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On the evolution of the momentarily static radiation free data in
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In this paper we study the evolution of the “Momentarily Static and Radiation

Free” (MSRF) initial data for the Apostolatos - Thorne cylindrical shell model.

After briefly reviewing the equations of motion, the definition of the MSRF initial

data and of its relation to the static solution that corresponds to the given conserved

intrinsic parameters of the shell, we show that for MSRF data the initial acceleration

of the shell is always directed towards the static radius. We analyze in detail the

relation between the parameters characterizing the configuration corresponding to

the initial data and those for the assumed final static configuration, and show that,

once the appropriate properties of the solutions of the cylindrical wave equation

are taken into account, there is a priori no conflict for any choice of initial MSRF

data, in contrast with some recent results of Nakao, Ida and Kurita. To obtain a

more detailed description of the evolution we consider the case where the problem

can be analyzed in the linear approximation, and show that the evolution is stable

in all cases. The possible form of the approach to the final static configuration is

also analyzed. We find that this approach is very slow, with an inverse logarithmic

dependence on time at fixed radius. Given the absence of analytic solutions for the

problem, we introduce a numerical computation procedure that allows us to visualize

the explicit form of the evolution of the shell and the gravitational field up to large

times. The results are in agreement with the qualitative behaviour conjectured by

Apostolatos and Thorne, with an initial damped oscillatory stage, but we find that

this oscillations are not about the final static radius but rather about a position that

approaches slowly that of the static final state, as indicated by our analysis. We

also include an Appendix, where we review some properties of the solutions of the

cylindrical wave equation, and prove the existence of solutions with vanishing initial

value for r > R0, (R0 > 0 some finite constant), that approach a constant value for

large times. This result is crucial for the proof of compatibility of arbitrary MSRF

initial data and a final static configuration for the system.

PACS numbers: 04.20.Jb,04.40.Dg

I. INTRODUCTION

The Apostolatos-Thorne model [1] describes the dynamics of a self gravitating cylindrical
shell of counter rotating particles. It was originally introduced in the context of a discussion
of the effect of rotation on halting the collapse of the system. But the system is interesting
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also on other grounds, because it provides a model of a mechanical system, with a simple
Newtonian limit, in interaction with a dynamical gravitational field, interchanging energy
with the gravitational radiation contents of the field. As shown in [1], it is not difficult to
obtain a set of coupled ordinary and partial derivative equations for the dynamical variables
whose solutions describe the possible evolutions of the system. Although the original paper
[1] did not give a detailed computation of the evolution of the system, it included an extensive
discussion of the main qualitative features that would result from the interaction of the shell
with the gravitational field. There has recently been a renewed interest in finding solutions
and analyzing this detailed evolution in several cases and for different types of initial data. In
[2], Hamity, Cécere and Barraco considered the evolution of the outer shell in a system that
contains also an inner shell to allow for the imposition of a particular boundary condition.
They also make use of some simplifying assumptions that reduce the full set of evolution
equations to a particular ordinary differential equation for the motion of the shell. A different
approach, where the evolution of the system is analyzed in the linear approximation was
considered by Gleiser and Ramirez in [3]. The stability of the static configurations of the
system under arbitrary perturbations was proved in an extended analysis given in [7], where
the existence of quasi normal modes was also considered. A related analysis, but with a
different interpretation was also given in [4].

A particular case considered in [1] was that resulting from initial data with a structure
similar to that corresponding to a static solution, but differing from that one, so that the shell
starts its motion with a non vanishing acceleration. This type of initial data was designated
“Momentarily Static and Radiation Free” (MSRF), and the authors of [1] considered it as
both an example of consistent initial data for the system and as an example of the possible
evolution resulting from the dynamic equations. No explicit solution is given in [1], but
the authors analyze explicitly the initial acceleration of the shell and provide qualitative
arguments for the resulting evolution, concluding that the shell would execute damped
oscillations about a final static radius, as the mechanical energy of the shell is transferred to
the gravitational field, and radiated away. This conclusion, however, has been challenged in
a recent paper by Nakao and Kurita [5]. In this paper the authors analyze some constraints
that the Einstein equations for the system would impose on the possible final state of the
evolution, starting with MSRF, and conclude that a static solution could not be reached from
a certain set of MSRF data. This result would imply, for instance, that if the system started
with that type of MSRF data then it could not reach a static configuration, and would
expand forever, something that could not happen in the Newtonian limit, and therefore,
we would be confronted with a new type of instability, resulting from the interaction of
the shell with the dynamical part of the gravitational field. This, if correct, would indeed
be a very surprising and unexpected feature of the dynamics of this system, since it has
a simple, well defined Newtonian limit, where all motions are bounded, as a result of the
corresponding Newtonian potential being unbounded as one moves further and further away
from the symmetry axis, and it is not easy to understand in what way the radiative modes
could modify this feature so drastically. It is for that reason that we considered important
to provide a different analysis of the evolution of MSRF data, in order to either confirm the
results of [5], and try to find a possible interpretation, or on the contrary, provide arguments,
and possible proofs, in favor of the original qualitative view of that evolution, as discussed
in [1]. As we shall show, although there are no errors in [5], their result is a consequence of
a particular assumption on the behaviour of the gravitational field at late times that needs
to be revised. Once this is done we find no conflict between an arbitrary MSRF initial data
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and a corresponding final static configuration, confirming the conjecture in [1]. Furthermore,
we consider MSRF data that is initially close to the static configuration, and, using some
results obtained in [7], prove the stability of the evolution. We further apply a numerical
integration procedure and obtain the detailed evolution of the system up to large times,
finding somewhat unexpected features in the approach of the shell to its final static radius,
that are described and discussed in the text below.

The plan of the paper is as follows. In the next Section we review the formulation of
the Apostolatos - Thorne model and of its equations of motion. In Section III, we recall
the definition of MSRF initial data, and its relation to the conserved intrinsic parameters
of the shell. Next we find the static solution that corresponds to the same set of intrinsic
parameters, and find the relation between the initial state free parameters and those of
the final state. This leads to a relation between the initial and final forms of one of the
metric functions that was claimed in [5] to lead in some cases to a contradiction with the
equations of motion. However, as we show in the Appendix, this result is a consequence
of an inadequate use of a general expression for the solution of the wave equation with
cylindrical symmetry, and we prove the existence of solutions of the field equations that
satisfy the relations that make all initial MSRF data compatible with a static final state.
In Section IV we consider small departures from the static configuration, in the sense that
the initial radius is close to the corresponding static radius, analyze the resulting linearized
equations of motion, and, making use of a result obtained in [7], prove the absolute stability
of the evolution of MSRF data close to the static solution. We also show that, contrary to a
simple expectation, the final approach to the static configuration, for fix radial coordinate, is
very slow, with the appropriate quantities approaching zero only as 1/ ln(τ), where τ is the
proper time on the shell. Since the previous derivations give no information on the detailed
evolution of the shell and the fields, in Section V we use a numerical integration procedure,
developed in [7], to visualize, for some particular examples, the evolution from the initial
state, up to large times. We find for the shell, as expected, an initial exponentially damped
oscillatory stage, but, in agreement it our analysis in Section IV, not about the final static
radius, but rather about a position that approaches the static radius as 1/ ln(τ). We end
the paper with some comments and conclusions, as well as comments on related work by
other authors, in particular to that of reference [5].

