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Generalized multi-terminal decoherent transport: Recursive algorithms and

applications to SASER and giant magnetoresistance.

Carlos J. Cattena1 Lucas J. Fernández-Alcázar1, Raúl A.

Bustos-Marún1,2, Daijiro Nozaki3 and Horacio M. Pastawski1

Decoherent transport in mesoscopic and nanoscopic systems can be formulated in terms of the
D’Amato-Pastawski (DP) model. This generalizes the Landauer-Büttiker picture by considering
a distribution of local decoherent processes. However, its generalization for multi-terminal setups
is lacking. We first review the original two-terminal DP model for decoherent transport. Then,
we extend it to a matrix formulation capable of dealing with multi-terminal problems. We also
introduce recursive algorithms to evaluate the Green’s functions for general banded Hamiltonians as
well as local density of states, effective conductances and voltage profiles. We finally illustrate the
method by analyzing two problems of current relevance. 1) Assessing the role of decoherence in a
model for phonon lasers (SASER). 2) Obtaining the classical limit of Giant Magnetoresistance from
a spin-dependent Hamiltonian. The presented methods should pave the way for computationally
demanding calculations of transport through nanodevices, bridging the gap between fully coherent
quantum schemes and semiclassical ones.

PACS numbers: 73.23.-b, 73.63.-b, 71.15.Dx, 72.10.Di

I. INTRODUCTION

Quantum transport at the nanoscale [1–3] is a bloom-
ing field where the properties of matter can be explored
in a realm where quantum effects become crucial. In
particular, the control of quantum interference phenom-
ena and their interplay with the electronic structure of-
fers a fascinating opportunity to overcome some of the
usual constraints of our macroscopic classical world. [4–
8] However, at the nanoscale, both quantum and classical
behavior can be expected. This last emerges from the
unavoidable environmental degrees of freedom. [9] An
exciting example of the competition among those behav-
iors is electron-transfer in natural and artificial photo-
synthesis. There, the interplay between localizing inter-
ferences and environmentally induced decoherence seems
to have a fundamental role in optimizing excitonic trans-
fer. [10, 11] This phenomenon falls in line with what is
known in low dimensional conductors. Indeed, transport
properties of highly ordered 1-D systems is determined by
the fast quantum diffusion of local excitations, and thus
become weakened by decoherence. On the other hand,
in disordered 1-D wires, quantum coherence allows the
destructive interferences that produce electronic localiza-
tion. While these phenomena are roughly described by
introducing imaginary energies in the Kubo formulation,
it is at the cost of overlooking charge conservation. [12]

Landauer’s picture has almost no rival in what con-
cerns to electronic coherent transport.[13] In its sim-
plest form, conductance is determined by the transmis-
sion probability (either quantum or classical) among elec-
trodes. Paradoxically, quantum transmittance is much
simpler to evaluate than its classical counterpart. Thus,
the great majority of work focus on the evaluation of
the coherent transmittance setting aside incoherent pro-
cesses. An extension of this approach, developed by
Markus Büttiker,[14] applies the Kirchhoff laws to a sys-

tem connected to multiple terminals. This allows to con-
sider different voltage probes as well as multiple current
sources and drains. The self-consistent non-equilibrium
chemical potentials at the voltmeters must ensure cur-
rent cancellation. The resulting transport coefficients
fulfill the Onsager’s reciprocity relations. Additionally,
Büttiker had the crucial insight[15] that a voltage probe
implies a classical measurement and thus it acts as a deco-
herence source. This concept was further formulated by
D’Amato and Pastawski introducing a Hamiltonian de-
scription [16] (henceforth the DP model). In this descrip-
tion, the decoherent local probes can be assimilated to
incoherent scattering by delta-function potentials[17, 18].
This is founded in the Keldysh, Kadanoff and Baym’s
quantum fields formalism[19] for the non-equilibrium
Green’s functions. [19–21] There, the integro-differential
equations are simplified by evaluating the currents and
chemical potentials in a linearized scheme that involves
a matrix containing only transmittances among different
points in the sample. The DP model also provides a com-
pact solution for an arbitrary distribution of incoherent
local scattering processes. These lead to a momentum re-
laxing decoherence that produces diffusion and a further
increase in the resistance. The final set of linear equa-
tions relate the local chemical potentials and the currents
through a transmittances matrix. [22] This results in the
Generalized Landauer-Büttiker Equations (GLBE) that
solve the DP model.
The original presentation of the DP model is con-

strained to two terminal problems. Thus, in spite of
the growing need to include the effects of decoherent
processes,[23, 24] its applications remained mostly re-
duced to a few one-dimensional problems. [25–31] Be-
sides, since the method deals with a great number of
self-consistent local chemical potentials, it often involves
a cumbersome matrix inversion. Thus, a general multi-
terminal formulation of the DP model for decoherent
transport and an efficient computational strategy are still
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lacking.
In this paper we generalize the D’Amato-Pastawski

model for multi-terminal problems, presenting a
decimation-based method for the calculation of the de-
coherent conductance. In Sec. II we introduce the ba-
sic tools, based on a decimation procedure that yields
the parameters of an effective Hamiltonian. In Sec. III
we overview the original DP model. In Sec. IV, we
generalize the DP model for multi-terminal setups. We
also provide a recursive algorithm for the calculation of
Green’s functions of general banded Hamiltonians. Then,
we show two application examples. In Sec. V we con-
sider a simple model of a phonon-laser (SASER) based
on the electron-phonon interaction in a quantum dot [32]
where we asses the role of decoherence in the SASER ef-
ficiency. In Sec. VI, we consider the spin dependent elec-
tronic transport in a ferromagnetic wire where the Giant
Magnetoresistance (GMR) [33] shows up. We show that
our formulation describes the complete cross-over from a
quantum transport to the GMR semiclassical regime. In
Sec. VII we summarize our results and conclude that our
formulation can handle decoherent transport in a wide
variety of problems beyond the typical two-terminal cal-
culations.

II. DECIMATION PROCEDURES AND

EFFECTIVE HAMILTONIANS

Even the simplest quantum devices involve a huge
number of degrees of freedom and thus their study can
not be carried out without proper simplifications. For ex-
ample, a tight-binding Hamiltonian describing a device
or molecule with N states (or orbitals) is, [34]

ĤS =

N∑

i=1





Eiĉ

†
i ĉi +

N∑

j=1
(j 6=i)

[
Vi,j ĉ

†
i ĉj + Vj,iĉ

†
j ĉi

]




. (1)

Here, ĉ†i and ĉicorrespond to the creation and anihila-
tion fermionic operators acting on the vacuum |0〉. Site
energies are Ei and hopping amplitudes Vi,j define the
matrix Hamiltonian whose single particle eigenstates are

|k〉 =
∑

i ui,k ĉ
†
i |0〉 of energy εk which are filled up to the

Fermi energy, εF .
The decimation procedures, inspired in the renormal-

ization group techniques of statistical mechanics [35, 36],
seek to recursively reduce the number of degrees of free-
dom of a generalN×N Hamiltonian into another of lower
rank, without altering the physical properties. The basic
idea can be captured by considering a system with N = 3
states whose secular equation is:



ε− E1 −V12 −V13

−V21 ε− E2 −V23

−V31 −V32 ε− E3






u1

u2

u3


 = [εI− HS]

−→u ≡
−→
0 .

(2)

Quite often we are interested in the transfer of an ex-
citation from an initial state to another one, say 1 and
2. Thus, instead of diagonalizing the matrix, we could
isolate u3 from the third row and use it to eliminate u3

in the first and the second equations. In this way, we
obtain a new set of equations where u3 is decimated :

[
ε− E1 −V 12

−V 21 ε− E2

](
u1

u2

)
= [εI−Heff.]~u = 0. (3)

The renormalized coefficients hide their non-linear de-
pendence on the energy variable ε :

E1 = E1 +Σ1(ε) = E1 + V13
1

ε− E3
V31,

E2 = E2 +Σ2(ε) = E2 + V23
1

ε− E3
V32,

V 12 = V12 + V13
1

ε− E3
V32.

