominals, i.e., true at a
unique element of the domain of the model. Again, since PNOM imposes conditions
on the valuation, unrestricted uniform substitution fails.

An interesting feature of this setting is that we can express the combination of
modalities as the intersection of their respective classes. For example, CH(@,↓), the
class of models for the hybrid logic H(@, ↓), can be defined as follows:

CH(@,↓) = CNOM ∩ C@ ∩ C↓ ∩ CREL, where

C@ =
⋂

i∈NOM C@i , C↓ =
⋂

i∈NOM C↓i, and CREL =
⋂

m∈REL CKm.

Moreover, with this presentation we can define potentially interesting logics
which have not been investigated before. For example, consider the logic of C@

(i. e., we take [@i] to be a jump-to-i operator but we do not restrict i to be inter-
preted as a singleton). Over this class, the [@i] operator behaves differently than
the hybrid operator @i. For example, C@ 6|= [@i]ϕ ↔ 〈@i〉ϕ; i. e., @i is not self dual.
But, CNOM ∩ C@ |= [@i]ϕ↔ 〈@i〉ϕ.

The crucial characteristic of the coinductive framework is that all these different
modal operators are captured using the same semantic condition introduced in Def-
inition 3.20. All the details defining each particular operator are now introduced as
properties of the accessibility relation. As a result, a unique notion of bisimulation
is sufficient to cover all of them.

Definition 3.23 (Bisimulations). Given two modelsM andM′ we say thatM andM′

are bisimilar (notationM↔M′) ifM ZM′ for some relation Z ⊆ Ext(M)×Ext(M′)
such that if 〈w, W, R, V〉 Z〈w′, W ′, R′, V ′〉 then:

i) w ∈ V(a) iff w′ ∈ V ′(a), for all a ∈ ATOM. [Atomic Harmony]

ii) N ∈ R(m, w) implies N ZN ′ for some N ′ ∈ R′(m, w′). [Zig]

iii) N ′ ∈ R′(m, w′) implies N ZN ′ for some N ∈ R(m, w). [Zag]

Such Z is called a bisimulation betweenM andM′.

The classic result of invariance of modal formulas under bisimulation [Blackburn
et al., 2001] can easily be proved.

3.2 beyond basic modal logic 37

Theorem 3.4. IfM↔M′, thenM |= ϕ if and only ifM′ |= ϕ, for all ϕ.

It is interesting to observe that this general notion of bisimulation works for every
modal logic definable as a closed subclass of Mods. In other words, this definition
is capturing a variety of notions of bisimulation. Many well known bisimulations
can be seen as specializations of Definition 3.23.

Example 3.7 (Bisimulation forH(@)). Consider the hybrid logicH(@). It is well known
that if we want formulas of H(@) to be preserved by a bisimulation between hybrid models
M and N , we need to require (in addition to Atomic Harmony, Zig and Zag) that the
bisimulation extends the relation {(iM, iN) | i ∈ NOM}, where iM (respectively iN) is
the unique state ofM (respectively N) where i is true. Consider now the closed class

CH(@) = CNOM ∩ C@ ∩ CRel

that corresponds to the class of (pointed) hybrid Kripke models.
Now, suppose we have M↔N for M,N ∈ CH(@). That means MZN , for some

bisimulation Z (cf. Definition 3.23).
We have to show that for all nominals i, 〈iM, |M|, RM, VM〉 Z 〈iN , |N |, RN , VN 〉

holds (and is well defined).
The defining condition CNOM ensures that the interpretation of i in each model is a

singleton, and hence iM and iN are well defined. Now, the defining condition of the class
C@ together with M ZN let us infer 〈iM, |M|, RM, VM〉 Z〈iN , |N |, RN , VN 〉 using
either Zig or Zag.

We can even take a finer look, and adapt the notion of n-bisimulations to the
present setting.

Definition 3.24 (n-bisimulations). Given two models M and M′ we say that M and
M′ are n-bisimilar (notation M↔nM′) if there exists a sequence of binary relations
Z0 ⊇ Z1 ⊇ · · · ⊇ Zn such thatM ZnM′ and for all N = 〈w, W, R, V〉 ∈ Ext(M) and
N ′ = 〈w′, W ′, R′, V ′〉 ∈ Ext(M′) :

i) N Z0N ′ implies w ∈ V(a) iff w′ ∈ V ′(a), for all a ∈ ATOM. [Atomic Harmony]

ii) N Zi+1N ′ and N2 ∈ R(m, w) implies N2 ZiN ′2 for some N ′2 ∈ R′(m, w′). [Zig]

iii) N Zi+1N ′ and N ′2 ∈ R′(m, w′) implies N2 ZiN ′2 for some N2 ∈ R(m, w). [Zag]

Such a sequence is called a n-bisimulation betweenM andM′.

As we have seen in Section 2.4, one of the interesting properties of n-bisimulations
is that they preserve modal formulas up to a certain modal depth. This result can be
transfered nicely to the coinductive setting, and, once more, it now applies to any
type of modality, on any closed class, and not only to relational modalities.

Theorem 3.5 (Invariance under n-bisimulations). IfM↔nM′, thenM |= ϕ if and
only ifM′ |= ϕ, for all ϕ such that md(ϕ) ≤ n.

This concludes our introduction to coinductive modal models. We have now
in place all the tools we need to tackle the next step: generalize the theory of
symmetries to richer modal logics.

38 symmetries in modal logics

3.2.2 A Generalized Theory of Symmetries

Let us start by introducing the basic notions. As for the basic modal logic we work
with sets of literals.

Definition 3.25 (Complete, Consistent and Generated sets of literals). A set of literals
L is complete if for each a ∈ ATOM either a ∈ L or ¬a ∈ L. It is consistent if for
each a ∈ ATOM either a 6∈ L or ¬a 6∈ L. Any complete and consistent set of literals L
defines a unique valuation v ⊆ ATOM as a ∈ v if a ∈ L and a 6∈ v if ¬a ∈ L. For
S ⊆ ATOM, the consistent and complete set of literals generated by S (notation LS)
is S ∪ {¬a | a ∈ ATOM\S}.

As expected, we need to adapt our definition of permutation because from now
on we work with permutation of atom literals.

Definition 3.26 (Permutation of atom literals). A permutation is a bijective function
σ : ALIT 7→ ALIT. For L a set of atom literals, σ(L) = {σ(l) | l ∈ L}.

In what follows we assume that every permutation is a permutation of atom
literals and just call them a “permutation”.

Since, in our language, atoms may occur in some modalities (like @i) we should
take some care when applying permutations to modal formulas. We say that a
modality is indexed by atoms if its definition depends on the value of an atom. If m
is indexed by an atom a we write m(a).

Definition 3.27 (Permutation of a formula). Let ϕ be a modal CNF formula and σ a
permutation. We define σ(ϕ) recursively as

σ(ϕ) = {σ(C) | C ∈ ϕ} for ϕ a modal CNF formula

σ(C) = {σ(A) | A ∈ C} for C a modal CNF clause

σ([m]C) = [σ(m)]σ(C)

σ(¬[m]C) = ¬[σ(m)]σ(C)

where σ(m) = σ(m(a)) = m(σ(a)) if m is indexed by a, and σ(m) = m otherwise.

As for the basic modal logic, we restrict ourselves to work with consistent sym-
metries.

Definition 3.28 (Consistent Permutations and Symmetries). A permutation σ is con-
sistent if for every literal l, σ(∼l) = ∼σ(l), where ∼ is a function that returns the com-
plement of an atom literal, i. e., ∼a = ¬a and ∼¬a = a. A permutation σ is a symmetry
for ϕ if ϕ = σ(ϕ), when conjunctions and disjunctions in ϕ are represented as sets.

Now we are ready to generalize the results obtained for the basic modal logic to
the coinductive framework. We begin with the notion of σ-simulation.

Definition 3.29 (σ-simulation). Let σ be a permutation. A σ-simulation between models
M = 〈w, W, R, V〉 and M′ = 〈w′, W ′, R′, V ′〉 is a non-empty relation Z ⊆ Ext(M)×
Ext(M′) that satisfies the following conditions:

i) MZM′. [Root]

3.2 beyond basic modal logic 39

ii) l ∈ LV(w) iff σ(l) ∈ LV′(w′). [Atomic Harmony]

iii) IfMZM′ and N ∈ R(m, w) then NZN ′ for some N ′ ∈ R′(σ(m), w′). [Zig]

iv) IfMZM′ and N ′ ∈ R′(m, w′) then NZN ′ for some N ∈ R(σ−1(m), w). [Zag]

We say that two models M and M′ are σ-similar (notation M�σM′) if there is a
σ-simulation Z between them.

Notice that the definition of σ-simulation takes into account the fact that there
exist modalities that are indexed by atoms by considering the permutation when
accessing to the successors, e. g., R′(σ(m), w′).

As for the basic modal logic case, σ-simulations preserve validity of permutations
of formulas.

Proposition 3.4. Let σ be a consistent permutation, ϕ a modal CNF formula and M =

〈w, W, R, V〉, M′ = 〈w′, W ′, R′, V ′〉 models such that M�σM′. Then M |= ϕ if and
only ifM′ |= σ(ϕ).

Proof. The proof is by induction on ϕ.

Base Case:

- Suppose ϕ = a then, M |= a iff a ∈ V(w) iff a ∈ LV(w) iff, by definition of
σ-simulation, σ(a) ∈ LV′(w′) iffM′ |= σ(a).

- Suppose ϕ = ¬a then, M |= ¬a iff a 6∈ V(w) iff ¬a ∈ LV(w) iff, by definition
of σ-simulation, σ(¬a) = ¬σ(a) ∈ LV′(w′) iff σ(a) 6∈ V ′(w′) iffM′ |= ¬σ(a).

Inductive Step:

- When ϕ = C, with C a clause or a conjunction of clauses, the proof follows
by induction directly.

- Suppose ϕ = [m]ψ. Then M |= [m]ψ iff N |= ψ for all N ∈ R(m, w). Given
thatM�σM′, by Zig we know that for allN existN ′ such thatN �σN ′ and
N ′ ∈ R′(σ(m), w′). Then, by inductive hypothesis, N ′ |= σ(ψ) for all N ′ ∈
R′(σ(m), w′) iff M′ |= [σ(m)]σ(ψ). Then, by Definition 3.27, M′ |= σ([m]ψ).
The converse uses Zag and the inductive hypothesis.

- Suppose ϕ = ¬[m]ψ. ThenM |= ¬[m]ψ iff there existsN ∈ R(m, w) such that,
N |= ¬ψ. Given thatM�σM′, by Zig, for all N exist N ′ such that N �σN ′
and N ′ ∈ R′(σ(m), w′). Then, by inductive hypothesis, N ′ |= σ(¬ψ) = ¬σ(ψ)

iff M′ |= ¬[σ(m)]σ(ψ). Then, by Definition 3.27, M′ |= σ(¬[m]ψ). The con-
verse follows using Zag and the inductive hypothesis.

The next step is to define the notion of applying permutations to coinductive
modal models.

40 symmetries in modal logics

Definition 3.30 (Permutation of a model). Let σ be a permutation andM = 〈w, W, R,
V〉 a model. Then σ(M) = 〈w, W, R′, V ′〉, where,

V ′(v) = σ(LV(v)) ∩ ATOM for all v ∈W, and,

R′(m, v) = {σ(N) | N ∈ R(σ(m), v)} for all m ∈ MOD and v ∈W.

For M a set of models, σ(M) = {σ(M) | M ∈ M}.

Besides modifying the valuation, permuting a coinductive modal model involves
propagating the permutation to all accessible models.

It follows from the previous definition thatM and σ(M) are always σ-similar.

Proposition 3.5. Let σ be a consistent permutation andM = 〈w, W, V, R〉 a model. Then
M�σ σ(M).

Proof. Let us define the relation Z = {(N , σ(N)) | N ∈ Ext(M)} and show that it
is a σ-simulation betweenM and σ(M). The Zig and Zag conditions are trivial by
definition of σ(M).

- Atomic Harmony: We have to check that l ∈ LV(w) iff σ(l) ∈ LV′(w). From the
definition of σ(M), LV′(w) = σ(LV(w)), hence if l ∈ LV(w) then σ(l) ∈ σ(LV(w)).
Moreover, σ(LV(w)) is a complete set of literals because LV(w) is a complete
set of literals and σ is a consistent permutation, and hence the converse also
follows.

Proposition 3.6. Let σ be a consistent permutation, M a model and ϕ a modal CNF
formula. ThenM |= ϕ if and only if σ(M) |= σ(ϕ).

Proof. From Proposition 3.5 (M�σ σ(M)) and Proposition 3.4.

The previous results lead us to the desired corollary.

Corollary 3.2. If σ is a symmetry of ϕ then M ∈ Mods(ϕ) if and only if σ(M) ∈
Mods(ϕ).

Corollary 3.2 tells us that symmetries have the same effect on coinductive modal
models as for the basic modal logic. They partition the space of models into equiv-
alence classes in such a way that every equivalence class contains either models or
non-models. Nevertheless, the importance of this corollary lies in the fact that now
we can apply it to a number of modal logics, i. e., those modal logics that can be
cast to the coinductive framework.

To clarify the implications of the Corollary 3.2, consider the following example.

Example 3.8. Let ϕ = (p ∨ q ∨ r) ∧ (s ∨ q ∨ r) ∧ (¬p ∨ ¬s) ∧ 〈m〉(p ∨ s) ∧ [A](¬r).
From Figure 3.2a we can verify thatM1 |= ϕ.

Now σ = (p s)(¬p ¬s) is a symmetry of ϕ. Then, by Corollary 3.2, we have σ(M1) |=
ϕ, which can be verified in the model of Figure 3.2b.

3.2 beyond basic modal logic 41

A

A

AA

{p, q} {s}

w v

m

M1

{p, q} {s}

w v

M2

(a)M1.

A

A

AA

{s, q} {p}

w v

m

�(M1)

{s, q} {p}

w v

�(M2)

(b) σ(M1).

Figure 3.2: A model and its symmetric model.

Let us move forward and prove that, in the coinductive framework, symmetries
preserve inference. But before a brief remark: The notion of σ-simulation in coinduc-
tive modal models is general enough to be applicable to a wide range of modal log-
ics. Notice though, that our definition of σ-simulation makes no assumption about
the models being in the same class. Consider, for example, a modelM ∈ CH(@) and
an arbitrary permutation σ = (i p)(¬i ¬p) for i ∈ NOM, p ∈ PROP. By the defining
condition CH(@), nominals in M are true at a unique element in the domain, but
this does not necessary hold for σ(M), and hence σ(M) might not be in CH(@).

However, when working with symmetries of a formula, this is not an issue, and
we can be sure that every modelM and its symmetric σ(M) are in the same model
class. This is so because a symmetry of a formula is, implicitly, a typed permutation:
it only maps symbols such that the resulting formula is a formula of the language.
If this is not the case, either the formula at hand is not in the language of the logic,
or the permutation is not a symmetry. Therefore, we can think of the language
definition as restricting the possible mappings.

Example 3.9. Consider the formula ϕ = [@i]p and the permutation σ = (i p)(¬i ¬p) for
i ∈ NOM, p ∈ PROP. Clearly ϕ is a formula of the language defined in Section 3.2.1.1,
but σ(ϕ) = [@p]i is not. Now consider the formula ϕ = i ∨ p and the same permutation
σ, only that now σ is a symmetry of ϕ (modulo commutativity of ∨). We can see that
σ(ϕ) = p ∨ i is a formula of the language, and clearly, a model M satisfying ϕ and its
symmetric σ(M) must be in the same model class.

Everything is now in place to show that modal entailment is preserved under
symmetries.

Theorem 3.6. Let ϕ and ψ be modal formulas, let σ be a consistent symmetry of ϕ. Then
ϕ |= ψ if and only if ϕ |= σ(ψ).

42 symmetries in modal logics

Proof. We first show that under the hypothesis of the theorem the following prop-
erty holds
Claim: Mods(ϕ) = σ(Mods(ϕ)).
[⊇] LetN ∈ σ(Mods(ϕ)) andM ∈ Mods(ϕ) be such thatN = σ(M). ThenM |= ϕ

and by Corollary 3.2, σ(M) |= ϕ, therefore, σ(M) ∈ Mods(ϕ).
[⊆] Let M ∈ Mods(ϕ), then M |= ϕ. By Corollary 3.2, σ(M) |= ϕ, therefore,
σ(M) ∈ Mods(ϕ). Since σ is arbitrary, the results holds also for σk, k ∈ Z.

Since σ is a permutation over a finite set, there exists n such that σn is the iden-
tity permutation. Now consider σn−1(M), we know σn−1(M) ∈ Mods(ϕ). Hence
σn(M) =M ∈ σ(Mods(ϕ)).

Now, we have to prove that ϕ |= ψ iff ϕ |= σ(ψ). By definition, ϕ |= ψ iff
Mods(ϕ) |= ψ. By Proposition 3.6, this is the case if and only if σ(Mods(ϕ)) |= σ(ψ).

Given that σ is a symmetry of ϕ, by the Claim above, σ(Mods(ϕ)) |= σ(ψ) iff
Mods(ϕ) |= σ(ψ), which by definition means ϕ |= σ(ψ).

As for the basic modal logic case, Theorem 3.6 provides a “cheap” inference
mechanism, but now, it does so for a wide range of modal logics.

3.2.3 Layered Permutations

We now present the notion of layered permutations that, in cases where the modal
language has a tree model property, enables us to develop a more flexible notion
of symmetry. The key idea is to use different permutations at each modal depth.
Allowing symmetries that would not be found otherwise.

We start by presenting a definition of the tree model property [Blackburn et al.,
2001] for coinductive modal models.

Definition 3.31 (Paths in a model). Given a model M, a (finite) path rooted at M
is a sequence π = (M0, m1,M1, . . . , mk,Mk), for mi ∈ MOD where M0 = M, k ≥
0, and Mi ∈ R(mi, wMi−1) for i = 1, . . . , k. For a path π = (M0, m1,M1, . . . , mk,
Mk) we define first(π) = M0, last(π) = Mk, and length(π) = k. For a path π =

(M0, m1,M1, . . . , mk, Mk), a model N and a modality m ∈ MOD, such that N ∈
R(m, wMk), by πmN = (M0, m1, M1, . . . , mk, Mk, m,N) we denote the extension of
π by N through m. We denote the set of all paths rooted atM as Π[M].

A coinductive tree model is a model that has a unique path to every reachable
model (every model in Ext(M)). Formally we can define the class of all coinductive
tree models, CTree, with the following defining condition:

CTree := PTree(M)⇐⇒ last : Π[M] 7→ Ext(M) is bijective.

For example, the unravelling construction (in its version for coinductive modal
models) shown below always defines a model in CTree.

Definition 3.32 (Model Unravelling). Given a model M = 〈w, W, R, V〉, the un-
ravelling of M, (notation T (M)), is the rooted coinductive modal model T (M) =

〈(M), Π[M], R′, V ′〉 where

V ′(π) = V(wlast(π)), for all π ∈ Π[M],

R′(m, π) = {〈π′, Π[M], R′, V ′〉 | exists N ∈ ModsW s.t. πmN = π′, π 6= π′},

3.2 beyond basic modal logic 43

for m ∈ MOD, π ∈ Π[M].

It is easy to verify that given a modelM, its unravelling T (M) is a tree (T (M) ∈
CTree) and, as expected,M and T (M) are bisimilar.

In what follows, we use trees to define a more flexible type of symmetries that
we call layered symmetries. The following gives a sufficient condition ensuring that
layered symmetries also preserve entailment.

Definition 3.33 (Tree model closure property). We say that a class C of models is closed
under trees if for every modelM ∈ C exists a tree model T ∈ C such thatM↔T .

From Definition 3.33 it follows that a class of models C closed under unravellings
(T (M) ∈ C for allM ∈ C) is also closed under trees.

Example 3.10. Trivially the class Mods (i.e., the basic modal logic) is closed under trees,
and so does the class CKAlt1 of models where the accessibility relation is a partial function.
Many classes like CA, C@i and CNOM fail to be closed under trees.

Logics defined over classes closed under trees have an interesting property: there
is a direct correlation between the syntactical modal depth of the formula and the
depth in a tree model satisfying it. In tree models, a notion of layer is induced by
the depth (distance from the root) of the nodes in the model. Similarly, in modal
formulas, a notion of layer is induced by the nesting of the modal operators. A
consequence of this correspondence is that literals occurring at different layers of
the formula are semantically independent of each other [Areces et al., 2000b], i.e.,
at different layers the same literal can be assigned a different value.

Example 3.11. Consider the formula ϕ = (p ∨ q) ∧ (r ∨ ¬2(¬p ∨ q ∨2¬r)) and a tree
modelM of ϕ. Figure 3.3 shows the layers induced by the modal depth of the formula and
the corresponding depth inM.

∧

¬�q r

∨

∨

∨

¬p �q

¬r

Layer 1

Layer 2

Layer 3

Model MFormula ϕ

p := true

p := true

r :=true

p

modal depth = 0

modal depth = 1

modal depth = 2

depth = 0

depth = 1

depth = 2

Figure 3.3: Induced layering on a model and a formula.

The independence between literals at different layers enables us to give a more
flexible notion of a permutation that we call layered permutation. Key to the notion
of layered permutation is that of a permutation sequence.

44 symmetries in modal logics

Definition 3.34 (Permutation Sequence). We define a finite permutation sequence σ̄ as
either σ̄ = 〈〉 (i.e., σ̄ is the empty sequence) or σ̄ = σ : σ̄2 with σ a permutation and σ̄2

a permutation sequence. Alternatively we can use the notation σ̄ = 〈σ1, . . . , σn〉 instead of
σ̄ = σ1: . . . :σn:〈〉.

Let |σ̄| = n be the length of σ̄ (〈〉 has length 0). For 1 ≤ i ≤ n, we write σ̄i for
the subsequence that starts from the ith element of σ̄. For i ≥ n, we define σ̄i = 〈〉. In
particular σ̄ = σ̄1. Given a permutation sequence σ1 : σ̄2 we define head(σ1 : σ̄2) = σ1 and
head(〈〉) = σId, where σId is the identity permutation. We say that a permutation sequence
is consistent if all of its permutations are consistent.

Applying a permutation sequence to a modal CNF formula is defined as follows:

Definition 3.35 (Layered permutation of a formula). Let ϕ be a modal CNF formula
and σ̄ a permutation sequence. We define σ̄(ϕ) recursively as

〈〉(ϕ) = ϕ

(σ1 : σ̄2)(l) = σ1(l) for l ∈ ALIT

(σ1 : σ̄2)([m]C) = [σ1(m)]σ̄2(C)

σ̄(C) = {σ̄(A) | A ∈ C} for C a clause or a formula.

Notice that layered permutations are well defined even if the modal depth of the
formula is greater than the size of the permutation sequence. Layered permutations
let us use a different permutation at each modal depth. This enables symmetries
(layered symmetries) to be found, that would not be found otherwise.

Example 3.12. Consider the formula ϕ = (p∨ [m](p∨¬r))∧ (¬q∨ [m](¬p∨ r)). If we
only consider non-layered symmetries then ϕ has none. However, the permutation sequence
〈σ1, σ2〉 generated by σ1 = (p ¬q)(¬p q) and σ2 = (p ¬r)(¬p r) is a layered symmetry
of ϕ.

As we can see from the previous example, layered permutations let us map the
same literal to different targets at each different modal depth. This additional de-
gree of freedom can result in new symmetries for a given formula.

From now on we can mostly repeat the work we did in the previous section
to arrive to a result similar to Theorem 3.6 but involving permutation sequences,
with one caveat: the obvious extension of the notion of permuted model σ(M) to
layered permutations is ill defined ifM is not a tree. Hence, we need the additional
requirement that the class C of models is closed under trees for the result to go
through.

Definition 3.36 (Layered Permutation of a model). Let σ̄ be a permutation sequence
andM = 〈w, W, R, V〉 a tree model. Then σ̄(M) = 〈w, W, R′, V ′〉, where,

V ′(v) = head(σ̄)(LV(v)) ∩ ATOM for all v ∈W, and,

R′(m, v) = {σ̄2(N) | N ∈ R(head(σ̄)(m), v)} for all m ∈ MOD and v ∈W.

For M a set of tree models, σ̄(M) = {σ̄(M) | M ∈ M}.

We can now extend the notion of σ-simulation to permutation sequences.

3.2 beyond basic modal logic 45

Definition 3.37 (σ̄-simulation). Let σ̄ be a permutation sequence. A σ̄-simulation be-
tween models M = 〈w, W, R, V〉 and M′ = 〈w′, W ′, R′, V ′〉 is a family of relations
Zσ̄i ⊆ Ext(M)× Ext(M′), 1 ≤ i, that satisfies the following conditions:

i) MZσ̄1M′. [Root]

ii) If wZσ̄i w
′ then l ∈ LV(w) iff head(σ̄i)(l) ∈ LV′(w′). [Atomic Harmony]

iii) IfMZσ̄iM′ and N ∈ R(m, w) then NZσ̄i+1N ′ for some [Zig]
N ′ ∈ R′(head(σ̄i)(m), w′).

iv) IfMZσ̄iM′ and N ′ ∈ R′(m, w′) then NZσ̄i+1N ′ for some [Zag]
N ∈ R(head(σ̄i)

−1(m), w).

We say that two models M and M′ are σ̄-similar (notation M�σ̄M′), if there is a
σ̄-simulation between them.

An important remark about the previous definition is that it does not make any
assumption about the size of the permutation sequence. In fact, it is well defined
even if the permutation sequence at hand is the empty sequence. In that case, it
just behaves as the identity permutation at each layer, therefore the relation defines
a bisimulation between the models.

Now we are ready to prove the main result concerning layered symmetries and
entailment.

Theorem 3.7. Let ϕ and ψ be modal formulas and let σ̄ be a consistent permutation
sequence, and let C be a class of models closed under trees. If σ̄ is a symmetry of ϕ then for
any ψ we have that ϕ |=C ψ if and only if ϕ |=C σ̄(ψ).

Proof. We first show that under the hypothesis of the theorem the following two
properties hold.

Claim 1: ModsC∩CTree(ϕ) = σ̄(ModsC∩CTree(ϕ)).

The argument is the same as for the Claim in Theorem 3.6 but using permutation
sequences.

Claim 2: ModsC(ϕ) |=C ϕ iff ModsC∩CTree(ϕ) |=C ϕ.

The left-to-right direction is trivial by the fact that ModsC∩CTree(ϕ) ⊆ ModsC(ϕ).
For the other direction, assume ModsC∩CTree(ϕ) |=C ϕ and ModsC(ϕ) 6|=C ϕ. Then
exists M ∈ ModsC(ϕ) such that M 6|=C ϕ. But we know that M↔T , and T ∈
ModsC∩CTree(ϕ). Hence T |=C ϕ which contradicts our assumption.

It remains to prove that ϕ |=C ψ if and only if ϕ |=C σ̄(ψ).
By definition, ϕ |=C ψ if and only if ModsC(ϕ) |=C ψ. By Claim 2, this is case if

and only if ModsC∩CTree(ϕ) |=C ψ. By the layered version of Proposition 3.6, this is
the case if and only if σ̄(ModsC∩CTree(ϕ)) |=C σ̄(ψ). Given that σ̄ is a symmetry of
ϕ, by Claim 1, σ̄(ModsC∩CTree(ϕ)) |=C σ̄(ψ) if and only if ModsC∩CTree(ϕ) |=C σ̄(ψ),
which by Claim 2 is the case if and only if ModsC(ϕ) |=C σ̄(ψ) which by definition
means that ϕ |=C σ̄(ψ).

46 symmetries in modal logics

3.3 summary

In this chapter we have presented the theoretical foundations for exploiting sym-
metries in modal logics.

First we showed two interesting results for the basic modal logic: that symmetries
partition the model space into equivalence classes, and that symmetries can be used
as an inference mechanism. Both results show that symmetries in the basic modal
logic have the same behavior as symmetries in propositional logic. This is expected,
as we are dealing with symmetries of propositional literals.

We then extended the results to a broad range of modal logics using the coinduc-
tive framework and introduced a more flexible notion of symmetry, i. e., layered
symmetries, for modal logics enjoying the tree model property.

It now remains to see how to profit from these theoretical properties in a modal
prover.

4
S AT I S F I A B I L I T Y M O D U L O T H E O R I E S

In this chapter we introduce the basic notions of Satisfiability Modulo Theories
(SMT). We begin by presenting the motivations behind SMT (Section 4.1). Then
we introduce the necessary definitions about first-order logic and first-order the-
ories (Section 4.2). We continue with a bird-eye-view on the lazy approach to
SMT, describing its main features (Section 4.3). Finally, we present a survey on
symmetries in SMT (Section 4.4). For a comprehensive treatment and for refer-
ences to the literature on the subject, we refer the reader to [Sebastiani, 2007;
Barrett et al., 2009] on which this chapter is based.

4.1 motivation

Satisfiability, i. e., the problem of determining whether a formula expressing a
constraint has a solution, is one of the fundamental problems in theoretical com-
puter science. Satisfiability problems, also known as Constraint Satisfaction Prob-
lems (CSP), arise in many diverse areas ranging from hardware and software veri-
fication to planning.

Propositional Satisfiability (SAT) (also known as Boolean Satisfiability) is one of
the most investigated constraint satisfaction problems. In SAT the goal is to decide
whether a propositional formula (or SAT formula) is satisfiable, i. e., whether it
can become true, by assigning truth values to its variables. The tools implementing
the specialized algorithms to check the satisfiability of a propositional formula are
called SAT solvers.

During the last decade, SAT have received a lot of attention from the research
community. This led to impressive improvements in the efficiency of the available
SAT solvers, and many applications in artificial intelligence and formal methods for
hardware and software development have greatly benefited from those advances.

However, some problems are more naturally described in more expressive log-
ics such as first-order logic. Intuitively one might think these problems could be
handled by general-purpose first-order theorem provers, e. g., provers based on the
resolution calculus, but usually this is not the case. The main reason for this is
that many applications do not require general first-order satisfiability, but rather
satisfiability with respect to some background theory that fixes the interpretations of
certain predicate and function symbols.

We call Satisfiability Modulo Theories (SMT) the problem of deciding the satisfia-
bility of formulas with respect to some background theory T .

Many efficient decision procedures have been developed for many decidable
fragments of first-order logic since the pioneering work of Nelson and Oppen [Nel-
son and Oppen, 1979; Nelson and Oppen, 1980; Oppen, 1980a; Oppen, 1980b] and
Shostak [Shostak, 1979; Shostak, 1984]. However most of them can only check the
satisfiability of conjunctions of atomic expressions, while many applications re-
quire to check the satisfiability of not only atomic expressions in a given theory but

47

48 satisfiability modulo theories

also of Boolean combinations of them. This makes it necessary to efficiently com-
bine heavy propositional reasoning with theory-specific reasoning. Therefore, SMT
research focuses on how to build decision procedures (or SMT solvers) efficiently
combining propositional and theory-specific reasoning.

Currently, two major approaches for implementing SMT solvers exists: the eager
and the lazy approaches.

The eager approach [Velev and Bryant, 1999; Bryant et al., 2002; Strichman, 2002;
Strichman et al., 2002; Seshia et al., 2003] encodes the problem (an SMT formula)
into an equisatisfiable propositional formula using enough relevant consequences
of the theory of interest, and feeds the resulting formula to a SAT solver. In princi-
ple this approach can be used with any theory with a decidable ground satisfiability
problem. As advantages of this approach, we can mention that it can be used with
any off-the-shelf SAT solver, and that the formula could be solved quickly since
the translation imposes upfront all theory-specific constraints on the search space
of the SAT solver. A drawback of this approach is that the cost of the translation
can blow-up depending on the theory, and that its viability depends on the SAT
solvers ability to quickly process relevant theory-specific information encoded into
large SAT formulas.

The lazy approach combines theory-specific decision procedures (known as T -
solvers) with an efficient SAT solver so that the joint system (i. e., SAT solver +
T -solvers) is capable of handling (quantifier-free) first-order formulas with an ar-
bitrary Boolean structure. By using theory-specific solvers, one can use whatever
specialized algorithms and data structures are best for the theory in question, lead-
ing to a better performance of the system. Currently, the lazy approach underlies
most of the state-of-the-art SMT tools.

Recently there has been a great deal of interest on the foundational and practical
aspects of SMT due to its applications in many domains (e. g., planning [Wolf-
man and Weld, 1999], temporal reasoning [Armando et al., 2000], formal verifi-
cation, including verification of pipelines and of circuits [Burch and Dill, 1994;
Parthasarathy et al., 2004; Bozzano et al., 2006a], of proof obligations in software
systems [Déharbe and Ranise, 2003; Franzén, 2006], of compiler optimizations [Bar-
rett et al., 2005], of real-time systems [Audemard et al., 2002b; De Moura et al.,
2002a; Audemard et al., 2005], etc). Also many SMT solvers have been developed
in academia and industry (e. g., Z3 [De Moura and Bjørner, 2008], CVC4 [Barrett et
al., 2011], veriT [Bouton et al., 2009], MathSAT [Cimatti et al., 2013], etc.).

4.2 background

In this section we introduce the needed definitions for the rest of the chapter.

4.2.1 First-order Logic

In what follows we work in the context of First-Order Logic (FOL) with equal-
ity [Ebbinghaus et al., 1994; Enderton, 2001].

Definition 4.1 (Syntax). Let Σ = 〈V ,F ,P〉 be a first-order signature such that V is a
countable non-empty set of variables, F is a countably infinite set of function symbols and

4.2 background 49

P is a countably infinite set of predicate symbols. Each function symbol f and predicate
symbol p has associated with it a non-negative number called arity. We call the 0-arity
function symbols constant symbols and usually denote them by the letters a, b, possibly
with subscripts. Similarly, we call the 0-arity predicate symbols propositional symbols,
and usually denote them by the letters A, B, possibly with subscripts. The set of predicate
symbols is assumed to contain a binary predicate = with arity 2.
The set of Σ-terms is the smallest set defined by:

t ::= x | f (t1, . . . , tn)

where x ∈ V , f ∈ F with arity n and t1, . . . , tn are Σ-terms.
The set of Σ-formulas is defined by:

ϕ ::= p(t1, . . . , tn) | ¬ϕ | ϕ1 ∨ ϕ2 | ∀x.ϕ1 | ∃x.ϕ1

where x ∈ V , p ∈ P of arity n, t1, . . . , tn are Σ-terms, and ϕ1, ϕ2 are Σ-formulas. We will
also use classical connectives such as ∧,→ and↔ taken to be defined in the usual way. We
say a variable x ∈ V is free in a Σ-formula ϕ if it is not in the scope of a quantifier (∀ or ∃),
and bound otherwise. A sentence is a Σ-formula without free variables. A quantifier-free
Σ-formula is a Σ-formula not containing ∃ or ∀. A ground Σ-formula is a Σ-formula
not containing variables (neither free nor bound).

A Σ-atom is a formula of the form p(t1, . . . , tn) where p is a predicate symbol. If
p is a 0-arity predicate symbol we sometimes call it a Boolean atom. A Σ-literal is
either a Σ-atom (a positive literal) or its negation (a negative literal). A Σ-clause is a
disjunction l1 ∨ . . .∨ ln of Σ-literals. A CNF formula is a conjunction c1 ∧ . . .∧ cn of
zero or more clauses ci.

Formulas are given a meaning, i. e., a truth value from the set {true, f alse}, by
means of (first-order) structures.

Definition 4.2 (Structures). A structure (or Σ-structure) I for a signature Σ = 〈V ,F ,P〉
is a pair I = 〈D, (_)I 〉 where D is a non-empty set called the domain and (_)I is a map-
ping such that, for each variable x ∈ V, xI ∈ D, for each function symbol f with arity n ,
f I is a total function from Dn to D and for each predicate symbol p with arity n, pI is a
subset of Dn. By extension, the interpretation of a term t is given by:

I [x] = xI

I [f (t1, . . . , tn)] = f I (I [t1], . . . , I [tn])

We use I{x 7→ v} to denote a structure identical to I except in that the variable x is
interpreted as v ∈ D.

We now define the notion of a Σ-formula ϕ being satisfied in a Σ-structure I .

Definition 4.3 (Semantics). Let ϕ be a Σ-formula and I a Σ-structure. The satisfaction
relation I |= ϕ is defined as

I |= p(t1, . . . , tn) iff (I [t1], . . . , I [tn]) ∈ pI ,

I |= ¬ϕ iff I 6|= ϕ,

I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ,

I |= ∃x.ϕ iff I{x 7→ v} |= ϕ for some v ∈ D,

I |= ∀x.ϕ iff I{x 7→ v} |= ϕ for all v ∈ D.

50 satisfiability modulo theories

A Σ-formula ϕ is satisfiable if there exists a Σ-structure I such that I |= ϕ, and
it is valid if for all Σ-structures I , I |= ϕ. If I satisfies ϕ we call it a model of ϕ. A
Σ-structure I satisfies a set of Σ-formulas S (I |= S) if I |= ϕ for every ϕ ∈ S.

4.2.2 First-order Theories

In SMT, we are interested in models belonging to a given theory T constraining the
interpretation of the symbols of Σ.

Definition 4.4 (Σ-theory). A Σ-theory is a collection of sentences over a signature Σ.
A Σ-structure I is a model of a Σ-theory T if I satisfies every sentence in T . Given a
Σ-theory T and a Σ-formula ϕ, we say ϕ is satisfiable modulo T (or T -satisfiable) if
T ∪ {ϕ} is satisfiable. We use I |=T ϕ to denote I |= {ϕ} ∪ T .