II. THE APOSTOLATOS - THORNE MODEL

The Apostolatos - Thorne model [1] describes the dynamics of a self gravitating cylindrical
shell of counter rotating particles. Both the inner (M−) and outer (M+) regions of the shell
are vacuum space times with a common boundary Σ. The corresponding metrics may be
written in the form,

ds2
±
= e2γ±−2ψ±

(
dr2 − dt2

±

)
+ e2ψ±dz2 + e−2ψ±r2dφ2 (1)

where the (+) sign corresponds to the outer, and (−) to the inner regions. The functions
ψ, and γ depend only on r, t and satisfy the equations:

ψ,rr +
1

r
ψ,r − ψ,tt = 0 (2)

γ,t = 2rψ,rψ,t , γ,r = r
[
(ψ,r)

2 + (ψ,t)
2
]

(3)
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The shell is located on the hypersurface Σ given by r = R(τ), where τ is the proper
time of an observer at rest on the shell. We may interpret ψ(r, t) as playing the role of
a gravitational field whose static part is the analogue of the Newtonian potential. The time
dependent solutions of (2) represent gravitational waves (Einstein-Rosen). Equation (2) is
the integrability condition for Eqs. (3). The coordinates (z, φ, r) and the metric function
ψ are continuous across the shell Σ, while t and the metric function γ are discontinuous.
Smoothness of the spacetime geometry on the axis r = 0 requires that γ = 0, ψ finite at
r = 0, and ∂ψ/∂r|r=0 = 0. The junction conditions of M− and M+ through Σ require the
continuity of the metric and specify the jump of the extrinsic curvature K± compatible with
the stress energy tensor on the shell. The induced metric on Σ is given by

ds2Σ = −dτ 2 + e2ψΣdz2 + e−2ψΣR2dφ2 (4)

where ψΣ(τ) = ψ+(R(τ), t+(τ)) = ψ−(R(τ), t−(τ)).
The evolution of the shell is characterized by R(τ). If we assume that the shell is made

up of equal mass counter rotating particles, the Einstein field equations on the shell may be
put in the form,

ψ+
,n − ψ−

,n = − 2λ√
R2 + e2ψΣJ2

(5)

X+ −X− = −4λ
√
R2 + e2ψΣJ2

R
(6)

where the constants λ and J are, respectively, the proper mass per unit Killing length of the
cylinder and the angular momentum per unit mass of the particles. The other quantities in
(5,6) are given by,

X± ≡ ∂t±
∂τ

= +
√
e−2(γ±−ψΣ) + Ṙ2 (7)

ψ±

,n = ψ±

,rX
± + ψ±

,t Ṙ (8)

where a dot indicates a τ derivative, and we also have,

d2R

dτ 2
= Ṙψ̇Σ − R

[
(ψ̇Σ)

2 + (ψ−

,n)
2
]

+
R2ψ−

,nX
−

R2 + e2ψΣJ2
− λR2X−

(R2 + e2ψΣJ2)3/2
+

J2e2ψΣX−X+

R(R2 + e2ψΣJ2)
(9)

These equations together with (2,3) determine the evolution of the shell and of the grav-
itational field to which it is coupled.

III. THE MOMENTARILY STATIC RADIATION FREE (MSRF) INITIAL

DATA.

The set of equations of the previous Section may, at least in principle, be solved as an
initial plus boundary (plus matching conditions) problem. Namely, we expect that given
appropriate initial data, there should be a well defined evolution to the future of that data.
An inspection of the equations indicate that such initial data could be specified on a space
like hypersurface formed by taking a constant time t+ = t0+ slice on M+ and a constant
time t− = t0− slice on M−, matched through a constant τ section of Σ. The independent
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data on M+ would then be the functions ψ+(t0+, r) and ∂ψ+(t0+, r)/∂t, since these specify
γ+(t0+, r) and ∂γ+(t0+, r)/∂t up to a constant. Similarly, on M−, we may give arbitrary
expressions for ψ−(t0−, r) and ∂ψ−(t0−, r)/∂t, and γ−(t0−, r) and ∂γ−(t0−, r)/∂t are then
defined up to a constant. We need also to specify some initial data for the shell, which
could the (independent) values of R and dR/dτ , and fix some of the constant parameters
such as J and λ. All these data is constrained in part by the matching conditions on Σ.
Notice also that if we require regularity on the axis r = 0 we need to impose γ−(t−, 0) = 0,
and ∂ψ−(t−, 0)/∂r = 0. In the rest of this paper we shall only consider data and evolutions
satisfying these requirements.

A particular family of initial data for the model, recently considered in [5], was intro-
duced by Apostolatos - Thorne in [1], and identified as the momentarily static radiation free
(MSRF) initial data. It is defined as follows. We notice that t−, t+, and τ are defined up
to arbitrary additive constants. We may therefore consider the points on Σ corresponding
to a given value of τ , say τ = 0, and the corresponding hypersurfaces of constant t− and t+
that are matched to Σ at τ = 0, and assign also t− = 0 and t+ = 0 to those hypersurfaces.
Next we impose,

ψ+(0, r) = ψi − κ ln(r/Ri) ; γ+(0, r) = γi + κ2 ln(r/Ri) (10)

∂ψ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0 (11)

ψ−(0, r) = ψi ; γ−(0, r) = 0 (12)

∂ψ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0 (13)

R(0) = Ri ;
dR

dτ

∣∣∣∣
τ=0

= 0 (14)

Notice that these conditions imply,

∂γ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0 ;
∂γ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0 (15)

A particular shell is described by fixed values of λ and J . The matching conditions then
impose constraints on the parameters that appear in (10 - 14). These may be written as,

2λRi − κeψi−γi

√
R2
i + e2ψiJ2 = 0, (16)

Rie
ψi−γi −Rie

ψi + 4λ
√
R2
i + e2ψiJ2 = 0 (17)

and,
d2R

dτ 2

∣∣∣∣
τ=0

+
λR2

i e
ψi

(R2
i + e2ψiJ2)

3/2
− e4ψi−γi

Ri (R2
i + e2ψJ2)

= 0 (18)

The set (16 - 18) constrains the free parameters, and to a certain extent, their ranges.
For instance, from (16) and (17) we find,

λ =
κeψiRi

√
R2
i + e2ψiJ2

2(R2
i + 2κ(R2

i + e2ψiJ2))
(19)
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and one can check that, for fixed Ri, κ, and J , λ is a monotonic function of ψi that satisfies
the constraint 0 < λ < Ri/(4J) for −∞ < ψi < +∞.