(4)

In this case, the terms Σj(ε); j = 1, 2 are the real self-
energies accounting for the energy shifts due to the cou-
pling with the eliminated state. Notice that as long as
one conserves the analytical dependence on ε of Σj , the
actual secular equation is still cubic in ε and provides the
exact spectrum of the whole system. This procedure can
be performed systematically in a Hamiltonian of any size
N × N to end up with an effective Hamiltonian of size
one desires, in particular a 2× 2 one. The effective inter-
action parameter V 12, together with the self-energies Σj ,
accounts for transport through the whole sample. Their
dependence on ε provides all the needed information on
the steady state transport as well as on quantum dynam-
ics. [37] In practice, it is convenient to add an infinites-
imal imaginary part, −iη, to each energy Ej → Ej − iη.
Since a finite η > 0 is equivalent to a decay process, it en-
sures that one recovers the retarded time dependences of
the observables through a well defined Fourier transform.
The terminals connected to the system are described

as semi-infinite leads coupled to it. They are handled
in a similar way as the system itself. The idea is to
eliminate all the internal degrees of freedom decimating
them progressively, renormalizing the states of the sys-
tem which are directly coupled to the external reservoirs.
For further clarification we consider a lead modeled as a
semi-infinite one dimensional chain,

ĤL =

−∞∑

i=0

{
Eiĉ

†
i ĉi − V

[
ĉ†i ĉi−1 + ĉ†i−1ĉi

]}
, (5)

that yields a tridiagonal matrix of infinite dimension.
The elements Ei’s and V ’s are now the diagonal and off-
diagonal terms of a tridiagonal matrix HL. This lead is
connected at the left of the system, say, with site 1:

V̂SL = VL

[
ĉ†1ĉ0 + ĉ†0ĉ1

]
. (6)

Instead of dealing with the whole Hamiltonian

Ĥ = ĤS + ĤL + V̂SL, (7)
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we perform the decimation procedure. It becomes partic-
ularly simple because of the chain structure of the lead.
The energy of the i-th site, is “shifted” by the elimina-
tion of (i− 1)-th site, which itself is shifted by sites at its
left [34], with the self-energies resulting in a continued-
fraction:

Σi = Vi,i−1
1

ε− Ei−1 − Σi−1
Vi−1,i (8)

(i = 0,−1,−2, ...−∞)

In a perfect propagating channel: Vi,i−1 ≡ V and Ei =
E0, and thus, Σi = Σi−1 ≡ Σ, we arrive to the self-
consistent solution:

Σ(ε) =
V 2

ε− E0 − Σ
= ∆(ε)− iΓ(ε).

=
ε− E0 + iη

2
− sgn(ε− E0)

√(
ε− E0 + iη

2

)2

− V 2,(9)

where the generalized square root [38] in the limit η →
0+, yields the imaginary component of the self-energy
for ε within the band of allowed energies. It becomes
real otherwise.
Thus, once the states in the left lead are fully deci-

mated the energy of the first site becomes

Ẽ1(ε) = E1(ε) + ΣL1(ε) (10)

with ΣL1(ε) =

(
VL

V

)2

Σ(ε) (11)

= ∆L1(ε)− iΓL1(ε) (12)

As before, the real part ∆L1(ε) indicates how the unper-
turbed site energies are shifted by the leads. The im-
portant difference with the simple decimation example
discussed above is that, as a consequence of the infinite
nature of the lead, the self-energies may acquire a finite
imaginary component, ΓL1(ε), even in the limit η → 0+.
It describes the rate at which coherent density excitation
in the system decays into the lead propagating states.
Note that, the imaginary part is roughly consistent

with the exponential decays of the survival probability
predicted by the Fermi Golden Rule (FGR). For instance,
in a “system” with a single state |1〉 interacting with a
lead, the survival probability at time t after it has been
placed in state |1〉 is,

∣∣∣〈1| exp[−iĤ t/~] |1〉 θ(t)
∣∣∣
2

≡
∣∣i~GR

11(t)
∣∣2 (13)

≃ exp[−2ΓL1(E1)t/~],(14)

where we introduced the time dependent retarded
Green’s function, GR

11(t). However, we remember that
the self-energies obtained above have an explicit func-
tional dependence on ε. In consequence, the actual decay
can depart from this naive exponential approximation.
Indeed, a quantum decay should start quadratically as
1 − (VLt/~)

2
turning into an exponential at very short

times. At very long times the decay may even become

a non-monotonous. [39] In practice, we will stay in the
exponential approximation by neglecting the dependence
on ε unless it is close to a band edge.
For the sake of simplicity, we may idealize the termi-

nal leads as quasi 1-D wires. As waveguides, they can be
described in terms of open channels at the Fermi energy
or propagating modes. Thus, we chose a basis for the
system’s Hamiltonian in which each independent prop-
agation mode l of a lead is connected to a single sys-
tem’s state. This might require a unitary transformation
to choose a system’s basis that matches the propagating
modes of leads (see Fig. 1). There is no restriction to
the converse: i.e. each “site” can be coupled to different
quantum channels. Since the leads can be represented by
homogeneous infinite tight-binding chains, their decima-
tion is just the procedure implemented above with the
appropriate V ’s and E’s describing each mode l.
The observation of DP was that any “local” electronic

state weakly coupled to a huge number of environmental
degrees of freedom should decay from its initial decou-
pled state according to the FGR. This would require a
restitution or re-injection of any escaping particle. Thus
the DP model treats these decoherent scattering chan-
nels sources as on-site fictitious voltage probes. Much
as it occurs with real voltmeters, local current conserva-
tion on each scattering channels must be imposed. This
ensures that each electron with definite energy that es-
capes from a state towards a fictitious probe, is balanced
by an electron with the same energy re-injected into the
same state. In the DP model, these decoherent channels
are described by local corrections to site energies of the
sample, on the same footing as the real channels:

Σ̂φi = −iΓφiĉ
†
i ĉi. (15)

Here, Γφi represents an energy uncertainty associated
with the interaction process φ that mixes the local elec-
tron state i with environmental degrees of freedom. This
introduces a decay of the state i that can be described
by the FGR. Notice that the state i does not necessarily
represent a local basis, but it could be a channel mode
or a momentum basis state as well. The energy uncer-
tainties due to decoherent processes can be estimated for
each specific process, [29] and may not necessarily be the
same for every state i. Accordingly, each “site” i may be
subject to different decay processes α: those associated
with real leads, α = l, and those related to decoherent
processes (or fictitious probes), α = φ. The resulting

effective Hamiltonian, Ĥeff., that includes the real and
fictitious probes, is non-Hermitian [40]:

Ĥeff. = (ĤS − iηÎ) +
∑

α

N∑

i=1

Σ̂αi. (16)

Here, ImΣ̂αi 6= 0 only for those sites i subject to deco-
herent processes (α = φ) or escapes to the leads (α = l).
Trivially, if the full imaginary part correction were ho-
mogeneous (the same value for each state i), it just shifts
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FIG. 1. Diagrammatic representation of an unitary transformation of the system to a basis in which leads are independent.
Here, dots represent diagonal elements of the Hamiltonian in a site basis and lines non-diagonal ones.

the eigenenergies into the complex plane. In contrast,
inhomogeneous corrections might produce spectral bifuc-
tations that result in a quantum dynamical phase tran-
sition. [41]
In transport problems, most of the information on sys-

tem dynamics is distilled into the retarded and advanced
Green functions. More practical expressions are obtained
using its Fourier transform into the energy variable ε,
from the effective Hamiltonian given by Eq. 16. In ma-
trix representation:

G
R(ε) = [εI−Heff.]