In the context of SMT, sometimes a Σ-theory T is defined as a class of structures,
those satisfying T , and we say a Σ-formula ϕ is satisfiable modulo T if and only if
there exists a Σ-structure I in T such that I |= ϕ.

Remark. From now on we restrict our attention to quantifier-free Σ-formulas. Hence-
forth, for simplicity and if not specified otherwise, we may omit the “Σ” prefix for
term, formula, theory, structure, etc. Moreover, by “formulas”, “atoms” and “liter-
als” we implicitly refer to quantifier-free formulas, atoms and literals respectively.

Given a set Γ of formulas and a formula ϕ, we write Γ |=T ϕ to denote Γ∪T |= ϕ.
Two formulas ϕ and ψ are T -equisatisfiable if and only if ϕ is T -satisfiable if and
only if ψ is T -satisfiable.

Remark. From now on we will often use the prefix “T -” to denote “in the theory T ”:
e. g., we call a “T -formula” a formula in the signature of T , “T -model” a model in
T , and so on.

All theories we consider are first-order theories with equality, which means that
the equality symbol = is a predefined predicate and it is always interpreted as
the identity in the underlying domain. Consequently, = is interpreted as a relation
that is reflexive, symmetric, transitive and it is also a congruence. Since the equality
symbol is a predefined predicate, we will not include it explicitly in any signature
Σ considered from now on.

Two key concepts concerning first-order theories are those of a convex and stably-
infinite theory.

Definition 4.5 (Convex and Stably-infinite Theories). A conjunction Γ of T -literals
in a theory T is convex if and only if for each disjunction

∨n
i=1 xi = yi where xi, yi are

variables and i = 1, . . . , n we have that Γ |=T
∨n

i=1 xi = yi if and only if Γ |=T xi = yi
for some i ∈ {1, . . . , n}; a theory T is convex if and only if all the conjunctions of literals
are convex in T . A theory T is stably-infinite if and only if for each T -satisfiable formula
ϕ, there exists a model of T whose domain is infinite and that satisfies ϕ.

Notice that any convex theory whose models are non-trivial, i. e., the domains of
the models have all cardinalities strictly greater than one, is stably-infinite.

These concepts are key when studying the computational properties of a theory
and when combining two or more theories.

4.2 background 51

Example 4.1 ([Sebastiani, 2007]). The theory of Linear Arithmetic on the integers
(LA(Z)) is non-convex. To see this, consider the set Γ = {x− z ≥ 0, x− z ≤ 1, x0− z =

0, x1 − z = 1}. Thus, Γ |=LA(Z) ((x = x0) ∨ (x = x1)), but Γ 6|=LA(Z) (x = x0) and
Γ 6|=LA(Z) (x = x1).

Other two important notions in SMT are those of propositional abstraction and
refinement.

Definition 4.6 (Propositional Abstraction and Refinement). A propositional abstrac-
tion is a a bijective function T 2B (“Theory-to-Boolean”) such that, T 2B maps proposi-
tional symbols (Boolean atoms) into themselves and non-Boolean T -atoms into fresh propo-
sitional symbols, so that two atom instances in ϕ are mapped into the same propositional
symbol if and only if they are syntactically identical, and is homomorphic with respect to
the logical operators. Its inverse B2T (“Boolean-to-Theory”), is called a refinement.

Example 4.2 ([Sebastiani, 2007]). Consider the formula ϕ below. Its propositional ab-
straction is given by T 2B(ϕ).

ϕ := {¬(2x2 − x3 > 2) ∨ A1} T 2B(ϕ) := {¬B1 ∨ A1}
∧ {¬A2 ∨ (x1 − x5 ≤ 1)} ∧ {¬A2 ∨ B2}
∧ {(3x1 − 2x2 ≤ 3) ∨ A2} ∧ {B3 ∨ A2}
∧ {¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1} ∧ {¬B4 ∨ ¬B5 ∨ ¬A1}
∧ {A1 ∨ (3x1 − 2x2 ≤ 3)} ∧ {A1 ∨ B3}
∧ {(x2 − x4 ≤ 6) ∨ (x5 = 5− 3x4) ∨ ¬A1} ∧ {B6 ∨ B7 ∨ ¬A1}
∧ {A1 ∨ (x3 = 3x5 + 4) ∨ A2} ∧ {A1 ∨ B8 ∨ A2}

Definition 4.7 (Truth Assignment). We call a truth assignment µ for a T -formula ϕ

a truth value assignment to the T -atoms of ϕ. A truth assignment is total if it assigns
a value to all atoms in ϕ, partial otherwise. Syntactically identical instances of the same
T -atom are always assigned identical truth values; syntactically different T -atoms, e. g.,
(t1 ≥ t2) and (t2 ≤ t1), are treated differently and may thus be assigned different truth
values. Given two truth assignments µ1 and µ2, if µ2 ⊆ µ1, then we say µ1 extends
µ2 and that µ2 subsumes µ1. We use the Greek letters µ, η to denote truth assignments.
We represent a truth assignment µ for ϕ as a set of T -literals (e. g., {α1, . . . , αn}) and
sometimes we write them as the conjunction of its literals (e. g., α1 ∧ . . . ∧ αn).

A total truth assignment µ for ϕ propositionally satisfies ϕ, written µ |=p ϕ, if and
only if T 2B(µ) |= T 2B(ϕ).A partial truth assignment µ propositionally satisfies ϕ if
and only if every total truth assignment extending µ propositionally satisfies ϕ.

Intuitively, if we consider a T -formula ϕ as a propositional formula in its atoms,
|=p is the standard satisfiability in propositional logic. Thus, for every ϕ1 and ϕ2,
we say that ϕ1 |=p ϕ2 if and only if µ |=p ϕ2 for every µ such that µ |=p ϕ1. We also
say that |=p ϕ (ϕ is propositionally valid) if and only if µ |=p ϕ for every assignment
µ for ϕ. Thus ϕ1 |=p ϕ2 if and only if |=p ϕ1 → ϕ2, and |=p ϕ if and only if ¬ϕ is
propositionally unsatisfiable.

Notice that |=p is stronger than |=T , i. e., if ϕ1 |=p ϕ2, then ϕ1 |=T ϕ2, but not
vice-versa, e. g., (x1 ≤ x2)∧ (x2 ≤ x3) |=LA (x1 ≤ x3), but (x1 ≤ x2)∧ (x2 ≤ x3) 6|=p

(x1 ≤ x3).

Example 4.3. Consider the formula ϕ of Example 4.2. The partial truth assignment µ =

{¬B1,¬A2, B3,¬B5, B6, B8} propositionally satisfies ϕ (i. e., µ |=p ϕ).

52 satisfiability modulo theories

4.2.2.1 Relevant Theories

We now briefly introduce some theories of interest. As mentioned previously, all
the theories we consider are first-order theories with equality, in which “=” is a
predefined predicate and it is always interpreted as the identity on the underlying
domain. We assume that equality axioms and congruence axioms are implicit in all
theories, for every function symbol f and predicate symbol p.

equality and uninterpreted functions . The theory of Equality and Un-
interpreted Functions (EUF) is the quantifier-free first-order theory with equality
with no restrictions on Σ. Semantically, there are no axioms other than the equality
axioms and the congruence axioms.. If Σ contains no uninterpreted functions or
predicates, then congruence axioms are not needed, and we denote the resulting
restricted theory by E . EUF is stably-infinite and convex. EUF -satisfiability of sets
of quantifier-free literals is decidable in polynomial time using a procedure known
as congruence closure [Downey et al., 1980; Bachmair et al., 2003; Nieuwenhuis and
Oliveras, 2005b].

linear arithmetic . The theory of Linear Arithmetic (LA) on the rationals
(LA(Q)) and on the integers (LA(Z)) is the quantifier-free first-order theory with
equality whose atoms are written in the form (a1 · x1 + . . . + an · xn ./ a0) such that
./∈ {≤,<, 6=,=,≥,>}, the ai’s are (interpreted) constant symbols, each labeling a
value in Q and Z respectively. The atomic expressions are interpreted according to
the standard semantics of linear arithmetic on Q and Z respectively.
LA(Q) is stably-infinite and convex. LA(Q)-satisfiability of sets of quantifier-

free literals is decidable in polynomial time. The main algorithms use a variant
of the Simplex and Fourier-Motzkin algorithms [Borning et al., 1997; Dutertre and
De Moura, 2006].
LA(Z) is stably-infinite and non-convex. LA(Z)-satisfiability of sets of quanti-

fier-free literals is decidable and NP-complete. Many algorithms exist, involving
techniques like Euler’s reduction, Gomory-cuts application, Fourier-Motzkin algo-
rithms and branch-and-bound [Land and Doig, 1960].

difference logic . The theory of differences (DL) (or difference logic) on the ratio-
nals (DL(Q)) and the integers (DL(Z)) is the sub-theory of LA(Q) (resp. LA(Z))
whose atoms are written in the form (x1− x2 ./ a) such that ./∈ {≤,<, 6=,=,≥,>},
and a is an (interpreted) constant symbol labeling one value in Q and Z, respec-
tively.
DL(Q) is stably-infinite and convex. DL(Q)-satisfiability of sets of quantifier-

free difference inequalities is decidable and polynomial. Thanks to the convexity
of DL(Q), the DL(Q)-satisfiability of sets of quantifier-free difference inequali-
ties, equalities and disequalities is also polynomial. The main algorithms encode
DL(Q)-satisfiability of difference inequalities into the problem of finding negative
cycles into a weighted oriented graph called constraint graph [Cherkassky and Gold-
berg, 1999].
DL(Z) is stably-infinite and non-convex. As with DL(Q), DL(Z)-satisfiability

of sets of quantifier-free difference inequalities is decidable and polynomial, as be-
fore, adding equalities does not affect the complexity of the problem. Instead, due

4.2 background 53

to the non-convexity of DL(Z), DL(Z)-satisfiability of sets of quantifier-free dif-
ference inequalities, equalities and disequalities, is NP-complete. Once the problem
is rewritten as a set of difference inequalities, the algorithms used for DL(Z) are
the same as for DL(Q) [Cherkassky and Goldberg, 1999; Cotton and Maler, 2006;
Nieuwenhuis and Oliveras, 2005a].

bit vectors . The theory of fixed-width bit vectors (BV) is a first-order theory
with equality that aims at representing Register Transfer Level (RTL) hardware
circuits, so that components such as data paths or arithmetical sub-circuits are con-
sidered as entities as a whole, rather than being encoded into purely propositional
sub-formulas (“bit-blasting”). BV can also be used to encode software verification
problems [Ganesh and Dill, 2007]. In BV terms indicate fixed-width bit vectors,
and are built from variables (e. g., x[32] indicates a vector x of 32 bits) and constants
(e. g., 0[16] denotes a vector of 16 0’s) by means of interpreted functions representing
standard RTL operators: word concatenation (e. g., x[16] ◦ y[16]), sub-word selection
(e. g., (x[32][20 : 5])[16]), modulo-n sum and multiplication (e. g., x[32] +32 y[32] and
x[32] ·32 y[32]), bitwise-operators andn, orn, xorn, notn, left and right shift �n,�n

(e. g., x[32] �4). Atomic expressions can be built from terms by applying interpreted
predicates like ≤n,<n (e. g., x[32] ≤32 y[32]) and equality.
BV is non-convex and non-stably infinite. BV-satisfiability of sets of quantifier-

free literals is decidable and NP-complete [Fallah et al., 1998; Johannsen and Drech-
sler, 2002].

arrays . The theory of arrays (AR) aims at modeling the behavior of arrays/mem-
ories. The signature consists of two interpreted functions write and read, such that
write(a, i, e) represents (the state of) the array resulting from storing an element
e into the location of address i of an array a, and read(a, i) represents the element
contained in the array a at location i. AR is formally characterized by the following
axioms:

∀a.∀i.∀e.(read(write(a, i, e), i) = e), (4.1a)

∀a.∀i.∀j.∀e.((i 6= j)→ read(write(a, i, e), j) = read(a, j)), (4.1b)

∀a.∀b.(∀i.(read(a, i) = read(b, i))→ (a = b)). (4.1c)

(4.1a) and (4.1b), called McCarthy’s axioms, characterize the intended meaning
of write and read, whilst (4.1c), called the extensionality axiom, requires that, if two
arrays contain the same values in all locations, then they must be the same array. We
call extensional to a theory of arrays including the axiom (4.1c), and non-extensional
otherwise. Although many practical problems do not require extensionality, axiom
(4.1c) is explicitly required for some software verification problems in order to
represent assignments or comparisons between arrays.
AR-satisfiability of sets of literals is decidable and NP-complete [Stump et al.,

2001].

lists . The theory of lists (LI) aims at modeling the behavior of lists. The signa-
ture consists in the three interpreted function symbols cons, car, cdr representing

54 satisfiability modulo theories

the standard LISP constructor and selectors for lists. LI is formally characterized
by the following axioms:

∀x.(cons(car(x), cdr(x)) = x), (4.2a)

∀x.∀y.(car(cons(x, y)) = x), ∀x.∀y.(cdr(cons(x, y)) = y), (4.2b)

∀x.(car(x) 6= x), ∀x.(cdr(x) 6= x), ∀x.(car(car(x)) 6= x), . . . (4.2c)

(4.2a) and (4.2b), called construction and selection axioms respectively, characterize
the intended meaning of cons, car and cdr, whilst (the infinite sequence of) the
acyclicity axioms (4.2c) force the list to be acyclic.
LI-satisfiability of sets of literals is decidable in linear time [Oppen, 1980b].

4.3 lazy smt

So far we have introduced the basic theoretical aspects of SMT and briefly described
some of the most interesting theories in practice. We now present the basic technical
aspects of lazy SMT.

Lazy SMT is the dominating approach to SMT and underlies most state-of-the-
art SMT tools. It is based on the integration of a SAT solver and one or more theory
solvers (T -solvers). The former handles the Boolean component of reasoning by
enumerating truth assignments satisfying the propositional abstraction of the input
formula, while the latter handles the theory-specific one, checking the consistency
in the theory T of the set of literals corresponding to the assignments enumerated
by the SAT solver (i. e., that, for a set of literals Γ, Γ 6|=T ⊥).

The following result assures the soundness of this integration scheme.

Definition 4.8. We say that a collectionM := {µ1, . . . , µn} of (possibly partial) assign-
ments propositionally satisfying ϕ is complete if and only if,

|=p ϕ↔
∨

µj∈M
µj.

M := {µ1, . . . , µn} is complete in the sense that, for every total assignment η

such that η |=p ϕ, there exists µj ∈ M such that µ ⊆ η. Thus M can be seen
as a compact representation of the whole set of total assignments propositionally
satisfying ϕ.

Proposition 4.1. Let ϕ be a T -formula and letM := {µ1, . . . , µn} be a complete collec-
tion of truth assignments propositionally satisfying ϕ. Then, ϕ is T -satisfiable if and only
if µj is T -satisfiable for some µj ∈ M.

Proposition 4.1 provides the theoretical basis for integrating SAT solvers and T -
solvers. It tells us that the problem of establishing the T -satisfiability of ϕ can be
decomposed into two orthogonal components: one Boolean component, consisting
in searching for (up to a complete set of) propositional models µ’s proposition-
ally satisfying ϕ, and one theory-dependent component, consisting in checking the
T -consistence of µ (i. e., for the set of T -literals in µ). This suggests that an SMT
solver can be seen as a combination of two basic components: a Truth Assignment
Enumerator and a Theory Solver for T .

4.3 lazy smt 55

We call a Truth Assignment Enumerator (from now on Enumerator) a total func-
tion that takes as input a T -formula ϕ and returns a complete collection M :=
{µ1, . . . , µn} of assignments propositionally satisfying ϕ. We call a Theory Solver for
T (T -solver) a procedure that takes as input a collection of T -literals µ and decides
whether µ is T -satisfiable; optionally it can return a T -model satisfying µ, or Null
if there is none.

4.3.1 SAT Solvers

A SAT solver is a tool that implements a decision procedure to decide whether an
input propositional formula ϕ is satisfiable, returning a satisfying assignment if
that is the case.

Most state-of-the-art SAT solvers implement decision procedures that are evo-
lutions of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [Davis and
Putnam, 1960; Davis et al., 1962] which are non-recursive and based on efficient
data structures. Figure 4.1 shows a high-level schema of a modern conflict-driven
DPLL procedure (from now on a DPLL engine).

DPLL (ϕ , µ) {
i f (preprocess (ϕ , µ) == CONFLICT)

return UNSAT;
while (1) {

decide_next_branch (ϕ , µ) ;
while (1) {

s t a t u s = deduce (ϕ , µ) ;
i f (s t a t u s == SAT)

return SAT ;
e lse i f (s t a t u s == CONFLICT) {

b l e v e l = a n a l y z e _ c o n f l i c t (ϕ , µ) ;
i f (b l e v e l == 0)

return UNSAT;
e lse

bactrack (b level , ϕ , µ) ;
}
e lse break ; } } }

Figure 4.1: Schema of a conflict-driven DPLL procedure [Sebastiani, 2007].

The input formula ϕ is in CNF; the assignment µ is initially empty and is up-
dated in a stack-based manner. The procedure tries to build a satisfying assign-
ment based on five main operations: preprocess, decide_next_branch, deduce,
analyze_conflict, and backtrack.

- preprocess simplifies ϕ into a simpler and equisatisfiable formula, and up-
dates the assignment µ if it is needed.

- decide_next_branch chooses an unassigned literal l from ϕ according to
some heuristic criterion, and adds it to µ. This operation is called a decision, l
a decision literal, and the number of decision literals in µ after this operation
is called the decision level of l.

56 satisfiability modulo theories

- deduce iteratively deduces literals l deriving from the current assignments,
i. e., ϕ ∧ µ |= l, and updates ϕ and µ accordingly. This step is repeated until
either µ satisfies ϕ, or µ falsifies ϕ, or no more literals l can be deduced,
returning Sat, Conflict and Unknown respectively.

- If a conflict is detected, analyze_conflict detects the subset η of µ that
caused the conflict, called the conflict set and the decision level blevel to
backtrack.

- backtrack adds ¬η to ϕ (learning) and backtracks up to blevel (backjumping),
updating ϕ and µ accordingly.

4.3.2 Theory Solvers

A theory solver (from now on a T -solver) is a procedure that establishes whether a
given finite set (or conjunction) of quantifier-free T -literals is T -satisfiable or not.

Many algorithms have been developed for many theories since the pioneering
work of Nelson, Oppen and Shostak [Nelson and Oppen, 1979; Shostak, 1979;
Nelson and Oppen, 1980; Shostak, 1984].

To achieve its maximum efficiency on an SMT solver, two aspects of a T -solver
are of key importance: its efficiency in time and memory, and the effectiveness of its
interaction with the DPLL engine. The former strongly depends on the theory T ,
while the latter depends on the capability of a T -solver of producing, exchanging
and exploiting fruitful information with the DPLL engine.

In particular, the following features are crucial for a T -solver to be effectively
used within a lazy SMT solver:

- Model Generation: It should be able to produce a T -model if it is invoked in a
T -consistent set µ.

- Conflict set generation: When invoked on a T -inconsistent set µ, it should be
able to produce the (possibly minimal) subset η of µ that has caused its in-
consistency. The set η is called a theory conflict set of µ.

- Deduction of unassigned literals: It should be able to perform deductions of the
form η |=T l (when invoked on a T -consistent set µ) where η ⊆ µ and l is a
literal on a not-yet-assigned atom in ϕ.

- Deduction of interface equalities: If µ is T -consistent, the T -solver should be able
to perform deductions of the form µ |=T e (if T is convex) or µ |=T

∨
j ej (if

T is not convex) where e, e1, . . . , en are equalities between variables or terms
occurring in atoms in µ. Because typically e, e1, . . . , en are interface equalities,
we call these forms of deductions eij-deductions, and we say that a T -solver is
eij-deduction-complete if it can perform all such possible deductions.

- Incrementality: It should be able to “remember” its computation status from
one call to the next, so that, whenever it is given as input a set µ1 ∪ µ2 such
that µ1 has just been proved T -satisfiable, it avoids restarting the computation
from scratch.

4.3 lazy smt 57

- Backtrackability: It should be able to undo steps and return to a previous state
in an efficient manner.

4.3.3 Integration of a DPLL Engine and T -solvers

There are many representations and variants of SMT procedures that integrate a
DPLL engine and T -solvers. However, they all share some common aspects.

Figure 4.2 shows a basic architectural schema of a typical lazy DPLL-based SMT
procedure, (from now on T -DPLL). The T -DPLL procedure takes as input a T -
formula ϕ, and builds its propositional abstraction ϕp =de f T 2B(ϕ), then feeding
it as input to the Enumerator.

Sat/Unsat

Sat/Unsat

Enumerator

[I: model]

ϕp: boolean formula
[Cp: boolean clauses]
[lp: boolean literals] [µ′: conflict set]

[η |=T l: deductions]

[I: model]

T -solver

ϕ: T -formula

µ: list of T -literals

µp: boolean assignment

Figure 4.2: Basic architectural schema of a lazy SMT procedure [Sebastiani, 2007].

The Enumerator enumerates truth assignments in a complete collection {µp
1 , . . . ,

µ
p
n} for ϕp. For every generated µp, T -DPLL feeds its corresponding list of T -

literals µ =de f B2T (µp) to the T -solver, dropping the Boolean literals as they do
not affect the T -satisfiability of µ. If µ is satisfiable, the procedure returns Sat,
possibly returning a model I . If not, the Enumerator generates a new assignment.
The process is repeated until either one T -satisfiable assignment is found (i. e., ϕ

is T -satisfiable) or no more assignments are generated by the Enumerator (i. e., ϕ is
not T -satisfiable).

If µ is T -unsatisfiable the T -solver can return one or more theory conflict set(s) µ′

and Boolean clauses like Cp =de f T 2B(¬µ′) can be passed back to the Enumerator.
If µ is T -satisfiable, the T -solver can return one or more deduction(s) η |=T l
and return the Boolean clause Cp =de f T 2B(¬η ∨ l) and deduced Boolean literals
lp =de f T 2B(l) to the Enumerator. In both cases, the returned Boolean clauses help
the Enumerator to drive its Boolean search.

Depending on how we integrate the DPLL engine, we can classify T -DPLL pro-
cedures into two main categories: offline procedures and online procedures.

offline procedures In the offline procedures [Barrett et al., 2002; De Moura et
al., 2002b], the DPLL engine is used as a black-box that is invoked from scratch each
time an assignment is found T -unsatisfiable, therefore acting as a non-redundant
Enumerator. Figure 4.3 shows a simplified schema for offline procedures.

For an input formula ϕ, its propositional abstraction ϕp is computed and given
to the DPLL engine. If the DPLL engine decides that ϕp is unsatisfiable, then ϕ

is T -unsatisfiable and the work is done. If the DPLL engine returns a satisfying

58 satisfiability modulo theories

T−DPLL(ϕ) {
ϕp = T 2B(ϕ) ;
while (DPLL(ϕp , µp) == SAT) {

i f (T−s o l v e r (B2T (µp)) == SAT)
return SAT ;

ϕp = ϕp ∧ ¬µp ;
}
return UNSAT; }

Figure 4.3: Offline integration schema [Sebastiani, 2007].

assignment µp then B2T (µp) is given as input to the T -solver. If B2T (µp) is T -
consistent (T -satisfiable), then ϕ is T -consistent. If not, ¬µp is added as a clause to
ϕp, and the SAT solver is restarted from scratch on the resulting formula. A more
efficient integration could be achieved if the T -solver is able to return the conflict
set η that caused the T -inconsistency of B2T (µp), in which case B2T (¬η) is added
as a clause to ϕ instead of ¬µp. As typically the former is much smaller than the
latter, this drastically reduces the search space.

online procedures In the online procedures [Giunchiglia and Sebastiani,
1996a; Wolfman and Weld, 1999; Armando et al., 2000; Audemard et al., 2002a;
Flanagan et al., 2003; Ganzinger et al., 2004; Bozzano et al., 2006b], the DPLL en-
gine is modified to be used directly as an enumerator of truth assignments, whose
T -satisfiability is checked by a T -solver.

Figure 4.4 shows a simplified schema for an online T -DPLL. Similar to reg-
ular DPLL engine, a T -DPLL procedure is based on five main operations: T -
preprocess, T -decide_next_branch, T -deduce, T -analyze_conflict and T -back-
track.

- T -preprocess combines Boolean preprocessing steps with theory rewriting
steps on the T -literals of ϕ to simplify it into a simpler equisatisfiable formula,
and updates µ if it is the case.

- T -decide_next_branch plays the same role as decide_next_branch in DPLL,
but it may take into consideration also the semantics in T of the literals to
select.

- T -deduce, similar to the deduce operation in DPLL, implements an extended
notion of deduction of literals, performing not only Boolean deduction (µp ∧
ϕp |=p lp) but also theory deduction (B2T (µp) |=T B2T (lp)), also known as
T -propagation.

- T -analyze_conflict similar to the analyze_conflict operation of DPLL, im-
plements an extended notion of conflict: not only Boolean conflict (µp ∧ ϕp |=p

lp), but also theory conflict (B2T (µp) |=T ⊥), or even mixed Boolean+theory
conflict (B2T (µp ∧ ϕp) |=T ⊥).

- T -backtrack behaves analogously to backtrack in DPLL. It adds the clause
¬ηp to ϕp and backtracks up to level blevel. This features are called T -
learning and T -backjumping respectively.

4.3 lazy smt 59

T−DPLL (ϕ , µ) {
i f (T−preprocess (ϕ , µ) == CONFLICT)

return UNSAT;
ϕp = T 2B(ϕ);
µp = T 2B(µ);
while (1) {
T−decide_next_branch (ϕp, µp) ;
while (1) {

s t a t u s = T−deduce (ϕp, µp) ;
i f (s t a t u s == SAT) {

µ = B2T (µp) ;
return SAT ;

}
e lse i f (s t a t u s == CONFLICT) {

b l e v e l = T−a n a l y z e _ c o n f l i c t (ϕp, µp) ;
i f (b l e v e l == 0)

return UNSAT;
e lse
T−backtrack (b leve l , ϕp, µp) ;

}
e lse

break ; } } }

Figure 4.4: Online integration schema [Sebastiani, 2007].

4.3.4 Combination of Theories

We close our review of SMT by mentioning one of its most interesting aspects: the
combination of theories.

For many practical applications of SMT, the theory T is a combination of two or
more theories T1, . . . , Tn. For instance, an atom of the form f (x + 4y) = g(2x− y),
that combines uninterpreted functions symbols from EUF with arithmetic func-
tions from LA(Z), could be used to model the abstraction of some functional
blocks in an arithmetic circuit [Sebastiani, 2007].

The work on combining decision procedures for distinct theories was pioneered
by Nelson and Oppen [Nelson and Oppen, 1979; Oppen, 1980a] and Shostak [Shos-
tak, 1984]. In particular, Nelson and Oppen established the theoretical foundations
onto which most current combined procedures are still based on, the Nelson-Oppen
formal framework.

Given two disjoint signatures Σ1 and Σ2 and theories Ti in Σi for i = 1, 2, the
Nelson-Oppen formal framework reduces the T1 ∪ T2-satisfiability problem of a
set of pure literals µ = µT1 ∧ µT2 (i. e., literals containing only subterms made of
symbols from one signature) to that of finding (the arrangement of) an equivalence
relation on the shared variables consistent with both pure parts of µ.

Nelson and Oppen also proposed a general-purpose procedure for integrating Ti-
solvers into one combined T -solver, the Nelson-Oppen procedure. The combined de-
cision procedure works by performing a structured interchange of interface equal-
ities (disjunctions of interface equalities if Ti is non-convex) which are inferred by
either Ti-solver and then propagated to the other, until convergence is reached.

60 satisfiability modulo theories

4.4 symmetries in smt

We now turn our attention to symmetries in SMT. As far as we know, research on
symmetries in SMT is recent and symmetries are not fully exploited in SMT solvers
yet.

The first attempt to exploit symmetries in SMT can be traced back to [Audemard
et al., 2002b], where symmetries are used as a simplification technique for SMT-
based model checking.

In [Roe, 2006] an SMT solver introduces symmetry breaking predicates to the
input formula in a preprocessing stage. To do so, first all symmetric pairs of vari-
ables are detected. Given a formula ϕ, a pair of variables (a, b), occurring in ϕ, is
said to be a symmetric pair if when replacing all instances of a with b and b with
a in ϕ, we obtain again ϕ. Once a set of symmetric pairs is computed, symmetric
pairs of atoms are identified. Two atoms p1 and p2 are said to be symmetric if
there is a set of symmetric variable pairs {(a1, b1), . . . , (an, bn)} such that p1 can be
transformed in p2 by simply replacing each ai with bi and viceversa. Then a group
of symmetric predicates is computed. A group of symmetric predicates is a set of
two or more atoms such that any two atoms in the group are symmetric. Finally,
symmetry breaking predicates, similar to those introduced in [Aloul et al., 2003b],
are added to the original problem. According to what is reported in this work, this
approach only works for QF_UF formulas (i. e., quantifier-free formulas built over
a signature of uninterpreted sort and function symbols, see Chapter 5.4 for more
details), but no experimental results are provide to assess its effectiveness.

More recently, in [Déharbe et al., 2011], an algorithm for detecting and break-
ing symmetries is presented and implemented in the state-of-the-art SMT solver
veriT [Bouton et al., 2009]. The algorithm works by detecting full symmetry groups
of uninterpreted constants, and then adding symmetry breaking assumptions.

The work is built upon the observation that in SMT solving a frequent source
of symmetries is when some term takes its value from a given finite set of totally
symmetric elements. Thus, given a formula ϕ symmetric (or invariant) with respect
to all permutations of some uninterpreted constants c0, . . . , cn, for any model M
of ϕ, if term t does not contain these constants and M satisfies t = ci for some
i ∈ {1, . . . , n}, then there should be a model in which t equals c0. While checking
for unsatisfiability, it is thus sufficient to look for models assigning t and c0 to the
same value. This is stated more formally by the following result.

Theorem 4.1 ([Déharbe et al., 2011]). Consider a theory T , uninterpreted constants
c0, . . . , cn, a formula ϕ invariant w.r.t permutations of ci, . . . , cn, and a term t that is
invariant w.r.t permutations of ci, . . . , cn. If ϕ |=T t = c0 ∨ . . . ∨ t = cn, then ϕ is
T -satisfiable if and only if

ϕ′ =de f ϕ ∧ (t = c0 ∨ . . . ∨ t = ci)

is also T -satisfiable. Clearly, ϕ′ is invariant w.r.t permutations of ci+1, . . . , cn.

Detection of symmetries is done by first “guessing” a permutation and then
checking that it is in fact a symmetry of the formula (see Chapter 6 for more de-
tails). Experimental results confirm that this approach is successful, in particular for
QF_UF problems. However, this approach is limited in the sense that it only works

4.4 symmetries in smt 61

with full symmetry groups, and in that it does not consider symmetries involv-
ing other types of symbols, like predicate symbols, function symbols, interpreted
symbols, or quantifiers.

Example 4.4 ([Déharbe et al., 2011]). A classical problem with symmetries is the pigeon-
hole problem. Most SMT or SAT solvers require exponential time to solve this problem.
We show that the symmetry breaking technique introduced previously greatly improves the
performance of a standard SMT solver on this class of problems.

The problem states that it is impossible to place n + 1 pigeons in n holes. To model
the problem, we introduce n uninterpreted constants h1, . . . , hn for the n holes, and n + 1
uninterpreted constants p1, . . . , pn+1 for the n + 1 pigeons. Each pigeon is required to
occupy one hole: pi = h1 ∨ . . . ∨ pi = hn. It is also required that distinct pigeons occupy
different holes: pi 6= pj for 1 ≤ i < j ≤ n + 1. The generated set of formulas is symmetric
by permutations of the constants p1, . . . , pn+1.

From our formulation of the problem, it is direct to notice that pi = h1 ∨ . . . ∨ pi = hn.
Therefore, the set of symmetry breaking clauses could be:

p1 = h1

p2 = h1 ∨ p2 = h2

p3 = h1 ∨ p3 = h2 ∨ p3 = h3
...

pn−1 = h1 ∨ . . . ∨ pn−1 = hn−1

Without need for any advanced theory propagation techniques, (n + 1)× n/2 conflict
clauses of the form pi = hi ∨ pj = hi ∨ pj = pi with i < j suffice to transform the
problem into a purely propositional problem. With the symmetry breaking clauses, the un-
derlying SAT solver then concludes (in polynomial time) the unsatisfiability of the problem
using only Boolean Constraint Propagation. Figure 4.5 shows the results for different SMT
solvers. All solvers (including veriT without symmetry heuristics) timeout on problems of
relatively small size, although CVC3 performs significantly better than the other solvers.
Using the symmetry heuristics allows veriT to solve much larger problems in insignificant
times. In fact, the modified version of veriT solves every instance of the problem with as
many as 30 pigeons in less than 0.15 seconds.

 0.01

 0.1

 1

 10

 100

 4 6 8 10 12 14 16 18 20

tim
e

(in
 s

ec
on

ds
)

Number of pigeons

veriT
veriT w/o sym

CVC3
MathSAT

OpenSMT
Yices

Z3

Figure 4.5: Some SMT solvers and the pigeonhole problem [Déharbe et al., 2011].

5
E M P I R I C A L T E S T I N G O F D E C I S I O N P R O C E D U R E S

This thesis is about using symmetries to improve the efficiency of decision proce-
dures for modal logics and satisfiability modulo theories. In particular, it is about
improving the efficiency of algorithms for the satisfiability problem of these logics
taking advantage of symmetries. To be able to measure and analyze the effects of
using symmetries, we need a set of representative test sets and a methodology to
perform testing and to analyze the obtained results. This is where empirical testing
comes to scene. In this chapter we are going to present the rationale behind empiri-
cal testing of decision procedures (Sections 5.1 and 5.2), then we present a survey of
empirical testing for modal logics (Section 5.3) and satisfiability modulo theories
(Section 5.4).For a comprehensive treatment and for references to the literature on
the subject, we refer the reader to [Horrocks et al., 2000] on which this chapter is
based.

5.1 why empirical testing?

One of the main tasks when developing decision procedures is to evaluate how
well they behave in comparison with other decision procedures. From a theoreti-
cal point of view, we can do this by establishing its computational complexity and
asymptotic algorithmic complexity. However, when we turn our attention to the
implementation of the decision procedures, we not only want to evaluate the algo-
rithm alone, but also the effect of the optimizations and heuristics we introduce.
In this case relaying solely on theoretical measures is useless because, in many
cases, optimizations and heuristics maintain the worst case complexity of the prob-
lem, only improving performance in some particular instances, therefore we have
to determine it by empirical testing, i. e., by testing the systems with a set of input
problems.

5.2 the quality of empirical testing

To avoid results that could lead to wrong conclusions, empirical testing must be
carefully planned both on the selection of the input problems (test sets), and on the
design of the methodology for analyzing and presenting the obtained results.

Therefore, selecting good test sets and establishing a correct methodology for an-
alyzing and presenting the obtained results is crucial when determining the quality
of empirical testing. other

In [Horrocks et al., 2000] a criteria is provided that helps to design good tests
sets. Although this criteria is provided in the context of empirical testing for modal
logics, it is general enough to be applicable in the general case. According to it, a
good test set should meet the following requirements:

63

64 empirical testing of decision procedures

i) Reproducibility: The test set should be reproducible, i. e., the test formulas or
their generation function should be available.

ii) Representativeness: The test set should represent a significant portion of the
potential input space.

iii) Satisfiable vs. Unsatisfiable balance: The test set should have a balanced number
of satisfiable and unsatisfiable problems.

iv) Difficulty: The test set should provide a sufficient level of difficulty for the
system(s) being tested.

v) Parameterization and Control: The test set should be parameterized with suffi-
cient variables to allow the test set to range over a large portion of the input
space.

vi) Termination: The test set should terminate and provide information within a
reasonable amount of time.

vii) Data organization: The data should be summarizable, to make comparison pos-
sible with limited effort, and plottable to highlight the qualitative behaviour
of the system(s).

Also a good test set should avoid the following problems:

i) Redundancy: A test set must avoid redundancy.

ii) Triviality: A test set should not contain significant subsets of trivial problems.

iii) Artificiality: A test set should correspond closely to inputs from applications.

iv) Over-size: Single problems should not be too big with respect to their diffi-
culty.

In general, these criteria aims at “providing a reproducible sample of an interest-
ing portion of the input space with appropiate difficulty” [Horrocks et al., 2000].

However, notice that it can be difficult to comply with all these requirements,
therefore, a good test set should aim to comply with as many of the criteria as
possible.

5.3 empirical testing in modal logics

Much work has been done to develop a sound methodology for testing modal
decision procedures. However the situation is still not completely satisfactory. The
existence of a large number of modal logics makes it difficult to develop a test set
and a test methodology that fits all needs.

In this section we present a survey, based on [Horrocks et al., 2000], of test sets
and its associated test methodologies for modal decision procedures. This survey is
not exhaustive but it takes into account the most common approaches, namely, the
Logics Workbench test set, the 3CNF2m random test set, the New_3CNF2m random
test set , the modalized test set, and the random QBF test set.

5.3 empirical testing in modal logics 65

5.3.1 The Logics Workbench Test Set

The Logics Workbench (LWB) test set was introduced in [Heuerding and Schwendi-
mann, 1996; Balsiger et al., 2000] as an attempt to overcome the lack of suitable tests
sets and methodology for testing modal decision procedures at that time.