In any case, there are many ways of handling these constraints. We may, for instance,
assume that we fix λ, J , and the initial radius Ri. The value of ψi could then be chosen freely,
and we would use (16) and (17) to obtain the corresponding values of γi, and κ. Then Eq.(18)
determines the initial acceleration of the shell, and the initial data set is complete. In their
original work, Apostolatos and Thorne noticed that in the Newtonian limit, a similar self
gravitating shell, released from a momentarily static configuration, namely, with vanishing
radial velocity, would undergo periodic oscillations about a particular static (“equilibrium”)
configuration, fixed by its intrinsic parameters J and λ. They therefore assumed that in the
corresponding general relativistic problem, the shell would also execute oscillations about
some “equilibrium” radius, but that now these oscillations would be damped as the system
loses its mechanical energy through the emission of gravitational waves.

This conclusion, however, appears to be contradicted by the recent analysis by Nakao,
et. al. [5], based on the properties of the evolution equations for the fields, that leads
to the conclusion that for at least a subset of this type of initial data, contrary to the
assumptions in [1], the system becomes unstable when the gravitational waves are taken
into consideration, indicating, if correct, a surprising and rather drastic difference with the
corresponding Newtonian problem. We need here to emphasize that no explicit example of
the detailed evolution of the system under the MSRF initial data has been presented so far
in the literature, and that the conclusions in [5] were obtained under certain assumptions
on the behaviour of the fields ψ+ and γ+ that, as we shall show, need not hold in the actual
evolution of the system.

Going back to the system (16 - 18), and the evolution equations, we notice that if we
further impose the condition d2R/dτ 2|τ=0 = 0, we find a solution of the evolution equations
where R(τ) = Ri, and the fields take the form (10 -13) for all times, i.e., we have a static
solution. (Hence the name MSRF for this type of initial data). Since, as indicated, ψ± are
defined up to an arbitrary constant, we may choose ψi = 0 for the static configuration.

Now, suppose that we have some MSRF initial data. If we assume that the evolution
of this MSRF initial data leads (asymptotically) to a static configuration, can we find a
relation between the MSRF data and the final static data? We recall that λ and J are
constants of the motion, but there is also, for this type of initial data, another constant
quantity, given by the coefficient κ. This constancy is analyzed in the Appendix, but here
we proceed assuming that λ, J and κ are the same for the MSRF initial data and for the
final static configuration. In particular, we assume that for the final state configuration we
have,

ψ+(t+, r) = κ ln(r/R0) ; γ+(t+, r) = γ0 + κ2 ln(r/R0) (20)

ψ−(t−, r) = 0 ; γ−(t−, r) = 0 (21)

R(τ) = R0 (22)

This form can always be achieved with some appropriate choices of additive constants in
ψ±, plus the regularity conditions for r = 0. With these choices, the matching conditions
and evolution equations imply,

2λR0 − κe−γ0
√
R2

0 + J2 = 0, (23)

R0e
−γ0 − R0 + 4λ

√
R2

0 + J2 = 0 (24)
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and,

λR3
0 − e−γ0J2

√
R2

0 + J2 = 0 (25)

which contain also some of the same parameters that appear in (16 - 18). Therefore, these
relations impose conditions and constraints on both the initial and final parameters charac-
terizing the corresponding data. Directly from (23 - 25) we find,

λ =
R0J

2
√
R2

0 + J2

(R2
0 + 2J2)2

κ = 2
J2

R2
0

(26)

e−γ0 =
R4

0

(R2
0 + 2J2)2

and we notice that these imply a further restriction on the range of λ, namely, for any choice
of R0 and J we have 0 ≤ λ < 0.15879.... This, however, is not a physical restriction on the
data, but rather a consequence of our choice of the value of ψ on Σ for the final state. But
this choice imposes restrictions on ψi. To analyze these we introduce ξ0, such that,

ξ0 = Ri − R0 (27)

so that ξ0 gives a measure (and orientation) of the departure of the MSRF configuration
from the static configuration. We notice now that (18) may be written in the form,

d2R

dτ 2

∣∣∣∣
τ=0

= − e4ψie−3γiJ6

R6
0λ

2(R0 + ξ0)

(
1− R2

0e
2ψi

(R0 + ξ0)2

)
(28)

Then the sign of the initial acceleration of the shell will depend on the sign of the term in
parenthesis on the right of (28). To find the relation between this sign and that of ξ0 we
may use (27), (16) and (17) to find,

x =

√
R2

0 + J2(R4
0 + 4J4q2 + 4R2

0J
2)

q(R2
0 + 2J2)2

√
R2

0 + qJ2
(29)

where,

x =
R0 + ξ0
R0

; q =
R0e

ψi

R0 + ξ0
(30)

Now it is easy to check that the right side of (29) is a monotonically decreasing function
of q for q > 0, that diverges as q → 0+, is equal to one for q = 1 and decreases to,

4J3
√
R2

0 + J2

(R2
0 + 2J2)2

< 1 (31)

for q → +∞. But this means that x < 1 (and, therefore, ξ0 < 0 ) for q > 1, when the
acceleration is positive, while x > 1 (and ξ0 > 0) for q < 1, when the acceleration is negative.
Thus, we conclude that the initial acceleration is always directed towards the corresponding
static radius. Notice that for q = 1 we have x = 1, implying ξ0 = 0 and, therefore, ψi = 0,
that is, the static configuration.



8

We consider now the function γ+(t+, r). In particular, we want to compare its value at
some fixed r for the MSRF data, with that of the assumed final static configuration at the
same r, since both depend on r only through the term ln(r), and we have,

exp(γ+(0, r)− γ+(t, r)|t+→+∞) = exp(γi + κ2 ln(r/Ri)− γ0 − κ2 ln(r/R0))

=

(
R0

Ri

)κ2
eγi

eγ0

=

(
R0

Ri

)4J2/R4
0 Riq

√
R2

0 + q2J2

R0

√
R2

0 + J2

and, finally,

exp(γ+(0, r)− γ+(t+, r)|t+→+∞) =

(
R0

Ri

)4J2/R4
0 R4

0 + 4R2
0J

2 + 4q2J4

(R2
0 + 2J2)2

(32)

where q is the same as in Eq. (30). But, from the previous results, for ξ0 < 0 we have
Ri < R0, and q > 1, while for ξ0 > 0 we have Ri > R0, and q < 1. Therefore, for Ri < R0

we must have,
γ+(0, r) > γ+(t, r)|t+→+∞ (33)

while for Ri > R0 we must have,

γ+(0, r) < γ(t+, r)|t+→+∞ (34)

This last result, that the function γ+ must increase for Ri > R0 to reach the final
static configuration, was considered in [5] to be in contradiction with the properties of the
evolution equations for γ, and therefore, was considered to imply that in that case the
system could not reach a static configuration, implying some sort of instability, possibly
related to the dynamic modes of the gravitational field. However, as we show in the
Appendix, (34) is perfectly compatible with the field equations, and there is no a priori
contradiction with the presumed existence of a static final state.