−1 = G
A†(ε) (17)

These Green’s functions contain all the information of
the quantum system coupled to the leads and environ-
ment and constitute the kernel to move into the non-
equilibrium problem. Also, diagonal elements provide
the “local” density of states

Ni(ε) = −
1

π
ImGR

i,i(ε) = −
1

2πi

[
GR

i,i(ε)−GA
i,i(ε)

]
(18)

In particular, the transmission amplitudes of electronic
excitations between the channels identified with process
α at site i and process β at site j can be evaluated from
the generalized form of Fisher-Lee formula [34]:

tαi,βj(ε) = i2
√
Γβj(ε) G

R
j,i(ε)

√
Γαi(ε) (19)

and the transmission probabilities are given by:

Tαi,βj(ε) = |tαi,βj(ε)|
2

(αi 6= βj)

= 4Γβj(ε)G
R
j,i(ε)Γαi(ε)G

A
i,j(ε) (20)

where Γαi = i(ΣR
α,i − ΣA

α,i)/2 is proportional the escape
rate at site i due to a process α.

III. TWO-TERMINAL D’AMATO-PASTAWSKI

MODEL.

Retarded and advanced Green’s functions and the
transmission probabilities associated with them contain

the basic quantum dynamics. In order to describe the
non-equilibrium properties of a system, one has to eval-
uate the density matrix or simply the diagonal terms of
non-equilibrium density functions,

G<
j,j(ε) = i2πNj(ε)fj(ε). (21)

These, in turn, are determined by the boundary con-
ditions imposed by the external reservoirs βj that act
as a source or drain of particles. Their occupation
is described by a non-equilibrium distribution function
approximated by a shifted Fermi distribution fβj(ε) =
1/(exp[(ε− εF − δµβj) /kBT ]). In the Quantum Fields
formalism, the G<

φj,φj(ε) Green’s functions result from
the quantum evolution in presence of the boundary condi-
tions. In the time independent case, energy is conserved,
and the non-equilibrium density function takes the form,

G<
j,k(ε) = 2i

∑

αi

GR
j,i(ε)Γαi(ε)fαi(ε)G

A
i,k(ε), (22)

i.e. densities and correlations inside the system result
from the occupations fβi(ε) imposed by the experimen-
talist at the current terminals and the environment at
the “fictitious” probes. The equilibrium density function

G
(0)<
j,j (ε) results when δµβj ≡ 0 for all βj. The actual

observables are evaluated from this non-equilibrium den-
sity function. The change respect to the equilibrium in
the local density can be expressed in terms of the above
boundary conditions as [18]:

δρj = −
i

2π

∫ [
G<

j,j −G
(0)<
j,j

]
dε (23)

≃ Nj(εF )δµj ,

while the currents between sites i and j are given by

Ii,j =

∫ [
Vi,jG

<
j,i − Vj,iG

<
i,j

]
dε. (24)

These integral expressions of the observables, expressed
in the linear response approximation of small biases
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eVL = µLi−εF ≪ εF , become the Generalized Landauer-
Büttiker equations that describe the balance of electronic
current. These are no other than the Kirchhoff laws ex-
pressed in terms of the generalized Landauer’s conduc-
tances, given by the Fisher-Lee formulas of Eq. 20. Be-
cause of the linear approximation these transmittances
are evaluated at the Fermi energy, and now become:

Iαi =
e

h

∑

β=L,φ

processes

N∑

j=1(αi6=βj)

sites

(Tαi,βjδµβj − Tβj,αiδµαi)

(25)
where the quantities δµαi = µαi − εF , are the chemi-
cal potentials of the electron reservoirs, at state i for a
process α.
The requirement in the DP model that no net current

flows through the decoherent channels imposes

0 ≡ Iφi. (26)

These equations imply the self-consistent determination
of the internal non-equilibrium chemical potentials δµφi.
Thus, we are faced to a linear problem. Once again, its
solution can be laid as a decimation procedure, as we did
to obtain the effective Hamiltonian.
Consider the case where two real leads are connected

to the sites 1 and N of the system (thus identified as
channels ℓ1 and ℓN), and a single decoherent process φk
is connected to the state k. Thus, charge conservation
implies:

0 = Tφk,ℓ1δµℓ1 + Tφk,ℓNδµℓN − (Tℓ1,φk + TℓN,φk)δµφk,
(27)

which can be rewritten as:

δµφk =
Tφk,ℓN

(Tℓ1,φk + TℓN,φk)
δµLN +

Tφk,ℓ1

(Tℓ1,φk + TℓN,φk)
δµℓ1

(28)
Using this relation for the current on real channels we
obtain:

IℓN = −Iℓ1 =
e

h
T̃ℓN,ℓ1(δµℓN − δµℓ1), (29)

where T̃ℓN,ℓ1 represent the “effective” transmission be-
tween leads ℓ1 and ℓN after the decimation of the inco-
herent channel associated with φk, given by:

T̃ℓN,ℓ1 = TℓN,ℓ1 + TℓN,φk

1

(Tℓ1,φk + TℓN,φk)
Tφk,ℓ1. (30)

Note that the zero current constrain at the decoherent
channels allows us to pile up (i.e. decimate) those pro-
cesses into an incoherent contribution to the total trans-
mission. This is the reason why Eq. 26 is the key factor
in the computation of the total transmission. At this
point one recognizes the analogy of the second term on
the right-hand side of Eq. 30 with the effective inter-
action shown in Eq. 4. This analogy will be used in
the following section to develop a simple matrix solution

for the total decoherent transmission in a multi-terminal
setup. In the case of two current probes, identifying the
index label L = ℓ1 and R = ℓN for the leads, and φk = k
for the decoherence probes, one has that the total trans-
mission probability is given by:[16]

T̃L,R = TL,R +
∑

i,j

TR,i

[
W

−1
]
i,j

Tj,L. (31)

The elements of the matrix W are:

Wij = −Tij +




∑

j=L,i,R

Tij



 δij . (32)

Eqs. 29 and 31 provide the decoherent current and
the effective transmission of DP model for two-terminal
setups. However, they need to be reformulated to deal
with a multi-terminal setup as when there are more than
two externally controlled chemical potentials or when one
requires to discriminate among different processes that
contribute to the current.

IV. MULTI-TERMINAL D’AMATO-PASTAWSKI

MODEL

The two-probe Landauer conductance requires the
computation of a single element of the Green’s func-
tion matrix: that connecting sites where the leads are
attached. In a 1-D case, this is G1N (where N is the
number of sites of the system) and can be calculated
through a decimation procedure.[37] While this can be
readily generalized to deal with finite systems of any di-
mension, not all formulations result numerically stable
in presence of strong disorder or band gaps.[42] We will
present a particular algorithm that is stable in such con-
ditions. The method is applicable to block tridiagonal
Hamiltonians. These are very common in many phys-
icaly relevant situations, specifically when interactions
are truncated, or when the Hamiltonian matrix presents
some form of banded structure.
The DP model requires the computation of the trans-

mittances among all possible pairs of fictitious and phys-
ical probes, roughly M(M − 1)/2, where M (≤ N) is the
number of phase-breaking scattering channels. Also the
computation of the effective transmission requires the in-
version of W, a M×M matrix, as expressed in Eq. 31. It
is our purpose to extend the scheme of the DP model to
account for decoherence in quantum transport problems
that involves many terminals. We seek for a decoherent
transmission analogous to Eq. 31 for each pair of physi-
cal leads. Thus, the computational approach to the DP
model would require an efficient matrix inversion algo-
rithm.
In the next subsection, we present a computational

procedure that, being based on decimation schemes, pre-
serves the physical meaning of matrix inversions. This
may allow one to take advantage of system’s symmetries
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as they can usually be expressed as relations between G’s
elements.