The LWB test set is divided into classes of formulas. There are 9 classes of formu-
las in both valid and invalid versions for the modal logics K (basic (mono)modal
logic), KT (basic modal logic with reflexive relations) and S4 (basic modal logic
with reflexive and transitive relations).

Each class is generated from a (relatively) simple parameterized logical formula
that is either valid or invalid. Some of these formulas are made harder by hiding
their structure or adding extra pieces. Formulas in each class are controlled by a
single parameter that allows to generate formulas of different size and, therefore,
of differing difficulty. Ideally, the difficulty of the formulas should be exponential
on the parameter.

The test methodology is to test formulas from each class, starting with the easi-
est instance, until the validity status of a formula cannot be correctly determined
within a timeout of 100 seconds. For each class,the reported result is the parameter
of the largest formula solved within the time limit. The parameter ranges from 1 to
21. If a system can solve all 21 instances of a class within the time limit, the result
is given as “>”.

Tables 5.1a, 5.1b and 5.1c, show example results for the modal prover DLP
3.1 [Patel-Schneider, 1998] on the modal logics K, KT and S4 respectively. For each
problem class np and nn are the number of largest formula solved within a timeout
of 100 seconds for the satisfiable and unsatisfiable versions respectively.

Class np nn

k_branch 19 13

k_d4 > >

k_dum > >

k_grz > >

k_lin > >

k_path > >

k_ph 7 9

k_poly > >

k_t4p > >
(a) K.

Class np nn

kt_45 > >

kt_branch 19 12

kt_dum > >

kt_grz > >

kt_md 3 >

kt_path 16 14

kt_ph 7 >

kt_poly > 12

kt_t4p > >
(b) KT.

Class np nn

s4_45 > >

s4_branch 18 12

s4_dum > >

s4_grz 10 >

s4_md 3 >

s4_path 15 15

s4_ph 7 >

s4_poly > >

s4_t4p > >
(c) KT.

Table 5.1: Results for DLP 3.1 on the LWB test set [Horrocks et al., 2000].

Currently, the availability of heavily-optimised provers have rendered many of
the formula classes almost trivial, and increasing the parameter does not signifi-
cantly increase the difficulty of a formula, at least until the formulas become gi-
gantic. Thus the LWB test set, although historically interesting, is nowadays of less

66 empirical testing of decision procedures

importance and should not be used as the only test set for state-of-the-art modal
decision procedures.

5.3.2 The 3CNF2m Random Test Set

The 3CNF2m random test set was the first random test set used for testing modal de-
cision procedures. It was proposed in [Giunchiglia and Sebastiani, 1996a; Giunchiglia
and Sebastiani, 1996b] as a generalization of the 3SAT random test set (also known
as fixed clause-length model) that was widely used in propositional satisfiability [Mitchell
et al., 1992; Buro and Büning, 1992].

The first version of this test set was heavily criticized in [Hustadt and Schmidt,
1997]. Its current version was proposed in [Giunchiglia et al., 1998] and fixes some
of the problems detected in [Hustadt and Schmidt, 1997] and includes some further
improvements. In what follows we describe this last version.

Using the 3CNF2m random test set we evaluate the performance of a system
on test sets containing randomly generated modal formulas in conjunctive normal
form (CNF).

A modal CNF formula (from now on a CNF2m formula) is a conjunction of
CNF2m clauses, where each clause is a disjunction of either propositional or modal
literals. A literal is either an atom or its negation. Modal atoms are formulas of
the form 2iC, where C is a CNF2m clause. A 3CNF2m formula is a CNF2m formula
where all clauses have exactly 3 literals.

Random formula generation is controlled by the following parameters: i) the
(maximum) modal depth (d), ii) the number of propositional variables (N), iii) the number
of distinct box symbols (m), iv) the probability of an atom occurring in a clause at depth
< d being purely propositional (p) (to control the “propositional vs. modal” rate for
the atoms), and v) the umber of clauses (L) (to control the constrainedness of the
formula [Williams and Hogg, 1994; Gent et al., 1996]).

The test methodology consist in create test sets for different parameters configu-
rations. To create a 3CNF2m test set we fix the parameters N, m, d and p; and vary
L in such a way as to empirically cover the “100% satisfiable – 100% unsatisfiable”
transition. For each configuration of the five parameters, we generate a certain num-
ber of random formulas. These formulas are then given as input to the procedure
under test with a timeout of 1000 seconds.

The fraction of satisfiable formulas, median/percentile values of CPU times, and
median/percentile values of other parameters, e. g., number of steps, memory, etc.,
are plotted against the number of clauses L. Figure 5.1 shows example plots for
two systems (DLP 4.1 and *SAT 1.3 [Tacchella, 1999]) on a 3CNF2m random test set
created with parameters d = 1, m = 1, p = 0.5 and N varying from 3 to 9.

The 3CNF2m random test set suffers from two major drawbacks: trivial satisfia-
bility and trivial unsatisfiability [Hustadt and Schmidt, 1997].

A formula is trivially satisfiable if its satisfiability can be solved just by purely
propositional reasoning. This is, however, not a big problem for random 3CNF2m

test sets, since a trivially satisfiable formula is not necessarily trivial to solve and its
effects are limited to the extreme left part of the satisfiability plots where problems
are easy and satisfiable anyway.

5.3 empirical testing in modal logics 67

Satisfiability and Unsatisfiability Fractions Trivial Satisfiability and Unsatisfiability Fractions

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

L/N

N=3
N=4
N=5
N=6
N=7
N=8
N=9

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120

L/N

N=3
N=4
N=5
N=6
N=7
N=8
N=9

DLP median times DLP 90th percentile times

0.01

0.1

1

10

100

1000

20 40 60 80 100 120

L/N

N=3
N=4
N=5
N=6
N=7
N=8
N=9

0.01

0.1

1

10

100

1000

20 40 60 80 100 120

L/N

N=3
N=4
N=5
N=6
N=7
N=8
N=9

*SAT median times *SAT 90th percentile times

0.01

0.1

1

10

100

1000

20 40 60 80 100 120

L/N

N=3
N=4
N=5
N=6
N=7
N=8
N=9

0.01

0.1

1

10

100

1000

20 40 60 80 100 120

L/N

N=3
N=4
N=5
N=6
N=7
N=8
N=9

✁ ✴ ✼ ✝ ✴✛✣ ✄ ✴✛✣ ✞ ✴✿✜✷✒✹✸

✣
� ✁✁ ✴✶✼ ✝ ✴ ✣ ✄ ✴ ✣ ✞ ✴ ✜✷✒✹✸

� ✁

� ✁ ✁ ✴✶✼ ✝ ✴ ✣ ✄ ✴ ✣ ✞✠✴ ✜
✞ ✴ ✜

� ✁

Figure 5.1: Example plots for a test set [Patel-Schneider and Sebastiani, 2003a].

A formula is trivially unsatisfiable if its unsatisfiability can be detected by purely
propositional reasoning.

The larger the number of clauses (i. e., the value of L), the more likely is the
presence of pure propositional clauses and higher the chances of these clauses be-
ing jointly unsatisfiable, thus making the formula trivially unsatisfiable. A possible
fix for this situation is to set p = 0 such that a formula contains no such purely
propositional clauses. For p > 0, however, trivial unsatisfiability becomes a seri-
ous problem in 3CNF2m test sets, since a trivially unsatisfiable formula is typically
exceedingly easy to solve.

The presence of heavy trivial unsatisfiability is revealed by the presence of a
“Half-Dome plot” for the median CPU times and the Qth percentile. For example,
Figure 5.2 shows the half-dome shape, whose steep side shows up where the num-
ber of trivially unsatisfiable formulas become large before the formulas become
otherwise easy to solve.

In [Hustadt and Schmidt, 1999] the authors suggested some guidelines to over-
come this problem. However these guidelines introduce new problems like a loss

68 empirical testing of decision procedures

Satisfiability and Unsatisfiability Fractions Trivial Satisfiability and Unsatisfiability Fractions

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160 180 200

L/N

N=3
N=4
N=5
N=6

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 160 180 200

L/N

N=3
N=4
N=5
N=6

DLP median times DLP 90th percentile times

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140 160 180 200

L/N

N=3
N=4
N=5
N=6

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140 160 180 200

L/N

N=3
N=4
N=5
N=6

*SAT median times *SAT 90th percentile times

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140 160 180 200

L/N

N=3
N=4
N=5
N=6

0.01

0.1

1

10

100

1000

20 40 60 80 100 120 140 160 180 200

L/N

N=3
N=4
N=5
N=6

✁ ✴ ✼ ✝ ✴✛✣ ✄ ✴☎✄ ✞ ✴✿✜✷✒✹✸

✞ ✴✾✜✷✒✹✸
✞ ✴ ✜✷✒✹✸✆ ✴ �

✣
✞

Figure 5.2: Half-dome shape due to trivial unsatisfiability [Patel-Schneider and Sebastiani,
2003a].

of representativeness of the test set, and decay in the complexity of the problem
from PSPACE-complete to NP-complete [Halpern, 1995] due to effect of bounding
the modal depth of the formulas.

Even with the mentioned problems, the 3CNF2m random test set and its associ-
ated methodology conforms to most of the criteria of Section 5.2 and therefore it is
a good empirical test for many purposes.

5.3.3 The New_3CNF2m Random Test Set

The New_3CNF2m random test set was presented in [Patel-Schneider and Sebas-
tiani, 2003a] with the aim of fixing and generalizing the 3CNF2m random test set.

To avoid generating trivial unsatisfiable formulas, the New_3CNF2m test set rein-
terprets the parameter p (the probability of an atom occurring in a clause at depth
< d being purely propositional). Instead of forbidding strictly-propositional clauses
except at the maximum modal depth d, by setting p = 0, we know require that

5.3 empirical testing in modal logics 69

the ratio between propositional atoms in a clause and the clause size be as close as
possible to the propositional probability p for clauses not at the maximum modal
depth d. For clauses of size C, if p is k/C for some integral k, this results in all
clauses not at modal depth d having k propositional atoms and C− k modal atoms.
For other values of p, this results in either bpCc1 or dpCe2 propositional atoms
in each clause not at modal depth d, with probability dpCe − pC and pC − bpCc
respectively. If p ≤ (C − 1)/C, this eliminates the possibility of strictly proposi-
tional clauses, which are the main cause of trivial unsatisfiability, except at modal
depth d. The New_3CNF2m test set considerably reduces the number of trivially
unsatisfiable formulas and almost entirely removes them from the satisfiable/un-
satisfiable transition area. Moreover, it is able to generate difficult formulas over a
much broader range of L/N than the 3CNF2m method.

Another improvement is that a New_3CNF2m test set also allows the number
of literals in a clause C to vary in a manner similar to the number of proposi-
tional atoms. If C is an integer then each clause has that many literals. Otherwise,
they allow either bCc or dCe literals in each clause, with probability dCe − C and
C − bCc, respectively. Then, the number of propositional atoms in each clause is
determined based on the number of literals in that clause. This provides another
way of controlling difficulty of the test sets. Actually, it allows for a much more
fine-grained control, allowing for a direct specification of the probability distribu-
tion of the number of propositional atoms in a clause and allowing the distribution
to be different for each modal depth from the top level to d− 1, and also allowing
the direct specification of the probability distribution for the number of literals in
a clause at each modal depth.

Thus, the probability distribution for the number of propositional atoms depends
on both the modal depth and the number of literals in the clause.

These modifications allows for a fine control of the difficulty of the test sets. To
make a test set easier, we can reduce the size of clauses by reducing the value(s) of
C, or increase the propositional probability p. This control is missing in the 3CNF2m

method, as C is restricted to an integral value, and making p much different from
0.0 results in problems with trivial unsatisfiability for maximum modal depths
greater than 1.

With respect to the criteria of Section 5.2, the New_3CNF2m test set inherits all the
features of the 3CNF2m test set, e. g., scalability, valid vs. not-valid balance, termi-
nation, reproducibility, parametrization and data organization, but it also improves
in other aspects, like representativeness, difficulty and control.

5.3.4 The Modalized Test Set

The modalized test set was proposed by [Massacci, 1999] as a K-modalized variant
of the 3CNF2m random test set. It borrows an idea from [Halpern, 1995] that con-
sists in, within each 3CNF2m formula ϕ, substitute each occurrence of each propo-
sitional variable pi with the corresponding modal expression ¬2(p0 ∨2i¬p0). The
enconding preserves satisfiability in K and the resulting formula ϕ′ has only one
propositional variable p0 and depth d + N + 1.

1 bxc =de f max{n ∈N | n ≤ x}
2 dxe =de f max{n ∈N | n ≥ x}

70 empirical testing of decision procedures

Since a modalized formula is bigger than it non-modalized version, it would
be expected for K-modalized 3CNF2m formulas to be much harder than their corre-
sponding 3CNF2m ones, especially for low d’s and high N’s. However, experimental
results do not confirm this expectation. Despite the increase in depth and size of the
formulas, K-modalisation does not seem to produce test sets which are significantly
more challenging than standard 3CNF2m ones [Horrocks et al., 2000].

5.3.5 The Random QBF Test Set

For many modal logics, the class of formulas with bounded depth is in NP [Halpern,
1995], therefore 3CNF2m test sets with bounded d have only NP complexity [Mas-
sacci, 1999]. To overcome this problem a new kind of random test set was proposed
in [Massacci, 1999].

The idea is to generate random QBF formulas [Kleine Büning and Bubeck, 2009;
Giunchiglia et al., 2009] according to the method described in [Cadoli et al., 1998],
and then convert them into modal formulas by using a variant of the conversion
proposed in [Halpern and Moses, 1992]. The resulting modal formulas are satisfi-
able if and only if the QBF formulas are true.

A typical random QBF test set is defined by fixing the alternation depth D, the
number of variables at each alternation V, the number of clauses C and the clause
length K, with some constraints on the number of universally and existentially
quantified variables within each clause.

The tests are performed on single data points, i. e., on single tuples of parame-
ter’s values. For each data point, a certain number of QBF formulas are randomly
generated, converted to modal logics and the resulting formulas are given as input
to the procedure being tested with a maximum timeout. The number of tests that
have been solved within the timeout and the geometrical mean time for successful
solutions are then reported. Data are rescaled to abstract away machine and run-
dependent characteristics, and then presented in a collection of tables presenting a
data pair for each system under test, one data point per row.

Even though it is claimed that modal-encoded QBF formulas can capture the
problems in ΣP

D, as QBF formulas with bounded D and unbounded V are in ΣP
D,

while 3CNF2m formulas with bounded d and unbounded N are stuck at NP [Mas-
sacci, 1999]. In [Horrocks et al., 2000], it is shown that this statement is misleading,
and, in fact, similarly to modal logic K(m) with bounded depth, the class of random
QBF formulas with bounded number of universally quantified variables is in NP.
Moreover, as in the case of 3CNF2m formulas with bounded d and N, if D and V
are bounded, which is the case of every finite-size test set, then the random QBF
problems are not only in NP, but even in P.

Another problem with modal-encoded QBF formulas is that they are rather arti-
ficial, as their potential models are restricted to those having the regular structure
imposed by the QBF and/or binary search trees. Finally, a serious problem with
random modal-encoded QBF formulas is their size. Initial versions of the transla-
tion method produced test sets in the 1GB range.

5.4 empirical testing in satisfiability modulo theories 71

5.4 empirical testing in satisfiability modulo theories

We now present the basic aspects of empirical testing for Satisfiability Modulo
Theories (SMT). The situation of empirical testing in SMT is much more favorable
than for modal logics due to the existence of a well established set of benchmarks,
the “SMT Library” (SMT-LIB), that has a great support by the SMT community,
mainly because formulas in SMT-LIB format are accepted by the great majority of
current SMT solvers and most of the published experimental works on SMT rely
significantly on SMT-LIB benchmarks.

5.4.1 The SMT Library

The SMT Library (SMT-LIB) [Barrett et al., 2010a; Barrett et al., 2010b] is an inter-
national initiative that started in 2003 [Ranise and Tinelli, 2003] with the aims of
providing standard rigorous descriptions of background theories used in SMT sys-
tems; develop and promote common input and output languages for SMT solvers;
and establish and make available a large library of benchmarks (95000+ formulas)
for SMT solvers. The current version of the SMT-LIB standard is Version 2.0.

The main motivation of the SMT-LIB is to facilitate the evaluation and the com-
parison of SMT systems by providing common standards and a library of bench-
marks, and thus contributing to advance the state-of-the-art in the field, in the
same way as the TPTP library [Sutcliffe, 2009] has done for theorem proving, or the
SATLIB library [Hoos and Stützle, 2000] has done for propositional satisfiability.

Informally speaking, from the SMT-LIB perspective, an SMT solver is any soft-
ware system that implements a procedure for satisfiability modulo some given
theory.

Usually, given an SMT solver, one can identify the following main components:

i) The underlying logic, e. g., firt-order, modal, temporal, etc.,

ii) The background theory, the theory against which satisfiability is checked,

iii) The input formulas, the class of formulas the solvers accepts as input, and

iv) The interface, the set of functionalities provided by the solver.

For instance, in a solver for linear arithmetic the underlying logic is first-order logic
with equality, the background theory is the theory of real numbers, and the input
language is limited to conjunctions of inequations between linear polynomials. The
interface may be as simple as accepting a system of inequations and returning a
binary response indicating whether the system is satisfiable or not. More sophisti-
cated interfaces include the ability to return concrete solutions for satisfiable inputs,
return proofs for unsatisfiable ones, allow incremental and backtrackable input,
and so on.

The SMT-LIB standard takes into account these aspects by defining a language,
the SMT-LIB language, and a logic, the SMT-LIB logic. In what follows we provide an
informal description of the language and the logic, and refer the interested reader
to [Barrett et al., 2010b] for more details.

72 empirical testing of decision procedures

5.4.1.1 The SMT-LIB Language

The SMT-LIB language defines: a syntax, similar to that of the LISP programming
language (in fact, every expression is a legal S-expression of Common Lisp [Steele,
1990]); how to write terms and formulas, background theories, logics; and a com-
mand language for interacting with SMT solvers.

terms and formulas In the SMT-LIB language, terms are constructed out of
constant symbols, variables, function symbols, three kinds of binders (let, forall
and exists) and an annotation operator (!).

In its simplest form, a term is a special constant symbol, a variable, a function
symbol, or the application of a function symbol to one or more terms. Function
symbols applied to no arguments are used as constant symbols. More complex
terms include let, forall and exists binders. The forall and exists binders cor-
respond to the usual existential and universal quantifiers of first-order logic, except
that the variables they quantify are sorted. A let binder introduces and defines one
or more local variables in parallel.

All terms of the SMT-LIB language are additionally required to be well-sorted.
Well-sorted terms are a subset of the set of all terms. Formulas are well-sorted terms
of sort Bool. As a consequence, there is no syntactic distinction between function
and predicate symbols, the later are simply functions returning Bool. Figure 5.3
shows an example formula in the SMT-LIB language.

(forall ((x (List Int)) (y (List Int)))

(= (append x y)

(ite (= x (as nil (List Int)))

y

(let ((h (head x)) (t (tail x)))

(insert h (append t y))))))

Figure 5.3: Formula in the SMT-LIB language.

theory declaration A theory defines a vocabulary of sorts and functions,
and it also associates a sort with relevant literals. For example, the Ints theory
defines the Int and Bool sorts and declares that any <numeral> has sort Int.

One of the goals of the SMT-LIB is to define a catalog of background theories, start-
ing with a small number of popular ones, and adding new ones as solvers for them
are developed. Table 5.2 shows the last version of the catalog of theories.

To do so, the SMT-LIB provides syntactic support for defining theories in the
SMT-LIB format. Theories are specified independently of any benchmarks or solvers,
and each SMT-LIB script may refer, indirectly, to one or more theories in the SMT-
LIB catalog.

Theory specifications have mostly documentation purposes. They are meant to
be standard references for human readers. For practicality then, the format insists
that only the signature of a theory, i. e., its set of sorts and sorted function symbols,
be specified formally, provided it is finite. By “formally” the standard means writ-
ten in a machine-readable and processable format, as opposed to written in free
text, no matter how rigorously.

5.4 empirical testing in satisfiability modulo theories 73

Theory Description

ArraysEx Functional arrays with extensionality.

FixedSizeBitVectors Bit vectors with arbitrary size.

Core Core theory, defining the basic Boolean operators.

Ints Integer numbers.

Reals Real numbers.

Reals_Ints Real and integer numbers.

Table 5.2: SMT-LIB Theories.

Some theories, such as the theory of bit vectors, have an infinite signature. For
them, the signature too is specified informally in English. Figure 5.4 shows the
definition of the Core theory that defines propositional logic. Every theory in the
SMT-LIB implicitly contains the Core theory.

logics declaration In SMT-LIB, a sublogic (or just a logic) is defined to
consist of one or more theories, together with some restrictions on the kinds of
expressions that may be used within that logic. For example, the QF_LIA logic in-
cludes both the Core and Ints theories. Those theories define many of the usual
operations on Bool and Int values. However the QF_LIA logic does not allow quan-
tified expressions and allows only linear arithmetic (e.g., multiplication must be by
a literal, one cannot multiply two non-literals together). Such restrictions are in-
troduced because there are known decision procedures that can solve satisfiability
problems in these cases. Table 5.3 shows the logics supported by the SMT-LIB.

Similar to the definition of theories, in the SMT-LIB, logic definitions are mostly
for documentation purposes. Figure 5.5 shows the declaration of the QF_IDL logic.

command language The SMT-LIB includes a scripting language that defines
a textual interface for SMT solvers. SMT solvers implementing this interface act as
interpreters of the scripting language. The language is command-based, and de-
fines a number of input/output functionalities that go well beyond simply check-
ing the satisfiability of an input formula. In line with the LISP-like syntax, all com-
mands look like LISP-function applications, with a command name applied to zero
or more arguments. To facilitate processing, each command takes a constant num-
ber of arguments, although some of these arguments can be (parenthesis delimited)
lists of variable length.

The intended use of scripts is to communicate with an SMT solver in a read-eval-
print loop until a termination condition occurs. The solver reads the next command,
acts on it, prints a response, and repeats. Possible responses vary from a single
symbol to a list of attributes, to complex expressions like proofs.

Table 5.4 shows the most common commands found in the SMT-LIB benchmarks.
Other commands exists, mainly for information retrieval, e. g., get-assertions,
get-proof, get-unsat-core, get-value, get-assignment, etc.

A typical formula in the SMT-LIB is just an script that defines the logic, intro-
duces sorts, function and predicate symbols and makes a number of assertion. Fig-

74 empirical testing of decision procedures

Logic Description

AUFLIA Closed formulas over the theory of linear integer arithmetic
and arrays extended with free sort and function symbols but
restricted to arrays with integer indices and values.

AUFLIRA Closed linear formulas with free sort and function symbols over
one- and two-dimentional arrays of integer index and real value.

AUFNIRA Closed formulas with free function and predicate symbols over
a theory of arrays of arrays of integer index and real value.

LRA Closed linear formulas in linear real arithmetic.

QF_ABV Closed quantifier-free formulas over the theory of bitvectors and
bitvector arrays.

QF_AUFBV Closed quantifier-free formulas over the theory of bitvectors and
bitvector arrays extended with free sort and function symbols.

QF_AUFLIA Closed quantifier-free linear formulas over the theory of integer
arrays extended with free sort and function symbols.

QF_AX Closed quantifier-free formulas over the theory of arrays with
extensionality.

QF_BV Closed quantifier-free formulas over the theory of fixed-size
bitvectors.

QF_IDL Difference Logic over the integers.

QF_LIA Unquantified linear integer arithmetic. In essence, Boolean com-
binations of inequations between linear polynomials over integer
variables.

QF_LRA Unquantified linear real arithmetic. In essence, Boolean combina-
tions of inequations between linear polynomials over real vari-
ables.

QF_NIA Quantifier-free integer arithmetic.

QF_NRA Quantifier-free real arithmetic.

QF_RDL Difference Logic over the reals. In essence, Boolean combinations
of inequations of the form x - y < b where x and y are real
variables and b is a rational constant.

QF_UF Unquantified formulas built over a signature of uninterpreted
(i.e., free) sort and function symbols.

QF_UFBV Unquantified formulas over bitvectors with uninterpreted sort
function and symbols.

QF_UFIDL Difference Logic over the integers (in essence) but with uninter-
preted sort and function symbols.

QF_UFLIA Unquantified linear integer arithmetic with uninterpreted sort
and function symbols.

QF_UFLRA Unquantified linear real arithmetic with uninterpreted sort and
function symbols.

QF_UFNRA Unquantified non-linear real arithmetic with uninterpreted sort
and function symbols.

UFLRA Linear real arithmetic with uninterpreted sort and function sym-
bols.

UFNIA Non-linear integer arithmetic with uninterpreted sort and func-
tion symbols.

Table 5.3: SMT-LIB Logics.

5.4 empirical testing in satisfiability modulo theories 75

(theory Core

:sorts ((Bool 0))

:funs ((true Bool) (false Bool) (not Bool Bool)

(=> Bool Bool Bool :right-assoc) (and Bool Bool Bool :left-assoc)

(or Bool Bool Bool :left-assoc) (xor Bool Bool Bool :left-assoc)

(par (A) (= A A Bool :chainable))

(par (A) (distinct A A Bool :pairwise))

(par (A) (ite Bool A A A))

)

:definition

"For every expanded signature Sigma, the instance of Core with that signature

is the theory consisting of all Sigma-models in which:

- the sort Bool denotes the set {true, false} of Boolean values;

- for all sorts s in Sigma,

- (= s s Bool) denotes the function that

returns true iff its two arguments are identical;

- (distinct s s Bool) denotes the function that

returns true iff its two arguments are not identical;

- (ite Bool s s) denotes the function that

returns its second argument or its third depending on whether

its first argument is true or not;

- the other function symbols of Core denote the standard Boolean operators

as expected.

"

:values "The set of values for the sort Bool is {true, false}."

)

Figure 5.4: The Core theory declaration.

ure 5.6 shows a formula from the SMT-LIB, corresponding to the eq_diamond2

problem.

5.4.1.2 The SMT-LIB Logic

SMT-LIB adopts as its underlying logic a version of the many-sorted first-order logic
with equality [Gallier, 1985; Manzano, 1993; Enderton, 2001] that incorporates some
features of higher-order logics like the identification of formulas with terms of a
distinguished Boolean sort, and the use of sort symbols of arity greater than 0.

In many-sorted logics, terms are typed, or sorted, and each sort is denoted by a
sort symbol from a set of sort symbols. In the SMT-LIB logic, the language of sorts
is extended from sort symbols to sort terms built with symbols from the set of sort
symbols. For example, if Int and Real are sort symbols of arity 0, and List and
Array are sort symbols of respective arity 1 and 2, then the expression List (Array

Int (List Real)) and all of its subexpressions are sorts. Unlike traditional many-
sorted logic, however, it does not have a syntactic category of formulas distinct
from terms. Formulas are just sorted terms of a distinguished Boolean sort, i. e.,
interpreted as a two-element set in every SMT-LIB theory.

Finally, in addition to the usual existencial and universal quantifiers, the logic
includes a let binder analogous to the local variable binders found in many pro-
gramming languages.

76 empirical testing of decision procedures

(logic QF_IDL

:smt-lib-version 2.0

:written_by "Cesare Tinelli"

:date "2010-04-30"

:theories (Ints)

:language

"Closed quantifier-free formulas with atoms of the form:

- q

- (op (- x y) n),

- (op (- x y) (- n)), or

- (op x y)

where

- q is a variable or free constant symbol of sort Bool,

- op is <, <=, >, >=, =, or distinct,

- x, y are free constant symbols of sort Int,

- n is a numeral.")

Figure 5.5: The QF_IDL logic declaration.

Command Description

set-logic Initializes the solver with the specified logic.

declare-fun Declares new uninterpreted symbols. Constants and func-
tions are declared in a uniform way; constants are simply
functions with no arguments.

define-fun Declares a new function symbol that is equivalent to a
given expression.

declare-sort Declares a new sort.

define-sort Introduces a new symbol that is the abbreviation for a sort
expression.

assert Instructs the solver to assume that the stated formula is
true.

check-sat Once a series of assert commands have been made, the
check-sat command instructs the solver to test for satisfia-
bility.

set-option Sets the value of a specified option.

set-info Sets information about the solver being used.

exit Terminates the solver.

Table 5.4: SMT-LIB Commands.

5.4 empirical testing in satisfiability modulo theories 77

(set-logic QF_UF)

(set-info :source |

Generating minimum transitivity constraints in P-time for deciding Equality

Logic, Ofer Strichman and Mirron Rozanov, SMT Workshop 2005.

Translator: Leonardo de Moura. |)

(set-info :smt-lib-version 2.0)

(set-info :category "crafted")

(set-info :status unsat)

(declare-sort U 0)

(declare-fun x0 () U)

(declare-fun y0 () U)

(declare-fun z0 () U)

(declare-fun x1 () U)

(declare-fun y1 () U)

(declare-fun z1 () U)

(assert (and (or (and (= x0 y0) (= y0 x1))

(and (= x0 z0) (= z0 x1)))

(not (= x0 x1))))

(check-sat)

(exit)

Figure 5.6: A typical SMT-LIB script (eq_diamond2.smt2).

Part II

D E T E C T I N G A N D E X P L O I T I N G S Y M M E T R I E S

“Socrates: Then, if we are not able to hunt the goose with one idea, with three
we may take our prey; Beauty, Symmetry, Truth are the three. . .”

Plato. Philebus. 65a.

6
S Y M M E T RY D E T E C T I O N

The first step towards exploiting symmetries in any logic, is to detect them. Much
research has been devoted to this subject, leading to different symmetry detection
techniques. In this chapter we present a survey of the most relevant symmetry
detection techniques.

We start by reviewing graph-based techniques for symmetry detection. We briefly
describe the basics of the graph automorphism algorithm implemented in available
tools and present a number of reduction algorithms from propositional CNF for-
mulas to graphs (Section 6.1). We then present a brief description of formula-based
techniques for symmetry detection (Section 6.2).

6.1 graph-based symmetry detection

Graph-based symmetry detection is the most common approach for detecting sym-
metries in formulas, and it has encountered many applications in different domains
ranging from SAT solving to finite model generation.

Two key aspects explain its success. First, it is conceptually simple: the idea is
to construct a graph from a formula such that the automorphisms of the graph
correspond to symmetries of the formula. Second, the availability of efficient graph
automorphism tools, that can handle large graphs, makes it easy to implement and
integrate with current solvers. Key to this approach is the graph automorphism
problem and its related tools.

6.1.1 The Graph Automorphism Problem

We start our discussion of the graph automorphism problem by describing a closely
related problem which is also one of the most studied subject in computer science:
the graph isomorphism problem.

The graph isomorphism problem can be stated as the problem of checking if two
graphs that look different are actually the same.

Definition 6.1 (The graph isomorphism problem). Let a graph be a pair G = (V, E)
where V is a set of vertices and E ⊆ V × V is the set of edges. Given two graphs G1 =

(V1, E1) and G2 = (V2, E2), does there exist a bijection f from the vertex set V1 to V2 such
that ∀a, b ∈ V1, (a, b) ∈ E1 ↔ (f (a), f (b)) ∈ E2.

Example 6.1. Consider the graphs A and B of Figures 6.1a and 6.1b respectively.
An isomorphism between graphs A and B is given by the following function:

f (a) = 1, f (g) = 5,

f (b) = 6, f (h) = 2,

f (c) = 8, f (i) = 4,

f (d) = 3, f (j) = 7.

81

82 symmetry detection

(a) Graph A. (b) Graph B.

Figure 6.1: Graph isomorphism example.

In the field of complexity theory, the graph isomorphism problem is one of the
few problems which is in NP but it is not known to be either in P or NP-complete.
It is also not known to be in co-NP [Fortin, 1996]. Since it has resisted efforts to
classify it in either P or NP-complete, researchers have taken other approaches to
determining its complexity. These approaches range from generalizing the notion
of NP to more “esoteric” complexity classes [Goldwasser et al., 1989], to define its
own complexity class, GI, of the set of problems with a polynomial-time Turing
reduction to the graph isomorphism problem [Booth and Colbourn, 1979; Köbler
et al., 1994].

Closely related to the graph isomorphism problem, and of central importance
to us, is the graph automorphism problem, which is the problem of testing whether a
graph has a non-trivial automorphism.

Definition 6.2 (The graph automorphism problem). Given a graph G = (V, E), does
there exist a bijection f , different from the identity function, onto the vertex set V such that
∀a, b ∈ V, (a, b) ∈ E↔ (f (a), f (b)) ∈ E.

Example 6.2. Consider the graph of Figure 6.2. An automorphism of the graph is given by

4

3

1 2 7 8

5

6

Figure 6.2: Graph automorphism example.

6.1 graph-based symmetry detection 83

the following function:
f (1) = 8, f (5) = 5,

f (2) = 7, f (6) = 6,

f (3) = 3, f (7) = 2,

f (4) = 4, f (8) = 1.

If such a bijection exists it is called an automorphism (or symmetry). Notice that an
automorphism is just an isomorphism that maps a graph G into itself.

Like the graph isomorphism problem, this problem belongs to the class NP, and
it is unknown whether it has a polynomial time algorithm or it is NP-complete.

The colored graph automorphism problem is a variant of the graph automorphism
problem where the automorphisms are constrained by vertex colors, such that each
automorphism must map each vertex into a vertex of the same color. Color con-
straints are specified by means of ordered partitions (or colorings).

Definition 6.3 (Partition and Coloring). Let G = (V, E) be a graph. A partition of
V is a set π = {V1, V2, . . . , Vn} of non-empty, disjoint subsets Vi (called cells) of V
such that

⋃
i Vi = V. An ordered partition (also known as coloring) is a sequence π =

(V1, V2, . . . , Vn) such that {V1, V2, . . . , Vn} is a partition of V. A partition is called discrete
if all its cells are singleton sets and it is called unit if it has only one cell (the set V).

The set of automorphism of a graph forms a group under composition.

Definition 6.4 (Automorphism Group). Given a graph G = (V, E) and a coloring
π = (V1, V2, . . . , Vk) of V, let Sn denote the set of all permutations over the set V. The
automorphism group of G, Aut(G, π), is {σ ∈ Sn | σ(G) = G and σ(π) = π},
where σ(G) = (σ(V), σ(E)) with σ(E) = {(σ(u), σ(v)) | (u, v) ∈ E} and σ(π) =

(σ(V1), σ(V2), . . . , σ(Vk)).

In other words, Aut(G, π) is the set of permutations of the graph vertices that
map edges to edges with the restriction that vertices in any given cell of π can only
be mapped to vertices in that same cell.

One of the factors contributing to the large amount of work on the graph auto-
morphism (isomorphism) problem is the many practical applications it has. This
has lead to the development of practical algorithms and tools capable of handling
large graphs efficiently.

The first of such tools was Nauty [McKay, 1981; McKay, 2007]. It was origi-
nally conceived to solve the graph isomorphism problem by canonical labeling.
A canonical label of a graph, is a function C such that given two graphs G and H,
C(G) = C(H) if and only if G and H are isomorphic.

The algorithm implemented by Nauty remains at the core of more recent tools
like Saucy [Darga et al., 2004; Darga et al., 2008; Katebi et al., 2012] and Bliss [Junt-
tila and Kaski, 2007].

The central computation in Nauty’s algorithm is the ordered partition refinement,
similar to the one used for state minimization of finite-state automata [Aho and
Hopcroft, 1974]. Given an initial coloring π of a graph G = (V, E), ordered par-
tition refinement tries to transform it into a finer partition π′ that maximally dis-
tinguishes unmappable vertices. This is done by splitting cells containing vertices
with different color-relative vertex degrees.

84 symmetry detection

Definition 6.5 (Color-relative Vertex Degree). Given a coloring π = (V1, V2, . . . , Vk)

of the graph G = (V, E) and a vertex v ∈ V, let d(v, Vi) be the number of vertices in Vi
that are adjacent to v in G. Note that d(v, V) is simply the degree of v in G.

The process of splitting some cells induces further refinement as each vertex in
a cell must have the same number of connections to vertices in every cell in the
coloring, otherwise they can be distinguished. If no further refinement is possible,
then the coloring is stable and the refinement process stops.

Definition 6.6 (Stable Coloring). A coloring π is stable if

d(u, Vi) = d(v, Vi), 1 ≤ i ≤ |π|

for all pair of vertices u, v ∈ Vj, 1 ≤ j ≤ |π|.

Example 6.3 ([Sakallah, 2009]). Figure 6.3 illustrates the ordered partition refinement
procedure on a 2-colored graph with 9 vertices. The initial coloring π consists of two cells
corresponding to the graph’s two types of vertices (square and round). In the first refinement
iteration, vertex 3 is split off from V1 because its degree relative to V2 is different from those
of the two other vertices in V1, i. e., vertex 3 can be distinguished from vertices 1 and 2.
Similarly, vertex 9 is split off from V2 yielding the intermediate coloring π̂. The second
refinement iteration splits vertex 8 from V3 yielding the final stable coloring π′.

1 2 3

54 76 98

654321 7 8 9

654321 7 8 9

654321 7 8 9

V1 V2

V1 V2 V3 V4

V2 V3 V4V5V1

111 1 1

111122 1 1 1� �2,d V	

� �1,d V	

111 1

1� �2,d V	

� �1,d V	

11122 1

1

� �3,d V	

� �4,d V	

111 1

� �2,d V	

� �1,d V	

11122 1� �3,d V	

Split 3 from V1,

and 9 from V2

Split 8 from V3

Initial coloring

Stable coloring

�̂

�

��

� �4,d V	

� �5,d V	

Figure 6.3: Ordered partition refinement [Sakallah, 2009].