In the next Section we analyze the case where the shell position for the MSRF data is
close to static configuration for the same shell. In this case we may consider a linearized
expansion about the static configuration and apply some recently obtained results on the
dynamics of the Apostolatos -Thorne model [7].
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IV. LINEARIZED APPROXIMATION

We consider again the MSRF data, assume that we have chosen the appropriate constants
so that we have t− = t+ = 0 for τ = 0, and write it the form,

R|τ=0 = R0 + ǫξ0 ;
dR

dτ

∣∣∣∣
τ=0

= 0

ψ−(0, r) = ǫψi ; γ−(0, r) = 0

∂ψ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0 ;
∂γ−(t−, r)

∂t−

∣∣∣∣
t−=0

= 0 (35)

ψ+(0, r) = ǫψi − κ ln

(
r

R0 + ǫξ0

)
; γ+(0, r) = γ0 + ǫγi + κ2 ln

(
r

R0 + ǫξ0

)

∂ψ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0 ;
∂γ+(t+, r)

∂t+

∣∣∣∣
t+=0

= 0

where ξ0, ψi, and γi are some constants, and we have included the auxiliary parameter ǫ
to indicate which quantities are of first order. The set (35) corresponds to an exact MSRF
data set. We are interested in the case where we have a small departure from the static
configuration of the shell, namely, in the limit ǫ → 0. We may therefore expand (35) to
first order in ǫ, and consider the resulting set as initial data for the linearized equations
of motion for the shell. These were obtained in [7]. Briefly stated, one first writes the
dynamical variables R, ψ− and ψ+ in the form,

R(τ) = R0 + ǫ ξ(τ)

ψ−(t−, r) = ǫ χ1(t−, r) (36)

ψ+(t+, r) = −κ ln(r/R0) + ǫ χ2(t+, r)

where the parameter ǫ defines the order of the terms, so that the static solution is recovered
for ǫ = 0. The χi satisfy the equations,

∂2χ1

∂t2−
− ∂2χ1

∂r2
− 1

r

∂χ1

∂r
= 0 (37)

∂2χ2

∂t2+
− ∂2χ2

∂r2
− 1

r

∂χ2

∂r
= 0 (38)

Then, to first order in ǫ one has,

γ−(t−, r) = O(ǫ2) (39)

γ+(t+, r) = γ0 + κ2 ln(r/R0)− 2ǫ κ χ2(t+, r)

where κ and γ0 satisfy (26), and, one finds that it is consistent to this order to set,

t−(τ) = τ +O(ǫ) (40)

t+(τ) = e−γ0τ +O(ǫ)
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In fact, only the zeroth order terms in t± appear in the linearized equations, and, instead of
(37), one has,

∂2χ1

∂τ 2
− ∂2χ1

∂r2
− 1

r

∂χ1

∂r
= 0 (41)

(2J2 +R2
0)

4

R8
0

∂2χ3(τ, r)

∂τ 2
− ∂2χ3(τ, r)

∂r2
− 1

r

∂χ3(τ, r)

∂r
= 0 (42)

where,
χ3(τ, r) = χ2(e

−γ0τ, r) (43)

These equations describe the dynamics of the radiative part of the gravitational field. The
corresponding linearized equations for the motion of the shell are, (see [7] for details),

0 =
2J4

(
6R0

2J2 + 4J4 + 3R0
4
)

(
R0

2 + J2
) (

2J2 +R0
2
)2
R0

4
ξ (τ)

− 2R0J
4

(
R0

2 + J2
) (

2J2 +R0
2
)2χ1 (τ, R0)−

∂χ1 (τ, r)

∂r

∣∣∣∣
r=R0

(44)

−2J2
(
4J2 +R0

2
)

(
2J2 +R0

2
)2
R0

χ3 (τ, R0) +
R0

4

(
2 J2 +R0

2
)2

∂χ3 (τ, r)

∂r

∣∣∣∣
r=R0

,

0 =
2J2

R0
3 ξ (τ) + χ1 (τ, R0)− χ3 (τ, R0)

corresponding to the matching conditions, and an equation of motion for ξ(τ),

d2

dτ 2
ξ (τ) = −J

2
(
4J6 + 6R0

2J4 + 5J2R0
4 + 2R0

6
)

(
2 J2 +R0

2
)2 (

R0
2 + J2

)2
R0

2
ξ (τ)

+
J2R0

3
(
3J2 + 2R0

2
)

(
2J2 +R0

2
)2 (

R0
2 + J2

)2χ1 (τ, R0) +
R0

2

R0
2 + J2

∂χ1 (τ, r)

∂r

∣∣∣∣
r=R0

(45)

+

(
4J2 +R0

2
)
R0J

2

(
R0

2 + J2
) (

2J2 +R0
2
)2χ3 (τ, R0)

It was shown in [7] that associated with the solutions of the system of linearized equations
there exists a positive definite constant of the motion given by,

Es =
1

2

(
dξ

dτ

)2

+
J2

6R0
2J2 + 4 J4 +R0

4 ξ
2

+
R0

14

8
(
2J2 +R0

2
)2
J4
(
6R0

2J2 + 4J4 +R0
4
)

((
2J2 +R0

2
)2

R4
0

∂χ1

∂r
− ∂χ3

∂r

)2
∣∣∣∣∣∣
r=R0

+
R0

4

2
(
R0

2 + J2
)
J2

∫ R0

0

r

2

[(
∂χ1

∂τ

)2

+

(
∂χ1

∂r

)2
]
dr (46)

+
R0

8

2
(
R0

2 + J2
) (

2 J2 +R0
2
)2
J2

∫
∞

R0

r

2

[
(2J2 +R2

0)
4

R8
0

(
∂χ3

∂τ

)2

+

(
∂χ3

∂r

)2
]
dr
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To apply these results to our problem we expand (35) to first order in ǫ to obtain the
corresponding initial data for ξ(τ), χ1(τ, r), and χ3(τ, r). The results are,

ξ(0) = ξ0 ;
dξ

dτ

∣∣∣∣
τ=0

= 0

χ1(0, r) = χi ;
∂χ1

∂τ

∣∣∣∣
τ=0

= 0 (47)

χ3(0, r) = χi +
2J2

R3
0

ξ0 ;
∂χ3

∂τ

∣∣∣∣
τ=0

= 0

where ξ0 and χi are not independent, but we have the relation,

χi =
J2(R4

0 − 4J4 − 4J2R2
0)

R3
0(6R

2
0J

2 + 4J4 +R4
0)
ξ0 (48)

If we apply now this data to compute Es at τ = 0 we find,

Es =
J2

6R0
2J2 + 4 J4 + R0

4 ξ
2
0 (49)

and therefore, we must have ξ(τ)2 ≤ ξ0 for all τ , and the motion of the shell is always
bounded, proving the (linear) stability of the shell under MSRF initial data. Moreover, since
for τ > 0 the region r > R0 will contain outgoing radiation, we expect a steady decrease
in the maximum amplitude for ξ, and an eventual approach to ξ = 0, corresponding to the
static solution.