A. Green’s Function and recursive algorithms.

In order to obtain the Green’s functions of Eq. 17, a
matrix inversion is needed. The matrix continued frac-
tions [43, 44] scheme offers a decimative approach well
suited to perform this task. This procedure can be con-
structed recalling the well known 2 × 2 block matrix in-
version,

[
A B

C D

]−1

=

[
(A− BD

−1
C)−1 −A

−1
B(D− CA

−1
B)−1

−D−1C(A− BD
−1

C)−1 (D− CA
−1

B)−1

]
, (33)

where A, B, C and D are arbitrary size subdivisions of
the original matrix.
Let’s assume that we have an effective Hamiltonian,

Ĥeff. which has block tridiagonal structure. We start
“partitioning” the basis states in two portions: a cluster
labeled as 1 that contains the first block, and the cluster
of remaining states of the system which we label as B.
Thus, the Green’s function matrix in Eq. 17 is subdivided
into four blocks, (εI−E1),(εI−EB),−V1B, and −VB1 of
dimensions N1 ×N1, NB ×NB, N1 ×NB and NB ×N1

respectively. Thus,

G(ε) =

[
G11 G1B

GB1 GBB

]
=

[
εI− E1 −V1B

−VB1 εI− EB

]−1

. (34)

Here, it is important to recall that the effective Hamil-
tonian Ĥeff. already includes all corrections due to ficti-
tious and real probes, by virtue of Eq. 16. In this way,
the block with energies and interactions, denoted here by
Ei, contain the self-energies that account for the openness
of the system, and may be complex numbers. Combining
Eq. 33 and Eq. 34 is easy to show that,

G11 =
(
εI− E1 −Σ

(B)
1

)−1

=
(
εI− Ẽ1

)−1

,

GBB =
(
εI− EB −Σ

(1)
B

)−1

=
(
εI− ẼB

)−1

,

G1B = G11V1B(εI− EB)
−1 = G11

[
Σ

(B)
1 V

−1
B1

]
, and

GB1 = GBBVB1(εI− E1)
−1 = GBB

[
Σ

(1)
B V

−1
1B

]
.

(35)
Here, the similarity with Eq. 4 allows us to define the
block self energies, Σ’s, which in this simple 2 × 2 block
scheme, are given by:

[
Σ

(B)
1 V

−1
B1

]
=
[
V1B(εI− EB)

−1
]
,[

Σ
(1)
B V

−1
1B

]
=
[
VB1(εI− E1)

−1
]
.

(36)

Notice, that in the expressions of Eqs. 35 and 36, the
inverse of the hopping matrix must cancel with the hop-
ping that enters in the self-energies definition. Since the
hoppings may be non-square matrices, this definition is
crucial to avoid its inversion. Considering the bracket

factors
[
ΣV−1

]
as a single object ensures stability of the

recurrence procedure. The decimation of the degrees of
freedom associated with the portion B of the effective
Hamiltonian is implied in Eq. 35, where:

Ẽ1 = E1 +Σ
(B)
1 = E1 +

[
V1B(εI− EB)

−1
]
VB1. (37)

Likewise, the decimation of block 1 into B gives the ef-
fective block:

ẼB = EB +Σ
(1)
B = EB +

[
VB1(εI− E1)

−1
]
V1B . (38)

Note that with the adopted notation for the self energies,

Σ
(j)
i is the correction to block site i when all block sites

between i and j (with j included) are decimated. There-
fore the supra-index in parentheses indicate the subspace
that has been decimated.

Since we are dealing with tridiagonal block matrices,
we may resort to a further partition for the matrix in-
version involved in Eq. 37. i.e. the block B describes
states that can be subdivided into two clusters where the
first one, labeled 2, corresponds to the first tridiagonal
block from (εI − EB). The other block B′ now satisfies
V1B′ ≡ O. Then, we have

G(ε) =



εI− E1 −V12 O

−V21 εI− E2 −V2B′

O −VB′2 εI− EB′



−1

. (39)

Again, we can also decimate the degrees of freedom as-
sociated with block 2, taking

Ẽ1 = E1 +Σ
(2)
1 , ẼB′ = EB′ +Σ

(2)
B′

Ṽ1B′ = V12(εI− E2)
−1V2B′

(40)

which leads to an effective equation analogous to Eq. 34,
in terms of the new effective block sites:

[
G11 G1B′

GB′1 GB′B′

]
=

[
εI− Ẽ1 −Ṽ1B′

−ṼB′1 εI− ẼB′

]−1

(41)
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Therefore, an expression analogous to Eq. 35 is obtained:

G11 =
(
εI− E1 −Σ

(B′)
1

)−1

GB′B′ =
(
εI− EB′ −Σ

(1)
B′

)−1

G1B′ = G11Ṽ1B′(εI− ẼB′)−1

GB′1 = GB′B′ṼB′1(εI− Ẽ1)
−1

(42)

where the diagonal blocks of the Green’s function matrix
involve

Σ
(B′)
1 =

[
V12(εI− E2 −Σ

(B′)
2 )−1

]
V12

Σ
(1)
B′ =

[
VB′2(εI− E2 −Σ

(1)
2 )−1

]
V2B′

(43)

Note that in the self-energies of Eq. 43, the decimated
space (denoted by the supra-index) always includes one
of the border blocks (in this case, 1 or B). However, as
shown hereafter, the non-diagonal terms can also be writ-
ten in terms of the block self-energies Σ(1)’s and Σ

(B′)’s:

G1B′ = G11[Σ
(B′)
1 V

−1
12 ][Σ

(B′)
2 V

−1
B′2],

GB′1 = GB′B′ [Σ
(1)
B′ V

−1
1B′ ][Σ

(1)
2 V

−1
12 ].

(44)

Both expressions are crucial to visualize the seed of our
recursive procedure.

The generalization by further partition into an arbi-
trary number of clusters is straightforward. The Green’s
functions are expressed as a product of non-singular self-
energy blocks that are calculated recursively. Indepen-
dently of how the effective Hamiltonian is subdivided, if
there are N blocks of arbitrary size and the entire system
is decimated into the i-th and j-th block, we have simply
as matrix continued fractions: [44]

Σ
(j)
i =

[
Vi,i+1

(
εI− Ei+1 −Σ

(j)
i+1

)−1
]
Vi+1,i

Σ
(i)
j =

[
Vj,j−1

(
εI− Ej−1 −Σ

(i)
j−1

)−1
]
Vj−1,j

for j > i,

(45)

provided that the final structure preserves a block three-
diagonal. We recall that matrix inversions are further
stabilized by the presence of the imaginary site energies
imposed by the real and fictitious probes (Eq. 16). In
this way, the decimation of the entire system into the ar-
bitrary “block” sites i and j, leads to the effective quan-
tities

Ẽi = Ei +Σ
(1)
i +Σ

(j)
i

Ẽj = Ej +Σ
(i)
j +Σ

(N)
j

Ṽi,j = Ṽi,j−1(εI− Ej −Σ
(1)
j )−1Vj−1,j

(46)

which determine exactly each (i, j) element of the total
Green’s function,

[
Gii Gij

Gij Gjj

]
=

[
εI− Ẽi −Ṽij

−Ṽji εI− Ẽj

]−1

. (47)

The last expression is similar to Eq. 34, and therefore we
have,

Gii =
[
(εI− Ei)−Σ

(1)
i −Σ

(N)
i

]−1

,

Gjj =
[
(εI− Ej)−Σ

(1)
j −Σ

(N)
j

]−1

,

Gij = Gii

[
Ṽij(εI− Ẽj)

−1
]
,

Gji = Gjj

[
Ṽji(εI− Ẽi)

−1
]
.