If the refinement procedure returns a discrete coloring π′, i. e., every cell of the
partition is a singleton, then all vertices can be distinguished implying that G has

6.1 graph-based symmetry detection 85

no symmetries besides the identity. However, if π′ is not discrete, then there is
some non-singleton cell in π′ representing vertices that could not be distinguished
based on degree and are, thus, member of a potential symmetry. The existence of
symmetries is checked by selecting some non-singleton cell T of π′, called the target
cell, and forming |T| descendant colorings from π′, each identical to π′ except that
a distinct t ∈ T is placed in front of T−{t} (remember that a coloring is an ordered
partition of the set of vertices). Each of these colorings is subsequently refined, and
further descendant colorings are generated if the refined colorings are not discrete;
this process is iterated until discrete colorings are reached. The colorings explored
in this fashion form a search tree with the discrete colorings at the leaves. The leaves
of the search tree represent possible symmetries of G.

The next step in the process is to derive from these colorings permutations of the
graph vertices that correspond to graph symmetries. This is done by choosing one
of these colorings as a reference, and computing the permutations that transform
it to the other colorings, i. e., if π1 and π2 are discrete colorings and σ(π1) = π2

then σ is a possible symmetry of G. σ is a symmetry of G if and only if σ(G) = G.
We can enumerate Aut(G, π) by fixing the first leaf encountered in the search,

denoted as τ, as a reference coloring, and comparing it to every other discrete
coloring, i. e., Aut(G, π) = {σ | π discrete , τσ = π, and σ(G) = G}.

A permutation that does not correspond to a symmetry of the graph triggers
backtracking in the search tree so that other branches can be explored.

The performance of this graph automorphism algorithm depends critically on
aggressive pruning of the search tree to avoid deriving permutations that can be
obtained as the product of other permutations already found. Ideally the output of
the algorithm should be a set of irredundant generators. In practice, however the
overhead of performing the group theoretic pruning necessary to guarantee this
outcome tends to be excessive. Instead, graph automorphism tools are designed to
produce at most n− 1 generators for an input graph with n vertices, providing an
exponentially smaller representation of the complete set of symmetries which is
often, but not guaranteed to be, irredundant.

Example 6.4 ([Sakallah, 2009]). Figure 6.4 shows the resulting search tree for a 6-vertex
graph. The initial coloring has a single cell since all vertices are of the same color. Refinement
yields a stable coloring with two non-singleton cells. At this point, the first cell is chosen
as a target, and the algorithm branches by creating three descendant colorings. The process
is now repeated, i. e., each derived coloring is refined and the algorithm branches from it if
it has a non-singleton cell, in a depth-first manner until discrete colorings are reached. In
this example, the search tree terminates in six leaves corresponding to six different discrete
colorings.

To derive the permutations, we chose the left-most coloring π0 as the reference; the
permutations that convert it to the other colorings, including itself, are labeled γ0 to γ5.
Each such permutation γi is then checked to determine if it is a graph symmetry, i. e., if
γ(G) = G. In this example, all six permutations are indeed symmetries of the graph, yield-
ing Aut(G, π) = {γ0, γ1, γ2, γ3, γ4, γ5}. Notice that in this example, the portion of the
search tree enclosed by the dashed outline (nodes F, G, H, and I) can be safely pruned away
since the permutations identified at its leaves can be expressed in terms of permutations γ1

and γ2.

86 symmetry detection

253641

532641 532614 532416

654321

532641

253641 352614 532416

235641

253461

253461

352614

325614

352164

352164

532416

523416

532146

532146

R

R

R R R R R R

RR

A

B

D G

E F H IC

�0=() �1=(3, 5)(4, 6) �2=(1, 4)(2, 3) �3=(1, 4, 6)(2, 3, 5) �4=(1, 6, 4)(2, 5, 3) �5=(1, 6)(2, 5)

2

53

1

64

2

35

1

46

3

52

4

61

3

25

4

16

5

32

6

41

5

23

6

14

2

53

1

64

�0: �1: �2: �3: �4: �5:

�: (Initial partition: all vertices have same color)

G
�0
�
�0,� � G

�1
�
�1,� � G

�2
�
�2,� � G

�3
�
�3,� � G

�4
�
�4,� � G

�5
�
�5,� �

G:

Figure 6.4: Basic flow of the ordered partition refinement procedure [Sakallah, 2009].

Modern implementations of this algorithm, like Saucy and Bliss are capable of
handling graphs with millions of vertices efficiently. In particular, both implemen-
tations take advantage of the sparsity of both the graphs and the generators of their
automorphism groups. In this context, sparsity is taken to mean that the average
vertex degree in the graph and the average support (the elements not mapped
to themselves by a permutation, see Appendix A) of the resulting symmetry gen-
erators are both much smaller than the number of graph vertices. Incorporating
knowledge of both types of sparsity in the basic automorphism algorithm can re-
sult in a substantial pruning of the search tree, essentially yielding a tree whose
size is linear, rather than quadratic, in the total support of the symmetry genera-
tors [Darga et al., 2008].

As already mentioned, the idea underlying graph-based techniques is to con-
struct a graph from a formula such that the automorphisms of the graph corre-
spond to symmetries of the formula, i. e., to construct a graph such that its auto-
morphism group is isomorphic to the symmetry group of the formula.

Since groups are often described by sets of generators, it is important to know
that isomorphisms preserve such descriptions.

Theorem 6.1. Any group isomorphism maps sets of generators to sets of generators, and
maps irredundant sets of generators to irredundant sets of generators.

Proof. See [Aloul et al., 2003b].

Theorem 6.1 tells us that if we build a graph from a formula, such that the au-
tomorphism group of the first is isomorphic to the symmetry group of the second,

6.1 graph-based symmetry detection 87

then every generator of the automorphism group corresponds to a generator of the
symmetry group.

Theorem 6.1 also provides a criteria against which to compare different reduction
algorithms, namely, if they create graphs having an automorphism group that is
isomorphic to the symmetry group of the formula from which they were created or
not. If the groups are not isomorphic, then we might find spurious symmetries, i. e.,
automorphisms of the graph that do not correspond to a symmetry of the formula.

Another important criteria to compare reduction algorithms is which type of
symmetry they can detect. In SAT solving, we are interested in detecting two types
of symmetries: permutational and phase-shift.

Definition 6.7 (Permutational and Phase-shift Permutations). Let PROP be a set of
propositional variables and PLIT the set of literals over PROP (i. e., PLIT = PROP ∪
{¬pi | pi ∈ PROP}). Let σ : PLIT 7→ PLIT be a permutation of propositional literals. We
say σ is permutational if σ maps literals without changing their polarity, e. g., σ(p) = q
for all p, q ∈ PLIT. We say σ is a phase-shift if it changes the polarity of at least one pair
of literals, e. g., σ(p) = ¬q for p,¬q ∈ PLIT.

6.1.2 Reduction Algorithms

We now present a survey of different algorithms (called reduction algorithms) to
transform a propositional formula in CNF into a colored graph.

The first algorithm was introduced in [Crawford, 1992] where the idea of reduc-
ing the symmetry detection problem to the graph isomorphism problem was first
shown.

The algorithm aims at detecting a particular type of symmetries, called simple
symmetries. A simple symmetry of a CNF formula ϕ is a permutation σ such that
σ(ϕ) = ϕ and σ(p) = q for a given pair p, q of propositional variables. Given a
CNF formula and a pair of goal variables p and q, the algorithm constructs two
(almost identical) colored graphs G(ϕ, p) and G(ϕ, q) such that only isomorphisms
mapping p to q are detected and every detected isomorphism is a symmetry of the
input formula.

Definition 6.8 (Crawford I reduction algorithm). Let ϕ be a CNF formula and let p
and q, two propositional variables occurring in ϕ, be the goals.

First construct a graph G(ϕ) as follows:

i) For each propositional variable p in Vars(ϕ):

a) Add three vertices: one positive-literal vertex of color 0, one negative-literal
vertex of color 1, and one inverse vertex of color 2.

b) Add a link between the positive-literal and the inverse vertices.

c) Add a link between the negative-literal and the inverse vertices.

ii) For each clause in ϕ:

a) Add a vertex of color 3.

b) Add an edge between the clause vertex and each literal vertex corresponding to
a literal occurring in it.

88 symmetry detection

To construct the graphs G(ϕ, p) and G(ϕ, q):

i) From the graph G(ϕ) create two graphs, G(ϕ, p) and G(ϕ, q).

a) In G(ϕ, p), type the vertex corresponding to p as a goal vertex of color 4.

b) In G(ϕ, q), type the vertex corresponding to q as a goal vertex of color 4.

For a formula with V variables and C clauses, this construction produces two graphs
with 5 colors and 3V + C vertices each.

Example 6.5. Consider the formula

ϕ = (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (¬q ∨ r).

Figure 6.5 shows the associated colored graphs (colors are represented by shapes and
shades in the figure) constructed using the algorithm of Definition 6.8. First, notice that
this reduction algorithm results in two graphs, G(ϕ, p) (Figure 6.5a) and G(ϕ, q) (Fig-
ure 6.5b), that differ only in which is their goal node. The goal nodes are used to force
any isomorphism between G(ϕ, p) and G(ϕ, q) to map p to q as required. Therefore with
this reduction algorithm we cannot detect the only non-trivial symmetry of the formula,
namely σ = (p ¬p)(q ¬r)(¬q r), because we look for isomorphisms mapping p to q and
viceversa. This implies that in order to find even a single non-trivial symmetry, one may
need to traverse all pairs of variables.

Also notice that we cannot detect phase-shift symmetries (and their composition with
permutational symmetries), as positive-literal and negative-literal vertices are colored dif-
ferently.

Despite its limitations, this reduction algorithm has historical relevance as it was
the first to introduce fundamental elements now used by practical reductions. Of
particular importance are:

- The modeling of variable by pairs of positive-literal and negative-literal ver-
tices.

- The modeling of clauses by a vertex connected to respective literal vertices by
edges.

- Connecting positive-literal and negative-literal vertices to enforce Boolean
consistency.

In [Crawford et al., 1996] an alternative reduction algorithm is presented. It is the
first one to reduce the problem of detecting symmetries of formulas to the problem
of detecting automorphism of a graph.

Definition 6.9 (Crawford II reduction algorithm). Let ϕ be a CNF formula. The graph
G(ϕ) is constructed as follows:

i) For each propositional variable p in Vars(ϕ):

a) Add two vertices: one positive-literal vertex of color 0, one negative-literal ver-
tex of color 1.

ii) For each non-binary clause in ϕ:

6.1 graph-based symmetry detection 89

(a) G(ϕ, p)

(b) G(ϕ, q)

Figure 6.5: Crawford I reduction algorithm example.

a) Add a vertex of color 2.

b) Add an edge between the clause vertex and each literal vertex corresponding to
a literal occurring in it.

iii) For each binary clause in ϕ:

a) Add an edge between the two literals vertices corresponding to the literals oc-
curring in the clause.

For a formula with V variables, C>2 non-binary clauses and C2 binary clauses, this
construction produces a graph with 3 colors and 2V + C>2 vertices.

Example 6.6. Consider the formula of Example 6.5. Figure 6.6 shows its associated colored
graph G(ϕ) constructed using the algorithm of Definition 6.9. This formula has only one
non-trivial symmetry: σ = (p ¬p)(q ¬r)(¬q r). However, we cannot detect it with this
reduction algorithm, because phase-shift symmetries (and their composition with permuta-
tional symmetries) are not detected.

An important element introduced by this reduction is the modeling of binary
clauses by one edge rather than by one clause vertex and two edges. As the graph
automorphism algorithms tend to be more sensitive to the number of vertices of
an input graph than to the number of edges, this could lead to great savings when
the formula has many binary clauses. However, this reduction does not enforce
Boolean consistency, i. e., there is no edge between positive-literal and negative-
literal vertices, and therefore, this could lead to the detection of spurious symme-

90 symmetry detection

Figure 6.6: Crawford II reduction algorithm example.

tries, i. e., automorphisms of the graph that do not correspond to a symmetry of
the formula.

Example 6.7. Consider the formula ϕ = (p ∨ q). Figure 6.7 shows its associated graph
G(ϕ) constructed using the algorithm of Definition 6.9. The formula has two symmetries:
i) the identity symmetry, and ii) the transposition (p q). The graph G(ϕ) has two positive-
literal vertices, two negative-literal vertices and binary-clause edge linking the positive-
literal vertices. Since no negative literals are used, the respective vertices are disconnected
and can be mapped to each other even if the positive-literal vertices are fixed. This graph
have four symmetries. One of them is the transposition (¬p ¬q) with p and q fixed which
violates Boolean consistency.

Figure 6.7: Boolean consistency violation using the Crawford II reduction algorithm.

Notice also that this reduction is unable to detect phase-shift symmetries due to
the different coloring of the positive and negative literal vertices.

In [Aloul et al., 2003b] three reduction algorithms (2xEDGEs, MIN3C and DAC02)
are presented. These reductions improve on the previous ones and constitute the
most effective reduction algorithms known so far.

Definition 6.10 (2xEDGES reduction algorithm). Let ϕ be a CNF formula. The graph
G(ϕ) is constructed as follows:

i) For each propositional variable p in Vars(ϕ):

a) Add two vertices of color 0: one for the positive literal and one for the negative
literal.

b) Add an edge between the positive-literal and negative-literal vertices.

ii) For each non-binary clause in ϕ:

a) Add a vertex of color 1.

b) Add an edge between the clause vertex and each literal vertex corresponding to
a literal occurring in it.

6.1 graph-based symmetry detection 91

iii) For each binary clause in ϕ:

a) Add a double edge between the two literals vertices corresponding to the literals
occurring in the clause.

For a formula with V variables, C>2 non-binary clauses and C2 binary clauses, this
construction produces a graph with 2 colors and 2V + C>2 vertices.

Example 6.8. Consider the formula of Example 6.5. Figure 6.8 shows its associated graph
G(ϕ) constructed using the algorithm of Definition 6.10. This construction is able to detect
the one non-trivial symmetry, σ = (p ¬p)(q ¬r) (¬q r), of the formula.

Figure 6.8: 2xEDGES reduction algorithm example.

This reduction improves the one proposed in [Crawford et al., 1996] enforcing
Boolean consistency (by adding an edge between the positive and negative literal
vertices), and enabling the detection of phase-shift symmetries and their composi-
tions with permutational symmetries (by coloring the positive-literal and negative-
literal vertices with the same color). Also, the use of a double edge to model binary
clauses prevents symmetries from mapping a Boolean consistency edge to a binary
clause edge, which eliminates the detection of spurious symmetries.

However, a major drawback of this reduction algorithm is that current graph
automorphism tools (like Saucy, Bliss and Nauty) cannot handle double edges,
thus rendering this reduction impractical.

The MIN3C reduction algorithm fixes this issue.

Definition 6.11 (MIN3C reduction algorithm). Let ϕ be a CNF formula with V vari-
ables and C2 binary clauses. The graph G(ϕ) is constructed as follows:

i) For each propositional variable p in Vars(ϕ):

a) Add two vertices of color 0: one for the positive literal, and one for the negative
literal.

b) If V > C2: Add an edge between the positive-literal and negative-literal vertices.

c) If V < C2: Add Boolean consistency vertex of color 2 and edges from this vertex
to the positive-literal and negative-literal vertices.

ii) For each non-binary clause in ϕ:

a) Add a vertex of color 1.

b) Add an edge between the clause vertex and each literal vertex corresponding to
literals occurring in it.

92 symmetry detection

iii) For each binary clause in ϕ:

a) If V > C2: Proceed as with a non-binary clause.

b) If V < C2: Add an edge between the two literals vertices corresponding to
literals occurring in the clause.

For a formula with V variables, C>2 non-binary clauses and C2 binary clauses, this con-
struction produces a graph with at most 3 colors and 2V + C>2 + min{C2, V} vertices.

Example 6.9. Consider the formula of Example 6.5. Figure 6.9 shows its associated graph
G(ϕ) constructed using the algorithm of Definition 6.11. This construction is able to detect
the non-trivial symmetry, σ = (p ¬p)(q ¬r)(¬q r), of the formula.

Figure 6.9: MIN3C reduction algorithm example.

The MIN3C algorithm yields a reduction that can be used with current graph
automorphism tools and that do not detect spurious symmetries at the cost of
generating larger graphs.

Finally, the DAC02 reduction algorithm makes no explicit distinction between
the two types of edges (single edges and double edges), but represents the Boolean
consistency and binary clause edges by single edges.

Definition 6.12 (DAC02 reduction algorithm). Let ϕ be a CNF formula. The graph
G(ϕ) is constructed as follows:

i) For each propositional variable p in Vars(ϕ):

a) Add two vertices of color 0: one for the positive literal, and one for the negative
literal.

b) Add an edge between the positive-literal and negative-literal vertices.

ii) For each non-binary clause in ϕ:

a) Add a vertex of color 1.

b) Add an edge between the clause vertex and each literal vertex corresponding to
a literal occurring in it.

iii) For each binary clause in ϕ:

a) Add an edge between the two literals vertices corresponding to the literals oc-
curring in the clause.

For a formula with V variables and C>2 non-binary clauses this construction produces a
graph with 2 colors and 2V + C>2 vertices.

6.1 graph-based symmetry detection 93

Example 6.10. Consider the formula of Example 6.5. Figure 6.10 shows its associated
graph G(ϕ) constructed using the algorithm of Definition 6.12.

Figure 6.10: DAC02 reduction algorithm example.

Given that the algorithm makes no difference between Boolean consistency edges
and binary clause edges, this could result in the detection of spurious symmetries.
However, [Aloul et al., 2003b] claims that identifying spurious symmetries is a triv-
ial task and that the superior performance of this reduction algorithm justifies the
extra effort of detecting and removing them.

Table 6.1 (adapted from [Aloul et al., 2003b]) summarizes the main properties of
the presented reduction algorithms.

Reduction #Colors #Nodes Phase-shifts? Spurious? Practical?

Crawford I 5 6V + C No No No

Crawford II 3 2V + C>2 No Yes No

2xEDGES 2 2V + C>2 Yes No No

MIN3C 3 2V + C>2 +
min{C2, V}

Yes No Yes

DAC02 2 2V + C>2 Yes Yes Yes

Table 6.1: Reduction algorithms comparison.

The applicability of these techniques goes beyond SAT solving, and many exten-
sions have been developed for a number of logics. For example, for QBF formu-
las, [Audemard et al., 2004] presents a reduction algorithm for QBF formulas, that
extends the DAC02 reduction algorithm. The main difference is that the prefix of
the QBF formula must be considered because distinct literals can be symmetrical
only if they belong to the same quantifier group. Therefore, the algorithm intro-
duces additional colors to make a distinction between literals vertices whose vari-
ables belong to different quantifiers groups. For a QBF formula with k quantifiers,
the algorithm introduces k different colors.

Example 6.11 ([Audemard et al., 2004]). Consider the QBF formula

ϕ = ∀x1, x2∃x3, x4(¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

∧(x2 ∨ ¬x3 ∨ ¬x4).

94 symmetry detection

Figure 6.11 shows the associated graph. It has three colors, one for the non-binary clau-
ses, one for the first universal group (white) and the last for the existential group (dark
gray). This instance has two non-trivial symmetries, (x1 x2) and (x3 x4). The permutation
(x1 x3)(x2 x4), which is a symmetry of the matrix of ϕ, it is not a symmetry of ϕ since x1

and x2 are not in the same quantifier group.

Figure 6.11: Graph representation of a QBF formula.

Graph reduction algorithms are also used in CSP. It has been shown that symme-
try detection of variable and value symmetries can be done by detecting automor-
phisms of the microstructure graph of the problem as well as of the graph related
to the intensional representation of each constraint [Puget, 2005].

6.2 formula-based symmetry detection

Reducing the symmetry detection problem to the graph automorphism problem is
not the only available approach. There exist many symmetry detection algorithms
that deal directly with the formula.

We briefly describe two of such algorithms, one for detecting symmetries in
propositional CNF formulas and another for detecting symmetries in SMT formu-
las.

One of the first known algorithms for detecting symmetries in propositional
CNF formulas was introduced in [Benhamou and Sais, 1992; Benhamou and Sais,
1994]. The algorithm consists of two stages: the first stage partitions the literals
into equivalence classes, while the second stage computes the symmetry using the
equivalence classes computed previously.

In the first stage, the algorithm partitions the literals into equivalence classes
based on the necessary conditions stated by the following proposition.

Proposition 6.1 (Necessary condition of symmetries). If two literals (variables) l and
l′ are symmetrical in a set of clauses S then the number of occurrences of the variable l in S
is the same as the number of occurrences of l′ and there must be a correspondence between
the length of clauses in which l occurs and the length of clauses in which l′ occurs.

6.2 formula-based symmetry detection 95

Verification of the necessary conditions is an important step of the symmetry
detection algorithm, since they reduce drastically the permutation search space by
partitioning the set of literals into equivalence classes which are potential candi-
dates for symmetry, i. e., two literals will be candidates to symmetry if they are in
the same equivalence class.

In the second stage, the algorithm uses backtrack search to build a symmetry. It
works by constructing a permutation, as a product of transpositions (i. e., cycles of
size 2), by adding a transposition at each step and checking that the added trans-
position maintain invariant the set of clauses. For example, suppose the algorithm
chooses two literals, x0 and y0, in the same equivalence class and builds a permuta-
tion σ = (x0 y0)σ′, where σ′ is a “sub-permutation” to be defined as the algorithm
proceeds. Then, it tries to transform every clause containing x0 into a clause con-
taining y0. To do so, it replaces every occurrence of x0 by y0 in every such clauses,
and process every other variable in such clauses. This results in more transpositions
added to the original permutation σ.

Example 6.12. Consider two clauses c = x0 ∨ x1 ∨ . . . ∨ xn and c′ = y0 ∨ y1 ∨ . . . ∨ yn

of the same length such that x0 occurs in c and y0 occurs in c′. And consider the partial
permutation σ = (x0 y0) To transform c into c′, after replacing x0 by y0, each variable,
xi, i ∈ {1, . . . , n}, must be linked to a variable yj, j ∈ {1, . . . , n}, this defines a new
transposition (xi yi) that we have to add to σ. If it is possible to substitute all variables, we
say that c is transformed into c′ with σ, i. e., σ(c) = c′.

If all clauses containing x0 have been transformed, then we consider the next
transposition in σ and apply the same process. If there is no more transposition
left to process, then σ is a symmetry of the formula. If given a transposition (xi yi)

we cannot relate a clause containing xi, if (xi yi) = (x0 y0), i. e., it is the first trans-
position of the permutation, then σ is not a symmetry. Otherwise, the algorithm
backtracks and tries to link xi to another variable either on the same clause in
which yi occurs, or else it tries to relate the clause to another clause.

Notice that the algorithm works by finding one symmetry at a time, therefore
mechanisms for enumerating just the necessary permutations must be implemented.

Also, the algorithm highly depends on the ordering in which the variables are
permuted. Thus a clever strategy for choosing the variables is needed [Benhamou
and Sais, 1992].

A similar algorithm is also used in finite model generation to detect symmetries
in Skolemized first-order logic formulas with all its variables universally quantified
[Audemard et al., 2006].

For SMT formulas, [Déharbe et al., 2011] presents a similar algorithm which is im-
plemented in the SMT solver VeriT [Bouton et al., 2009]. Given an SMT formula ϕ,
the algorithm detects full groups of symmetries involving uninterpreted constants.
Similarly to the previous algorithm, it works in two stages. In the first stage, the
algorithm “guesses” possible full groups of permutations. To do so, it partitions
uninterpreted constants in classes {c0, . . . , cn} such that all give the same values
to some function f (ϕ, c) that computes syntactic information that is unaffected by
permutations, e. g., the number of occurrences of a constant c in ϕ, or the maximal
depth of c within an atom of ϕ. Each identified class represents a set of constants
which are possibly fully symmetric, i. e., we can permute any pair of constants in

96 symmetry detection

the class. In the second stage, the algorithm verifies that every identified class is
fully symmetric. It does so in linear time thanks to the following result.

Proposition 6.2. A formula ϕ is symmetric with respect to permutations of constants
c0, . . . , cn if both permutations

- σcirc such that σcirc(ci) = ci−1 for i ∈ {1, . . . , n} and σcirc(c0) = cn,

- σswap such that σswap(c0) = c1 and σswap(c1) = c0,

are symmetries of ϕ.

Proposition 6.2 tells us that to verify that a formula is symmetric under the full
group of symmetries of a set of constants c0, . . . , cn it suffices to check two permuta-
tions: the circular permutation (c0 . . . cn) and a permutation that swap to constants
in the class, e. g., the permutation (c0 c1). As this permutations are generators of
the full group of symmetries involving c0, . . . , cn, if ϕ is symmetric with respect to
this generators, then it will be symmetric with respect to any composition of them,
and correspondingly, it will be symmetric with respect to the full group generated
by the generators.

The algorithm works well in practice. However, this approach is rather limited as
it is unable to detect arbitrary symmetries, only detecting full groups of symmetries
of uninterpreted constants, and not considering symmetries involving other types
of symbols, like predicate symbols, function symbols or interpreted symbols, and
quantifiers.

7
S Y M M E T RY D E T E C T I O N F O R M O D A L L O G I C S

In Chapter 3 we developed the theoretical background for exploiting symmetries
in modal logics. In this chapter we focus on how to detect symmetries in modal
CNF formulas using graph-based techniques.

First we introduce the needed definitions and notation for the rest of the chapter
(Section 7.1). Then we present a reduction algorithm for detecting global symmetries
in modal CNF formulas for a wide range of modal logics (Section 7.2). Next we
extend the algorithm for detecting layered symmetries in modal CNF formulas for
modal logics having the tree model property (Section 7.3). Finally, we implement
the algorithms for the basic modal logic and provide empirical results on several
modal benchmarks (Section 7.4).

The results presented in this chapter were published in [Areces et al., 2012; Areces
and Orbe, 2013].

7.1 definitions

In what follows we are going to work in the context of the coinductive framework
defined in Section 3.2.

Unless stated otherwise, we work with modal CNF formulas considering them
as sets of sets (see Section 3.1), although we might write them as usual for the sake
of clarity. Also by Sub(ϕ) we will denote the set of subformulas of ϕ as it is usually
defined.

Definition 7.1 (Atoms of a formula). Let ϕ be a modal CNF formula. By At(ϕ) we
denote the set of atoms occurring in ϕ regardless of the modal depth at which they occur.
By At(ϕ, n), n ∈N, we denote the set of atoms occurring in ϕ at modal depth n.

Definition 7.2 (Top Clauses and Modal Clauses). Let ϕ be a modal CNF formula. A
top clause of ϕ is a clause occurring at modal depth 0. A modal clause of ϕ is a clause
occurring in a modal literal.

Example 7.1. Consider the formula ϕ = (¬p ∨ r) ∧ (q ∨ r) ∧ (r ∨2(¬p ∨ q)). Clauses
(¬p∨ r), (q∨ r) and (r∨2(¬p∨ q)) are top clauses, while the clause (¬p∨ q) is a modal
clause.

A key aspect of building a colored graph is to define how vertices are going to
be colored. To do so, we define a typing function.

Definition 7.3 (Typing function). Let s : MOD× {0, 1} 7→ N\{0, 1} be an injective
function and let t : Sub(ϕ) 7→N be a partial function defined as:

t(ψ) =

1 if ψ is a top clause .

s(m, 0) if ψ = [m]C.

s(m, 1) if ψ = ¬[m]C.

97

98 symmetry detection for modal logics

The typing function t assigns a numeric type to every clause (top or modal). For modal
clauses, the type is based on the modality and the polarity of the modal literal in which it
occurs.

In what follows we call global permutation (symmetry) a permutation (symmetry)
as defined by Definition 3.26, and layered permutation (symmetry) a permutation
sequence as defined by Definition 3.34.

7.2 detecting global symmetries

We now introduce a reduction algorithm for detecting global symmetries in modal
CNF formulas. The algorithm is based on the MIN3C reduction algorithm for
propositional CNF formulas presented in Section 6.1.2.

Like the MIN3C algorithm, our reduction algorithm constructs a colored graph
from a modal CNF formula, such that the automorphism group of the graph is
isomorphic to the symmetry group of the formula.

Unlike the MIN3C algorithm, our reduction algorithm uses two types of edges,
and coloring is more complex as it has to deal with different modalities. Also,
recall that the MIN3C algorithm adapts its representation of binary clauses and
Boolean consistency by modeling them using vertices or edges for one or the other
depending on the number of binary clauses and variables in the formula. Our
algorithm fixes the representation, using a vertex and two edges to model binary
clauses, and an edge between the positive-literal and negative-literal vertices to
model Boolean consistency.

Definition 7.4 (Global reduction algorithm). Let ϕ be a modal CNF formula and t a
typing function. The graph G(ϕ) = (V, E1, E2) is constructed as follows:

i) For each atom a ∈ At(ϕ):

a) Add two vertices of color 0: one for the positive literal a and one for the negative
literal ¬a.

b) Add an E1-edge between the positive-literal and the negative-literal vertices to
ensure Boolean consistency.

ii) For each top clause C in ϕ:

a) Add a clause vertex of color t(C).

b) For each atom literal l occurring in C, add an E1-edge between the vertex for C
and the vertex for l.

c) For each modal literal [m]C′ (¬[m]C′) occurring in C:

i. Add a clause vertex of color t([m]C′) (t(¬[m]C′)) to represent the modal
clause C′.

ii. Add an E1-edge between the vertex of C and the vertex of C′.

iii. If m is indexed by an atom literal l then add an E2-edge between the vertex
of C′ and the vertex of the indexing literal l.

iv. Repeat the process from point ii)b for each literal (atom or modal) occurring
in C′.

7.2 detecting global symmetries 99

For a formula with A atoms, C top clauses, M modal clauses, and R modalities, this
construction produces a graph with 2 + 2R colors and (2|A|+ C + M) vertices.

Example 7.2. Consider the formula

ϕ = (a ∨ [m](b ∨ ¬[m]c)) ∧ (b ∨ [m](a ∨ ¬[m]c)).

This formula has six clauses (2 at modal depth 0, 2 at modal depth 1 and 2 at modal
depth 2) and three atoms (six literals). Figure 7.1 shows its associated colored graph G(ϕ)

(colors are represented by shapes and shades in the figure) constructed using the algorithm
of Definition 7.4.

A = (a ∨ [m](b ∨ ¬[m]c))

B = (b ∨ [m](a ∨ ¬[m]c))

C = [m](b ∨ ¬[m]c)

D = [m](a ∨ ¬[m]c)

E = ¬[m]c

F = ¬[m]c

Figure 7.1: Global reduction algorithm example.

The graph has one non-trivial automorphism π = (A B)(C D)(E F)(a b)(¬a ¬b)
which corresponds to the symmetry σ = (a b)(¬a ¬b) of ϕ.

Example 7.3. Consider the formula

ϕ = (¬a ∨ [@i](¬b ∨ c)) ∧ (¬b ∨ [@j](¬a ∨ c)).

This formulas has 2 modal clauses (C and D) that corresponds to modalities indexed by
atoms (@i and @j). Figure 7.2 shows its associated graph G(ϕ) constructed using the
algorithm of Definition 7.4.

A = (¬a ∨ [@i](¬b ∨ c))

B = (¬b ∨ [@j](¬a ∨ c))

C = [@i](¬b ∨ c)

D = [@j](¬a ∨ c)

Figure 7.2: Global reduction algorithm example using indexed modalities.

The graph has one non-trivial automorphism π = (A B)(C D)(a b)(¬a ¬b)(i j)(¬i ¬j)
that corresponds to the symmetry σ = (a b)(¬a ¬b)(i j)(¬i ¬j) of ϕ.

100 symmetry detection for modal logics

Now let us prove that the reduction algorithm presented in Definition 7.4 is
correct. First, let us introduce the needed definitions.

We need a mechanism to identify clauses occurring in a formula, therefore we
define a clause id as follows.

Definition 7.5 (Clause Id). Let ϕ be a modal CNF formula and C a clause occurring
in it. The clause id of C is defined as id(C) = 〈m, k, i〉 where m is the modal depth at
which the clause occurs, k = t(ψ) is the type of the clause as returned by the typing
function t and i ∈ N is different for each clause at the same modal depth. To simplify
notation, in what follows we will assume that each clause C is labeled by its unique identifier
id(C) = 〈m, k, i〉 and write Cm,k,i.

Example 7.4. Consider the formula

ϕ = (a ∨ [m1](b ∨ ¬[m2]c)) ∧ (b ∨ ¬[m1](a ∨ ¬[m2]c)).

Assume t([m1]C) = 2, t(¬[m1]C) = 3, t([m2]C) = 4, and t(¬[m2]C) = 5. The multiset
of clauses of ϕ is

{(a ∨ [m1](b ∨ ¬[m2]c)), (b ∨ ¬[m1](a ∨ ¬[m2]c)), (b ∨ ¬[m2]c), (a ∨ ¬[m2]c), c, c}.

The clause ids of the clauses are:

(a ∨ [m1](b ∨ ¬[m2]c)) 7→ 〈0, 1, 1〉
(b ∨ ¬[m1](a ∨ ¬[m2]c)) 7→ 〈0, 1, 2〉

(b ∨ ¬[m2]c) 7→ 〈1, 2, 1〉
(a ∨ ¬[m2]c) 7→ 〈1, 3, 2〉

c 7→ 〈2, 5, 1〉
c 7→ 〈2, 5, 2〉

By definition, a symmetry of a formula ϕ is a bijective function that maps literals
to literals. It can naturally be “extended” to a function σext that also maps each
clause C to σ(C).

Definition 7.6 (Extension of σ). Let σ : ALIT 7→ ALIT be a symmetry of ϕ. Let Cl(ϕ) =

{id(C) | C is a clause of ϕ}. The extension of σ is a bijective function σext over ALIT ∪
Cl(ϕ) that maps literals to literals and clause id to clause id.

The following properties of σext are easy to verify.

Proposition 7.1. Let ϕ be a modal CNF formula and σ a symmetry of ϕ. Then for the
extension of σ the following holds:

i) σext is a bijective function.

ii) If σext(Cm,k,i) = Cm′,k′,i′ then m = m′.

iii) If σext(Cm,k,i) = Cm′,k′,i′ then k = k′.

iv) If l ∈ Sub(Cm,k,i) then σext(l) ∈ Sub(σext(Cm,k,i)).

v) σext is a symmetry of ϕ.

7.2 detecting global symmetries 101

Notice that the reduction algorithm of Definition 7.4 induces a mapping that
associates to each literal and clause in the formula the corresponding vertex graph.

We are now ready to prove that the reduction algorithm of Definition 7.4 is
correct. The first step is to show that each symmetry of the formula ϕ correspond
to an automorphism of the colored graph G(ϕ).

Proposition 7.2. Let ϕ be a modal CNF formula, σ a symmetry of ϕ, G(ϕ) = (V, E1, E2)

the colored graph of ϕ as defined by Definition 7.4, and g the mapping induced by the
construction of G(ϕ). Then π = g ◦ σext is an automorphism of G(ϕ).

Proof. To simplify notation let us assume that g is the identity function (i.e., we
do not differentiate between a clause (or literal) and its associated vertex in the
graph) and as a consequence π = σext. Then π is an automorphism of G(ϕ) if the
following holds:

i) (l,¬l) ∈ E1 iff (π(l), π(¬l)) ∈ E1 for all l ∈ V.

We have to consider the following cases:

- σ is a permutational symmetry:
(→): Assume π = σext = (a b)(¬a ¬b). Then (π(a), π(¬a)) = (b,¬b) ∈
E1 by construction of G(ϕ).

(←): (a,¬a) ∈ E1 by construction of G(ϕ).

- σ is a phase-shift symmetry:
(→): Assume π = σext = (a ¬a). Then (π(a), π(¬a)) = (¬a, a), but given
that G(ϕ) is an undirected graph (¬a, a) = (a,¬a) ∈ E1 by construction.

(←): (a,¬a) ∈ E1 by construction of G(ϕ).

- σ is a compositional symmetry: It follows directly from the previous two
cases.

ii) (l, Cm,k,i) ∈ E1 iff (π(l), π(Cm,k,i)) ∈ E1 for all l, Cm,k,i ∈ V.

(→): By construction, (l, Cm,k,i) ∈ E1 only if l ∈ Cm,k,i. Then, given that σext

is a symmetry and by Proposition 7.1iv), we know that σext(l) and σext(Cm,k,i)

both occur in ϕ and σext(l) ∈ σext(Cm,k,i). Then, by construction, we have
(π(l), π(Cm,k,i)) ∈ E1.

(←): It follows directly by construction of G(ϕ).

iii) (Cm,k,i, Cm′,k′,i′) ∈ E1 iff (π(Cm,k,i), π(Cm′,k′,i′)) ∈ E1 for all Cm,k,i, Cm′,k′,i′ ∈ V.

(→): If (Cm,k,i, Cm′,k′,i′) ∈ E1 we know that either m < m′ or m > m′. Assume
m < m′ then Cm′,k′,i′ is a modal clause occurring in Cm,k,i. By Proposition
7.1iv), we have σext(Cm′,k′,i′) is a modal clause occurring in σext(Cm,k,i), and
given that σext is a symmetry of ϕ, σext(Cm,k,i) and σext(Cm′,k′,i′) both occur in
ϕ, therefore, by construction, π(Cm,k,i) ∈ V and, π(Cm′,k′,i′) ∈ V, therefore
(π(Cm,k,i), π(Cm′,k′,i′)) ∈ E1.