The existence of Es does not provide direct information on the rate of approach to ξ = 0.
To obtain this information we may proceed as follows. We first notice that after some initial
transitory motion, possibly dominated by quasi normal ringing oscillations, these oscillations
would damp out since all available energy for motion of the shell will eventually be radiated
to infinity, as the system approaches its final static configuration. In this situation the field
outside the shell would approach the situation described in the Appendix, for the late time
behaviour of any solution that approaches asymptotically a constant, (Eq. (A23)), namely,
for τ >> r, in particular for τ → ∞, and for r of the order of R0, we should have,

χ2(t+, r) ∼ A ln(r)

ln(t+)
, (50)

where A is of the order of (the constant value) χ3(0, r). More generally, this implies that
for sufficiently large τ , and r << τ ,

χ3(τ, r) ∼
A ln(r/R0) +B

ln(e−γ0τ) +Q
(51)

where A, B and Q are constants, is an asymptotic approximation to the solution of our
problem that approaches (50) for τ → ∞. Before replacing (51) in the equations of motion
we may use (44) to write χ1 and ∂χ1/∂r in terms of ξ, χ3 and ∂χ3/∂r, and rewrite (45) in
the alternative form,

d2ξ

dτ 2
=

(
2J4 +R0

2J2 − 2R0
4
)
J2

(
2J2 +R0

2
) (
R0

2 + J2
)2
R0

2
ξ − J2R0

(
4R0

2J2 + 4J4 − R0
4
)

(
2J2 +R0

2
)2 (

R0
2 + J2

)2 χ3

+
R0

6

(
R0

2 + J2
) (

2 J2 +R00
2
)2
∂χ3

∂r
(52)



12

Then, for large τ we have,[8]

ξ(τ) ∼ −R0
3
(
R0

4
(
R0

2 + J2
)
A− BJ2

(
4J2R0

2 + 4 J4 − R0
4
))

J2
(
2J2 +R0

2
) (

2J4 + J2R0
2 − 2R0

4
)
(ln (e−γ0τ) +Q)

(53)

We finally notice that since both χ3 and ξ vanish in the limit τ → ∞, we have the same
limit for both χ1 and ∂χ1/∂r for r = R0, and since χ1 is regular in 0 ≤ r ≤ R0 we must
also have χ1(t−, r) → 0, in the limit τ → ∞, and the system approaches asymptotically the
static configuration.

As we shall show in the next Section, these results are supported by a numerical integra-
tion of the equations of motion. In fact, for the purpose of comparison with the numerical
results, it will be useful to notice that, in general we should have,

χ3(τ, r) ∼ A1 ln(r) +B1 (54)

where A1 and B1 are constants, for the r dependence of χ3 for fixed τ >> r, and,

1

χ3(τ, r)
∼ A2 ln(τ) +B2 (55)

where A2 and B2 are constants, for the τ dependence of χ3, for τ >> r, and some fixe r, for
instance r = R0.

Similarly, we should have
1

ξ(τ)
∼ A3 ln(τ) +B3 (56)

where A3 and B3 are constants, for the τ dependence of ξ, for sufficiently large τ . Notice
that A1, and B1, as defined, depend on τ . In any case, all the quantities Ai, and Bi are
related by Eqs. (51) and (53), but we shall not make use of the explicit expressions here.

V. NUMERICAL EXAMPLES

The previous analysis does not give detailed information on the form in which the system,
and in particular the shell, actually evolves towards a static configuration starting from
MSRF initial data. It is then interesting to study the initial part of this process, in particular,
to see if, in accordance with the qualitative arguments of Apostolatos and Thorne [1], this
approach is dominated by an oscillatory part (quasi-normal ringing) that dampens out as
the shell approaches its final static radius. Furthermore, a simple intuition would probably
dictate that this oscillations are about the final static radius, effectively approaching this
radius with the exponential decay characteristic of the quasi normal ringing. As we shall
find in the examples analyzed below, this is partly the case, but there are some unexpected
features that appear in the evolution of the system, that are in accord with the analysis of
the final approach described in the previous Section.

As indicated in [7], it is easy to set up a numerical procedure to integrate the linearized
equations as an initial plus boundary value problem, at least in a finite region of r that
includes r = 0. If the region extends to r = ro, then the integration can be extended to a
time τ of the order of ro, so that we can explore the evolution for a larger time by simply
choosing a larger value for ro. We refer to [7] for further details.
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As a first example we consider the case R0 = 1, J = 0.5, and place ro = 1400. The initial
displacement is ξ0 = 0.1. This corresponds to χ3(0, r) = 0.0477.... In Figure 1 we display
ξ(τ) as a function of τ . We notice that there is initially a damped oscillation, not about
ξ = 0, but, rather, about a position that decreases rapidly at the beginning, but eventually
tends to approach ξ = 0 very slowly in time, even after the oscillation has essentially damped
out. Next, in Fig. 2, we plot ξ(τ)−1 as a function of ln(τ). The linear dependence on ln(τ)
given by (56) is clearly seen for the larger values of τ . In Figure 3 we display χ3(τ, r) as
a function of r, for τ = 1400. Here the effect of the initial oscillation of ξ appears as an
outgoing wave for r of the order of 600, in accordance with the fact that, from (42), these
waves propagate with a speed v = R4

0/(R
2
0 + J2)2 = 0.4444.... After the wave essentially

dampens out we see that χ3(τ, r) decreases monotonically to a value close to zero as r
approaches R0. A more detailed view of the ourgoing wave egion is depicted in Fig. 4. In
Figure 5 we plot χ3(τ, r) as a function of ln(r). This shows that in the region of r between
R0 and the outgoing wave, and for fixed τ , χ3(τ, r) depends linearly on ln(r), that is, we
have χ3(τ, r) ∼ A + B ln(r) for some constants A and B, in agreement with the discussion
in the previous Section, and (54). Finally, in Fig. 6, we display the results of the numerical
integration for 1/χ3(τ, R0). The linear dependence on ln(τ given by (55) is evident in this
figure.