(48)

This procedure is shown diagrammatically on Fig. 2.
Note that the diagonal elements are easily calculated

evaluating O(N) energy corrections of the form Σ
(1)
i and

Σ
(N)
i , where all the sites have been decimated into site i.

Also, in order to compute all the non diagonal elements
of the Green’s function matrix in Eq. 42 and 48 we would

need to evaluate ∼ N2 energy corrections Σ
(j)
i ’s. How-

ever, following the insight given in Eq. 44, for tridiagonal
block Hamiltonians, the non-diagonal block matrix ele-
ments of the Green function can be obtained in terms
of the diagonal ones, avoiding the need of the evaluation

of O(N2) terms Σ
(j)
i ’s. In this case, if the Hamiltonian

matrix is subdivided in N arbitrary blocks, we have

Gij = Gii

j−1∏

k=i

[
Σ

(N)
k V

−1
k+1,k

]

where i<j

, (49)

Gji = Gjj

i+1∏

k=j

[
Σ

(1)
k V

−1
k−1,k

]

where i<j

. (50)

Note that now it is not necessary to evaluate any extra
Σ in order to calculate Gij for i 6= j, because those self-
energies have been already calculated for the diagonal
Green’s Functions matrix blocks, Gii. This implies that
only O (N) self-energies are required for the calculation
of the whole Green’s function. These equations can help
to take advantage of possible symmetries of the V and Σ

matrices to speed up even more the calculation of Green’s
Functions.
Although Eqs. 49-50 have been formally written in

terms of hopping matrix inverses, V−1, these expressions
are accurate even when the hopping matrices are singu-
lar. This is because the hopping matrix inverse cancels
out with the hopping in the Σ definition, as it can be seen,
for example, in Eq. 36. In most cases, GR

ij = GR
ji, and

therefore Eqs. 49 and 50 are equivalent. However, both
equations are needed in some cases of quantum pumping
[45] or in the presence of magnetic fields. The origin of
the extraordinary stability of Eqs. 49-50 can be easily
grasped analytically by considering a linear chain with
three sites and expressing the self-energies in terms of
continued fractions before applying Eq. 44. Explicitly,
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FIG. 2. Decimation scheme for the calculation of the elements of the Green’s function matrix.

G1,3(ε) =
1

ε− E1 − V12

1

ε− E2 − V23

1

ε− E3
V32

V21

V12

1

ε− E2 − V23

1

ε− E3
V32

V23

1

ε− E3
. (51)

Here, we clearly see that the divergences in the last fac-
tor are exactly canceled by the zeros of the second one,
while the singularities in this one, are canceled by the
zeros in the first factor. This equation holds when the
elements E’s and V ’s are replaced by matrices, with
Vn,n+1’s mixing subspaces En and En+1 of different di-

mensions. In general, the divergences in
[
Σ

(N)
k V

−1
k−1,k

]

are compensated by the zeros of the previous term, i.e.[
Σ

(N)
k−1V

−1
k,k−1

]
. Furthermore, the regularization of poles

and divergencies imposed by decoherent processes (see
below) ensure the numerical precision of this cancella-
tion.

B. Physical Observables in the Multi-Terminal

D’Amato-Pastawski model

The application of the DP model for multi-terminal
devices requires a generalization of Eq. 31. To obtain
the total transmission on each terminal, we can take ad-
vantage of the decimation procedures discussed above.
Eq. 25 is easily rearranged in terms of the transmissivity
(1−Rαi) from each channel αi. [34] For process α at site
i, one defines

|tαi,αi|
2 + (1 −Rαi) = |tαi,αi|

2 +
∑

β,j

(βj 6=αi)

Tβj,αi (52)

= (1/gα,i) = 4πNiΓαi, (53)

where Ni is the density of states at the site i. The Fisher-
Lee formula is extended by defining a “self-transmission”
|tαi,αi|

2
that is not a transmittance in the standard sense,

and certainly it is not the diagonal term Tαi,αi ≡ Rαi−1.
However, it is required to obtain the sum of Eq. 53 as the
product of the local density of states and the decay rate.
It describes all the electrons that, at a certain instant, are
leaving the αith reservoir to eventually return after wan-
dering around. The inclusion of this term is important

because it contributes to define (1/gα,i), which plays a
central role in a Keldysh perturbative expansion [17, 34]
and in a time dependent formulation of transport. [18]
Therefore, in a steady state calculation is enough to

express eq. 25 as:

Iαi =
|e|

h


(Rαi − 1)δµαi +

∑

β=L,φ

N∑

j=1

αi6=βj

Tαi,βjδµβ,j


 .

(54)
It can be arranged in a compact matrix notation, sepa-
rating the processes associated with the leads from the
decoherent ones. The actual currents at the leads are
arranged in the vector

−→
I λ while the vanishing currents

at the decoherent channels, in
−→
I φ ≡

−→
0 . Thus,

( −→
I λ
−→
0

)
=

|e|

h
T

(
δ−→µλ

δ−→µφ

)
. (55)

Here, the non-diagonal elements of T are transmission
probabilities and thus, they are definite positive. In con-
trast, the diagonal elements are negative. Thus, a sum
over any column or row cancels out. This matrix can also
be subdivided in the same block structure:

T =

[
Tλλ Tλφ

Tφλ Tφφ

]
. (56)

This notation stress that Tλλ only involves terms that
connect real leads, Tφφ only involves transmissions be-
tween decoherent channels and, finally, the blocks Tλφ

and Tφλ connect leads with decoherent processes. Thus,
both λ and φ subscripts may be vectors themselves indi-
cating processes (current leads ℓ or dephasing processes
φ) and states in the system (n = 1, ...N). For instance,
for a system with a single resonant state identified as 1
coupled to two terminals and a single decoherent process,
λ = (L1, R1) and φ = φ1. The fact that on-site chemical
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potentials at decoherent channels ensure that no net cur-

rent flows through them, allows us to evaluate
−→
δµφ, from

Eq. 55:

−→
δµφ = [−Tφφ]

−1
Tφλ

−→
δµλ. (57)

Here,
−→
δµφ provides the chemical potential profile at the

sites undergoing decoherence. Notice that, if used in a
local space representation, these chemical potentials do
not distinguish left from right going electrons. Thus they
induce momentum relaxing decoherence. [17, 46, 47]
The decimative procedure involves a simple algebraic

relation between the real channels of the system and the
chemical potentials associated with currents drains or
sources. From Eq. 55, it is straightforward to isolate
−→
I λ, arriving to the expression:

−→
I λ =

e

h
T̃λλ

−→
δµλ, (58)

and therefore, the adimensional effective conductances
are the non-diagonal elements of the matrix

T̃λλ = Tλλ + Tλφ[−Tφφ]
−1

Tφλ, (59)

where the first term represents the coherent transmis-
sions while the second involves all the possible transmis-
sions undergoing at least one decoherent process. This
last term, involves the inversion of a typically big N ×N
matrix. Notice that the matrix in square brackets would
correspond toW in the original D’Amato and Pastawski’s
paper, see Eq. 31. [16] However, the matrix inversion can
be performed resorting to a recursive decimation of the N
dephasing channels, taken one by one. Starting from the
first one, at each stage of decimation, all the remaining
probes and dephasing channels become renormalized ac-
cording to the following recursive scheme for the matrix
elements of T̃:

T̃
[0]
ij = Tij (60)

T̃
[k]
ij = T̃

[k−1]
ij + T̃

[k−1]
i,k

−1

T̃
[k−1]
k,k

T̃
[k−1]
k,j . (61)

Here, k runs over the dephasing channel index φ1...φN

and T̃
[k]
ij stands for the matrix element i, j (each of them

take the values {ℓ1...ℓM,φ1,..., φN}) of matrix T, after
the decimation of k incoherent channels. This recursion
algorithm could become particularly useful when only the
effective transmission among a few external channels is
needed.
Once that all of them were decimated, we have an ef-

fective transmission matrix T̃ ≡ T̃(N) given by:

T̃ =



R̃ℓ1 − 1 T̃ℓ1,L2 · · · T̃ℓ1,ℓM

...
...