(←): It follows directly by construction of G(ϕ).

iv) (l, Cm,k,i) ∈ E2 iff (π(l), π(Cm,k,i)) ∈ E2 for all l, Cm,k,i ∈ V.

102 symmetry detection for modal logics

(→): (l, Cm,k,i) ∈ E2 if the modality of the modal clause Cm,k,i is indexed by l.
Given that σext is a symmetry of ϕ, we know that σext(l) ∈ ϕ and σext(Cm,k,i) ∈
ϕ and that σext(l) index the modality of the modal clause σext(Cm,k,i), therefore,
by construction, π(l) ∈ V and π(Cm,k,i) ∈ V and (π(l), π(Cm,k,i)) ∈ E2.

(←): It follows directly by construction of G(ϕ).

v) For every cycle (x y) ∈ π, x and y have the same color.

Follows from Proposition 7.1iii) and the fact that by construction different
types of clauses are assigned different colors in the graph.

Next, we show that any automorphism of G(ϕ) induces a symmetry of ϕ.

Proposition 7.3. Let ϕ be a modal CNF formula, G(ϕ) = (V, E1, E2) the colored graph
of ϕ as defined by Definition 7.4, π an automorphism of G(ϕ) and g the mapping induced
by the construction of G(ϕ). Then σext = g−1 ◦ π is a symmetry of ϕ.

Proof. Once more, assume g is the identity. To prove that σext is a symmetry of ϕ,
we have to prove the following properties:

i) σext is a consistent permutation, i.e., σext(¬l) = ¬σext(l) for all l ∈ ALIT.

By construction, Boolean consistency edges only connect literal nodes. Let
li ∈ V be a literal node. Then by construction we have (li,¬li) ∈ E1. Now
assume π(li) = lj for lj ∈ V. Given that π is an automorphism it must be
the case that (π(li), π(¬li)) ∈ E1, and therefore π(¬li) = ¬lj = ¬π(li), which
implies σext(¬li) = ¬σext(li).

ii) If Cm,k,i ∈ Sub(ϕ) then σext(Cm,k,i) ∈ Sub(ϕ).

By construction Cm,k,i ∈ V implies Cm,k,i ∈ Sub(ϕ). As π is an automorphism,
π(Cm,k,i) ∈ V, therefore, π(Cm,k,i) ∈ Sub(ϕ) which implies σext(Cm,k,i) ∈
Sub(ϕ).

iii) If l ∈ Sub(ϕ) then σext(l) ∈ Sub(ϕ).

It follows by the same argument as in the previous case.

iv) If σext(Cm,k,i) = Cm′,k′,i′ then k = k′.

It follows from the fact that π is a colored automorphism, mapping only
nodes of the same color, and by construction, clauses of the same type are
assigned the same color in the graph.

v) If σext(Cm,k,i) = Cm′,k′,i′ then m = m′.

We prove this by induction on m, the modal depth at which a clause occurs
in ϕ.

Base Case: m = 0. We have to prove that if σext(C0,k,i) = Cm′,k′,i′ then m′ = 0.
Assume m′ 6= 0. Then, exists a clause Cn,s,j, with n < m′ such that, Cm′,k′,i′ is
a modal clause occurring in it. By construction, we then have (Cn,s,j, Cm′,k′,i′) ∈
E1. As π is an automorphism of G(ϕ), we should have (π(Cn,s,j), π(Cm′,k′,i′)) =

(π(Cn,s,j), C0,k,i) ∈ E1, but by construction there is no such edge.

7.3 detecting layered symmetries 103

Inductive Step: n < m→ m. By construction of G(ϕ) if (Cm,k,i, Cn,l,j) ∈ E1 then
|m− n| = 1. Now, assume m 6= m′. We know exists a clause C(m′−1),s,j such
that (C(m′−1),s,j, Cm′,k′,i′) ∈ E1. Then, as π is an automorphism of G(ϕ), it must
be the case that (π(C(m′−1),s,j), π(Cm′,k′,i′)) = (π(C(m′−1),s,j), Cm,k,i) ∈ E1. By
the inductive hypothesis we know π(C(m′−1),s,j) = C(m′−1),s,j′ and therefore,
we have (C(m′−1),s,j′ , Cm,k,i) ∈ E1. But then we get |m− (m′− 1)| ≥ 2, which by
construction cannot happen. Therefore (C(m′−1),s,j′ , Cm,k,i) 6∈ E1, contradicting
the fact that π is an automorphism of G(ϕ).

vi) If l index a clause Cm,k,i then σext(l) index the clause σext(Cm,k,i).

If l indexes a clause Cm,k,i, then by construction (l, Cm,k,i) ∈ E2. Given that π

is an automorphism, (π(l), π(Cm,k,i)) ∈ E2, which implies σext(l) indexes the
clause σext(Cm,k,i).

We have proved that σext, the extension of σ, obtained from an automorphism of
the graph, is a symmetry of ϕ. To obtain the original symmetry σ we just take the
restriction of σext to atom literals.

Finally we show that our construction is correct.

Theorem 7.1. Let ϕ be a modal CNF formula and G(ϕ) = (V, E1, E2) the colored graph
constructed following the construction of Definition 7.4. Then every symmetry σ of ϕ

corresponds one-to-one to an automorphism π of G(ϕ).

Proof. Immediate from Proposition 7.2 and 7.3.

Theorem 7.1 ensures that the reduction algorithm is correct and, therefore, no
spurious symmetry is detected.

Given that this construction is developed in the coinductive modal models frame-
work and makes no assumption about the class of models on which we interpret
the formulas, we can think of it as a template construction from which to derive
reduction algorithms for concrete modal logics. For some modal logics, e. g., basic
modal logic, the derivation is straightforward and we can use the algorithm as it
is defined. However, for other modal logics, this has to be done carefully as they
might require to constraint the graph even more. For example, for modal logics
with modalities indexed by atoms (e. g., hybrid logics) practical implementations
of the algorithm cannot be done using multiple types of edges as current graph
automorphism tools can handle just one type of edges. However, this is simple to
fix as we can replace every E2-edge by an additional vertex (an indexing vertex)
and two edges: one linking the indexing vertex and the modality vertex, and other
linking the indexing vertex and the literal vertex.

Example 7.5. Consider the formula ϕ of Example 7.3. Figure 7.3 shows the graph G(ϕ)

using additional vertices (triangle vertices) to model E2-edges.

7.3 detecting layered symmetries

We now present an extension to the reduction algorithm presented in Definition 7.4
that enables the detection of layered symmetries for modal logics having the tree

104 symmetry detection for modal logics

A = (¬a ∨ [@i](¬b ∨ c))

B = (¬b ∨ [@j](¬a ∨ c))

C = [@i](¬b ∨ c)

D = [@j](¬a ∨ c)

Figure 7.3: Graph using additional vertices to represent E2-edges.

model property. The key observation here is that, in these logics literals occurring at
different modal depths are semantically different and, therefore, can be considered
independently. Therefore, we can define a different permutation at each modal
depth, thus defining a permutation sequence (see Definition 3.34).

Definition 7.7 (Layered reduction algorithm). Let ϕ be a modal CNF formula of modal
depth n and t a typing function. The graph G(ϕ) = (V, E1, E2) is constructed as follows:

i) For each atom a ∈ At(ϕ, i) with 0 ≤ i ≤ n:

a) Add two vertices of color 0: one for the positive literal and one for the negative
literal. Label the vertices ai and ¬ai respectively (the i index mark the modal
depth of the literal).

b) Add an E1-edge between the positive-literal and the negative-literal vertices to
ensure Boolean consistency.

ii) For each top clause C in ϕ:

a) Add a clause vertex of color t(C).

b) For each atom literal l occurring in C, add an E1-edge between the vertex for C
and the vertex for lmd(C), where md(C) is the modal depth at which C occurs.

c) For each modal literal [m]C′ (¬[m]C′) occurring in C:

i. Add a clause vertex of color t([m]C′) (t(¬[m]C′)) to represent the modal
clause C′.

ii. Add an E1-edge between the vertex of C and the vertex of C′.

iii. If m is indexed by an atom literal l then add an E2-edge between the vertex
of C′ and the vertex of the indexing literal labeled lmd(C′).

iv. Repeat the process from point ii)b for each literal (atom or modal) occurring
in C′.

For a formula of modal depth n with A atoms, C top clauses, M modal clauses, and R
modalities, this construction produces a graph with 2 + 2R colors and at most (2|A| ×
(n + 1) + C + M) vertices.

7.4 experimental evaluation 105

This reduction algorithm differs from that of Definition 7.4 in the way literals
are handled during the construction of G(ϕ): if a literal occurs at different modal
depths, the algorithm treats these occurrences independently adding distinct lit-
eral vertices. By doing so it incorporates the notion of layering introduced in Chap-
ter 3.2.3.

Example 7.6. Consider the following modal CNF formula

ϕ = (¬a ∨ [m]b ∨ [m]¬b) ∧ (¬b ∨ [m]a ∨ [m]¬a).

Figure 7.4 shows it associated colored graph G(ϕ) (colors are represented by shapes in the
figure) constructed using the algorithm of Definition 7.7.

A = (¬a ∨ [m]b ∨ [m]¬b)

B = (¬b ∨ [m]a ∨ [m]¬a)

C = [m]b

D = [m]¬b

E = [m]a

F = [m]¬a

Figure 7.4: Graph representation of ϕ using the layered reduction algorithm.

The automorphism group of the graph is generated by the following three generators (πId
is the identity permutation):

Aut(G(ϕ)) Generators:
π1 = (C D)(b1 ¬b1)

π2 = (E F)(a1 ¬a1)

π3 = (A B)(C E)(D F)(a0 b0)(¬a0 ¬b0)(a1 b1)(¬a1 ¬b1).
These automorphism group generators correspond to the following symmetry group gen-

erators of ϕ (σId is the identity permutation):

Sym(ϕ) Generators:
σ̄1 = 〈σId, (b ¬b)〉
σ̄2 = 〈σId, (a ¬a)〉
σ̄3 = 〈(a b)(¬a ¬b), (a b)(¬a ¬b)〉.

Proposition 7.4. Let ϕ be a modal CNF formula and G(ϕ) = (V, E1, E2) the colored
graph obtained following the construction of Definition 7.7. Then every symmetry σ̄ of ϕ

corresponds one-to-one to an automorphism π of G(ϕ).

Proof. The result follows from a straightforward generalization of Properties 7.2
and 7.3.

7.4 experimental evaluation

In this section we implement the global and layered reduction algorithms for the
basic modal logic, and test them on several modal benchmarks. For simplicity sake
we restrict ourselves to the monomodal case, as generalization to the multimodal
case is straightforward.

106 symmetry detection for modal logics

7.4.1 Reduction Algorithms for the Basic Modal Logic

In what follows, let Vars(ϕ) denote the set of propositional variables occurring in
ϕ, and Vars(ϕ, n) denote the set of propositional variables occurring in ϕ at modal
depth n. The global reduction algorithm is implemented as follows:

Definition 7.8 (Global reduction algorithm). Let ϕ be a modal CNF formula. The graph
G(ϕ) = (V, E) is constructed as follows:

i) For each propositional variable p ∈ Vars(ϕ):

a) Add two vertices of color 0: one for the positive literal and one for the negative
literal.

b) Add an edge between the positive-literal and the negative-literal vertices to en-
sure Boolean consistency.

ii) For each top clause C in ϕ:

a) Add a clause vertex of color 1.

b) For each propositional literal l occurring in C, add an edge between the vertex
for C and the vertex for l.

c) For each modal literal 2C′ (¬2C′) occurring in C:

i. Add a clause vertex of color 2 (color 3) to represent the modal clause C′.

ii. Add an edge between the vertex for C and the vertex for C′.

iii. Repeat the process from point ii)b for each literal (propositional or modal)
occurring in C′.

For a formula with V propositional variables, C top clauses, and M modal clauses, this
construction produces a graph with 4 colors and (2|V|+ C + M) vertices.

The layered reduction algorithm is implemented as follows:

Definition 7.9 (Layered reduction algorithm). Let ϕ be a modal CNF formula of modal
depth n. The colored graph G(ϕ) = (V, E) is constructed as follows:

i) For each propositional variable p ∈ Vars(ϕ, i) with 0 ≤ i ≤ n:

a) Add two vertices of color 0: one for the positive-literal, labeled pi, and one for
the negative literal, labeled ¬pi.

b) Add an edge between the positive-literal and the negative-literal vertices to en-
sure Boolean consistency.

ii) For each top clause C in ϕ:

a) Add a clause vertex of color 1.

b) For each propositional literal l occurring in C, add an edge between the vertex
for C and the vertex labeled as lmd(C).

c) For each modal literal 2C′ (¬2C′) occurring in C:

i. Add a clause vertex of color 2 (color 3) to represent C′.

7.4 experimental evaluation 107

ii. Add an edge between the vertex for C and the vertex for C′.

iii. Repeat the process from point ii)b for each literal (propositional or modal)
occurring in C′.

For a formula of modal depth n with V propositional variables, C top clauses, and M modal
clauses this construction produces a graph with 4 colors and at most 2|V| × (n + 1) + C +

M vertices.

Notice that both reduction algorithms are almost identical to the general algo-
rithms of Definitions 7.4 and 7.7, but simpler, as these algorithms do not need a
typing function. We now present empirical results about how often symmetries
appear in modal benchmarks and how hard it is to actually find them.

7.4.2 Implementation

We implemented both reduction algorithms in the tool sy4ncl1. sy4ncl is a com-
mand line tool, written in Haskell, that takes a basic modal logic formula in the
intohylo format, builds the selected graph (for global or layered detection) and
outputs it in Bliss or Saucy format. It also outputs a mapping from vertices to
literals and statistics about the graph.

For each formula in our benchmarks we generate the corresponding graph us-
ing sy4ncl. Then we search for symmetries using the graph automorphism tool
Bliss [Junttila and Kaski, 2007]. Bliss takes a graph specification and returns a set
of generators for the automorphism group of the graph. If the graphs has non-
trivial automorphisms, we reconstruct the symmetries of the formula from them
using the mapping generated by sy4ncl.

From now on we call global (layered) detection algorithm (or just global (layered)
detection) to the combination of the global (layered) reduction algorithm and the
detection of automorphisms using a graph automorphism tool.

Example 7.7. Consider the formula ϕ = (p ∨ ¬2p) ∧ (q ∨ ¬2q). Figure 7.5a) shows
its representation in the intohylo format. Figure 7.5b) shows the content of the mapping
file generated by sy4ncl. This file maps literals in the formula to vertices in the graph.
Figure 7.5c) shows the graph generated by sy4ncl in Bliss format. Figure 7.5d) shows
statistics about the graph. Figure 7.5e) shows the output of Bliss for the graph correspond-
ing to ϕ. It shows that Bliss found one non-trivial generator. Using this generator, and
the mapping file we can reconstruct the symmetry of the formula (p q)(¬p ¬q).

7.4.3 Benchmarks

We use two test sets (one structured, one random) for empirical testing. The struc-
tured test set is made of 4492 instances: 378 instances were extracted from the
Logics Workbench Benchmark for K (LWB_K) [Balsiger et al., 2000] (distributed in
9 problem classes) and 4113 instances from the QBF-LIB benchmarks [Giunchiglia
et al., 2001] (distributed in 23 problem classes). Problems from the QBF-LIB bench-
marks were translated to the basic modal logic using the qbf2ml2 tool. We use two

1 Download from: http://cs.famaf.unc.edu.ar/~ezequiel/resource/sy4ncl
2 Download from:http://cs.famaf.unc.edu.ar/~ezequiel/resource/qbf2ml

http://cs.famaf.unc.edu.ar/~ezequiel/resource/sy4ncl
http://cs.famaf.unc.edu.ar/~ezequiel/resource/qbf2ml

108 symmetry detection for modal logics

begin

P1 v -[R1]P1;

P2 v -[R1]P2

end

a) intohylo Format

<md> <node_id> <lit>

0 2 6

0 1 2

0 -1 3

0 -2 7

b) Mapping File

Generator: (1,5)(2,6)(3,7)(4,8)

Nodes: 3

Leaf nodes: 3

Bad nodes: 0

Canrep updates: 1

Generators: 1

Max level: 1

|Aut|: 2

Total time: 0.00 seconds

e) Bliss Output

p edge 8 8

n 1 1

n 2 4

n 3 4

n 4 3

n 5 1

n 6 4

n 7 4

n 8 3

e 2 3

e 1 2

e 1 4

e 4 2

e 6 7

e 5 6

e 5 8

e 8 6

c) Bliss Graph

Computation time: 0.00000 sec

Color count:[2,0,2,4]

|Nodes|: 8

|Edges|: 8

d) Graph Statistics

Figure 7.5: Output of the sy4ncl tool.

different translations from QBF to the basic modal logic: Collapse1 and Collapse2.
These translations are both variations of Ladner’s translation [Ladner, 1977], that
reduce the modal depth of the resulting modal formula yielding smaller formulas
than Ladner’s translation. The difference between Collapse1 and Collapse2 is that
the former uses auxiliary propositional symbols, while the latter does not. We refer
the reader to Appendix B for a detailed description of these translations.

The random test set contains 19000 formulas generated using hGen [Areces and
Heguiabehere, 2003]. To generate the formulas, we fix the maximum modal depth
of the formulas (D) and the clause size to 3. Then, instances are distributed in
10 sets. For each set we fix the number of propositional variables (N) (from 10
to 500) and vary the number of clauses (L) to get different values of the ratio
clauses-to-variables (L/N). This ratio is a good indicator of the satisfiability of
the formula: formulas with smaller value of L/N are more likely to be satisfiable,
whilst formulas with greater values of L/N are often unsatisfiable. Each set contain
100 instances for 19 different values of the ratio L/N (from 0.2 to 35).

All tests were ran on an Intel Core i7 2.93GHz with 16GB of RAM with a timeout
of 120 seconds for both graph creation and symmetry detection.

7.4 experimental evaluation 109

7.4.4 Results

Table 7.1 summarizes the results for the LWB_K test set using both detection algo-
rithms (global and layered). Columns #In, #To and #Sy are the number of instances
in the test set, the number of instances that timeouted and the number of instances
with at least one symmetry, respectively. Columns TG and TS are the time in sec-
onds to create the graph and the total time to search for automorphism for all the
instances, respectively.

#In #To #Sy TG TS

Global 378 0 135 9.83 1.18

Layered 378 0 208 9.80 1.80

Table 7.1: Symmetries in the LWB_K test set.

The table shows that many symmetric instances exists in the LWB_K test set and
that the time required to compute the symmetries (graph time + search time) is
negligible. It also confirms our claim that by using the layered detection algorithm
we could detect more symmetries. Indeed, using layered detection, we find 73 more
symmetric instances than with the global detection algorithm.

Table 7.2 shows detailed results for the LWB_K test set. Column M is the me-
dian number of detected generators in each problem class. This value gives an
approximated idea of how symmetric are the instances in a problem class. Prob-
lem classes ending in “_n” contain satisfiable problems, while those ending in “_p”
contain unsatisfiable problems. The table shows that the LWB_K test set presents
a behavior that matches our expectations: the existence of symmetries is driven
by the codification used in each problem class. Many problem classes (k_branch,
k_path, k_grz, k_ph and k_poly) exhibit many symmetric instances, while others
exhibit none (k_d4, k_dum, k_t4p) or few symmetric instances (k_lin). Also notice
the effect of using layered detection. For some problem classes (k_branch, k_ph and
k_poly) both detection algorithms yield practically the same results, with the lay-
ered version detecting few more symmetries per instances than the global version.
However, in the k_path and k_grz classes, differences are more evident using lay-
ered detection because we find symmetries in all instances in those classes, while
with global detection we do not.

We now turn our attention to the QBF-LIB test set. Table 7.3 summarizes the
results obtained on the QBF-LIB test set using the global and the layered detection
algorithms for both translations. Tables 7.4 and 7.5 shows detailed information for
each problem class using the Collapse1 and the Collapse2 translations respectively.

These tables highlight some interesting facts. First, Table 7.3 shows that the trans-
lated QBF-LIB benchmark is highly symmetric: using the Collapse2 translation and
global symmetry detection we get that 65% of the total instances have one or more
symmetries and 18 of 23 classes have symmetric instances. These numbers grow up
to a 94% of the total instances having one or more symmetries and 23 of 23 classes
having symmetric instances when using the Collapse1 translation and the layered
symmetry detection.

110 symmetry detection for modal logics

Global Layered

Class #In #Sy M #Sy M

k_branch_n 21 21 12 21 12

k_branch_p 21 21 11 21 11

k_d4_n 21 0 - 0 -

k_d4_p 21 0 - 0 -

k_dum_n 21 0 - 0 -

k_dum_p 21 0 - 0 -

k_grz_n 21 1 1 21 5

k_grz_p 21 1 1 21 3

k_lin_n 21 0 - 0 -

k_lin_p 21 1 1 1 1

k_path_n 21 4 1.5 21 36

k_path_p 21 5 2 21 33

k_ph_n 21 18 1 18 1

k_ph_p 21 21 1 21 1

k_poly_n 21 21 16 21 19

k_poly_p 21 21 16 21 17

k_t4p_n 21 0 - 0 -

k_t4p_p 21 0 - 0 -

Table 7.2: Symmetries in the LWB_K test set detailed by problem class.

Collapse1 Collapse2

#In #To #Sy TG TS #To #Sy TG TS

Global 4113 22 2678 7330.55 57695.41 24 2676 6310.18 44022.18

Layered 4113 20 3874 7596.48 65012.79 20 2680 6342.06 39370.36

Table 7.3: Symmetries in the QBF-LIB test set.

Global Layered

Class #In #To #Sy M TG TS #To #Sy M TG TS

Ansotegui 8 8 0 - 38.90 44.22 8 8 381.50 39.72 34.86

Ayari 16 16 7 17.00 23.59 26.63 16 16 683.50 22.83 79.66

Basler 46 46 46 46.00 59.10 179.67 46 46 2027.50 61.71 664.45

Biere 80 80 0 - 59.06 26.26 80 76 63.00 64.81 27.09

Castellini 169 169 168 10.50 82.53 16.49 169 169 26.00 87.63 21.08

Egly-Seidl 137 137 125 10.00 329.68 2615.57 137 137 4506.00 349.17 4172.66

Faber-Leone-Maratea-Ricca 319 319 94 4.00 611.90 2785.79 319 319 1601.00 638.67 5293.96

Gent-Rowley 39 39 39 102.00 69.19 97.50 39 39 254.00 78.85 47.08

Herbstritt 65 65 65 566.00 32.63 401.95 65 65 566.00 29.37 423.36

Katz 10 10 0 - 14.37 35.22 10 10 529.00 11.55 81.84

Letombe 63 63 0 - 160.47 636.01 63 63 2499.00 172.13 1102.59

Letz 14 14 14 1.00 3.70 1.84 14 14 625.00 3.99 11.04

Ling 8 8 8 6.50 0.91 0.26 8 8 54.50 0.92 0.37

Mangassarian-Veneris 83 83 57 14.00 338.36 56.56 83 79 17.00 351.85 63.78

Messinger 20 20 20 17.00 20.19 22.97 20 20 50.00 18.73 29.17

Miller-Marin 466 464 159 27.00 1749.39 3593.50 466 464 323.00 1830.63 2988.92

Mneimneh-Sakallah 4 4 0 - 2.48 0.91 4 4 911.50 3.40 6.06

Narizzano 1621 1601 1601 900.00 2599.54 38435.65 1601 1601 1124.00 2664.89 39821.14

Pan 72 72 46 2.00 197.30 560.67 72 72 466.50 191.23 421.88

Rintanen 39 39 29 13.00 33.67 43.43 39 39 51.00 34.98 47.43

Scholl-Becker 60 60 38 3.00 53.00 21.75 60 50 123.00 51.90 206.43

Tacchella 693 693 107 4.00 689.91 7959.29 693 493 1599.00 724.75 7879.51

Wintersteiger 81 81 55 62.00 160.68 133.27 81 81 4127.00 162.78 1588.43

Table 7.4: Symmetries in the QBF-LIB test set translated using the Collapse1 translation.

1
1

1

Global Layered

Class #In #To #Sy M TG TS #To #Sy M TG TS

Ansotegui 8 8 0 - 42.80 38.80 8 0 - 38.17 8.91

Ayari 16 16 7 17.00 18.84 15.75 16 7 17.00 20.51 12.74

Basler 46 46 46 46.00 43.49 130.45 46 46 46.00 43.31 30.71

Biere 80 80 0 - 56.16 25.87 80 0 - 62.93 13.56

Castellini 169 169 168 10.50 77.35 16.39 169 168 10.50 78.25 17.99

Egly-Seidl 137 137 125 10.00 228.99 317.20 137 125 10.00 232.64 50.44

Faber-Leone-Maratea-Ricca 319 319 94 4.00 484.39 153.91 319 94 4.00 476.73 87.22

Gent-Rowley 39 38 38 102.00 71.24 219.65 39 39 104.00 69.43 26.49

Herbstritt 65 65 65 566.00 26.77 380.67 65 65 566.00 29.66 420.98

Katz 10 10 0 - 10.96 14.92 10 0 - 11.36 2.93

Letombe 63 63 0 - 128.72 97.59 63 0 - 134.47 26.05

Letz 14 14 14 1.00 2.48 1.21 14 14 1.00 2.78 0.73

Ling 8 8 8 6.50 0.81 0.31 8 8 6.50 0.91 0.38

Mangassarian-Veneris 83 83 57 14.00 283.08 53.94 83 57 14.00 299.60 61.28

Messinger 20 20 20 17.00 17.56 24.39 20 20 17.00 17.55 25.85

Miller-Marin 466 463 158 27.00 1657.67 3303.22 466 161 27.00 1663.61 316.81

Mneimneh-Sakallah 4 4 0 - 2.19 0.52 4 0 - 2.66 0.35

Narizzano 1621 1601 1601 900.00 2320.41 38085.44 1601 1601 900.00 2307.89 38021.60

Pan 72 72 46 2.00 182.40 359.54 72 46 2.00 175.00 51.17

Rintanen 39 39 29 13.00 26.29 44.68 39 29 13.00 26.63 47.66

Scholl-Becker 60 60 38 3.00 45.11 14.55 60 38 3.00 46.26 13.02

Tacchella 693 693 107 4.00 468.61 656.98 693 107 4.00 483.23 86.15

Wintersteiger 81 81 55 62.00 113.88 66.20 81 55 62.00 118.50 47.34

Table 7.5: Symmetries in the QBF-LIB test set translated using the Collapse2 translation.

1
1

2

7.4 experimental evaluation 113

The tables also highlight how sensitive is symmetry detection to the codification
of the formulas. Table 7.3 shows that for formulas translated using the Collapse1
translation we find more symmetries using layered detection than global detection.
In fact, Table 7.4 shows that using layered detection we detect symmetries in 5
more classes than with global detection, and that in general layered detection de-
tects more symmetries per instance. On the other hand, for formulas translated
using the Collapse2 translation both algorithms detects practically the same num-
ber of symmetric instances. This can be explained by the fact that the Collapse1
translation uses auxiliary variables (to “mark” the levels in the resulting tree mod-
els) while the Collapse2 translation does not. Therefore, Collapse1 formulas have
more propositional literals, at each modal depth, that might be permuted. Table 7.3
also shows that, in terms of efficiency, detecting layered symmetries is harder than
detecting global symmetries for Collapse1 formulas, in particular in what respect
to the search of automorphisms.

Figures 7.6 and 7.7 show scatter plots of the graph construction time and auto-
morphisms search time for both detection algorithms on instances translated using
the Collapse1 translation, respectively. The x axis gives the times of global detec-
tion, whereas the y axis gives the times of layered detection. Each point represents
an instance and its horizontal and vertical coordinates represent the time necessary
to build the graph (or search for automorphisms) in seconds. Points below the di-
agonal represent instances where layered detection outperforms global detection,
while points above the diagonal represent instances where global detection out-
performs layered detection. Points on the rightmost and topmost edges represent
timeout. Notice that a logscale is used, so that gain or degradation to the far right
and far top are exponentially more relevant.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

La
y
e
re

d
 D

e
te

ct
io

n
 [

se
c.

]

Global Detection [sec.]

Figure 7.6: Graph construction time on Collapse1-translated instances.

Figure 7.6 shows that in general there are no important differences in the times
required to construct the graphs for both algorithms. Figure 7.7, on the other hand,
shows that searching for automorphisms is harder for the layered detection algo-
rithm than for the global detection algorithm. This is in line with the fact that

114 symmetry detection for modal logics

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

La
y
e
re

d
 D

e
te

ct
io

n
 [

se
c.

]

Global Detection [sec.]

Figure 7.7: Automorphisms search time on Collapse1-translated instances.

detecting layered symmetries involves larger graphs which directly affects the per-
formance of the automorphism graph tools. However, Table 7.3 shows a different
behavior for Collapse2 instances. In fact, in this case we get better performance for
layered detection than for global detection. Figures 7.8 and 7.9 show scatter plots
of the graph construction time and automorphisms search time for both detection
algorithms on instances translated using the Collapse2 translation, respectively.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

La
y
e
re

d
 D

e
te

ct
io

n
 [

se
c.

]

Global Detection[sec.]

Figure 7.8: Graph construction time on Collapse2-translated instances.

Figure 7.8 shows that, similar to what happens with Collapse1 instances, there
are no important differences between the algorithms. However, in Figure 7.9, we
observe that for most of the instances, searching layered symmetries is easier than
searching global symmetries. At first glance, this seems contradictory, as layered
graphs are bigger than global graphs, and we would expect a similar behavior than

7.5 summary 115

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

La
y
e
re

d
 D

e
te

ct
io

n
 [

se
c.

]

Global Detection [sec.]

Figure 7.9: Automorphisms search time on Collapse1-translated instances.

for the Collapse1 case. However, this can be explained by the fact that for Collapse2,
layered graphs are sparser than global graphs. Recall that a graph is sparse if the
average degree of the vertices is much smaller than the number of vertices. In our
case, for an instance translated with the Collapse2 translation, its layered graph
contains more vertices than its global graph, but approximately the same number
of edges. This lowers the average degree of the vertices making the layered graph
sparser than the global graph. As already mentioned in Chapter 6.1.1, the perfor-
mance of the graph automorphism tools is directly affected by the sparsity of the
graphs.

Finally we test symmetry detection in the random testbed to see how often sym-
metries occur in random instances. Figures 7.10 and 7.11 show the percentage
of symmetric instances for each value of the ratio L/N using global and layered
detection respectively. They show that for small values of L/N it is easy to find
symmetric instances even in randomly generated formulas. As we increase the
value of the ratio, symmetric instances rapidly diminish. Again this coincides with
expectations: large values of L/N results from a high number of clauses in the in-
stances, reducing the possibility of symmetries. They also show that using layered
detection we find more symmetries than using global detection.

7.5 summary

In this chapter we have presented two reduction algorithms for detecting sym-
metries in modal formulas, one for detecting global symmetries and another for
detecting layered symmetries. We proved that the algorithms are correct, and there-
fore that every detected automorphism of the graph corresponds to a symmetry of
the formula from which we built the graph. As the algorithms were presented in
the context of coinductive models, they provide us with a template from which to
derive concrete implementations for concrete modal logics.

116 symmetry detection for modal logics

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
S

y
m

m

L/N

V20
V90

V150
V210
V300
V400
V500

Figure 7.10: Percentage of symmetric instances in random formulas using global detection.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
S
y
m

m

L/N

V20
V90

V150
V210
V300
V400
V500

Figure 7.11: Percentage of symmetric instances in random formulas using layered detec-
tion.

We then implemented the two reduction algorithms for the basic modal logic and
tested them in modal benchmarks. Experimental results showed that symmetries
do exists in modal benchmarks. As expected, the presence of symmetries highly de-
pends on the problem codification. Results also showed that detecting symmetries
is relatively “cheap” even for large graphs.

It remains to see how to profit from the presence of symmetries in modal formu-
las.

8
S Y M M E T RY D E T E C T I O N F O R S AT I S F I A B I L I T Y M O D U L O
T H E O R I E S

In the previous chapter we presented a graph-based technique for detecting sym-
metries in modal formulas. In this chapter we extend this technique to Satisfiability
Modulo Theories (SMT) formulas.

First we introduce the needed definitions and notation for the rest of the chapter
(Section 8.1). Then we present the reduction algorithm for detecting symmetries
in SMT formulas and prove its correctness (Section 8.2). Finally we empirically
evaluate the algorithm on several benchmarks from the SMT-LIB (Section 8.3).

The results presented in this chapter were published in [Areces et al., 2013].

8.1 definitions

Let us start by defining the language that we are going to use. In Chapter 4 we intro-
duced SMT using a standard first-order language. Nevertheless, problems in SMT
(in particular those in the SMT-LIB) are often expressed in many-sorted first-order
languages. In contrast to standard first-order languages, in many-sorted languages
every term is typed (or sorted), and each sort is denoted by a sort symbol. Let us
start by defining a many-sorted signature.

Definition 8.1 (Many-sorted Signature). A many-sorted signature (or signature) is
a tuple Σ = 〈S ,V ,F , ar, r〉 where

- S is a countable non-empty set of disjoint sorts (or types) containing the sort Bool.

- V is the (countable) union of disjoint countable sets Vτ of variables of sort τ ∈ S .

- F is a countably infinite set of function symbols, containing the symbols =,∧,¬, ∀τ,
and ∃τ for all τ ∈ S .

- ar : F 7→ N is a total function called the arity, and r : F 7→ Sn × S is a function,
called the rank, such that:

- r(∧) = (Bool, Bool, Bool) and ar(∧) = 2.

- r(¬) = (Bool, Bool) and ar(¬) = 1.

- r(=) = (τ, τ, Bool) and ar(=) = 2 for all τ ∈ S .

- r(∀τ) = (τ, Bool, Bool) and ar(∀τ) = 2 for all τ ∈ S .

- r(∃τ) = (τ, Bool, Bool) and ar(∃τ) = 2 for all τ ∈ S .

- r(f) ∈ Sar(f) × S for all f ∈ F\{=,∧,¬, ∀τ, ∃τ}.
Notice that the rank of a function symbol specifies, in order, the expected sorts of

the symbol’s arguments and result.
As usual, we call the 0-arity function symbols as constant symbols.
In our language terms are built out of variables from V and function symbols

from F .

117

118 symmetry detection for satisfiability modulo theories

Definition 8.2 (Σ-terms). Let Σ = 〈S ,V ,F , ar, r〉 be a signature. The set of well-sorted
Σ-terms is the smallest set defined by:

TΣ ::= x where x ∈ V
| f (t1, . . . , tn) where r(f) = (τ1, . . . , τn, τ)

and for each i ∈ {1, . . . , n}, ti has sort τi.

We speak of bound or free (occurrences of) variables in a term as usual. Terms are closed
if they contain no free variables, and open otherwise. Terms are ground if they are variable-
free (i. e., they contain no variable, neither free nor bound).

Definition 8.3 (Σ-formulas). Let Σ = 〈S ,V ,F , ar, r〉 be a signature. The set of Σ-
formulas is defined as the set of well-sorted terms of sort Bool.

Notice that, for simplicity, the defined language does not contain any logical
symbols. Logical connectives for negation, conjunction, the equality symbol, and
quantifiers, etc., are just considered as function symbols with a predefined rank
and sort. This will prove useful at the moment of defining the reduction algorithm
in the following section.

Σ-formulas are given a meaning by means of Σ-structures.

Definition 8.4 (Σ-structures). A structure I for a signature Σ = 〈S ,V ,F , ar, r〉 (or
Σ-structure), is a pair I = 〈D, (_)I 〉 where D assigns a non-empty domain Dτ to each
sort τ ∈ S and (_)I assigns a meaning to each variable and function symbol.

By extension, a Σ-structure defines a value I [t] in Dτ for every term of sort τ,
and a truth value I [ϕ] in {true, f alse} for every formula ϕ.

As usual, we say that a closed Σ-formula ϕ is satisfiable if there is a Σ-structure I
that makes the formula true (notation I |= ϕ), and it is valid if for all Σ-structures
I , I |= ϕ. A Σ-structure I satisfies a set of Σ-formulas S (I |= S) if I |= ϕ for every
ϕ ∈ S.

Similarly to more conventional languages, this language is a family of languages
parametrized by the signature Σ. However, when working in the context of a back-
ground theory T , the specific signature is jointly defined by the declaration of T
plus any additional sort and function symbol declaration contained in the formula.
Function symbols are called interpreted if they are defined by T , or uninterpreted
otherwise.

Notice that, as it follows from our definition of Σ-terms, well-sorted terms have
a unique sort. Therefore we can define a sort function that tells us the sort of every
term and function symbol.

Definition 8.5 (Sort function). Let Σ = 〈S ,V ,F , ar, r〉 be a signature. We define a sort
function sort : V ∪ F ∪ TΣ 7→ S that maps every variable, function symbol and Σ-term
to its corresponding sort.

In what follows, for simplicity and if not specified otherwise, we may omit the
“Σ" prefix for terms, formulas, structures, etc. Moreover, by SMT formulas we mean
well-formed formulas in the many-sorted first-order language defined previously.

8.2 detecting symmetries 119

8.2 detecting symmetries

We now present the reduction algorithm for SMT formulas. The algorithm works
by constructing the syntax directed acyclic graph of the formula plus additional
vertices and coloring it appropriately to avoid spurious symmetries. The coloring
of the graph is defined by a typing function.