As a second example we consider a shell with parameters R0 = 1, and J = 1. The
initial displacement is ξ0 = −0.1. This corresponds to χ3(0, r) = −0.136.... We placed again
ro = 1400. Figure 7 shows again ξ(τ) as a function of τ . The behaviour is qualitatively
similar to the previous example, but now we have a much stronger damping of the initial
oscillations, although, again, we find for ξ(τ) a slow decrease in absolute value as τ increases
after the oscillations damp out. Notice that now we have set a negative initial value for ξ,
and that in this case ξ approaches zero from negative values. In Fig. 8 we see the linear
dependence of ξ(τ)−1 on ln(τ), just as in the case shown in Fig.2, but, of course, with
different parameters. In Fig. 9 we show the result of the numerical integration for χ3(τ, r)
as a function of r, for τ = 1400. The qualitative features on this figure are similar to those
on Fig.3, although now χ3 < 0 because of our choice of ξ0. We also find the outgoing wave at
r ∼ 150, because the speed of the waves (for χ3(τ, r)) is now only v = 0.111.... Fig. 10 gives
a more detailed view of the wave zone, and Figs. 11 and 12, display respectively the linear
dependence of χ3 on ln(r) for fixed τ >> r, and for 1/χ3(R0, tau) on ln(tau), in complete
agreement with the discussion in the previous Section, and those obtained numerically for
R0 =, J = 0.5. We should also mention that the numerical values of the parameters obtained
by simply fitting these linear dependencies are consistent with the relations implied by (51)
and (53), but we shall not give details here.

VI. FINAL COMMENTS

In this paper we have studied the evolution of MSRF initial data for the Apostolatos
- Thorne model. First we analyzed in detail the relation between the configuration cor-
responding to the initial data and that of the assumed final static configuration, and we
showed that the initial acceleration of the shell is always directed towards the static radius
that corresponds to the given intrinsic conserved parameters of the shell. Then we showed
that, once the appropriate properties of the solutions of the cylindrical wave equation are
taken into account, there is a priori no conflict for any choice of initial MSRF data. Thus
our results do not agree with those of [5]. Next we considered the case where the problem
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FIG. 1: ξ(τ) as a function of τ , for a shell with R0 = 1.0, J = 0.5 and an initial displacement

ξ0 = 0.1. We notice that there is initially a damped oscillation, not about ξ = 0, but, rather,

about a position with ξ 6= 0, even after the oscillation has essentially damped out. Here τ is

approximately in the range 0 ≤ τ < 300.

can be analyzed in the linear approximation, and showed that the evolution is stable in all
cases. The possible form of the approach to the final static configuration was also analyzed
and we found that this approach is very slow, with an inverse logarithmic dependence on
time at fixed radius. We also introduced a numerical computation procedure that allows us
to visualize the explicit form of the evolution of the shell and of the gravitational field up
to large times. The result are in agreement with the qualitative behaviour conjectured in
[1], with an initial damped oscillatory stage, but followed by a slow approach to the static
final state, as indicated by our analysis. We also include an Appendix, where we review
some properties of the solutions of the cylindrical wave equation, and prove the existence
of solutions with vanishing initial value for r > R0, (R0 > 0 some finite constant), that ap-
proach a constant value for large times. This proof is crucial for the proof of compatibility
of arbitrary MSRF initial data and a final static configuration for the system.

As a final comment, we remark that for arbitrary MSRF initial data we have only shown
their general compatibility with a corresponding final static configuration. Since we do
not have analytic solutions, a full numerical procedure would be required to obtain a more
detailed information on the actual evolution, but that is outside the scope of our paper,
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FIG. 2: 1/ξ(τ) as a function of ln(τ), for a shell with R0 = 1.0, J = 0.5 and an initial displacement

ξ0 = 0.1. Here the range of τ is approximately 200 < τ < 1500. The linear dependence of 1/ξ(τ)

on ln(τ), for sufficiently large τ is evident in the graph.

where a numerical procedure was used only the linearized approximation. We consider that
the disagreement between our results and those of [5] are the result their assumptions on
the possible form of the function p(ξ). The first and more important point is that in [? ]
the authors assume from the start of their use of (A4) that the function p(ξ) vanishes for
large ξ, which, as we have shown, is incompatible with the possibility that the function ψ
goes from its initial MSRF form to the final static form. The other equally important point
is that what is required to analyze the compatibility is the limit t+ → ∞ for fixed r, but
they consider the limit v → ∞, with v = t+ r, while keeping w = t− r finite. It should be
clear that we would get the same results as in [5] if we tried to compute that limit, but, as
we have tried to make clear, that limit is not the relevant one for the stability analysis.
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FIG. 3: χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial conditions as in

Figure 1. Here the effect of the initial oscillation of the shell appears as an outgoing wave for r of

the order of 620.

Appendix A: Some properties of the solutions of the cylindrical wave equation.

In this Appendix we analyze the properties of the solutions of the cylindrical wave equa-
tion,

− ∂2ψ

∂t2
+
∂2ψ

∂r2
+

1

r

∂ψ

∂r
= 0 (A1)

that are compatible with initial data such that for t = 0, and for r ≥ Ri, where Ri is some
constant, we have ψ = ψi−κ ln(r/Ri), and ∂ψ/∂t = 0. By causality, the solution for r ≥ Ri,
and for t ≥ 0, may be written in general in the form,

ψ(r, t) = ψi − κ ln(r/Ri) + Φ(t, r) (A2)

where Φ(t, r) is a solution of (A1) that is non vanishing only for t > r − Ri ≥ 0. It may be
expressed in the form,

Φ(t, r) = P(t+Ri, r) (A3)

where P(t, r) is also a solution of (A1), given by,

P(t, r) =

∫ t−r

0

p(ξ)√
(t− ξ)2 − r2

dξ (A4)
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FIG. 4: χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial conditions as in

Figure 1. This is an enlarged view of the region 500 < r < 650 of Figure 3, to show details of the

outgoing wave part of χ3(τ, r).

and p(ξ) is a function that vanishes for ξ ≤ 0, and therefore, P(t, r) vanishes for r ≥ t.
We are interested in the behaviour of the solutions of (A1) given by (A4), in the limit

t→ +∞. In particular we are interested on the existence of solutions such that, for large t,
and finite r, we have,

P(t, r) ∼ F (r) +G(t, r) (A5)

with G(t, r) → 0 as t→ ∞. Replacing in (A1), in the limit t→ ∞ we should have,

d2F

dr2
+

1

r

dF

dr
= 0 (A6)

and, therefore, we must have,
F (r) = A+B ln(r) (A7)

We notice that we have,

|P(t, r)| ≤
∫ t−r

0

|p(ξ)|√
(t+ r − ξ)

√
(t− r − ξ)

dξ

≤ 1√
2r

∫ t−r

0

|p(ξ)|√
(t− r − ξ)

dξ (A8)
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FIG. 5: χ3(τ, r) as a function of ln(r), for τ = 1400, for the same shell and initial conditions as in

Figure 1. The linear dependence on ln(r) in the region of r between R0 and the outgoing wave is

evident.