. . .
...

T̃ℓM,ℓ1 T̃ℓM,ℓ2 · · · R̃ℓM − 1


 (62)

which accounts for the overall (coherent plus incoherent)
transmission through the system between different cur-
rent channels. This effective transmission matrix relates

real currents on each site of the sample with the volt-
ages associated with each electron reservoir. It should
by noticed that sums over rows or columns, both on the
original T and on T̃, must be zero, in accordance to the
Kirchhoff law.
At this point there is a particular situation that should

be discussed: a unique voltage difference between two
channel sets. This results in a single chemical potential
difference. For example, assuming that all the channels
associated with a current source in the “left” source L
have the same chemical potential, δµL and all those in
the current sink R, have δµR. We can rewrite the net
current as:

I =
∑

i

Ii =
e

h

MR∑

j

ML∑

i

T̃Rj,Li(δµL − δµR) (63)

= Tr
[
4ΓRG

R
N1ΓLG

A
1N

]
(δµL − δµR) (64)

= GV (65)

where G is the effective conductance, V = (δµL − δµR)/e
is the applied voltage. Notice that ΓL and ΓR are square
matrices with dimensions ML × ML and MR × MR as-
sociated with the M = ML +MR quantum channels at
the leads L and R. Since the final expression is the trace
of a matrix product, the result does not depend on the
chosen basis.
For the most general case of several chemical poten-

tials, Eqs. 63-65 can not be used and one should rely
on Eqs. 58 and 59 that are the general solution to the
multi-terminal DP model. These are the main results of
this work together with the algorithms for the Green’s
functions, Eqs. 50 and 49, and for the effective trans-
mittances, Eqs. 60 and 61. All of them will be tested in
physically relevant situations in the next two sections.

V. APPLICATION: DECOHERENCE IN A

MODEL FOR A SASER

The explicit description of vibrational degrees of free-
dom in a transport problem requires a multichannel for-
mulation even in a two probe configuration. This is be-
cause one must resort to a Fock-space representation of
the Hamiltonian describing electrons and phonons. This
situations occur in vibrational spectroscopy[48, 49], pola-
ronic models,[50, 51] photon-assisted tunneling [52, 53] as
well as in time-dependent classical electromagnetic fields
in Floquet representations.[54]
We will analyze a simple model that represents this

family of problems: independent electrons tunneling
through a resonance where they are strongly coupled to
a quantized vibrational mode. In particular, we describe
the optical phonon-assisted tunneling in a double bar-
rier device. It manifests as a satellite peak in the I-V
curve. This mechanism led to one [55] of the various
proposals for a phonon laser (SASER).[56] In such pro-
posal, a substantial part of the electrons contributing to
the current emit an optical phonon. This constitute the
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basis for a coherent ultrasound source. [57, 58]. The effi-
ciency of the device depends on the contrast between the
satellite peak and the valley, which in turn is determined
by specific quantum interferences among the participat-
ing channels. Thus, we will explore if these interferences
survive the decoherence induced by the acoustic phonons.

FIG. 3. Fock-space representation of states |j, n〉. The middle
row represents local electronic states j with n phonons. Lower
and upper rows describe the same electronic tight-binding
chain but with different numbers of phonons. Vertical lines
are local electron-phonon couplings restricted to site 0th.

Model. Consider a “local” electronic resonant state
labeled as 0. There, the electron is coupled to a single
vibrational mode, with frecuency ω0, whose occupation

is associated with the bosonic number operator b̂†b̂. This
is represented by the electron-phonon Hamiltonian,

ĤS = E0ĉ
+
0 ĉ0 +

(
~ω0 +

1
2

)
b̂+b̂ + Vg(b̂

+ + b̂)ĉ+0 ĉ0. (66)

The eigenstates of this Hamiltonian are the polaron
states,[59, 60] whose eigenenergies are

E0,n = E0 + ~ω0

(
n+

1

2

)
−

|Vg |
2

~ω0
. (67)

The electrons can jump in and out the resonant state to
the left and right leads. They can also suffer decoherent
processes with a rate 2Γφ/~ in a FGR approximation.
The effective Hamiltonian results:

Ĥeff = ĤS + Σ̂L + Σ̂R + Σ̂φ, (68)

where Σ̂L and Σ̂R describe the escape to the current leads
and Σ̂φ the escape associated with decoherence. They
are,

Σ̂L + Σ̂R + Σ̂φ = [ΣL(ε) + ΣR(ε)− iΓφ] ĉ
+
0 ĉ0. (69)

Notice that, these self-energies must account for the high
voltage difference required by SASER operation as an
offset in the band centers of the left and right leads EL−
ER = eV. We have omitted a real part of the decoherent
process which is not relevant in the present case. As

discussed before [57], the optical phonon absorption and
emission can be viewed as a “vertical” processes in a two-
dimensional network. Thus, transport in the Fock space
is computationally equivalent to a tight-binding model
with an expanded dimensionality, as shown in Fig. 3.[50,
57, 59]
When an electron comes from the left side, it arrives

at the resonant site where it couples to the n0 phonons
present in the well. It can either keep its original kinetic
energy ε−

(
n+ 1

2

)
~ω0 or change it by emitting or absorb-

ing ∆n phonons. Thus, the transmission probabilities of
each contribution are given by:

TR(n0+∆n),Ln0
= 2ΓR(n0+∆n)G

R
n0+∆n,n0

2ΓLn0
GA

n0,n0+∆n.

(70)
Notice that the subscripts represent channels in the Fock
space. As a consequence of the trivial energy shift, asso-
ciated with the presence of phonons,

Γαn(ε) = Γ
(
ε− Eα −

(
n+ 1

2

)
~ω0

)
, (71)

for α = L,R, as defined in Eqs. 9-12. Voltages are
accounted by Eα. Each of this processes contributes to
the total coherent transmission which is given by,

TRL(ε) =

∞∑

∆n=−n0

Tn0+∆n,n0
(ε). (72)

In an actual device, the current would be obtained in-
tegrating ε with the appropriate Fermi functions. Here,
we might recall that Ref. [61] suggested that in the Fock
space, “vertical” hoppings could be blocked by the pres-
ence of other electrons arriving with different initial en-
ergies. However, when the kinetic energy of the incoming
electrons satisfies EF ≤ ~ω0 ≤ eV, the applied voltage al-
ways enables phonon emission [50, 57, 59] ruling out the
eventual problem of overflow [62] ensuring the physical
significance of our model.
The decoherence is induced by the finite lifetime for

the polaron states through an imaginary correction in the
self-energies of Eq. 15. The available “direct” channels
are associated with the transmission probabilities of Eq.
70. Because of the wide band approximation for the de-
phasing channels, the energy uncertainty is independent
of ε:

Γφn(ε) ≡ Γφ. (73)

Optical phonon emission or absorption processes give rise
to decoherent processes, even when Γφ = 0. This leaves
us with several possible dephasing channels, whose trans-
mittances are

Tβ(n0+∆n),αn0
= 2Γβ(n0+∆n)(ε)|G

R
n0+∆n,n0

(ǫ)|22Γαn0
(ε).