Definition 8.6 (Typing function). Let Σ = 〈S ,V ,F , ar, r〉 be a signature and T a first-
order theory over Σ. By FT and FU we denote the sets of all interpreted symbols and of all
uninterpreted symbols of Σ respectively. Let D be a countably infinite set, and e an element
of D. We define the injective functions a : S 7→ A, b : Sn×S 7→ B, and c : FT 7→ C such
that A, B, and C are a partition of D\{e} (i. e., A, B and C are non-empty, A∩ B∩C = ∅
and A ∪ B ∪ C = D\{e}). We define the typing function t : F ∪ TΣ ∪ {?} 7→ D as:

t(s) =

e if s = ?.

a(sort(s)) if s is a term or an uninterpreted constant symbol.

b(r(s)) if s is an uninterpreted function symbol of ar(s) > 0.

c(s) if s is an interpreted function symbol.

Notice how the typing function handles the different elements of a formula. It
assigns a color to terms and uninterpreted constant symbols based on their sort,
to uninterpreted function symbols based on their rank, and to interpreted symbols
a unique color independently of their sort and rank. In what follows we assume
colors are represented by natural numbers, i. e., D = N and e = 0.

Definition 8.7 (Reduction algorithm). Let ϕ be an SMT formula, and t a typing func-
tion. Let F (ϕ) be the set of function symbols occurring in ϕ. The colored directed graph
G(ϕ) = (V, E) is constructed recursively as follows:

i) For each symbol s ∈ F (ϕ):

a) Add a symbol vertex of color t(s).

ii) For each term f (t1, . . . , tn), in ϕ, of arity n > 0:

a) Add an occurrence vertex of color t(f (t1, . . . , tn)).

b) Add an edge from the occurrence vertex to the symbol vertex of f .

c) If the function is commutative (e. g., ∧, ∨,↔, =, +, ∗):
i. Add an edge from the occurrence vertex to the root vertex of the graph G(ti)

for 1 ≤ i ≤ n.

d) If the function is not commutative:

i. For each argument ti, add an argument vertex of color t(?) and an edge
from this vertex to the root vertex of G(ti).

ii. Add an edge from the argument vertex of ti to the argument vertex of
ti+1 (1 ≤ i < n). These edges represent the ordering of the arguments in
f (t1, . . . , tn).

iii. Add an edge from the occurrence vertex to the argument vertex of t1.

120 symmetry detection for satisfiability modulo theories

iii) For each term Qx.t Q ∈ {∀, ∃}:
a) Proceed as for a term of a commutative function symbol, e. g., the function

Q(x, t).

Example 8.1. Consider the formula ϕ = f (a, b) ∨ f (b, a) where f , a, and b are uninter-
preted symbols such that sort(a) = sort(b) = U and r(f) = (U, U,Bool). Figure 8.1
shows its associated colored graph G(ϕ) constructed using the algorithm of Definition 8.7,
assuming that f is commutative (colors are represented by shapes in the figure).

Figure 8.1: Graph representation of f (a, b) ∨ f (b, a) (f is commutative).

Example 8.2. Consider the formula of Example 8.1, but now assume that f is not commu-
tative. Figure 8.2 shows its associated colored graph G(ϕ) (colors are represented by shapes
in the figure) constructed using the algorithm of Definition 8.7. Notice how the argument
vertices (triangle vertices) are used. For the term f (a, b) the argument vertex of a, the first
argument, is directly connected to the occurrence vertex and to the argument vertex corre-
sponding to b. For the term f (b, a) things are inverted. The argument vertex of b is directly
connected to the occurrence vertex an to the argument vertex corresponding to a.

Figure 8.2: Graph representation of f (a, b) ∨ f (b, a) (f is not commutative).

8.2 detecting symmetries 121

Example 8.3. Consider the formula ϕ = ∀x. f (x, a) where f and a are uninterpreted
symbols, sort(a) =Bool and r(f) = (U,Bool,Bool). Also assume f is commutative.
Figure 8.3 shows its associated colored graph G(ϕ) (colors are represented by shapes in the
figure). Notice that we handle the universal quantifier as a commutative function, therefore
adding no argument vertices.

Figure 8.3: Graph representation of ∀x. f (x, a).

Now let us prove that the reduction algorithm is correct.

Theorem 8.1. Let ϕ be an SMT formula and G(ϕ) = (V, E) the colored graph constructed
from it as defined by Definition 8.7. Then, every automorphism of the graph G(ϕ) is a
symmetry of the formula ϕ.

Proof. It follows directly by structural induction and from the following observa-
tions:

- The graph G(ϕ) is the syntax directed acyclic graph of ϕ plus additional
vertices.

- For terms, f (t1, . . . , tn) of arity > 0, the coloring of vertices, and the combina-
tion of root vertices and symbol vertices ensures that only symbols vertices of
the same sort (i.e., same arity and same argument sorts) and with the same
number of occurrences can be permuted.

- For terms without arguments (constants and predicates), the coloring of sym-
bol vertices and the existence of argument vertices ensures that only symbols
of the same sort and occurring the same number of times in the same argu-
ment positions can be permuted.

Finally, to reconstruct a formula symmetry from a graph automorphism, we just
need to restrict the graph automorphism to symbol vertices.

Notice that the converse of Theorem 8.1 is false: the proposed graph construction
does not find all the symmetries of the input formula. For example, consider the
formula ϕ = f (a, b) ∧ g(c, d) where a, d are of some sort and b, c of another sort
(with appropriate sorts for f and g). The permutation σ = (f g)(a c)(b d) is a
symmetry of ϕ. Nevertheless, we cannot detect it in the graph G(ϕ). This is due to
the fact that symbol vertices are colored based on the symbol sort, and this prevent
the automorphism component from detecting permutations involving symbols of
different sorts. Nevertheless, from a practical point of view, symmetries involving
symbols of different sorts are rather unnatural and do not arise often.

122 symmetry detection for satisfiability modulo theories

8.3 experimental evaluation

We now present empirical results about how often symmetries appear in SMT
benchmarks and how hard it is to actually find them.

8.3.1 Implementation

For empirical evaluation we implemented the reduction algorithm of Definition 8.7
in the tool SyMT1.

SyMT is a command line tool implemented in C. It takes into account the com-
mutativity of conjunction, disjunction, addition, multiplication and equality. Given
an input SMT formula, SyMT proceeds by creating a colored graph and using
a graph automorphism component to compute generators of the automorphism
group of the colored graph. In particular, SyMT uses Saucy 3.0 [Katebi et al., 2012]
as the graph automorphism component. Integration with Saucy is done via its C
API. SyMT also provides simplification capabilities on input formulas, some of
which involve theory reasoning (which may fail on large instances). Simplification
of input formulas is important because it may uncover hidden symmetries and
remove trivial symmetries (e.g., symmetries that do not involve uninterpreted sym-
bols). Simplifications include simple rewriting, simplification of entailed literals,
and some normalization of terms and formulas. It is activated with the -s option
of the tool.

To improve readability of the symmetry group of the input formula, we have
developed two post-processing techniques to identify subgroups that are full per-
mutation groups on a subset of the symbols involved in the symmetry. The first one
is based on the Schreir-Sims algorithm [Seress, 2003; Rehn and Schürmann, 2010],
a polynomial time algorithm that, among other things, makes it possible to check
if a given permutation belongs to the group generated by a set of generators. We
use this algorithm to check, for each orbit, if the full group of permutations of the
elements in the orbit is a subgroup of the symmetry group. Indeed, to check if a
group admits as a subgroup the full set of permutations of these elements, it is suf-
ficient to check membership of two permutations, e.g., one permutation between
two arbitrary elements, and one cyclic permutation involving all the elements in
the orbit.

Although polynomial, the above technique is often unacceptably slow. We de-
signed a second, heuristic-based, efficient technique. In essence, it partitions sym-
bols (using a union-find data-structure) into classes such that two symbols in the
same class are symmetric. Generators are used to repeatedly merge classes in the
partition, and the partition is used to simplify generators. In practice, this technique
works well in most cases, although it can fail to detect full permutation subgroups
in some cases. The first and the second techniques are activated with the -R and -r

options, respectively.

Example 8.4. The command line and output of SyMT on a formula of the QF_UF category
of SMT-LIB is as follows:

1 Download from: http://www.verit-solver.org/SyMT/

http://www.verit-solver.org/SyMT/

8.3 experimental evaluation 123

./SyMT -s -r smt-lib2/QF_UF/NEQ/NEQ004_size4.smt2

[c_0 c_1 c_2 c_3]

(p7 p9)(c12 c13)

SyMT finds generators for the symmetry group. It detects — using the post-processing
techniques described above — that there is a full subgroup of permutation for constants
c_0, c_1, c_2, c_3, and a further symmetry that permutes binary predicate symbols p7

and p9 together with c12 and c13.

8.3.2 Results

We tested SyMT against 19 categories2 from SMT-LIB [Barrett et al., 2010a] to in-
vestigate the existence of symmetries and evaluate the efficiency of the tool. All
tests were run on an Intel Xeon X3440 with 16GB. Three different configurations of
SyMT were tested. Configuration 1 has no simplification: the formula is parsed and
converted to a graph for automorphism detection. Configuration 2 uses trivial syn-
tactic simplifications. Configuration 3 enables stronger simplifications, using the
SMT engine, e.g., simplification of atoms implied by unit clauses. Configuration 2
may fail (with no symmetry reported) because the time complexity of the simpli-
fication algorithm used is not linear with respect to the size of the input formula.
However it often reveals symmetries hidden by syntactic noise easily removed by
the simplification procedure. Configuration 3 is likely to fail on large formulas, but
again, it may reveal hidden symmetries. Simplification sometimes reduces a for-
mula to false, in which case no symmetry is reported. The timeout (relevant for
configuration 2 and, mostly, for configuration 3) is set to 30 seconds.

Among the 19 analyzed categories, three (LRA, QF_UFLRA, QF_UFNRA) do
not reveal symmetries with SyMT. Of the only five formulas in UFLRA, one has
symmetries. The other 15 categories presented a significant number of symmetries
in at least one of the tested configurations. Table 8.1 summarizes the results ob-
tained for these 15 categories. For each category we report the number of instances
(#Inst), the number of instances that have symmetries for the various simplifica-
tion configurations (#Sym[1], #Sym[2] and #Sym[3]), the number of instances that
have symmetries in at least one of the configurations (#Sym[P]), the average loga-
rithm in base 2 of the size of the symmetry group (Avg[GS]) for Configuration 1,
and the total time in seconds required to analyze all the instances (Time) also for
Configuration 1.

Table 8.1 shows clearly that the SMT-LIB has many highly symmetric formu-
las, in most categories. Moreover, an in-depth study on the detected symmetries
reveals that symmetries provide information that highly depends on the category.
For example, many symmetries in the quantified formulas (e.g., AUFLIA) are due
to repeated (but unused) axiomatisations. While symmetries in the FISCHER series
of benchmarks (QF_LIA, QF_IDL), which has been automatically generated from
bounded model checking of distributed algorithms, reveals that some processes are
symmetric.

The cumulative time required to build the graph and detect the symmetries is
negligible in all categories. We do not output the times for other configurations

2 Bit vectors are not supported yet by our parser.

124 symmetry detection for satisfiability modulo theories

Category #Inst #Sym[1] #Sym[2] #Sym[3] #Sym[P] Avg[GS] Time

AUFLIA 6480 6212 6231 5941 6258 134.00 378.79

AUFLIRA 19917 15779 16475 12500 16476 1.08 9.13

AUFNIRA 989 985 985 923 985 1.00 0.41

QF_AUFLIA 1140 2 71 77 78 1.00 0.72

QF_AX 551 22 22 22 22 1.00 0.37

QF_IDL 1749 348 526 683 756 12745.43 327.95

QF_LIA 5938 728 1172 524 1200 104.55 486.19

QF_LRA 634 73 150 208 210 110.49 29.06

QF_NIA 530 169 169 168 169 5.92 3.92

QF_NRA 166 9 43 43 43 1.00 0.23

QF_RDL 204 0 0 24 24 0.00 10.13

QF_UF 6639 250 3638 375 3638 44.00 34.58

QF_UFIDL 431 19 175 186 189 1.00 2.70

QF_UFLIA 564 0 198 198 198 0.00 0.45

UFNIA 1796 1062 1061 1058 1070 47.08 543.26

Table 8.1: Symmetries in the SMT-LIB.

since there are timeouts and time is dominantly spent in the simplification modules,
so these numbers give little insight about symmetry detection itself.

8.4 summary

In this chapter we have presented a reduction algorithm for detecting symmetries
in SMT formulas.

We proved its correctness and then we implemented this algorithm in SyMT, a
simple, yet powerful, tool to detect symmetries in SMT formulas. Then we showed
that symmetry detection scales on SMT formulas by providing experimental results
on executions of the tool on many SMT-LIB categories and showing that many
formulas in the SMT-LIB repository exhibit symmetries.

As far as we known, the only alternative technique for detecting symmetries in
SMT formulas is the one presented in [Déharbe et al., 2011]. However, this technique
is rather heuristic and only detects full group of symmetries missing more general
symmetries (e. g., in Example 8.4, using our reduction algorithm we find the sym-
metry (p7 p9)(c12 c13) which is not detected using the techniques of [Déharbe
et al., 2011]).

It now remains to see how to use the detected symmetries to improve SMT solv-
ing.

9
S Y M M E T R I E S I N M O D A L TA B L E A U X

In this chapter we present a technique to exploit symmetries in a modal tableau.
The technique consists of a blocking mechanism that takes advantage of symmetry
information about the input formula to restrict the application of the (3) rule.
We start by presenting the basics about labeled tableaux for the basic modal logic
(Section 9.1). Then we present the theoretical basis for the blocking mechanism and
prove its correcteness (Section 9.2). Finally we present experimental results that
show the applicability of this mechanism (Section 9.3).

The results presented in this chapter were published in [Areces and Orbe, 2013].

9.1 labeled tableaux for the basic modal logic

In this section we present a labeled tableau calculus for the basic modal logic [Black-
burn et al., 2006].

The semantic tableau, or tableau for short, is a proof procedure that decides
satisfiability of a formula based on the satisfiability of its subparts. It was in-
troduced in [Beth, 1959], and took its current form independently in [Lis, 1960]
and [Smullyan, 1968]. Currently, it is the most popular proof procedure for modal
logics because of its many successful computer implementations and its flexibility
to adapt to different logics [D’Agostino, 1999].

From a proof theoretic point of view, a tableau calculus can be categorized as
a backward reasoning method. In backward reasoning methods, we begin with the
desired result and work backward from there to create a proof. This is in contrast
to, so called, forward reasoning methods in which we start with axioms and rules
and finish with the desired theorem. Most tableaux calculus satisfy the subformula
property, i. e., all formulas in a proof are subformulas of the formula being proved.
We express this by saying tableaux are analytic.

Intuitively, a tableau calculus works by “breaking” complex formulas into smaller
ones until complementary pairs of literals are produced or no further expansion is
possible. To do so, a tableau calculus consists of a finite collection of rules, one per
logical connective, called tableau expansion rules. Each rule specifies how to break
down one logical connective into its constituent parts and has its condition on when
to apply it. These conditions are generally defined on the presence of a formula of
certain shape. A tableau calculus may also contain additional global constraints
that may prevent the application of certain rules in some cases.

Given a formula ϕ, a tableau calculus works by building a tree whose nodes
are labeled with formulas (set of formulas), with its root node labeled as {ϕ}, and
where edges represent rule applications. We call this tree a tableau for ϕ. At each
step, the tree is modified by a rule application that adds a node or creates branches
in it. A rule can be applied only if it adds a formula to the current set of formulas
in all branches it creates.

125

126 symmetries in modal tableaux

ϕ ∧ ψ
(∧)

ϕ, ψ

ϕ ∨ ψ
(∨)

ϕ | ψ

Figure 9.1: Tableau calculus for propositional logic.

Every tableau can be considered as a graphical representation of a formula,
which is equivalent to the set of formulas the tableau is built from. This formula
is as follows: each branch of the tableau represents the conjunction of its formulas;
the tableau represents the disjunction of its branches. Expansion rules transform a
tableau into one having an equivalent represented formula. Since the tableau is ini-
tialized as a single branch containing the formulas of the input set, all subsequent
tableaux obtained from it represent formulas which are equivalent to that set.

Since the formula represented by a tableau is the disjunction of the formulas
represented by its branches, contradiction is obtained when every branch contains
a pair of opposite literals. Once a branch contains a literal and its negation, its cor-
responding formula is unsatisfiable. As a result, this branch can be now “closed”,
as there is no need to further expand it. If all branches of a tableau are closed, the
formula represented by the tableau is unsatisfiable; therefore, the original set is
unsatisfiable as well. Obtaining a tableau where all branches are closed is a way
of proving the unsatisfiability of the original set. To prove satisfiability it suffices
to find a branch that cannot be closed provided that every rule has been applied
everywhere it could be applied. A branch were no rule is applicable is said to be
saturated.

Example 9.1 (Tableau Calculus for Propositional Logic). Let us consider a tableau
calculus for propositional logic. For simplicity sake we assume that all formulas are in
negation normal form, and that the set of propositional formulas FORM is defined by the
following grammar:

FORM ::= p | ¬p | ϕ ∨ ψ | ϕ ∧ ψ,

where p ∈ PROP, with PROP = {p1, p2, . . .} a countable infinite set of propositional
variables, and ϕ, ψ ∈ FORM.

Figure 9.1 shows the tableau rules for the logical connectors ∧ and ∨. The rule (∧) states
that whenever a tableau contains a formula ϕ ∧ ψ, i. e., the conjunction of two formulas,
these two formulas are both consequences of that formula, i. e., if ϕ ∧ ψ holds, then ϕ and
ψ hold. The rule (∨) states that whenever a tableau contains a formula ϕ ∨ ψ we need to
explore one of the two disjuncts first, check whether that choice leads to the conclusion that
the formula is satisfiable, and if not, try the other disjunct. This rule splits a branch in two,
each one representing the possible choices made. The symbol “|” represents that the addition
of ϕ and the addition of ψ belong to two separate branches.

Example 9.2. Consider the formula ϕ = ((p ∨ q) ∧ ¬p) ∧ ¬q. Figure 9.2 shows its
corresponding tableau. In this case both branches have a contradiction: ¬p and p on the left
branch, and ¬q and q on the right branch. Therefore, the tableau is closed and the formula
is unsatisfiable.

9.1 labeled tableaux for the basic modal logic 127

((p ∨ q) ∧ ¬p) ∧ ¬q

((p ∨ q) ∧ ¬p),¬q

(p ∨ q),¬p,¬q

p

⊗

q

⊗

Figure 9.2: Tableau for the formula ϕ = ((p ∨ q) ∧ ¬p) ∧ ¬q.

Example 9.3. Consider the formula ϕ = ((p ∨ q) ∧ ¬p) ∧ (¬q ∨ q). Figure 9.3 shows a
tableau for ϕ. In this case the right-most branch remains open after applying all possible
rules, therefore the formula is satisfiable.

((p ∨ q) ∧ ¬p) ∧ (¬q ∨ q)

((p ∨ q) ∧ ¬p), (¬q ∨ q)

((p ∨ q) ∧ ¬p),¬q

(p ∨ q),¬p,¬q

p

⊗

q

⊗

((p ∨ q) ∧ ¬p), q

(p ∨ q),¬p, q

p

⊗

q

#

Figure 9.3: Tableau for the formula ϕ = ((p ∨ q) ∧ ¬p) ∧ (¬q ∨ q).

Let us now present the labeled (prefixed) tableau calculus for the basic modal
logic that we use in the following sections.

Labeled tableaux systems for the basic modal logic were introduced in [Fitting,
1972; Fitting, 1983], but took on their present form in [Massacci, 1994; Goré, 1999].
Labeled tableaux are closely related to propositional tableaux: they are sets of la-
beled formulas that partially describes a model. However, instead of only taking
into account truth values of propositional symbols in one “world”, they do so in an
arbitrary number of connected worlds, and each formula is labeled with the world
in which it should be true.

Let us define modal tableaux more formally. Let PREF be an infinite, non-empty
set of prefixes. Here we set PREF = N. We assume that all formulas are modal CNF
formulas as defined in Definition 3.1.

128 symmetries in modal tableaux

α:ϕ
(∧)

α:Ci,
for all Ci ∈ ϕ

α:C
(∨)

α:l1 | . . . | α:ln,
for all li ∈ C

α:¬2C
(3)1

αRα′, α′:∼C,

α:2C, αRα′
(2)

α′ : C

1 ∼C is the CNF of the negation of C. The prefix α′ is new in the tableau.

Figure 9.4: Labeled tableau calculus for the basic modal logic.

Definition 9.1 (Prefixed Formulas). Given ϕ a modal CNF formula, C a modal clause
and α ∈ PREF we call α:ϕ and α:C prefixed formulas. The intended interpretation of a
prefixed formula α:F is that F holds at the state denoted by α.

Definition 9.2 (Accessibility Statements). Given α, α′ ∈ PREF we call αRα′ an acces-
sibility statement. The intended interpretation of αRα′ is that the state denoted by α′ is
accessible via R from α.

A tableau for a modal CNF formula ϕ is a tree whose nodes are decorated with
prefixed formulas and accessibility statements, such that the root node is 0:ϕ. More-
over, we require that additional nodes in the tree are created according to the rules
of Figure 9.4, where ϕ is a modal CNF formula and C a modal clause.

The rules are interpreted as follows: if the antecedents of a rule appear in nodes
in a branch of the tableau, the branch is extended according to the formulas in the
consequent. For the case of the (∨) rule, n immediate successors of the last node
of the branch should be created. In all other cases only one successor is created,
which is decorated with the indicated formulas. To ensure termination, we require
that nodes are created only if they add at least one prefixed formula or accessibility
statement that was not already in the branch. Moreover, the (3) rule can only be
applied once to each formula of the form α:¬2C in a branch.

Definition 9.3 (Closed, open and saturated branch). A branch is closed if it contains
both α:p and α:¬p, and it is open otherwise. We say that a branch is saturated if no rule
can be further applied in the branch.

Let Tab(ϕ) be the set of tableaux for ϕ whose branches are all saturated. The
following classical result establishes that the tableau calculus we just defined is a
decision procedure for satisfiability of formulas in the basic modal logic.

Theorem 9.1. For any formula ϕ of the basic modal logic, any tableau T ∈ Tab(ϕ) is
finite. Moreover T has a saturated open branch if and only if ϕ is satisfiable.

Example 9.4. Consider the formula ϕ = 2(p ∨ q) ∧ ¬2r ∧ ¬2s. Figure 9.5 shows its
corresponding tableau. In this case all branches are open after being saturated, i. e., after
applying all possible rules, therefore the formula is satisfiable.

This completes our brief introduction of the standard tableau calculus for the
basic modal logic.

9.2 symmetry blocking 129

0 : 2(p ∨ q) ∧ ¬2r ∧ ¬2s

0 : 2(p ∨ q), 0 : ¬2r, 0 : ¬2s

1 : r, 031

1 : r, 031, 1 : (p ∨ q)

1 : r, 031, 1 : p

2 : s, 032

2 : s, 032, 2 : (p ∨ q)

2 : s, 032, 2 : p

#

2 : s, 032, 2 : q

#

1 : r, 031, 1 : q

2 : s, 032

2 : s, 032, 2 : (p ∨ q)

2 : s, 032, 2 : p

#

2 : s, 032, 2 : q

#

Figure 9.5: Tableau for the formula ϕ = 2(p ∨ q) ∧ ¬2r ∧ ¬2s.

9.2 symmetry blocking

The tableau calculus of Figure 9.4 is terminating because we restrict the application
of the (3) rule such that it can only be applied once to each formula of the form
α:¬2C in a branch.

We are interested in further restricting the application of the (3) rule so that it
can be applied to a α:¬2C formula only if it has not been applied to a symmetric
formula before. We call this restriction symmetry blocking.

From now on let T ∈ Tab(ϕ), and let Θ be a branch of T. In what follows
we work with permutation sequences as defined in Definition 3.34. A permutation
sequence σ̄ is either σ̄ = 〈〉 (i.e., σ̄ is the empty sequence) or σ̄ = σ : σ̄2 with
σ a permutation and σ̄2 a permutation sequence and we often write it as σ̄ =

〈σ1, . . . , σn〉. For a permutation sequence of length n and 1 ≤ i ≤ n, we write σ̄i for
the subsequence that starts from the ith element of σ̄. For i ≥ n, we define σ̄i = 〈〉
(the empty sequence). For a modal CNF formula ϕ and a permutation sequence σ̄,
Definition 3.35 defines σ̄(ϕ) recursively as follows:

〈〉(ϕ) = ϕ

(σ1 : σ̄2)(l) = σ1(l) for l ∈ PLIT

(σ1 : σ̄2)(2C) = 2σ̄2(C)

σ̄(C) = {σ̄(A) | A ∈ C} for C a clause or a formula.

Definition 9.4 (Distance from the root prefix). Let α ∈ PREF be a prefix. We define
depth(α) as the distance from the root prefix to the prefix α, measured as the number of

130 symmetries in modal tableaux

accessibility statements that have to be traversed to reach the prefix α from the root prefix
(in particular, if α is the prefix of ϕ then depth(α) = 0).

Given a prefixed formula α:ϕ and a permutation sequence σ̄, we define σ̄(α:ϕ) =
α:σ̄depth(α)+1(ϕ). Finally, given a modal formula ϕ, we define Vars(ϕ) as the set of
propositional variables occurring in ϕ; for S a set of modal formulas, let Vars(S) =⋃

ϕ∈S Vars(ϕ).

Definition 9.5 (Symmetry Blocking). Let σ̄ be a layered symmetry of ϕ, and let Θ be a
branch in a tableau of ϕ. The rule (3) cannot be applied to α:σ̄(¬2ψ) on Θ if it has been
applied to α:¬2ψ and Vars(σ̄(¬2ψ)) ∩Vars(Γ(α)) = ∅, for Γ(α) = {ψ | α : 2ψ ∈ Θ}
the set of 2-formulas occurring at prefix α.

Actually, a more strict symmetry blocking condition is possible, where instead
of requiring Vars(σ̄(¬2ψ)) ∩ Vars(Γ(α)) = ∅ we verify that the variables at each
modal depth of σ̄(¬2ψ) are disjoint from those in Γ(α) (i.e., ∀n.Vars(σ̄(¬2ψ), n) ∩
Vars(Γ(α), n) = ∅). But this more aggressive blocking condition did not have an
impact in our experiments. It is easy to find cases where a ¬2-formula is only
blocked under the more strict condition, but we did not find any such case in the
test sets we investigated.

Notice that symmetry blocking is a dynamic condition: after being blocked, a
¬2-formula can be scheduled for expansion if the blocking condition fails in an
expansion of the current branch. This can happen because the set Γ(α) increases
monotonically as the tableau advances. Also notice that this restriction cannot af-
fect termination or soundness of the calculus, because we are imposing further
restrictions on a method that is known to be sound, complete and terminating. We
only risk losing completeness.

Example 9.5. Consider the formula of Example 9.4 and the layered symmetry σ̄ = 〈σId,
(r s)(¬r ¬s)〉, where σId is the identity permutation. Notice that 0 : ¬2s = σ̄(0 : ¬2r)
and that Vars(σ̄(0 : ¬2r)) ∩ Vars(Γ(0)) = {s} ∩ {p, q} = ∅, therefore, the symmetry
blocking condition is met and symmetry blocking is applicable to 0 : ¬2s. Figure 9.6 shows
its corresponding tableau with symmetry blocking. Notice that we only have to explore two
branches (instead of four) to conclude that the formula is satisfiable.

0 : 2(p ∨ q) ∧ ¬2r ∧ ¬2s

0 : 2(p ∨ q), 0 : ¬2r, 0 : ¬2s

1 : r, 031

1 : r, 031, 1 : (p ∨ q)

1 : r, 031, 1 : p

#

1 : r, 031, 1 : q

#

Figure 9.6: Tableau for the formula ϕ = 2(p ∨ q) ∧ ¬2r ∧ ¬2s.

9.2 symmetry blocking 131

Example 9.5 shows the potential savings that we can obtain using symmetry
blocking. Given that the blocked formula could be arbitrarily complex, symmetry
blocking could prevent us from doing a large amount of unnecessary work.

9.2.1 Completeness

To prove completeness of our calculus with symmetry blocking we show that we
can extend an incomplete model MΘ, built from a saturated open branch Θ to a
complete model even when symmetry blocking was used.

From now on, we consider that branches in Tab(ϕ) are saturated using symmetry
blocking.

Definition 9.6. Given an open saturated branch Θ of the tableau T ∈ Tab(ϕ), we define
a modelMΘ = 〈WΘ, RΘ, VΘ〉 as:

WΘ = {α | α is a prefix on Θ}
RΘ = {(α, α′) | α, α′ ∈WΘ and αRα′ ∈ Θ}

VΘ(α) = {p | α : p ∈ Θ}.

Notice that MΘ is always a tree. Given a tree and a permutation sequence, we
can construct a new model as follows.

Definition 9.7 (σ̄-image of a tree model). Given a pointed tree modelM = 〈w, W, R, V〉
and a permutation sequence σ̄. Let depth(v) be the distance of v to the root w (in particular
depth(w) = 0). We define Mσ̄ = 〈w, Wσ̄, Rσ̄, Vσ̄〉 (the σ̄-image of M) as the model
identical toM except that

Vσ̄(v) = σ̄depth(v)+1(LV(v)) ∩ PROP,

where LV(v) is the consistent and complete set of literals generated by V(v) (see Defini-
tion 3.5).

Given a modelM and an element w ∈W, let W[w] denote the set of all elements
that are reachable from w (by the reflexive and transitive closure of the accessibility
relation). Let M[w] = 〈w, W[w], R�W[w], V�W[w]〉 denote the sub-model of M
rooted at w.

Given Θ a saturated open branch, let Σ be the set of prefixes added to Θ by
the application of the (3) rule to a ¬2-formula that has a symmetric ¬2-formula
blocked by symmetry blocking. Intuitively, Σ contains the roots of the sub-models
that need a symmetric counterpart in the completion ofMΘ.

Let M[Σ] = {MΘ[α] | α ∈ Σ}. This set contains the sub-models to which we need
to construct a symmetric sub-model. By M[Σ]σ̄ = {MΘ[α]σ̄ | MΘ[α] ∈ M[Σ]} we
denote the set of σ̄-images corresponding to the set of sub-models M[Σ]. Intuitively,
M[Σ]σ̄ is the set of models that we need to “glue” to the model MΘ to obtain a
complete model.

132 symmetries in modal tableaux

Definition 9.8 (Symmetric Extension). Given a saturated open branch Θ, a model
MΘ = 〈WΘ, RΘ, VΘ〉 and a set of symmetric pointed sub-models M[Σ]σ̄. Define the
symmetric extension ofMΘ as the modelMΘ

σ̄ = 〈WΘ
σ̄ , RΘ

σ̄ , VΘ
σ̄ 〉 where:

WΘ
σ̄ = WΘ]⊎W

RΘ
σ̄ = RΘ]⊎ R ∪ {(α, τα′) | (α, α′) ∈ RΘ}

VΘ
σ̄ (αi) = VΘ]⊎V

for all 〈τα′ , W, R, V〉 ∈ M[Σ]σ̄, where τα′ is the element corresponding to α′ in the disjoint
union.

Notice that we are gluing the symmetric sub-models to the original model by
adding an edge from the element α to the root, τα′ , of the symmetric sub-model if
there is an edge from α to the root, α′, of the original sub-model. To be sure that
this construction is sound we have to check that after adding these sub-models to
the original model, the 2-formulas holding at α, Γ(α), still hold.

The following lemma is the key to prove completeness of our calculus. First recall
the following well known result.

Proposition 9.1. Let ϕ be a modal formula and PROP a set of propositional variables
such that Vars(ϕ) ⊆ PROP. Let M be a model such that V : W 7→ P(PROP). Then
M, w |= ϕ iffM�Vars(ϕ), w |= ϕ.

Lemma 9.1. Let ϕ be a modal CNF formula, σ̄ a symmetry of ϕ and Θ be a saturated open
branch of T ∈ Tab(ϕ). Let α be a prefix such that α:¬2ψ ∈ Θ and let α:σ̄(¬2ψ) ∈ Θ be
a blocked formula. Then σ̄(ψ)

∧
Γ(α) is satisfiable.

Proof. Given that Θ is a saturated open branch, we know that αRα′ ∈ Θ and that
α′ : ψ

∧
Γ(α) ∈ Θ. From Θ we can construct a model MΘ = 〈WΘ, RΘ, VΘ〉 such

thatMΘ, 0 |= ϕ and, in particular,MΘ, α′ |= ψ
∧

Γ(α) with (α, α′) ∈ RΘ.
Now consider the sub-model rooted at α′,MΘ[α′] = 〈α′, W ′, R′, V ′〉, where W ′ =

WΘ[α′], R′ = RΘ�WΘ[α′] and V ′ = VΘ�WΘ[α′]. We know that MΘ[α′] |= ψ
∧

Γ(α).
Now considerN =MΘ[α′]�Vars(ψ) = 〈α′, W ′, R′, V ′N 〉 andR =MΘ[α′]�Vars(Γ(α))
= 〈α′, W ′, R′, V ′R〉. By Proposition 9.1 we know that N |= ψ and R |= ∧

Γ(α).
Let N ′ = σ̄(N) = 〈α′, W ′, R′, V ′′N 〉. By construction, N �σ̄N ′ and therefore N ′ |=

σ̄(ϕ). Finally, let U = N ′ ∪ R = 〈α, W ′, R′, V ′′′〉 where V ′′′(w) = V ′′N (w) ∪ V ′R(w)

for all w ∈ W ′. By the symmetry blocking condition we know that Vars(σ̄(ψ)) ∪
Vars(Γ(α)) = ∅ and therefore LV′′N (w) ∩ LV′R(w) = ∅ for all w ∈W ′. It follows that no
contradiction will arise when doing V ′′N (w) ∪ V ′R(w) and hence that the valuation
function V ′′′(w) is well defined.

Now we have to prove that U |= σ̄(ψ)
∧

Γ(α). First we prove that U |= σ̄(ψ). Take
the restriction of U to Vars(σ̄(ψ)), U�Vars(σ̄(ψ)). By construction of U , we know
that U � Vars(σ̄(ψ)) = N ′ and that N ′ |= σ̄(ψ). By Proposition 9.1, U |= σ̄(ψ). That
U |= ∧

Γ(α) holds, follows by the same argument using the model R.

We are now ready to prove a correspondence between formulas in a branch Θ
and truth in the symmetric extension of model built from it.

Lemma 9.2. Let Θ be a saturated open branch of a tableau T ∈ Tab(ϕ) and σ̄ a symmetry
of ϕ. For any formula α : ψ ∈ Θ we have thatMΘ

σ̄ , α |= ψ.

9.3 experimental evaluation 133

Proof. The proof is by induction on ψ.

Base Case:

- Suppose ψ = p. By definition, α ∈ VΘ
σ̄ (p). This impliesMΘ

σ̄ , α |= p.

- Suppose ψ = ¬p. Since Θ is open, α:p 6∈ Θ. Thus α 6∈ VΘ
σ̄ (p), which implies

MΘ
σ̄ , α |= ¬p.

Inductive Step:

- Suppose [ψ = χ ∧ θ] and [ψ = χ ∨ θ]. Both cases are trivial, by application of
the corresponding tableau rules and the induction hypothesis.

- Suppose ψ = ¬2θ. We have to consider two cases:

i) ¬2θ has been expanded by the application of the (3) rule. By saturation
of (3), αRα′, α′:θ ∈ Θ. By definition of RΘ

σ̄ and induction hypothesis:
(α, α′) ∈ RΘ

σ̄ andMΘ
σ̄ , α′ |= θ. Combining this, we obtainMΘ

σ̄ , α |= ¬2θ,
as required.

ii) ¬2θ has been blocked by the application of symmetry blocking. In this
case, ¬2θ = σ̄(¬2χ) = ¬2σ̄(χ). By saturation of (3) we have that αRα′,
α′:χ ∈ Θ. Moreover, we have that (α, α′) ∈ RΘ and that MΘ, α′ |= χ. By
definition of the symmetric extension ofMΘ we have that (α, τα′) ∈ RΘ

σ̄

andMΘ
σ̄ , τα′ |= σ̄(χ). Which implies thatMΘ

σ̄ , α |= ¬2σ̄(χ) = ¬2θ.

- Suppose ϕ = 2θ. If there is no state α′ such that (α, α′) ∈ RΘ
σ̄ then this holds

trivially. Otherwise, let α′ be such that (α, α′) ∈ RΘ
σ̄ . By definition of RΘ

σ̄ it
must be the case that α:¬2χ ∈ Θ and αRα′ ∈ Θ. We must consider two cases:

i) if α:¬2χ has not a symmetric counterpart, i.e., it is not blocking a for-
mula α : ¬2σ̄(χ) then, given that α : 2θ ∈ Θ, by saturation of (2), we
have that α′:θ ∈ Θ. By inductive hypothesis, we have that MΘ

σ̄ , α′ |= θ.
From this it follows thatMΘ

σ̄ , α |= 2θ as required.

ii) If it is the case that α:¬2χ is blocking α:¬2σ̄(χ), then, by the definition
of the symmetric extensionMΘ

σ̄ and Lemma 9.1, we have that (α, τα′) ∈
RΘ

σ̄ and MΘ
σ̄ , τα′ |= σ̄(χ) ∧ Γ(α). Given that θ ∈ Γ(α) then, MΘ

σ̄ , τα′ |= θ.
From what it follows thatMΘ

σ̄ , α |= 2θ as required.