Let us assume first that there exist two constants, a and b, such that , for 0 ≤ ξ ≤ ∞
we have |p(ξ)| ≤ a/(ξ + b), that is, that p(ξ) is bounded and goes to zero at least as 1/ξ for
ξ → ∞. Then we have,

∫ t−r

0

|p(ξ)|√
(t− r − ξ)

dξ ≤
∫ t−r

0

a

(ξ + b)
√

(t− r − ξ)
dξ

=
2√

t− r + b
arctanh

( √
t− r√

t− r + b

)
(A9)

and, since the limit t → ∞ of the last expression is zero, we find that P(t, r) must also
vanish in that limit. Similarly, if we consider the case where p(ξ) is bounded and we have
|p(ξ)| ≤ a/

√
ξ for some finite a, we are lead to the bound,

∫ t−r

0

|p(ξ)|√
(t− r − ξ)

dξ ≤
∫ t−r

0

a√
(ξ)
√
(t− r − ξ)

dξ

= aπ (A10)
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FIG. 6: 1/χ3(τ, r) as a function of ln(τ), for r = R0, for the same shell and initial conditions as in

Figure 1. The linear dependence on ln(τ) at late times is clearly seen.

But, again, this implies that for t → ∞, we have that P(t, r) is bounded by an expression
of the form A/

√
r, and on account of (A7), we must also have P(t, r) → 0 in this limit. The

first example includes a large family of integrable functions that are bounded and vanish for
large ξ, while the second includes a large family of square integrable functions that are also
bounded and vanish for large ξ. In all these cases we have a trivial F (r) as a limit.

We consider next the case where for ξ ≥ 0 we have p(ξ) = A, where A is constant. In
this case,

P(t, r) = AΘ(t− r)
(
ln(r)− ln(t−

√
t2 − r2)

)
(A11)

where Θ(x) is the Heaviside (step) function. For t >> r we have,

P(t, r) ∼ −A ln(r) + A ln(2) + A ln(t)− A
r2

4t2
(A12)

and therefore, at any fixed r, P is finite but diverges as t → ∞. Notice that (A12) implies
that there are solutions of (A1) that approach the form P ∼ A ln(r)+B for fixed t, with A an
arbitrary constant, but where the term B is time dependent and diverges for t→ +∞. This
result has a simple geometric interpretation. Suppose we have a solution of (A1) that, for
fixed r, approaches the form A ln(r)+B, with a given fixed value of A, but is zero for r > t.
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FIG. 7: ξ(τ) as a function of τ , for a shell with R0 = 1.0, J = 1.0 and an initial displacement

ξ0 = −0.1. We notice that initially we have a strongly damped oscillation, followed by a slow

decrease in the absolute value of ξ(τ) . Here τ is approximately in the range 0 ≤ τ < 250.

Then, there will be a transition region, for t ∼ r, where the solution changes from one regime
to the other. This transition region propagates outwards with t and, therefore, represents an
outgoing wave, whose amplitude, because of its cylindrical nature, must decrease along with
its propagation. Then, for sufficiently large t we have a good approximation to the functional
form of the solution by simply matching the form A ln(r) + B to zero, for r ≥ t. But this
is only possible if B is of the form B = −A ln(t), which is, precisely, the form given in (A12).

Going back to (A11), this suggests that we consider p(ξ) = A/ ln(ξ + b), with b > 1. We
then have,

P(t, r) =

∫ t−r

0

A

ln(ξ + b)
√
t− r − ξ

√
t+ r − ξ

dξ

=

∫ 1

0

A

ln(ηx+ b)
√
1− x

√
1 + 2y − x

dx (A13)

where η = t−r, and y = r/(t−r). Next, we may split the integral at x = ǫ, with 0 < ǫ << 1,

P(t, r) =

∫ ǫ

0

A

ln(ηx+ b)
√
1− x

√
1 + 2y − x

dx

+

∫ 1

ǫ

A

ln(ηx+ b)
√
1− x

√
1 + 2y − x

dx (A14)
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FIG. 8: 1/ξ(τ) as a function of ln(τ), for a shell with R0 = 1.0, J = 1.0 and an initial displacement

ξ0 = −0.1. Here the range of τ is approximately 200 < τ < 1500. The linear dependence of 1/ξ(τ)

on ln(τ), for sufficiently large τ is evident in the graph.

For the first integral on the right hand side of (A14), taking into account that b > 1, we
have,

∣∣∣∣
∫ ǫ

0

A

ln(ηx+ b)
√
1− x

√
1 + 2y − x

dx

∣∣∣∣ ≤
A√

1− ǫ
√
1 + 2y − ǫ

∫ ǫ

0

1

ln(ηx+ b)
dx (A15)

To analyze the integral on the right hand side of (A15) we define the function,

L(η) =
∫ ǫ

0

1

ln(ηx+ b)
dx (A16)

and we can check that we have,

d (ηL)
dη

=
ǫ

ln(ηǫ+ b)
(A17)

But, this implies that for η → ∞ we must have,

L(η) = ǫ

ln(ηǫ+ b)
+ o

(
1

ln(η)

)
(A18)

and, therefore, the integral in (A15) gives a vanishing contribution in the limit η → ∞.
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FIG. 9: χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial conditions as in

Figure 7. Here the effect of the initial oscillation of the shell appears as an outgoing wave for r of

the order of 150.

Similarly,

A

ln(η + b)

∫ 1

ǫ

1√
1− x

√
1 + 2y − x

dx ≤
∫ 1

ǫ

A

ln(ηx+ b)
√
1− x

√
1 + 2y − x

dx

≤ A

ln(ηǫ+ b)

∫ 1

ǫ

1√
1− x

√
1 + 2y − x

dx (A19)

Evaluating the integral in the first and last terms, and replacing y = r/η,

∫ 1

ǫ

1√
1− x

√
1 + 2r/η − x

dx = ln(r/η)− ln(1 + r/η − ǫ−
√
1 + 2r/η − ǫ

√
1− ǫ)

= ln(η)− ln(r) + ln(2(1− ǫ)) +O(η−1) (A20)

Finally, collecting results from (A15), (A18), and (A20), replacing in (A19), and taking the
limit η → ∞,

A ≤ lim
η→∞

∫ 1

0

A

ln(ηx+ b)
√
1− x

√
1 + 2y − x

dx ≤ A (A21)

and, therefore,

lim
t→∞

∫ t−r

0

A

ln(ξ + b)
√
t− r − ξ

√
t+ r − ξ

dξ = A (A22)
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FIG. 10: χ3(τ, r) as a function of r, for τ = 1400, for the same shell and initial conditions as in

Figure 7. This is an enlarged view of the region 130 < r < 160 of Figure 9, to show details of the

outgoing wave part of χ3(τ, r).