(74)
Here α,β are either R,L or φ. From these transmissions,
and using Eqs. 59 and 62, we obtain the effective trans-
missions through the available real channels. Instead of
using the SASER operation regime (n0 ≫ 1), for peda-
gogical reasons we will assume that injected electrons find
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FIG. 4. Multichannel decoherent transmission for the polaron model, with ~ω0 = 0.2 eV, E0 = −1.5 eV. (a) Local electronic
state without coupling with the phonons (Vg = 0); (b) Transmission probability for an electron leaving the sample without a
change in the phonon state (Vg = 0.1); (c) Transmission probability for an electron that leaves the sample emitting one phonon
(Vg = 0.1); (d) Total decoherent transmission probability

n0 = 0 phonons, a situation that describes a vibrational
spectroscopy experiments. Then the total transmission
is simply,

T̃LR(ε) =

N∑

n=0

T̃
(n)
LR (ε), (75)

where each T̃
(n)
LR includes the decimation of the incoherent

channels as in Eq. 30. In what follows we will analyze
T̃LR(ε) which is also the relevant quantity to study the
non-linear response (see Eq. 134 in Ref. [34]).
The total transmission as function of energy is shown

in Fig. 4. The Hamiltonian parameters are roughly rep-
resentative of a double-well resonant tunneling devices
where electron-phonon interactions manifest as a satel-
lite peak in the conductance. [55] There E0 = −1.5 eV,
VR = VL = −0.1 eV, ~ω0 = 0.2 eV and Vg ≃ −0.1 eV.
We discriminate among different vertical processes con-
tributing to the total transmittance. When the coupling
between the local electronic state and the phonon mode is
neglected, Vg = 0, the problem becomes one dimensional
with a unique resonance, as shown in Fig. 4-a. The ef-
fect of the environment, accounted with the DP model,
is a broadening of the original resonance. When the local

electronic state is strongly coupled with the phonon field,
|Vg| ≫ 0, there are extra available paths for the conduc-
tion electrons in the Fock space. Different electron path-
ways in the coherent picture can interfere destructively,
e.g. those that traverse the resonance straight away and
those that previously emit and absorb a virtual phonon.
These give rise to anti-resonances in Figs. 4-b and 4-c.
Since they are a coherent phenomena, they may be de-
stroyed when decoherent events are present. This is made
evident in Fig. 4-d where the total electron transmission
probability in a multi-phonon process is compared with
the same configuration with added decoherence, accord-
ing to the multi-terminal DP model.

The energy uncertainty used is Γφ = 0.026 eV ∼ kBTR,
where kB is the Boltzmann constant and TR stands for
room temperature of 300K. Although one might evaluate
Γφ from the electronic energy uncertainties obtained with

the help of ab-initio computations, the behavior of T̃ as a
function of Γφ is smooth, provided that these local uncer-
tainties are small compared with typical tunneling rates
from the local resonances, ΓL(R) ≫ Γφ. Therefore, small
variations of the precise value of Γφ do not change the

general behavior of T̃ . This is illustrated in Fig. 5 where
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a color map shows how Γφ affects the total transmission
probability in the range [0 eV,0.025 eV]. We confirmed

FIG. 5. Multichannel decoherent transmission for the polaron
model in a color map. The transmission probability is shown
in a color scale, as a function of the incident electron Fermi
energy and the strength of the imaginary energy shift Γφ. The

behavior of T̃ is shown to be a smooth function of Γφ.

the general trend that decoherence broadens and lowers
the resonance peaks and raise the tails. But more im-
portantly, valleys are shaped by multi-phonon coherent
processes that produce anti-resonances. These resulted
very sensitive to decoherence. Thus, these effects should
be considered in assessing the efficiency of a SASER.

VI. APPLICATION: QUANTUM TO

CLASSICAL TRANSITION IN A MODEL FOR

GIANT MAGNETORESISTANCE.

Spintronics often requires to distinguish how each spin
projection contribute to the current and to identify the
spin dependent voltage profiles, i.e. the chemical poten-
tials δµ’s. These are absent from the original solution
of the DP model that just provides the total current,
ILR = (e/h)Teffδµ (see section III ). This limitation was
overcomed by the previous sections, where a specific cur-
rent Ij , at spin-channel j, can be readily calculated from
eq. 55, as Ij = e/h

∑
i (T)ji δµi.

Spin-dependent electron transport in ferromagnetic
metals presents high rates of scattering events that could
make a fully coherent treatment somewhat unrealistic.
The standard approach is to use the semiclassical Boltz-
mann equation [63]. However, in these models quantum
mechanic effects are completely neglected from the very
beginning. These effects can become important and in-
teresting to study. For instance, ref. [64] shows that
spin-dependent transmittances in nanowires with a mod-
ulated magnetic field may present Rabi oscillations. In
these situations, a Hamiltonian model capable of reach-

ing a semiclassical limit, such as the DP, can be very
useful.
In this section, we use the multi-terminal DP model to

treat one of the paradigmatic phenomena of the spintron-
ics, the Giant Magnetoresistance (GMR). We will show
that one can go from a purely quantum regime, described
by a Hamiltonian, to the (semi)classical limit of GMR,
just by varying a single parameter: the ‘decoherent’ scat-
tering rate.
Giant Magnetoresistance may occur in systems com-

posed of two layers of a ferromagnetic metal where their
relative magnetization can be switched. In these materi-
als, the rate of scattering depends on the electron spin.
Thus, the electrical resistance depends on the relative ori-
entation between the spin and the layer’s magnetization.
If the two layers have their magnetization aligned, there
is a spin orientation with low resistance that dominates
transport. On the other hand, when the magnetizations
are anti-aligned, both spin channels have high resistance.
[33]
Model. Let us consider a one-dimensional system com-

posed of two adjacent ‘layers’ or portions of a single-
domain ferromagnetic metal. We choose the relative
magnetization in a anti-aligned configuration (Fig. 6-
a). This system is connected to non-magnetic contacts
at each side, labeled by L and R. Thus, the current
flows perpendicular to the magnetic interface. As usual,
each spin is regarded as an independent channel at the
contacts. Thus, at the leads, each spin projection is char-
acterized by the chemical potentials µL↑, µL↓, µR↑, and
µR↓. Since we are considering non-ferromagnetic con-
tacts, the chemical potentials at the leads are spin inde-
pendent.
Inside the system, the electrons undergo scattering

processes producing the spin dependent resistance. Since
its fair to neglect Anderson localization, we can use the
equivalence between delta function impurities and local
decoherent scattering processes. As in the Ohmic limit
of the DP model [16, 17] they can be characterized by
the parameter Γφ. This is related with the mean free
time, τσ, through Γσ = ~/(2τσ). Then, the Ohmic con-
ductance is proportional to the mean free path ℓσ which
results ℓσ = vF τσ. Note that the rate Γσ depends on the
relative orientation between the spin and the local mag-
netization. Thus, spin ↑ has a scattering rate Γφ1, at the
first layer, and Γφ2, at the second one. The opposite spin
has the complementary rates.
As in previous works,[64, 65] the system’s Hamiltonian

ĤS is described in a tight-binding approach that includes
local spin-reversing interactions:

ĤS =

N∑

i=−N

∑

σ=↑,↓

[Ei,σ ĉ
†
i,σ ĉi,σ + V

[
ĉ†iσ ĉi+1σ + c.c.

]

+

N∑

i=−N

V↓↑

[
ĉ†i↓ĉi↑ + c.c.

]
. (76)

The label i indicates sites on a lattice with unit cell a,
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Ei,σ is the energy at the site i with spin σ, the opera-

tor ĉ†i,σ (ĉi,σ) creates (annihilates) a particle at the site

i with spin σ. The firsts two terms of Ĥ accounts for
the site energies and the spin-conserving hopping, V , be-
tween adjacent sites. V is chosen as the unit of energy. In
a graphical representation, each spin orientation is repre-
sented by a chain of sites interconnected by V . Thus, two
chains of sites are needed to represent the spin-dependent
transport along this ferromagnetic system (Fig. 6-a)).