Theorem 9.2. The tableau calculus with symmetry blocking for the basic modal logic is
complete.

Proof. Let Θ be an open saturated branch of the tableau T ∈ Tab(ϕ). Since 0 : ϕ ∈ Θ,
by Lemma 9.2 we get that ϕ is satisfiable.

9.3 experimental evaluation

We now present empirical results about how symmetry blocking performs in modal
benchmarks.

134 symmetries in modal tableaux

9.3.1 Implementation

To test the effects of symmetry blocking (SB) in modal tableaux we implemented
it in the tableau prover HTab [Hoffmann and Areces, 2007]. Implementation is
straightforward: whenever there is a ¬2-formula scheduled for expansion, the
solver checks if there is a symmetric formula already expanded. If this is the case,
it blocks the ¬2-formula and continues with the application of the remaining rules.
The solver only verifies the blocking condition if it gets a saturated open branch.
If the blocking condition holds for all blocked formulas the solver terminates. Oth-
erwise it reschedules formulas for further expansion. Symmetry information is
provided as an additional input along with the formula.

9.3.2 Results

Our test set includes 954 symmetric instances from the Logics Workbench Bench-
mark for K(LWB_K) [Balsiger et al., 2000] and QBF-LIB benchmarks [Giunchiglia
et al., 2001]. Problems from the QBF-LIB benchmarks were translated to the basic
modal logic using the qbf2ml1 tool using the Collapse1 translation, a variant of Lad-
ner’s translation [Ladner, 1977], that reduce the modal depth of the resulting modal
formula yielding smaller formulas than Ladner’s translation (see Appendix B for
a detailed description of the translation). All tests were ran on an Intel Core i7
2.93GHz with 16GB of RAM with a timeout of 600 seconds.

Table 9.1 presents the results with and without symmetry blocking (HTab+SB and
HTab, respectively). Columns #Suc and #To are the number of instances for which
the solver succeeded to establish their status and the number of instances that
timeouted respectively. Columns T1 and T2 are total times (including symmetry
computation when pertinent), in seconds, on the complete test set, including and
excluding timeouts, respectively. The table shows that HTab+SB outperforms HTab:
HTab+SB requires less time to solve all the instances and solves 7 instances more
than HTab (HTab+SB is able to solve 9 instances that timeout with HTab, but timeouts
in other 2 that HTab is able to solve). It also shows that a large number of formulas
timeouted. Most of them are formulas coming from the QBF-LIB, that, due to the
translation to the basic modal logic, resulted in large modal formulas.

Solver #Suc #To T1 T2

HTab+SB 318 636 9657 391167

HTab 311 643 10634 396434

Table 9.1: Total Times with (HTab+SB) and without (HTab) symmetry blocking.

Figure 9.7 presents a scatter plot of the running times for the 320 formulas that
succeed in at least one of the configurations. The x axis gives the running times
of HTab without symmetry blocking, whereas the y axis gives the running times of
HTab+SB. Each point represents an instance and its horizontal and vertical coordi-
nates represent the time necessary to solve it in seconds. Points below the diagonal

1 Download from:http://cs.famaf.unc.edu.ar/~ezequiel/resource/qbf2ml

http://cs.famaf.unc.edu.ar/~ezequiel/resource/qbf2ml

9.3 experimental evaluation 135

Status #In #Trig B1 B2

Satisfiable 157 73 6319 6278

Unsatisfiable 163 79 1038 87

Table 9.2: Symmetry blocking applications.

represent instances where HTab+SB outperforms HTab, while points above the diag-
onal represent instances where HTab outperforms HTab+SB. Points on the rightmost
and topmost edges represent timeout. Notice that a logscale is used, so that gain or
degradation to the far right and far top are exponentially more relevant. The figure
shows that HTab+SB outperforms HTab. Approximately half of the instances report
a performance gain while the other half report a slight performance degradation.
However, a deeper look at Figure 9.7 shows us that most of the performance gain
is obtained for instances that are not trivial to solve, and that we obtain a gain of
several orders of magnitude for many instances. While, performance degradation
is reported mostly for trivial instances (i. e., instances that take less than 1 second
to solve). In these cases, degradation is due to the extra overhead imposed by the
blocking mechanism on instances that never trigger symmetry blocking. Neverthe-
less, degradation is negligible for most of the instances.

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

H
Ta

b
 +

 S
B

 [
se

c.
]

HTab [sec.]

Figure 9.7: Performance of HTab vs. HTab+SB on all formulas.

We classify the 320 instances that succeeded in at least one of the configurations
into satisfiable and unsatisfiable instances to better understand the effect of sym-
metry blocking. Table 9.2 shows information about the application of symmetry
blocking on each category of instances. Columns #In and #Trig are the number
of instances in each test set and the number of instances that trigger symmetry
blocking at least once respectively. Columns B1 and B2 are the number of times
that symmetry blocking is triggered and the number of times that a formula was
initially blocked but dynamically rescheduled, respectively. For both categories, we
observe that symmetry blocking triggers roughly on half of the instances (46% of

136 symmetries in modal tableaux

the satisfiable instances and 48% of the unsatisfiable instances). For satisfiable in-
stances, symmetry blocking triggers many times but in most cases the blocking
condition fails later in the branch (remember that the blocking condition is dy-
namic). For unsatisfiable instances, symmetry blocking triggers less often than for
satisfiable instances, but most of the blockings are correct (but remember that sym-
metry blocking is not validated if the branch closes).

Figures 9.8 and 9.9 show the same data that Figure 9.7 but differentiated into sat-
isfiable and unsatisfiable instances. Figure 9.8 shows that for satisfiable instances
HTab+SB outperforms HTab despite that most of the times the blocking condition
fails later in the branch. This can be explained by the fact that in many cases where
the blocking condition fails, delaying the processing of symmetric formulas is ben-
eficial because the branch has more information available that can avoid branching
or close the branch more rapidly. We also can observe that degradation in perfor-
mance due to this overhead is almost negligible.

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

H
Ta

b
 +

 S
B

 [
se

c.
]

HTab [sec.]

Figure 9.8: Performance of HTab vs. HTab+SB: Satisfiable formulas.

Figure 9.9 shows that for unsatisfiable instances HTab+SB achieves major perfor-
mance gains for many instances. Also HTab+SB proves 7 more instances than HTab.
Degradation is also more noticeable for some instances. A possible explanation is
the following: if the blocked formula plays no role in the unsatisfiability of the
problem, blocking it avoids unnecessary work resulting in a performance gain. If
it plays a role in the unsatisfiability and its processing is delayed by blocking, the
solver might be forced to process formulas that would not be processed otherwise.

From the data obtained in our tests, it is clear that the effectiveness of symme-
try blocking is highly dependent on the problem class. For some classes symmetry
blocking provides an important performance gain (e.g., the k_branch problem class
from the LWB_K). On the other hand, for several highly symmetric classes, symme-
try blocking does not make a difference as it never gets triggered. In other words,
symmetric blocking only addresses a subset of the symmetries usually present in
modal formulas.

9.4 summary 137

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

H
Ta

b
 +

 S
B

 [
se

c.
]

HTab [sec.]

Figure 9.9: Performance of HTab vs. HTab+SB: Unsatisfiable formulas.

9.4 summary

In this chapter we have presented a tableau calculus that incorporates blocking
mechanism, called symmetry blocking, that uses symmetry information of the input
formula. The idea is to restrict the application of the (3) rule to a ¬2-formula if
the rule was prior applied to a symmetric ¬2-formula. We proved that the tableau
calculus with symmetry blocking is complete and tested on several modal bench-
marks. The experimental evaluation was done by implementing symmetry block-
ing on the modal tableau prover HTab. The results showed that using symmetry
blocking we obtain important performance gains for many instances, showing the
applicability of the blocking mechanism.

Part III

C O N C L U S I O N S

10
F I N A L T H O U G H T S A N D F U T U R E W O R K

It is time to sum up the work we have done in this thesis. As already mentioned, the
goal was to investigate symmetries in the context of modal logics and Satisfiability
Modulo Theories (SMT). Let us review our contributions in each of these domains.

10.1 symmetries in modal logics

As the keen reader has already noticed, the study of symmetries in modal logics is
the main topic of this thesis. We began by developing the theoretical foundations
for exploiting symmetries in modal logics and proved two key results for the basic
modal logic. First, we showed that the symmetries (or global symmetries) of a basic
modal formula partition the model space into equivalence classes such that each
equivalence class contains only models or only non-models. Second, we showed
that symmetries can be used as an inference mechanism, and therefore, they can be
used to strengthen existing reasoning mechanisms. We then extended these results
to a broad range of modal logics using the framework of coinductive modal models
and introduced a more flexible notion of symmetry, called layered symmetries, for
those modal logics that have the tree model property.

Next, we turned our attention to the subject of detecting symmetries in modal
formulas. To do so, we extended existing techniques in propositional logic that re-
duce the problem of detecting symmetries in a formula to the problem of detecting
automorphisms in a graph built from it. We presented two reduction algorithms
for creating graphs from modal formulas, one for detecting global symmetries and
another for detecting layered symmetries. We also proved that the algorithms are
correct, and therefore, that every detected automorphism of the graph corresponds
to a symmetry of the formula from which the graph was built. Both algorithms
were developed in the context of coinductive models, providing us with a template
from which to derive concrete implementations for concrete modal logics. We im-
plemented these reduction algorithms for the basic modal logic and tested them
in modal benchmarks to see how often symmetries arise in modal formulas and
how hard it is to find them. Experimental results revealed that symmetries do exist,
in great number, in modal benchmarks, and that their presence is highly related
to the codification of the problem. They also showed that detecting symmetries is
fairly cheap even for large formulas.

Finally, we put symmetries to work by implementing a tableau calculus for the
basic modal logic, that incorporates a blocking mechanism, called symmetry blocking,
that uses symmetry information of the input formula to restrict the application of
the (3) rule. The idea is to apply the (3) rule to a ¬2-formula only if the rule was
not already applied to a symmetric ¬2-formula. We proved that the tableau calcu-
lus with symmetry blocking is complete, implemented the calculus in the modal
tableau prover HTab, and tested it on several modal benchmarks. Experimental re-
sults showed that using the symmetry blocking mechanism we obtain important

141

142 final thoughts and future work

performance gains for many instances. Data also showed that the blocking mecha-
nism is not always triggered in many formulas having symmetries. This indicates
that other techniques to use symmetries need to be developed to fully profit from
them.

The results presented here, both theoretical and experimental, should be consid-
ered as a first step towards the development of a more comprehensive treatment
of symmetries in modal logics, as there is much room for improvement both in the
theoretical and in the experimental side.

Let us now briefly describe what we consider to be interesting paths for future
research.

In the theoretical side, it should be possible to develop a theory of symmetries
for modal logics that cannot be represented using the coinductive framework and
for logics that are notational variants of modal logics, e. g., Description Logics.

In this thesis, we only deal with propositional symmetries (atom symmetries
in the coinductive framework) that permute propositional (atom) literals only. It
should be possible to define a notion of symmetry that involves modal literals as
well. Notice that a permutation of propositional (atom) literals implies a permuta-
tion of modal literals. However, it is possible to find symmetric modal literals that
are not implied by symmetric propositional literals. A possible path to answer this
question could be to consider the propositional abstraction of a modal formula, as is
done in SMT, and look for symmetries in it.

On the experimental side, there is much work to do when it comes to exploiting
symmetries in modal reasoning. One path is to investigate how to develop sym-
metry breaking predicates (SBP’s) for modal formulas as is done for propositional
formulas. Currently, we have developed an SBP construction for the basic modal
logic similar to the one done in propositional logic [Aloul et al., 2003b]. Our idea is
to identify independent propositional sub-problems at each modal depth of the formula
and generate SBP’s if there are symmetric literals present in those sub-problems.
Preliminary experimental results shows that for some instances it is possible to
identify independent propositional sub-problems and that the SBP’s have a pos-
itive effect on performance. However, the conditions that drive the detection of
independent propositional sub-problems are to restrictive and left out most of the
symmetries of a formula. We are now investigating how to relax these conditions
and how to construct new types of symmetry breaking predicates.

An interesting path to explore is the use of symmetries in resolution-based modal
provers. Key to this is the use of symmetries as a inference mechanisms. In partic-
ular, a direct application to modal logics of the symmetry rule introduced in [Kr-
ishnamurthy, 1985] for propositional logic should be possible, with minor modifi-
cations.

An alternative that deserves some attention is the use of symmetries as a sim-
plification mechanism, i. e., using symmetries to simplify the input formula by re-
moving symmetric subformulas. Notice that the idea is similar in spirit to what is
done when we use symmetry blocking, but now, instead of blocking the formula
dynamically during search, we do it in a pre-processing stage before feeding the
formula to a solver.

Finally, a word of warning: due to the variety of modal logics, it seems hard
to find a “one-fit-all” method to exploit symmetries. Instead, it is more likely that

10.2 symmetries in satisfiability modulo theories 143

tailor-suited methods for each modal logic, and even, for each problem class, lead
to better results.

10.2 symmetries in satisfiability modulo theories

In the context of Satisfiability Modulo Theories (SMT), in this thesis we focused in
the development of a new symmetry detection technique. To do so, we extended
the graph-based techniques used for propositional logic to SMT and presented a
reduction algorithm to create graphs from SMT formulas. We implemented this
algorithm in the tool SyMT and tested it on several SMT-LIB benchmarks. Exper-
imental results showed that using this symmetry detection technique we are now
able to find symmetries that prior techniques are not able to find.

The detection algorithm is valuable in itself. As a formula inspection tool, SyMT
can help users to identify the symmetries in a formula and eliminate them improv-
ing the codification of the problems.

There is still room also for improvement on the detection technique and the tool
itself. As future work it would be interesting to tailor the Schreir-Sims algorithm to
our use (detecting full subgroups) to improve efficiency of this systematic method.
In many cases, symmetry groups contain subgroups that are full permutations
of tuples of symbols. Improving presentation of those cases would provide bet-
ter feedback for users. Finally, the tool currently finds only symmetries involving
permutations of uninterpreted symbols: this, of course, does not cover all possible
symmetries. For instance, the queens benchmarks have symmetries that involve
arithmetic reasoning.

Similarly to what happens in modal logics, there is still much work to do when
it comes to use symmetries in SMT solving. First, the development of symmetry
breaking predicates should be investigated. Preliminary results show that, just like
for the propositional case, it comes out in the context of SMT that automatic sym-
metry breaking is not a silver bullet. More testing should be done in this direction.
We believe that, for most cases, user expertise is required to design good symme-
try breaking formulas, and that the design of this formulas would depend on the
problem class and theory at hand.

Another direction of research, is to investigate the effects of using symmetries as
an inference mechanism in an SMT solver similarly to what is done in [Benhamou
et al., 2010]. In a similar vein, the use of symmetry information in each theory solver
should also be considered.

Part IV

A P P E N D I X

A
G R O U P T H E O RY

The study of symmetries in automated reasoning is greatly facilitated by under-
standing some basic notions from the field of group theory. In this appendix we
cover only the basic aspects of group theory that are necessary for the development
of the topics in this thesis. For a more comprehensive treatment of this topic we
refer the reader to [Fraleigh and Katz, 2003; Seress, 1997].

a.1 groups

We begin with the definition of a group as an abstract algebraic structure with
certain properties.

Definition A.1 (Group). A group is a structure 〈G, ∗〉 where G is a (non-empty) set that
is closed under a binary operation ∗, such that the following axioms are satisfied:

- The operation is associative: for all x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).

- There is an identity element e ∈ G such that for all x ∈ G, e ∗ x = x ∗ e = x.

- Every element x ∈ G has an inverse x−1 ∈ G such that: x ∗ x−1 = x−1 ∗ x = e.

We will tipically refer to the group G, rather than to the structure 〈G, ∗〉, with the un-
derstanding that there is an associated binary operation on the set G. Furthermore, it is
customary to write xy instead of x ∗ y and x2 instead of x ∗ x muck like we do with the
multiplication operation on numbers.

This definition leads to a number of interesting properties that are easy to prove,
including:

- Uniqueness of the identity: there is only one elemente e ∈ G such that e ∗ x =

x ∗ e = x for all x ∈ G.

- Uniqueness of the inverse: for each x ∈ G, there is only one element x−1 ∈ G
such that x ∗ x−1 = x−1 ∗ x = e.

The definition does not restrict a group to be finite. However, for our purposes it
is sufficient to focus on finite groups.

Definition A.2 (Group Order). If G is a finite group, its order |G| is the number of
elements in (i. e., the cardinality of) the set G.

Definition A.3 (Group Isomorphism). Let 〈G, ∗〉 and 〈G′, ∗′〉 be two groups. An iso-
morphism of G with G′ is a one-to-one function φ mapping G onto G′ such that:

φ(x ∗ y) = φ(x) ∗′ φ(y) for all x, y ∈ G.

If such a map exists, then G and G′ are isomorphic groups which we denote by G ' G′.

147

148 group theory

a.2 subgroups

Subgroups provide a way to understand the structure of groups.

Definition A.4 (Subgroup). A non-empty subset H of a group G that is closed under the
binary operation of G is itself a group and is referred to as a subgroup of G. We indicate
that H is a subgroup of G by writing H ≤ G. Additionally, H < G shall mean that H ≤ G
but H 6= G.

Definition A.5 (Proper and Trivial subgroups). If G is a group, then the subgroup
consisting of G itself is the improper subgroup of G. All other subgroups are proper
subgroups. The group {e} is the trivial subgroup of G. All other subgroups are nontriv-
ial.

A subgroup H of a group G induces a partition of G whose cells are referred to
as the cosets of H:

Definition A.6 (Cosets). Let H be a subgroup of a group G. The left coset of H containing
x ∈ G is the subset xH = {xy | y ∈ H} and the right coset of H containing x ∈ G is the
subset Hx = {yx | y ∈ H}.

It is easily shown that the number of elements in each coset of a subgroup H of
a group G is the same as the number of elements of H. This immediately leads to
the following fundamental theorem of group theory:

Theorem A.1 (Theorem of Lagrange). Let H be a subgroup of a finite group G. Then
|H| is divisor of |G|.

a.3 group generators

Theorem A.2 (Cyclic Subgroup). Let G be a group and let x ∈ G. Then

H = {xn | n ∈ Z},

i. e., the set of all (not necessarily distinct) powers of x, is a subgroup of G and is the
smallest subgroup of G that contains x. This is referred to as the cyclic subgroup of G
generated by x, and is denoted by 〈x〉.

Definition A.7 (Generator and Cyclic Group). An element x of a group G generates
G and is a generator for G if 〈x〉 = G. A group G is cyclic if there is some element x ∈ G
that generates G.

Definition A.8 (Group Generators). Let G be a group and let H ⊂ G be a subset of the
group elements. The smallest subgroup of G containing H is the subgroup generated by
H. If this subgroup is all of G, then H generates G and the elements of H are generators
of G. A generator is redundant if it can be expressed in terms of other generators. A set of
generators for a group G is irredundant if it does not contain redundant generators.

An important property of irredundant generators sets of a finite group is that
they provide an extremely compact representation of the group. This follows di-
rectly from the Theorem of Lagrange (Theorem A.1) and the definition of irredun-
dant generator sets.

A.4 permutation groups 149

Theorem A.3. Any irredundant set of generators for a finite group G, such that |G| > 1,
contains at most log2|G| elements.

Proof. Let {xi ∈ G | 1 ≤ i ≤ n} be a set of n irredundant generators for group
G and consider the sequence of subgroups G1, G2, . . . , Gn such that group Gi is
generated by {xj ∈ G | 1 ≤ j ≤ i}. Clearly G1 < G2 < . . . < Gn because of
our assumption that the generators are irredundant. By the Theorem of Lagrange,
|Gn| ≥ 2|Gn−1| ≥ . . . ≥ 2|G2| ≥ 2|G1|, i. e., |Gn| ≥ 2n−1|G1|. Noting that Gn = G
and that |G1| ≥ 2, we get |G| ≥ 2n. Thus n ≤ log2|G|.

a.4 permutation groups

We turn now to an important class of groups, namely groups of permutations.

Definition A.9 (Permutation). A permutation of a set A is a function φ : A 7→ A that
is both one to one and onto (a bijection).

Permutations can be “multiplied” using function composition:

στ(a) ≡ (σ ◦ τ)(a) = σ(τ(a))

where σ and τ are two permutations of A and a ∈ A. The resulting “product” is
also a permutation of A, since it is easily shown to be one to one and onto. This
lead us to the following result.

Theorem A.4 (Permutation Group). Given a non-empty set A, let SA be the set of all
permutations of A. Then SA is a group under permutation multiplication.

Definition A.10 (Symmetric Group). The group of all permutations of the set {1, 2, . . . , n},
n ≥ 1, is the symmetric group on n letters, and is denoted by Sn.

Note that, in general, permutation multiplication is not conmutative, i. e., στ 6=
τσ.

Finite permutations can be presented in a tabular format that explicitly shows how
each element of the underlying set is mapped to distinct element of the same set.
For instance, σ =

(
1
8

2
2

3
6

4
4

5
5

6
3

7
7

8
1

)
is the permutation that maps the element 1 to 8:

σ(1) = 8. This explicit format becomes cumbersome, however, when the cardinality
of the set A is large, and especially when a permutation maps many elements of
A to themselves. In such cases, the more compact cycle notation is preferred. Using
cycle notation, the permutation σ =

(
1
8

2
2

3
6

4
4

5
5

6
3

7
7

8
1

)
can be expressed succintly

as σ = (1 8)(3 6). This permutation is a product of disjoint cycles, where a cycle
(a b c . . . z) is understood to mean that the permutation maps a to b, b to c, and
so on, finally mapping the last element in the cycle z back to a. An element that
does not appear in a cycle is understood to be left fixed (mapped to itself) by the
permutation. The length of a cycle is the number of elements in the cycle, a cycle
with k elements will be referred to as a k-cycle.

Definition A.11 (Permutation Support). Given a permutation σ of a set A, its support
consist of those elements of A that are not mapped to themselves by σ:

supp(σ) = {a ∈ A | σ(a) 6= a}.
In other words, supp(σ) are those elements of A that appear in σ’s cycle representation.

B
F R O M Q B F T O M O D A L L O G I C

In this appendix we show how to translate QBF formulas in prenex form to modal
formulas.

b.1 definitions

Definition B.1 (QBF formulas). The set of quantified boolean formulas is the smallest
set S containing all formulas of propositional calculus such that if ϕ ∈ S and p is a
propositional variable, then both ∀pϕ and ∃pϕ ∈ S. The quantifiers range over the truth
values 1 (true) and 0 (false), and a quantified boolean formula without free variables is valid
if and only if it always evaluates to 1. A QBF formula is said to be in prenex normal form
if it is of the form ϕ = Q1 p1 . . . Qm pmθ(p1, . . . , pm), with Qi ∈ {∀, ∃} and θ(p1, . . . , pm)

a formula of propositional logic. Moreover, we assume that all pi’s are different. A QBF
formula is said to be in Conjunctive Normal Form (CNF) if θ(p1, . . . , pm) is a CNF
formula. From now on, we assume that all QBF formulas are in prenex normal form and in
Conjunctive Normal Form.

Given i, j ∈N, i ≤ j we define

2(i)ϕ = ϕ ∧2ϕ ∧22ϕ ∧ . . . ∧2i−1ϕ ∧2i ϕ,

and,
2(i,j)ϕ = 2i ϕ ∧2i+1ϕ ∧ . . . ∧2j ϕ.

Let us now define the semantics of QBF formulas.

Definition B.2 (QBF semantics). Let ϕ and ψ be a QBF formulas with free variables
z1, . . . , zn, and F a mapping F : {z1, . . . , zn} 7→ {0, 1}. Then the satisfaction relation
F |= ϕ is defined as:

F |= zi iff F (zi) = 1 for 1 ≤ i ≤ n.

F |= ¬ϕ iff F (ϕ) = 0.

F |= ϕ ∨ ψ iff F (ϕ) = 1 or F (ψ) = 1.

F |= ϕ ∧ ψ iff F (ϕ) = 1 and F (ψ) = 1.

F |= ∃yϕ iff F (ϕ[y/0]) = 1 or F (ϕ[y/1]) = 1 .

F |= ∀xϕ iff F (ϕ[x/0]) = 1 and F (ϕ[x/1]) = 1 .

By ϕ[z1/a1, . . . , zn/an] we denote the simultaneous substitution of free occurrences of zi
by ai in ϕ.

b.2 evaluating qbf formulas

Before presenting the translations it is important to understand how to evaluate a
QBF formula. Given a prenex QBF formula, we start by peeling off the outermost

151

152 from qbf to modal logic

quantifier. If it is of the form ∃p we choose one of the truth values 1 or 0 and
substitute for the newly freed occurrences of p. On the other hand, if it is of the
form ∀p we must substitute both 1 and 0 for the newly freed occurrences of p. In
this fashion, we work our way succesively through the prefixed list of quantifiers
until we reach the matrix, a formula of propositional logic. Abstractly considered
we are generating a tree. This tree consists of the root node, and then, working
inwards along the quantifier string, each existential quantifier extends it by adding
a single branch, and each universal quantifier extends it by adding two branches.
Indeed, we are even generating an annotated tree: we can label each node with the
substitution it records.

Example B.1. Consider the QBF formula ∀p∃q(p↔ ¬q). Figure B.1 shows the resulting
annotated tree.

Figure B.1: Quantifier tree for ∀p∃q(p↔ ¬q).

The information in such annotated trees, that we call quantifier trees will play a
crucial role. For a start, QBF-validity is witnessed by certain quantifier trees: ϕ is a
QBF-validity if and only if there is a quantifier tree for ϕ such that the substitutions
it records ensure that the matrix evaluates to 1. Moreover, quantifier trees give us a
bridge between the QBF world and the modal world: we are going to build a modal
formula fL(ϕ) that describes the structure of a quantifier tree evaluating ϕ. That is,
fL(ϕ) will describe the peel-of-quantifiers-and-substitute evaluation process for ϕ,
i. e., it describes how to generate the quantifier tree for ϕ.

b.3 ladner’s translation

The first translation from QBF to the basic modal logic was introduced in [Ladner,
1977] and it is known as the Ladner’s translation.

Definition B.3 (Ladner’s translation). Given a QBF formula, ϕ = Q1 p1 . . . Qm pm

θ(p1, . . . , pm). We define fL(ϕ), its translation to basic modal logic, as the conjunction of
the following formulas:

(Root) : q0,

(Level) :
∧

i 6=j 2
(m)(¬qi ∨ ¬qj) for 0 ≤ i ≤ m,

(Peel off) : 2(m)(¬qi ∨ ¬2¬qi+1) for 0 ≤ i < m,

(Branch) :
∧

i|Qi+1=∀ Bi,

(Propagate) : S(1, m− 1) ∧ S(2, m− 1) ∧ . . . ∧ S(m− 1, m− 1),

(Matrix) :
∧

2m(¬qm ∨ Cj) for all clauses Cj ∈ θ.

B.3 ladner’s translation 153

Where q0, . . . , qm are new propositional variables, Bi is defined as

Bi = 2i(¬qi ∨ ¬2(¬qi+1 ∨ ¬pi+1)) ∧2i(¬qi ∨ ¬2(¬qi+1 ∨ pi+1)), (B.1)

and S(i, j) as

S(i, j) = 2(i,j)(¬pi ∨2pi) ∧2(i,j)(pi ∨2¬pi). (B.2)

Ladner’s translation works by forcing a tree model such that at every leaf we have
a complete valuation of the variables in the prefix and we evaluate the matrix there.
The first conjunct, (Root), ensures that every model satisfying the formula has a root
node. The qi variables play a supporting role. They are used by the (Level) conjuncts
to mark the level in the model; that is, they mark the number of upward steps that
need to be taken to reach the satisfying node. The (Peel off) conjuncts guarantees
that if qi is true and i < m then there is a next level qi+1; which simply amounts
to saying that if i < m then we have not yet peeled off all the quantifiers and a
new level will be necessary. The (Branch) conjuncts assure that branching occurs at
level i only if the quantifier Qi+1 is a ∀. To do so it uses the Bi formulas that force
a branching to occur at level i by setting the value of pi+1 to true at one successor at
level i + 1, and setting pi+1 to false at another. The (Propagate) conjuncts assure that
these newly set truth values are sent further down the tree up to the leaves. This
is done by the S(i, j) formulas that propagates the truth values assigned to pi one
level down. Finally, the (Matrix) conjunct insists that after m quantifiers have been
peeled off, the propositional matrix θ must be true. Note that if the propositional
matrix θ is in conjunctive normal form, then the resulting formula is in modal CNF.
Clearly fL(ϕ) is polysize in |ϕ|, thus this translation causes no blowup in space
requirements.

Despite of being polynomial, the resulting formulas are too big for empirical
testing.

To overcome this problem, and produce smaller formulas, a number of trans-
lations have been proposed [Schmidt-Schauß and Smolka, 1991; Massacci, 1999;
Heguiabehere and de Rijke, 2001], most of them variants of the Ladner’s transla-
tion. For example, in [Heguiabehere and de Rijke, 2001] a translation is presented
that does not use level variables and removes many redundant formulas from the
original Ladner’s translation.

Definition B.4 (Variant of Ladner’s translation [Heguiabehere and de Rijke, 2001]).
Given a QBF formula, ϕ = Q1 p1 . . . Qm pmθ(p1, . . . , pm). We define fL(ϕ), its translation
to basic modal logic, as the conjunction of the following formulas:

(Peel off) : 2i¬2⊥ for 0 ≤ i < m,

(Branch) :
∧

i|Qi+1=∀ Bi,

(Propagate) : S(1, m− 1) ∧ S(2, m− 1) ∧ . . . ∧ S(m− 1, m− 1),

(Matrix) :
∧

2mCj for all clauses Cj ∈ θ.

Where Bi is defined as

Bi = 2i¬2¬pi+1 ∧2i¬2pi+1, (B.3)

and S(i, j) as

S(i, j) = 2(i,j)(¬pi ∨2pi) ∧2(i,j)(pi ∨2¬pi). (B.4)

154 from qbf to modal logic

b.4 collapse translations

A problem with Ladner’s translations is that the modal depth of the resulting
formula depends on the number of variables in the prefix, v, and the size of the
resulting formula is polynomial in v. For small values of v this is not a problem.
However, for QBF formulas coming from real applications, the value of v can easily
reach the hundreds of variables, thus yielding excessively large formulas.

To overcome this oversize problem, we want a translation that reduces the modal
depth of the resulting formula. One way of doing so, is to modify the “peel off”
scheme of Ladner’s translation as follows: instead of building a modal formula that
forces the creation of a new state for each existentially quantified variable (from
now on ∃-variables) in a model satisfying it, we could build a formula that collapses
all the information corresponding to consecutive ∃-variables into the states that the
formula forces to be created for the closer universally quantified variable (from now
on ∀-variable). In other words, we want a formula that only forces the creation of
new states only for the ∀-quantifiers, forcing a binary tree model, and that forces
each created state to have the information of the ∃-quantifiers. This is exactly what
the following translations (Collapse1 and Collapse2) do.

Before defining them formally, let us define the needed notation.

Definition B.5 (Quantifier Sequences). Let ϕ = Q1 p1 . . . Qm pmθ(p1, . . . , pm) be a
prenex QBF formula. By U(ϕ) = 〈Qi | Qi = ∀ and 1 ≤ i ≤ m〉 we denote the sequence
of ∀-quantifiers in the prefix of ϕ. By E(ϕ) = 〈Qi | Qi = ∃ and 1 ≤ i ≤ m〉 we denote
the sequence of ∃-quantifiers in the prefix of ϕ. Given a sequence of quantifiers S, by Si we
denote the i-th quantifier in the sequence. S1 denotes the first element of the sequence. By
|S| we denote the size of the sequence.

Definition B.6 (Collapse Level). For each existential quantifier ∃i, we define a collapse
level, CL(∃i), which corresponds to the index of the last ∀-quantifier occurring before ∃i.

Now we are ready to present the first translation.

Definition B.7 (Collapse1 Translation). Given a CNF QBF formula ϕ = Q1 p1 . . . Qm pm

θ(p1, . . . , pm), let m = |U(ϕ)|. We define fL(ϕ), its translation to basic modal logic, as
the conjunction of the following formulas:

(Root) : q0,

(Level) :
∧

j 6=k 2j(¬qj ∨ ¬qk) 0 ≤ j, k ≤ m,

(Peel&Branch) :
∧

B(i, j) 0 ≤ j < m and

U(ϕ)(j+1) = ∀i,

(Propagate-∀) :
∧

S(i, j, m− 1) 1 ≤ j ≤ m− 1 and

U(ϕ)j = ∀i,

(Propagate-∃) :
∧

S(i, j, m− 1) 1 ≤ k ≤ |E(ϕ)| and

E(ϕ)k = ∃i and

j = CL(∃k), j ≤ m,

(Matrix) :
∧

2m(¬qm ∨ Cj) for all clauses Cj ∈ θ.

B.4 collapse translations 155

Where B(i, j) is defined as

B(i, j) = 2j(¬qj ∨ ¬2(¬qj+1 ∨ ¬pi)) ∧2j(¬qj ∨ ¬2(¬qj+1 ∨ pi)), (B.5)

and S(i, j, k) as

S(i, j, k) = 2(j,k)(¬pi ∨2pi) ∧2(j,k)(pi ∨2¬pi). (B.6)

A variation of the Collapse1 translation is the Collapse2 translation that uses no
auxiliary variables.

Definition B.8 (Collapse2 Translation). Given a CNF QBF formula ϕ = Q1 p1 . . . Qm pm

θ(p1, . . . , pm), let m = |U(ϕ)|. We define fL(ϕ), its translation to basic modal logic, as
the conjunction of the following formulas:

(Peel&Branch) :
∧

B(i, j) 0 ≤ j < m and

U(ϕ)j = ∀i,

(Propagate-∀) :
∧

S(i, j, m− 1) 1 ≤ j ≤ m− 1 and

U(ϕ)j = ∀i,

(Propagate-∃) :
∧

S(i, j, m− 1) 1 ≤ k ≤ |E(ϕ)| and

E(ϕ)k = ∃i and

j = CL(∃k), j ≤ m,

(Matrix) :
∧

2mCj for all clauses Cj ∈ θ.

Where B(i, j) is defined as

B(i, j) = 2j¬2¬pi ∧2j¬2pi,

and S(i, j, k) as

S(i, j, k) = 2(j,k)(¬pi ∨2pi) ∧2(j,k)(pi ∨2¬pi).

B I B L I O G R A P H Y

[Aho and Hopcroft, 1974] A. Aho and J. Hopcroft. The Design & Analysis of Com-
puter Algorithms. Pearson Education India, 1974. (Cited on page 83.)

[Aloul et al., 2003a] F. Aloul, I. Markov, and K. Sakallah. Shatter: efficient
symmetry-breaking for boolean satisfiability. In Design Automation Conference.,
pages 836–839. IEEE, 2003. (Cited on pages 6 and 7.)

[Aloul et al., 2003b] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving diffi-
cult instances of boolean satisfiability in the presence of symmetry. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 22(9):1117–1137,
2003. (Cited on pages 6, 7, 60, 86, 90, 93, and 142.)

[Aloul et al., 2006] F. Aloul, K. Sakallah, and I. Markov. Efficient symmetry break-
ing for boolean satisfiability. Computers, IEEE Transactions on, 55(5):549–558, 2006.
(Cited on pages 6 and 7.)

[Arai and Urquhart, 2000] N. Arai and A. Urquhart. Local symmetries in proposi-
tional logic. In Proceedings of the International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, pages 40–51, 2000. (Cited on page 4.)

[Areces and Gorín, 2010] C. Areces and D. Gorín. Coinductive models and normal
forms for modal logics (or how we learned to stop worrying and love coinduc-
tion). Journal of Applied Logic, 8(4):305–318, 2010. (Cited on pages 32 and 35.)

[Areces and Heguiabehere, 2003] C. Areces and J. Heguiabehere. hGen: A Ran-
dom CNF Formula Generator for Hybrid Languages. In Methods for Modalities 3,
Nancy, France, 2003. (Cited on page 108.)

[Areces and Orbe, 2013] C. Areces and E. Orbe. Dealing with symmetries in modal
tableaux. In D. Galmiche and D. Larchey-Wendling, editors, TABLEAUX, volume
8123 of Lecture Notes in Computer Science, pages 13–27. Springer, 2013. (Cited on
pages 97 and 125.)

[Areces and ten Cate, 2006] C. Areces and B. ten Cate. Hybrid logics. In P. Black-
burn, F. Wolter, and J. van Benthem, editors, Handbook of Modal Logics, pages
821–868. Elsevier, 2006. (Cited on page 35.)

[Areces et al., 2000a] C. Areces, P. Blackburn, and M. Marx. The computational
complexity of hybrid temporal logics. Logic Journal of IGPL, 8(5):653–679, 2000.
(Cited on page 23.)

[Areces et al., 2000b] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-
based heuristics in modal theorem proving. In Proceedings of ECAI’2000, pages
199–203, Berlin, Germany, 2000. (Cited on page 43.)

[Areces et al., 2012] C. Areces, G. Hoffmann, and E. Orbe. Symmetries in modal
logics. In D. Kesner and P. Viana, editors, LSFA, volume 113 of EPTCS, pages
27–44, 2012. (Cited on pages 25 and 97.)

157

158 bibliography

[Areces et al., 2013] C. Areces, D. Deharbe, P. Fontaine, and E. Orbe. Symt: finding
symmetries in smt formulas. In 11th International Workshop on Satisfiability Modulo
Theories (SMT 2013), Helsinki, Finland, 07/2013 2013. (Cited on page 117.)