Thus we have shown that there are solutions of the wave equation (A1) of the form (A4)
that approach a given constant for any r and t → ∞. Notice that this will also be true
for any bounded p(ξ) that approaches the form A/ ln(ξ) for large ξ. An inspection of (A4)
shows that the behaviour of p(ξ) for small ξ contains the information on the wave form
emitted at small t.

A further relevant result from (A21) is that for t >> r, and fixed r > Ri we have the
approximation,

∫ t−r

0

A

ln(ξ + b)
√
t− r − ξ

√
t+ r − ξ

dξ ∼ A

(
1− 1

ln(t)
ln(r)

)
(A23)

This result is important because it applies to any bounded p(ξ) that approaches the form
A/ ln(ξ) for large ξ, in the region t >> r. Notice that, at least formally, the approximation
(A23) is consistent with the vanishing of P(t, r) for t ∼ r. It indicates also that the
approach of P(t, r) to the constant value A is rather slow, as the coefficient of the ln(r)
correction term vanishes only logarithmically with t.

We turn now to the question of the beaviour of the function γ(t, r) for large t. In
accordance with the previous results we assume for ψ the form,

ψ(t, r) = ψi − κ ln(r/Ri) + F (t, r) (A24)

where F (t, r) is an arbitrary solution of (A1) that vanishes for t ≤ r − Ri, and approaches
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FIG. 11: χ3(τ, r) as a function of ln(r), for τ = 1400, for the same shell and initial conditions as

in Figure 7. The linear dependence on ln(r) in the region of r between R0 and the outgoing wave

is again evident.

the constant value A for t→ ∞. We then have,

∂γ

∂t
= 2r

∂ψ

∂r

∂ψ

∂t

= −2κ
∂F

∂t
+ 2r

∂F

∂r

∂F

∂t
(A25)

and also,

∂γ

∂r
= r

[(
∂ψ

∂r

)2

+

(
∂ψ

∂t

)2
]

=
κ2

r
− 2κ

∂F

∂r
+ r

[(
∂F

∂r

)2

+

(
∂F

∂t

)2
]

(A26)

Then, in the region r ≥ Ri we may write γ in the form,

γ(t, r) = γi + κ2 ln(r/Ri)− 2κF (t, r) + 2r

∫ t

0

∂F

∂r

∂F

∂t′
dt′ (A27)
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FIG. 12: 1/χ3(τ, r) as a function of ln(τ), for r = R0, for the same shell and initial conditions as

in Figure 7. The linear dependence on ln(τ) at late times is also clearly seen.

where we have used,

∂

∂r

(
2r

∫ t

0

∂F

∂r

∂F

∂t′
dt′
)

= 2

∫ t

0

∂F

∂r

∂F

∂t′
dt′ + 2r

∫ t

0

∂2F

∂r2
∂F

∂t′
dt′ + 2r

∫ t

0

∂F

∂r

∂2F

∂r∂t′
dt′

= 2r

∫ t

0

∂2F

∂t′2
∂F

∂t′
dt′ + r

∂F

∂r

∂F

∂r

∣∣∣∣
t

0

(A28)

= r

[(
∂F

∂r

)2

+

(
∂F

∂t

)2
]

The general form (A27) for γ implies that,

γ(0, r) = γi + κ2 ln(r/Ri) (A29)

while in the limit t→ ∞ we have,

lim
t→∞

γ(t, r) = γi + κ2 ln(r/Ri)− 2κA+ 2r

∫
∞

0

∂F

∂r

∂F

∂t
dt (A30)

where the last term, as can be seen taking the limit t→ ∞ in (A28), is actually a constant,
independent of r, and, therefore, we only need to consider the limit for large r to evaluate
it. Clearly, the relative contributions of the last two terms in (A30) define the change in γ.
As we shall see, (and is well known), the last term gives always a negative contribution, but,
since A can be negative, if the values of these terms are independent, their total contribution
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can be positive, or negative, or even null. To reach a definite conclusion here we need to
study the general properties of the function F (t, r).

Our assumption (A24) implies that we may write,

F (t, r) =

∫ t′−r

0

F(ξ)√
(t′ − ξ − r)(t′ − ξ + r)

dξ (A31)

where F(ξ) vanishes for ξ ≤ 0, and F(ξ) → A/ ln(ξ) for large ξ, and t′ = t+Ri.
We have,

∂F

∂t
=

∫ t′−r

0

dF(ξ)

dξ

1√
(t′ − ξ − r)(t′ − ξ + r)

dξ (A32)

while,

∂F

∂r
= −

∫ t′−r

0

dF(ξ)

dξ

1√
(t′ − ξ − r)(t′ − ξ + r)

dξ

−
∫ t′−r

0

F(ξ)√
(t′ − ξ − r)(t′ − ξ + r)3

dξ (A33)

We remark that F (t, r) vanishes for t′ ≤ r, and that we are mainly interested in the limit
for large r. We may consider now two regions for our analysis of (A32) and (A33). The first
is for t′ ∼ r, but r >> Ri. In this region, since in all the integrals we have t′ + r >> ξ, we
have the approximations,

∂F

∂t
∼ 1√

t′ + r

∫ t′−r

0

dF(ξ)

dξ

1√
(t′ − ξ − r)

dξ (A34)

while,

∂F

∂r
∼ − 1√

t′ + r

∫ t′−r

0

dF(ξ)

dξ

1√
(t′ − ξ − r)

dξ

− 1√
(t′ + r)3

∫ t′−r

0

F(ξ)√
(t′ − ξ − r)

dξ (A35)

Then, for large r, and in the region t′ ∼ r we have that the second term in the right in
(A35) is small compared with the first and we have,

∂F

∂t
∼ −∂F

∂r
∼ 1√

r
F̃ (t′ − r) (A36)

Therefore, in the region t′ ∼ r, (A34) and (A35) provide the contribution from the outgoing
waves to the last term in (A30), which, on account of the 1/

√
r factor, is independent of r

for large r. Notice that this contribution is always negative.
To analyze the region t >> r we recall the approximation (A23), valid for any F(ξ) that

approaches the form A/ ln(ξ) for large ξ, and, for t >> r, we obtain,

∂F

∂t
∼ A

ln(r)

t ln(t)2
;

∂F

∂r
∼ −A 1

r ln(t)
(A37)
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The contribution from these terms to the last term in (A30) is then of the form,

r

∫
∞

0

∂F

∂t

∂F

∂r
dt ∼ −A2

∫
∞

Kr

ln(r)

t ln(t)3
dt

= −A2 ln(r)

2 ln(Kr)2
(A38)

where K >> 1. This result implies that the contribution from the large ξ behaviour of F(ξ)
to the last term in (A30) vanishes in the limit r → ∞, and, therefore, the total contribution
of this term is independent of the limiting value A, and is dominated by the outgoing waves
present in the region t ∼ r.
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