The last term of Ĥ , models the scattering processes that
may change the spin projection, such as scattering with
magnetic impurities. Thus, V↓↑ is the local spin-reversing
or spin-mixing hopping parameter. This is related to a
characteristic length scale identified as the spin diffusion
length, Lsd, by

Lsd =
ℏvF
2 |V↓↑|

, (77)

where vF is the Fermi velocity and Lsd is the length scale
at which the spin-flipping processes relax the diffusing
spin. Thus, within this length, both spin orientations
can be considered as independent. Lsd is typically much
larger than the mean free path. When the electron gets
into the ferromagnetic material, it undergoes an exchange
interaction that can be regarded as a Zeeman interaction.
Thus, the site energy is Ei,↑(↓) = E0 ±∆EZ , where i is
a site of the first layer.
As in Eq. 16, the effective Hamiltonian incorporates

the leads and the scattering processes through the ap-
propriate self-energies. Now, Σ̂L(R) = Σ̂L(R)↑ + Σ̂L(R)↓

is the self-energy operator describing the escape to the
left (right) lead, given by Eq. 9, where all hoppings are
equal to V . Decoherent channels accounting for resis-
tive scattering are associated to each site and included
into Ĥ through the Σ̂φ operator. Thus, Σ̂φ is diagonal
in a matrix representation. In the wide band limit, their

elements are purely imaginary, i.e.
(
Σ̂φ

)

ii
= −iΓφi.

Classical regime of GMR: two resistors model (TRM).
Here, the system length is much shorter than Lsd, i.e.
V↓↑ ≈ 0 in Eq. 76. Here, when electrons enters into
a ferromagnetic layer they undergo an electrical resis-
tance δR = ILRV (Ohm’s law) that manifest in a linear
drop in the chemical-potential δµ. Therefore, in the anti-
aligned configuration, there are two linear potential drops
of δµ with slopes proportional to the spin-dependent re-
sistance of each layer. Then, it is expected a splitting
of the chemicals potentials that form a diamond like fig-
ure. This is precisely what we obtain using the multi-
terminal DP method with mean free paths shorter that
the system size. Fig. 6-b to 6-d show this, through the
site-dependent chemical potential. In contrast, for the
quantum limit of long mean free paths, quantum inter-
ferences are evident. However, they are smoothed out
by increasing the scattering rate until they reach the ex-
pected classical diamond like figure (Fig. 6-b).
Semiclassical regime of GMR: Valet and Fert theory.

Considering finite values for the spin diffusion length,
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FIG. 6. -a) On top is a scheme showing the layer’s magnetiza-
tion in the two resistor model for GMR. Below is a tight bind-
ing representation discriminating the spin projection. The
coherence lengths of electrons in the first layer are ℓ1 and ℓ2
for up and down spin electrons respectively. Note that coher-
ence lengths are inverted in the next layer. ℓ1/ℓ2 = 1/2 in all
cases. Fig. b) to d) Site dependent chemical potentials with
ℓ1 = 15 a in Fig. b), ℓ1 = 1500 a in Fig. c), and ℓ1 = 150 a in
Fig. d). The system length is 1000a and V↓↑ = 0 (Lsd → ∞),
and the chemical potentials at the leads are µL = eV and
µR = 0. The Fermi wavelengths at the left side are λF = 45a,
for up spins, and λF = 30a, for down spins. The opposite
holds at the right ferromagnet. The chosen parameters do
not represent a specific experimental set up.
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FIG. 7. Upper figure, site-dependent chemical potential δµi

profile for the semiclassical model of GMR with finite spin
diffusion length, Lsd = 100 a. Lower figure, shows the local
currents Ii for up and down spin electrons. System size is
1000a, ℓ1/ℓ2 = 1/2, and ℓ1 = 15a.

Lsd, Valet and Fert [63] showed that the difference of the
spin-dependent local chemical potentials decays exponen-
tially with the distance to the magnetic interface with a
length scale given by Lsd. They also showed that the
spin-dependent current is inverted in this length scale.
In Fig 7 we show that the multi-terminal DP model is
also capable to reproduce these behaviors provided that
we turn on the spin flip term in Eq. 76. In the up-
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per figure we show the spin and site dependent chemical
potentials. One can see that in regions far from the inter-
face, distances larger than Lsd, the chemical potentials
are nearly the same. In regions close to the interface,
the chemical potential drop forms a diamond-like figure
that show the expected spin-dependent exponential con-
tributions summed up to the trivial mean linear drop. In
the lower figure we can observe how the inversion of the
currents is produced in the length scale Lsd. For longer
distances, the currents reach a stationary value.
All these behaviors are in agreement with Ref. [63].

This situation reinforces the descriptive conceptual value
of the DP model and the versatility of the numerical al-
gorithms developed in this paper.

VII. CONCLUSION

In this work, we first reviewed the original two-
terminal DP model, which accounts for decoherent effects
in quantum transport. Then, we presented an extension
of this model which is capable to deal with multi-terminal
setups. Also, we introduced recursive algorithms that al-
lows us to take advantage of the problem symmetries, in
particular in the case of general banded Hamiltonians.
The incorporation of a unified notation gives more trans-
parency to its potentialities. Using the specific Hamil-
tonian models for phonon laser and giant magnetoresis-
tance, we exemplified how to treat multi-channel prob-
lems in presence of decoherence.
We made special emphasis on the role of decimation

procedures in the context of banded effective Hamiltoni-
ans, since they can be used as the basis for efficient com-
putational schemes. In particular, one of the keys is given
by Eqs. 49- 50. Note that, in the very common situation
of block tridiagonal (i.e. banded) matrix Hamiltonians,
these recursive equations provide an efficient decimation
procedure that allows one to obtain all the N × (N − 1)
non-diagonal blocks of the whole Green’s function ma-
trix, G, in terms of the N diagonal blocks. In turn, these
last can be calculated as matrix continued fractions. [44]
The idea here is to take advantage of particular system’s
symmetries using these expressions to build an efficient
computation approach for the problem under study.
Profiting from a parallelism between the computation

of G and the decoherent transmitance T̃ already hinted

by the DP solution [17], we also derived a compact matrix

equation for T̃ in a generalized multi-terminal scheme.
This recursive algorithm relies on decimation procedures.
As a first application, we added decoherent processes

to the usual model for phonon-assisted tunneling in the
configuration used for a phonon laser or SASER. As is
well known, [55] in the I-V curve of a SASER configura-
tion, the contrast between the valley (out of resonance)
and the satellite peak (corresponding to phonon emis-
sion) is enhanced by the effect of antiresonances. These
last result from the interference between different paths
in the Fock’s space. [57] Besides of the expected smooth-
ing out of the resonances because of the decoherence, we
found that it leads to the degradation of the contrast
mainly from the suppression of the antiresonances. This
could set up new bounds for the efficiency of SASER op-
eration. [58]
We also solved a simple multi-terminal DP model rep-

resentative of the giant magnetoresistance (GMR) phe-
nomenon. There, each spin orientation is a different con-
duction channel. Thus, the spin-dependent transport is
intrinsically multi-terminal. We essentially showed that
the main characteristics of the GMR can be well repro-
duced with this simple model. While preserving a Hamil-
tonian description, it is able to reach the expected clas-
sical and semiclassical regimes by means of a single pa-
rameter, the local decoherent rate Γφi. What is more
important, as in Fig. 6-c and d, it opens the possibil-
ity to profit from situations where quantum interference
becomes relevant. [64, 66]
With increasing system’s size, molecular electronics

suffers a paradigm shift on its dominant transport mech-
anism, from “coherent tunneling” to “incoherent hop-
ping”. Within this context, the present work should re-
sult specially helpful in providing a computational bridge
between these limiting situations, while maintaining a
general, transparent, and efficient approach to quantum
transport.
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