[Armando et al., 2000] A. Armando, C. Castellini, and E. Giunchiglia. Sat-based
procedures for temporal reasoning. In Recent Advances in AI Planning, pages
97–108. Springer, 2000. (Cited on pages 48 and 58.)

[Audemard et al., 2002a] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and
R. Sebastiani. A sat based approach for solving formulas over boolean and linear
mathematical propositions. In Automated Deduction (CADE-18), pages 195–210.
Springer, 2002. (Cited on page 58.)

[Audemard et al., 2002b] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebas-
tiani. Bounded model checking for timed systems. In Formal Techniques for
Networked and Distributed Sytems (FORTE 2002), pages 243–259. Springer, 2002.
(Cited on pages 8, 48, and 60.)

[Audemard et al., 2004] G. Audemard, B. Mazure, and L. Sais. Dealing with sym-
metries in quantified boolean formulas. In Proceedings of the 7th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’04), pages 257–262,
2004. (Cited on pages 7 and 93.)

[Audemard et al., 2005] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani.
Verifying industrial hybrid systems with mathsat. Electronic Notes in Theoretical
Computer Science, 119(2):17–32, 2005. (Cited on page 48.)

[Audemard et al., 2006] G. Audemard, B. Benhamou, and L. Henocque. Predict-
ing and detecting symmetries in fol finite model search. Journal of Automated
Reasoning, 36(3):177–212, 2006. (Cited on page 95.)

[Audemard et al., 2007a] G. Audemard, S. Jabbour, and L. Sais. Efficient symmetry
breaking predicates for quantified boolean formulae. In Proceedings of SymCon-
Symmetry in Constraitns-CP workshop. Citeseer, 2007. (Cited on page 7.)

[Audemard et al., 2007b] G. Audemard, S. Jabbour, and L. Sais. Symmetry break-
ing in quantified boolean formulae. In IJCAI, pages 2262–2267, 2007. (Cited on
page 7.)

[Bachmair et al., 2003] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congru-
ence closure. Journal of Automated Reasoning, 31(2):129–168, 2003. (Cited on
page 52.)

[Balsiger et al., 2000] P. Balsiger, A. Heuerding, and S. Schwendimann. A bench-
mark method for the propositional modal logics K, KT, S4. Journal of Automated
Reasoning, 24(3):297–317, 2000. (Cited on pages 65, 107, and 134.)

[Barrett et al., 2002] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-
order formulas by incremental translation to sat. In Computer Aided Verification,
pages 236–249. Springer, 2002. (Cited on page 57.)

bibliography 159

[Barrett et al., 2005] C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck.
Tvoc: A translation validator for optimizing compilers. In Computer Aided Verifi-
cation, pages 291–295. Springer, 2005. (Cited on page 48.)

[Barrett et al., 2009] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability
Modulo Theories, chapter 26, pages 825–885. Volume 185 of Biere et al. [2009],
February 2009. (Cited on page 47.)

[Barrett et al., 2010a] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2010. (Cited on pages 71

and 123.)

[Barrett et al., 2010b] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th Interna-
tional Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010. (Cited on
page 71.)

[Barrett et al., 2011] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli. Cvc4. In Computer Aided Verification, pages
171–177. Springer, 2011. (Cited on page 48.)

[Benhamou and Sais, 1992] B. Benhamou and L. Sais. Theoretical study of symme-
tries in propositional calculus and applications. In Automated Deduction (CADE-
11), pages 281–294, 1992. (Cited on pages 4, 5, 7, 94, and 95.)

[Benhamou and Sais, 1994] B. Benhamou and L. Sais. Tractability through symme-
tries in propositional calculus. Journal of Automated Reasoning, 12(1):89–102, 1994.
(Cited on pages 5, 7, and 94.)

[Benhamou et al., 2010] B. Benhamou, T. Nabhani, R. Ostrowski, and M. Saidi. En-
hancing clause learning by symmetry in SAT solvers. In Proceedings of the 22nd
IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pages 329–
335, 2010. (Cited on pages 6, 31, and 143.)

[Beth, 1959] E. Beth. The foundations of mathematics: a study in the philosophy of sci-
ences. North-Holland Amsterdam, 1959. (Cited on page 125.)

[Biere et al., 2009] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, February 2009. (Cited on pages 159, 164, 166, and 168.)

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cam-
bridge University Press, 2001. (Cited on pages 9, 13, 34, 35, 36, and 42.)

[Blackburn et al., 2006] P. Blackburn, J. van Benthem, and F. Wolter. Handbook of
Modal Logic, volume 3 of Studies in Logic and Practical Reasoning. Elsevier Science
Inc., New York, NY, USA, 2006. (Cited on pages 9, 13, 21, and 125.)

[Booth and Colbourn, 1979] K. Booth and C. Colbourn. Problems polynomially equiv-
alent to graph isomorphism. Computer Science Department, Univ., 1979. (Cited on
page 82.)

160 bibliography

[Borning et al., 1997] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving lin-
ear arithmetic constraints for user interface applications. In Proceedings of the
10th annual ACM symposium on User interface software and technology, pages 87–96.
ACM, 1997. (Cited on page 52.)

[Bošnački et al., 2002] D. Bošnački, D. Dams, and L. Holenderski. Symmetric spin.
International Journal on Software Tools for Technology Transfer, 4(1):92–106, 2002.
(Cited on page 7.)

[Bouton et al., 2009] T. Bouton, D. De Oliveira, D. Déharbe, and P. Fontaine. verit:
an open, trustable and efficient smt-solver. In Automated Deduction (CADE-22),
pages 151–156. Springer, 2009. (Cited on pages 8, 48, 60, and 95.)

[Bozzano et al., 2006a] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén,
Z. Hanna, Z. Khasidashvili, A. Palti, and R. Sebastiani. Encoding rtl constructs
for mathsat: a preliminary report. Electronic Notes in Theoretical Computer Science,
144(2):3–14, 2006. (Cited on page 48.)

[Bozzano et al., 2006b] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila,
S. Ranise, P. Van Rossum, and R. Sebastiani. Efficient theory combination via
boolean search. Information and Computation, 204(10):1493–1525, 2006. (Cited on
page 58.)

[Brading and Castellani, 2013] K. Brading and E. Castellani. Symmetry and sym-
metry breaking. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philoso-
phy. The Stanford Encyclopedia of Philosophy, spring 2013 edition, 2013. (Cited
on page 3.)

[Brown et al., 1989] C. Brown, L. Finkelstein, and P. Purdom Jr. Backtrack searching
in the presence of symmetry. In Applied algebra, algebraic algorithms and error-
correcting codes, pages 99–110. Springer, 1989. (Cited on pages 5 and 7.)

[Bryant et al., 2002] R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions and unin-
terpreted functions. In Computer Aided Verification, pages 78–92. Springer, 2002.
(Cited on page 48.)

[Burch and Dill, 1994] J. Burch and D. Dill. Automatic verification of pipelined
microprocessor control. In Computer Aided Verification, pages 68–80. Springer,
1994. (Cited on page 48.)

[Buro and Büning, 1992] M. Buro and H. Büning. Report on a sat competition.
Technical report, Fachbereich Math.-Informatik, Univ. Gesamthochschule, 1992.
(Cited on page 66.)

[Cadoli et al., 1998] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to
evaluate quantified boolean formulae. AAAI/IAAI, 98:262–267, 1998. (Cited on
page 70.)

[Cherkassky and Goldberg, 1999] B. Cherkassky and A. Goldberg. Negative-cycle
detection algorithms. Mathematical Programming, 85(2):277–311, 1999. (Cited on
pages 52 and 53.)

bibliography 161

[Cimatti et al., 2013] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The
mathsat5 smt solver. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 93–107. Springer, 2013. (Cited on page 48.)

[Clarke et al., 1996] E. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symme-
try in temporal logic model checking. Formal Methods in System Design, 9(1-2):77–
104, 1996. (Cited on page 7.)

[Cohen et al., 2005] D. Cohen, P. Jeavons, C.r Jefferson, K. Petrie, and B. Smith. Sym-
metry definitions for constraint satisfaction problems. In Principles and Practice
of Constraint Programming, pages 17–31. Springer, 2005. (Cited on page 7.)

[Cohen et al., 2009] M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A symmetry
reduction technique for model checking temporal-epistemic logic. In IJCAI, vol-
ume 9, pages 721–726, 2009. (Cited on page 7.)

[Cotton and Maler, 2006] S. Cotton and O. Maler. Fast and flexible difference con-
straint propagation for dpll (t). In Proceedings of the 9th International Conference on
Theory and Applications of Satisfiability Testing (SAT’06), pages 170–183. Springer,
2006. (Cited on page 53.)

[Crawford et al., 1996] J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-
breaking predicates for search problems. In Proceedings of KR 1996, pages 148–
159, 1996. (Cited on pages 5, 6, 7, 88, and 91.)

[Crawford, 1992] J. Crawford. A theoretical analysis of reasoning by symmetry in
first-order logic. In Proceedings of AAAI Workshop on Tractable Reasoning, pages
17–22, San Jose, CA, 1992. (Cited on pages 5, 6, 7, and 87.)

[Cubadda, 1988] C. Cubadda. Variantes de l’algorithmes de sl-résolution avec retenue
d’informations. PhD thesis, GIA Luminy (Marseille), 1988. (Cited on page 5.)

[D’Agostino, 1999] M. D’Agostino. Handbook of tableau methods. Springer, 1999.
(Cited on page 125.)

[Darga et al., 2004] P. Darga, M. Liffiton, K. Sakallah, and I. Markov. Exploiting
structure in symmetry detection for CNF. In Design Automation Conference., pages
530–534, 2004. (Cited on page 83.)

[Darga et al., 2008] P. Darga, K. Sakallah, and I. Markov. Faster symmetry discovery
using sparsity of symmetries. In Proceedings of the 45th annual Design Automation
Conference, pages 149–154. ACM, 2008. (Cited on pages 83 and 86.)

[Darvas, 2007] G. Darvas. Symmetry. Cultural-historical and ontological aspects of
science-arts relations. The natural and man-made world in an interdisciplinary approach.
Basel: Birkhäuser, 2007. (Cited on page 3.)

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of the ACM (JACM), 7(3):201–215, 1960. (Cited on
page 55.)

162 bibliography

[Davis et al., 1962] M. Davis, G. Logemann, and D. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962. (Cited on
page 55.)

[De Moura and Bjørner, 2008] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008. (Cited on page 48.)

[De Moura et al., 2002a] L. De Moura, H. Rueß, and M. Sorea. Lazy theorem prov-
ing for bounded model checking over infinite domains. In Automated Deduction
(CADE-18), pages 438–455. Springer, 2002. (Cited on page 48.)

[De Moura et al., 2002b] L. De Moura, H. Rueß, and M. Sorea. Lemmas on demand
for satisfiability solvers. In Proceedings of the 5th International Symposium on the
Theory and Applications of Satisfiability Testing (SAT’02). Citeseer, 2002. (Cited on
page 57.)

[Déharbe and Ranise, 2003] D. Déharbe and S. Ranise. Light-weight theorem prov-
ing for debugging and verifying units of code. In Proceedings of the First Inter-
national Conference on Software Engineering and Formal Methods,, pages 220–228.
IEEE, 2003. (Cited on page 48.)

[Déharbe et al., 2011] D. Déharbe, P. Fontaine, S. Merz, and B. Woltzenlogel Paleo.
Exploiting symmetry in smt problems. In Automated Deduction (CADE-23), vol-
ume 6803 of Lecture Notes in Computer Science, pages 222–236. Springer Berlin
Heidelberg, 2011. (Cited on pages xiv, 8, 60, 61, 95, and 124.)

[Donaldson and Miller, 2005] A. Donaldson and A. Miller. Automatic symmetry
detection for model checking using computational group theory. In Formal Meth-
ods, pages 481–496. Springer, 2005. (Cited on page 7.)

[Donaldson, 2007] A. Donaldson. Automatic techniques for detecting and exploiting
symmetry in model checking. PhD thesis, University of Glasgow, 2007. (Cited on
page 7.)

[Downey et al., 1980] P. Downey, R. Sethi, and R. Tarjan. Variations on the common
subexpression problem. Journal of the ACM (JACM), 27(4):758–771, 1980. (Cited
on page 52.)

[Dutertre and De Moura, 2006] B. Dutertre and L. De Moura. A fast linear-
arithmetic solver for dpll (t). In Computer Aided Verification, pages 81–94. Springer,
2006. (Cited on page 52.)

[Ebbinghaus et al., 1994] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical
logic. Springer, New York, 1994. (Cited on page 48.)

[Een and Sörensson, 2003] N. Een and N. Sörensson. An extensible sat-solver. In
Proceedings of the 6th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT’03), pages 502–518, 2003. (Cited on page 6.)

[Enderton, 2001] H. Enderton. A mathematical introduction to logic. Academic Press,
2nd edition, 2001. (Cited on pages 48 and 75.)

bibliography 163

[Fallah et al., 1998] F. Fallah, S. Devadas, and K. Keutzer. Functional vector gener-
ation for hdl models using linear programming and 3-satisfiability. In Design
Automation Conference., pages 528–533. IEEE, 1998. (Cited on page 53.)

[Fitting, 1972] M. Fitting. Tableau methods of proof for modal logics. Notre Dame
Journal of Formal Logic, 13(2):237–247, 1972. (Cited on page 127.)

[Fitting, 1983] M. Fitting. Proof methods for modal and intuitionistic logics. D. Rei-
del (Dordrecht, Holland and Boston, USA and Hingham, MA), 1983. (Cited on
page 127.)

[Flanagan et al., 2003] C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem prov-
ing using lazy proof explication. In Computer Aided Verification, pages 355–367.
Springer, 2003. (Cited on page 58.)

[Fortin, 1996] S. Fortin. The graph isomorphism problem. Technical report, Tech-
nical Report 96-20, University of Alberta, Edomonton, Alberta, Canada, 1996.
(Cited on page 82.)

[Fox and Long, 1999] M. Fox and D. Long. The detection and exploitation of sym-
metry in planning problems. In IJCAI, volume 99, pages 956–961, 1999. (Cited
on page 7.)

[Fox and Long, 2002] M. Fox and D. Long. Extending the exploitation of symme-
tries in planning. In AIPS, pages 83–91, 2002. (Cited on page 7.)

[Fraleigh and Katz, 2003] J. Fraleigh and V. Katz. A first course in abstract algebra.
Addison-Wesley world student series. Addison-Wesley, 2003. (Cited on pages 27

and 147.)

[Franzén, 2006] A. Franzén. Using satisfiability modulo theories for inductive
verification of lustre programs. Electronic Notes in Theoretical Computer Science,
144(1):19–33, 2006. (Cited on page 48.)

[Gallier, 1985] J. Gallier. Logic for computer science: foundations of automatic theorem
proving. Harper & Row Publishers, Inc., 1985. (Cited on page 75.)

[Ganesh and Dill, 2007] V. Ganesh and D. Dill. A decision procedure for bit-vectors
and arrays. In Computer Aided Verification, pages 519–531. Springer, 2007. (Cited
on page 53.)

[Ganzinger et al., 2004] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. Dpll (t): Fast decision procedures. In Computer aided verification, pages
175–188. Springer, 2004. (Cited on page 58.)

[Gargov and Goranko, 1993] G. Gargov and V. Goranko. Modal logic with names.
Journal of Philosophical Logic, 22(6):607–636, 1993. (Cited on page 22.)

[Gent et al., 1996] I. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrained-
ness of search. In W. Clancey and D. Weld, editors, AAAI/IAAI, Vol. 1, pages
246–252. AAAI Press / The MIT Press, 1996. (Cited on page 66.)

164 bibliography

[Gent et al., 2006] I. P Gent, K. Petrie, and J. Puget. Symmetry in constraint pro-
gramming. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, chapter 10. Elsevier, 2006. (Cited on page 7.)

[Giunchiglia and Sebastiani, 1996a] F. Giunchiglia and R. Sebastiani. Building de-
cision procedures for modal logics from propositional decision procedures – the
case study of modal k. In M.A. McRobbie and J.K. Slaney, editors, Automated
Deduction (CADE-13), volume 1104 of Lecture Notes in Computer Science, pages
583–597. Springer Berlin Heidelberg, 1996. (Cited on pages 58 and 66.)

[Giunchiglia and Sebastiani, 1996b] F. Giunchiglia and R. Sebastiani. A sat-based
decision procedure for alc. In L. Aiello, J. Doyle, and S. Shapiro, editors, KR,
pages 304–314. Morgan Kaufmann, 1996. (Cited on page 66.)

[Giunchiglia et al., 1998] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tac-
chella. More evaluation of decision procedures for modal logics. In Principles of
Knowledge Representation and Reasoning, pages 626–635. MORGAN KAUFMANN
PUBLISHERS, 1998. (Cited on page 66.)

[Giunchiglia et al., 2001] E. Giunchiglia, M. Narizzano, and A. Tacchella.
Quantified Boolean Formulas satisfiability library (QBFLIB), 2001.
http://www.qbflib.org. (Cited on pages 107 and 134.)

[Giunchiglia et al., 2009] E. Giunchiglia, P. Marin, and M. Narizzano. Reasoning
with Quantified Boolean Formulas, chapter 24, pages 761–780. Volume 185 of Biere
et al. [2009], February 2009. (Cited on page 70.)

[Goldwasser et al., 1989] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing, 18(1):186–
208, 1989. (Cited on page 82.)

[Goranko and Passy, 1992] V. Goranko and S. Passy. Using the universal modality:
gains and questions. Journal of Logic and Computation, 2(1):5–30, 1992. (Cited on
page 22.)

[Goré, 1999] R. Goré. Tableau methods for modal and temporal logics. In Mar-
cello D’Agostino, DovM. Gabbay, Reiner HÃ€hnle, and Joachim Posegga, ed-
itors, Handbook of Tableau Methods, pages 297–396. Springer Netherlands, 1999.
(Cited on page 127.)

[Halpern and Moses, 1992] J. Halpern and Y. Moses. A guide to completeness
and complexity for modal logics of knowledge and belief. Artificial intelligence,
54(3):319–379, 1992. (Cited on page 70.)

[Halpern, 1995] J. Halpern. The effect of bounding the number of primitive propo-
sitions and the depth of nesting on the complexity of modal logic. Artificial
Intelligence, 75(2):361–372, 1995. (Cited on pages 68, 69, and 70.)

[Harrison, 2009] J. Harrison. Without loss of generality. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics, volume 5674 of

bibliography 165

Lecture Notes in Computer Science, pages 43–59, Munich, Germany, 2009. Springer-
Verlag. (Cited on page 3.)

[Heguiabehere and de Rijke, 2001] J. Heguiabehere and M. de Rijke. The random
modal qbf test set. In Workshop on Issues in the Design and Experimental Evaluation
of System for Modal and Temporal Logics, pages 58–67, 2001. (Cited on page 153.)

[Heuerding and Schwendimann, 1996] A. Heuerding and S. Schwendimann. A
benchmark method for the propositional modal logics k, kt, s4. Technical Re-
port IAM-96-015, University of Bern, Switzerland, 1996. (Cited on page 65.)

[Hoffmann and Areces, 2007] G. Hoffmann and C. Areces. Htab: A terminating
tableaux system for hybrid logic. In Proceedings of Methods for Modalities 5,
November 2007. (Cited on page 134.)

[Hon and Goldstein, 2008] G. Hon and B. Goldstein. From Summetria to Symmetry:
The Making of a Revolutionary Scientific Concept, volume 20. Springer Netherlands,
2008. (Cited on page 3.)

[Hoos and Stützle, 2000] H. Hoos and T. Stützle. SATLIB: An Online Resource for
Research on SAT, pages 283–292. Kluwer Academic, 2000. (Cited on page 71.)

[Horrocks et al., 2000] I. Horrocks, P. Patel-Schneider, and R. Sebastiani. An anal-
ysis of empirical testing for modal decision procedures. Logic Journal of IGPL,
8(3):293–323, 2000. (Cited on pages xvi, 63, 64, 65, and 70.)

[Hustadt and Schmidt, 1997] U. Hustadt and R. Schmidt. On evaluating decision
procedures for modal logic. In IJCAI, volume 1, pages 202 – 207. Morgan Kauf-
mann, 1997. (Cited on page 66.)

[Hustadt and Schmidt, 1999] U. Hustadt and R. Schmidt. An empirical analysis of
modal theorem provers. Journal of Applied Non-Classical Logics, 9(4):479–522, 1999.
(Cited on page 67.)

[Ip and Dill, 1996] C. Ip and D. Dill. Better verification through symmetry. Formal
methods in system design, 9(1-2):41–75, 1996. (Cited on page 7.)

[Johannsen and Drechsler, 2002] P. Johannsen and R. Drechsler. Speeding up veri-
fication of rtl designs by computing one-to-one abstractions with reduced signal
widths. In SOC Design Methodologies, pages 361–374. Springer, 2002. (Cited on
page 53.)

[Junttila and Kaski, 2007] T. Junttila and P. Kaski. Engineering an efficient canon-
ical labeling tool for large and sparse graphs. In Proceedings of the Workshop
on Algorithm Engineering and Experiments (ALENEX), 2007. (Cited on pages 83

and 107.)

[Katebi et al., 2012] H. Katebi, K. Sakallah, and I. Markov. Conflict anticipation in
the search for graph automorphisms. In Logic for Programming, Artificial Intelli-
gence, and Reasoning, pages 243–257. Springer, 2012. (Cited on pages 83 and 122.)

166 bibliography

[Kleine Büning and Bubeck, 2009] H. Kleine Büning and U. Bubeck. Theory of
Quantified Boolean Formulas, chapter 23, pages 735–760. Volume 185 of Biere et al.
[2009], February 2009. (Cited on page 70.)

[Köbler et al., 1994] J. Köbler, U. Schöning, and J. Torán. The graph isomorphism
problem: its structural complexity. Birkhauser Verlag, 1994. (Cited on page 82.)

[Kowalski and Kuehner, 1972] R. Kowalski and D. Kuehner. Linear resolution with
selection function. Artificial Intelligence, 2(3):227–260, 1972. (Cited on page 5.)

[Kripke, 1959] S. Kripke. A Completeness Theorem in Modal Logic. Journal of
Symbolic Logic, 24(1):1–14, 1959. (Cited on page 9.)

[Kripke, 1963] S. Kripke. Semantical considerations on modal logic. Acta Philos.
Fennica, 16:83–94, 1963. (Cited on page 9.)

[Krishnamurthy, 1985] B. Krishnamurthy. Short proofs for tricky formulas. Acta
Informatica, 22(3):253–275, 1985. (Cited on pages 4 and 142.)

[Ladner, 1977] R. Ladner. The computational complexity of provability in systems
of modal propositional logic. SIAM journal on computing, 6(3):467–480, 1977.
(Cited on pages 19, 108, 134, and 152.)

[Land and Doig, 1960] A. H Land and A. Doig. An automatic method of solving
discrete programming problems. Econometrica: Journal of the Econometric Society,
pages 497–520, 1960. (Cited on page 52.)

[Lis, 1960] Z. Lis. Wynikanie semantyczne a wynikanie formalne. Studia Logica,
10(1):39–54, 1960. (Cited on page 125.)

[Manzano, 1993] M. Manzano. Introduction to many-sorted logic. In Many-sorted
Logic and its Applications, pages 3–86. John Wiley & Sons, Inc., 1993. (Cited on
page 75.)

[Margot, 2002] F. Margot. Pruning by isomorphism in branch-and-cut. Mathemati-
cal Programming, 94(1):71–90, 2002. (Cited on page 7.)

[Margot, 2003] F. Margot. Exploiting orbits in symmetric ilp. Mathematical Program-
ming, 98(1-3):3–21, 2003. (Cited on page 7.)

[Massacci, 1994] F. Massacci. Strongly analytic tableaux for normal modal logics.
In Automated Deduction (CADE-12), pages 723–737. Springer, 1994. (Cited on
page 127.)

[Massacci, 1999] F. Massacci. Design and results of the tableaux-99 non-classical
(modal) systems comparison. In Automated Reasoning with Analytic Tableaux and
Related Methods, pages 14–18. Springer, 1999. (Cited on pages 69, 70, and 153.)

[McKay, 1981] B. McKay. Practical Graph Isomorphism. Congressus Numerantium,
30:45–87, 1981. (Cited on page 83.)

[McKay, 2007] B. McKay. Nauty userś guide (version 2.4). Computer Science Dept.,
Australian National University, 2007. (Cited on page 83.)

bibliography 167

[Miller et al., 2006] A. Miller, A. Donaldson, and M. Calder. Symmetry in temporal
logic model checking. ACM Comput. Surv., 38(3), September 2006. (Cited on
page 7.)

[Mitchell et al., 1992] D. Mitchell, B. Selman, and H. Levesque. Problem solving:
Hardness and easiness-hard and easy distributions of sat problems. In Proceed-
ing of the 10th National Conference on Artificial Intelligence (AAAI-92), San Jose, Cal-
ifornia, pages 459–465, 1992. (Cited on page 66.)

[Moskewicz et al., 2001] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535. ACM, 2001. (Cited on page 6.)

[Nelson and Oppen, 1979] G. Nelson and D. Oppen. Simplification by cooperating
decision procedures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(2):245–257, 1979. (Cited on pages 47, 56, and 59.)

[Nelson and Oppen, 1980] G. Nelson and D. Oppen. Fast decision procedures
based on congruence closure. Journal of the ACM (JACM), 27(2):356–364, 1980.
(Cited on pages 47 and 56.)

[Nieuwenhuis and Oliveras, 2005a] R. Nieuwenhuis and A. Oliveras. Dpll (t) with
exhaustive theory propagation and its application to difference logic. In Com-
puter Aided Verification, pages 321–334. Springer, 2005. (Cited on page 53.)

[Nieuwenhuis and Oliveras, 2005b] R. Nieuwenhuis and A. Oliveras. Proof-
producing congruence closure. In Term Rewriting and Applications, pages 453–468.
Springer, 2005. (Cited on page 52.)

[Oppen, 1980a] D. Oppen. Complexity, convexity and combinations of theories.
Theoretical computer science, 12(3):291–302, 1980. (Cited on pages 47 and 59.)

[Oppen, 1980b] D. Oppen. Reasoning about recursively defined data structures.
Journal of the ACM (JACM), 27(3):403–411, 1980. (Cited on pages 47 and 54.)

[Oxusoff, 1989] L. Oxusoff. L’évaluation sémantique en calcul propositionnel. PhD
thesis, Université Aix-Marseille 2, 1989. (Cited on page 5.)

[Parthasarathy et al., 2004] G. Parthasarathy, M. Iyer, K. Cheng, and L. Wang. An ef-
ficient finite-domain constraint solver for circuits. In Proceedings of the 41st annual
Design Automation Conference, pages 212–217. ACM, 2004. (Cited on page 48.)

[Patel-Schneider and Sebastiani, 2003a] P. Patel-Schneider and R. Sebastiani. A
new general method to generate random modal formulae for testing decision
procedures. Journal of Artificial Intelligence Research, 18:351–389, 2003. (Cited on
pages xiv, 67, and 68.)

[Patel-Schneider and Sebastiani, 2003b] P. Patel-Schneider and R. Sebastiani. A
new general method to generate random modal formulae for testing decision
procedures. Journal of Artificial Intelligence Research, 18:351–389, 2003. (Cited on
page 25.)

168 bibliography

[Patel-Schneider, 1998] P. Patel-Schneider. Dlp system description. In E Franconi,
G. De Giacomo, R. MacGregor, W. Nutt, and C. Welty, editors, Description Log-
ics, volume 11 of CEUR Workshop Proceedings. CEUR-WS.org, 1998. (Cited on
page 65.)

[Pólya and Read, 1987] G. Pólya and R. Read. Combinatorial enumeration of groups,
graphs, and chemical compounds. Springer-Verlag New York, Inc., 1987. (Cited on
page 5.)

[Puget, 2005] J. Puget. Automatic detection of variable and value symmetries. In
Principles and practice of constraint programming, pages 475–489. Springer, 2005.
(Cited on page 94.)

[Ranise and Tinelli, 2003] S. Ranise and C. Tinelli. The smt-lib format: An initial
proposal. In Proceedings of the 1st Workshop on Pragmatics of Decision Procedures in
Automated Reasoning, Miami, 2003. (Cited on page 71.)

[Rehn and Schürmann, 2010] T. Rehn and A. Schürmann. C++ tools for exploit-
ing polyhedral symmetries. In Komei Fukuda, Jorisvander Hoeven, Michael
Joswig, and Nobuki Takayama, editors, Mathematical Software, volume 6327 of
LNCS, pages 295–298. Springer, 2010. (Cited on page 122.)

[Roe, 2006] K. Roe. The heuristic theorem prover: Yet another smt modulo theorem
prover. In Computer Aided Verification, pages 467–470. Springer, 2006. (Cited on
pages 8 and 60.)

[Ryan, 2004] L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s
thesis, Simon Fraser University, 2004. (Cited on page 6.)

[Sabharwal, 2005] A. Sabharwal. Symchaff: A structure-aware satisfiability solver.
In AAAI, volume 5, pages 467–474, 2005. (Cited on pages 6 and 7.)

[Sahlqvist, 1975] H. Sahlqvist. Completeness and correspondence in the first and
second order semantics for modal logic. Studies in Logic and the Foundations of
Mathematics, 82:110–143, 1975. (Cited on page 13.)

[Sakallah, 2009] K. Sakallah. Symmetry and Satisfiability, chapter 10, pages 289–338.
Volume 185 of Biere et al. [2009], February 2009. (Cited on pages xiv, 3, 4, 84, 85,
and 86.)

[Schmidt-Schauß and Smolka, 1991] M. Schmidt-Schauß and G. Smolka. Attribu-
tive concept descriptions with complements. Artificial intelligence, 48(1):1–26,
1991. (Cited on page 153.)

[Sebastiani, 2007] R. Sebastiani. Lazy satisfiability modulo theories. Journal
on Satisfiability, Boolean Modeling and Computation, 3:141–224, 2007. (Cited on
pages xiv, 47, 51, 55, 57, 58, and 59.)

[Segerberg, 1980] K. Segerberg. A note on the logic of elsewhere. Theoria, 46(2-
3):183–187, 1980. (Cited on page 22.)

[Seress, 1997] A. Seress. An introduction to computational group theory. Notices
of the AMS, 44:671–679, 1997. (Cited on pages 6 and 147.)

bibliography 169

[Seress, 2003] A. Seress. Permutation Group Algorithms. Cambridge Tracts in Math-
ematics. Cambridge University Press, 2003. (Cited on page 122.)

[Seshia et al., 2003] S. Seshia, S. Lahiri, and R. Bryant. A hybrid sat-based decision
procedure for separation logic with uninterpreted functions. In Proceedings of the
40th annual Design Automation Conference, pages 425–430. ACM, 2003. (Cited on
page 48.)

[Shostak, 1984] R. Shostak. Deciding combinations of theories. Journal of the ACM
(JACM), 31(1):1–12, 1984. (Cited on pages 47, 56, and 59.)

[Shostak, 1979] R. Shostak. A practical decision procedure for arithmetic with func-
tion symbols. Journal of the ACM (JACM), 26(2):351–360, 1979. (Cited on pages 47

and 56.)

[Sistla et al., 2000] A. Sistla, V. Gyuris, and E. Emerson. Smc: a symmetry-based
model checker for verification of safety and liveness properties. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 9(2):133–166, 2000. (Cited
on page 7.)

[Smullyan, 1968] R. Smullyan. First-order logic. Springer-Verlag (Berlin and New
York etc), 1968. (Cited on page 125.)

[Spaan, 1993] E. Spaan. Complexity of modal logics. PhD thesis, Universiteit van
Amsterdam, 1993. (Cited on page 22.)

[Steele, 1990] G. Steele. Common LISP: the language. Digital press, 1990. (Cited on
page 72.)

[Strichman et al., 2002] O. Strichman, S. Seshia, and R. Bryant. Deciding separation
formulas with sat. In Computer Aided Verification, pages 209–222. Springer, 2002.
(Cited on page 48.)

[Strichman, 2002] O. Strichman. On solving presburger and linear arithmetic with
sat. In Formal Methods in Computer-Aided Design, pages 160–170. Springer, 2002.
(Cited on page 48.)

[Stump et al., 2001] A. Stump, C. Barrett, D. Dill, and J. Levitt. A decision pro-
cedure for an extensional theory of arrays. In Proceedings of the 16th Annual
IEEE Symposium on Logic in Computer Science, pages 29–37. IEEE, 2001. (Cited on
page 53.)

[Sutcliffe, 2009] G. Sutcliffe. The tptp problem library and associated infrastructure.
Journal of Automated Reasoning, 43(4):337–362, 2009. (Cited on page 71.)

[Tacchella, 1999] A. Tacchella. *sat system description. In P. Lambrix, A. Borgida,
M. Lenzerini, R. Möller, and P. Patel-Schneider, editors, Description Logics, vol-
ume 22 of CEUR Workshop Proceedings. CEUR-WS.org, 1999. (Cited on page 66.)

[Urquhart, 1999] A. Urquhart. The symmetry rule in propositional logic. Discrete
Applied Mathematics, 96–97(0):177 – 193, 1999. (Cited on page 4.)

170 bibliography

[van Benthem, 1977] J. van Benthem. Modal Correspondence Theory. PhD thesis,
Universiteit van Amsterdam, 1977. (Cited on pages 11 and 17.)

[van Benthem, 1983] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis,
1983. (Cited on pages 11 and 17.)

[van Fraassen, 1989] B. van Fraassen. Laws and Symmetry. Oxford Scholarship On-
line Monographs, 1989. (Cited on page 3.)

[Velev and Bryant, 1999] M. N Velev and R. Bryant. Exploiting positive equality
and partial non-consistency in the formal verification of pipelined microproces-
sors. In Design Automation Conference., pages 397–401. IEEE, 1999. (Cited on
page 48.)

[Williams and Hogg, 1994] C. Williams and T. Hogg. Exploiting the deep struc-
ture of constraint problems. Artificial Intelligence, 70(1):73–117, 1994. (Cited on
page 66.)

[Wolfman and Weld, 1999] S. Wolfman and D. Weld. The lpsat engine & its appli-
cation to resource planning. In IJCAI, pages 310–317, 1999. (Cited on pages 48

and 58.)

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Symmetries in Automated Reasoning
	1.1 Symmetries in Modal Logics and Satisfiability Modulo Theories

	2 The Basic Modal Logic
	2.1 Syntax and Semantics
	2.2 Expressive power
	2.2.1 Bisimulations
	2.2.2 Model Constructions

	2.3 Modal Logic and First-order Logic
	2.4 Computational Properties: Decidability and Complexity
	2.5 Extensions

	3 Symmetries in Modal Logics
	3.1 Symmetries in Basic Modal Logic
	3.2 Beyond Basic Modal Logic
	3.2.1 Coinductive Modal Models
	3.2.2 A Generalized Theory of Symmetries
	3.2.3 Layered Permutations

	3.3 Summary

	4 Satisfiability Modulo Theories
	4.1 Motivation
	4.2 Background
	4.2.1 First-order Logic
	4.2.2 First-order Theories

	4.3 Lazy SMT
	4.3.1 SAT Solvers
	4.3.2 Theory Solvers
	4.3.3 Integration of a DPLL Engine and T-solvers
	4.3.4 Combination of Theories

	4.4 Symmetries in SMT

	5 Empirical Testing of Decision Procedures
	5.1 Why Empirical Testing?
	5.2 The Quality of Empirical Testing
	5.3 Empirical Testing in Modal Logics
	5.3.1 The Logics Workbench Test Set
	5.3.2 The 3CNFm Random Test Set
	5.3.3 The New_3CNFm Random Test Set
	5.3.4 The Modalized Test Set
	5.3.5 The Random QBF Test Set

	5.4 Empirical Testing in Satisfiability Modulo Theories
	5.4.1 The SMT Library

	Detecting and Exploiting Symmetries
	6 Symmetry Detection
	6.1 Graph-based Symmetry Detection
	6.1.1 The Graph Automorphism Problem
	6.1.2 Reduction Algorithms

	6.2 Formula-based Symmetry Detection

	7 Symmetry Detection for Modal Logics
	7.1 Definitions
	7.2 Detecting Global Symmetries
	7.3 Detecting Layered Symmetries
	7.4 Experimental Evaluation
	7.4.1 Reduction Algorithms for the Basic Modal Logic
	7.4.2 Implementation
	7.4.3 Benchmarks
	7.4.4 Results

	7.5 Summary

	8 Symmetry Detection for Satisfiability Modulo Theories
	8.1 Definitions
	8.2 Detecting Symmetries
	8.3 Experimental Evaluation
	8.3.1 Implementation
	8.3.2 Results

	8.4 Summary

	9 Symmetries in Modal Tableaux
	9.1 Labeled Tableaux for the Basic Modal Logic
	9.2 Symmetry Blocking
	9.2.1 Completeness

	9.3 Experimental Evaluation
	9.3.1 Implementation
	9.3.2 Results

	9.4 Summary

	Conclusions
	10 Final Thoughts and Future Work
	10.1 Symmetries in Modal Logics
	10.2 Symmetries in Satisfiability Modulo Theories

	Appendix
	A Group Theory
	A.1 Groups
	A.2 Subgroups
	A.3 Group Generators
	A.4 Permutation Groups

	B From QBF to Modal Logic
	B.1 Definitions
	B.2 Evaluating QBF formulas
	B.3 Ladner's Translation
	B.4 Collapse Translations

	Bibliography

