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Abstract—PDPTA 2013 - Parallelization of algorithms with
hard data dependency has a need of task synchronization.
Synchronous parallel versions are simple to model and program,
but inefficient in terms of scalability and processors use rate. The
same problem for Asynchronous versions with elemental static
task scheduling. Efficient Asynchronous algorithms implement
out-of-order execution and are complex to model and execute.
In this paper we introduce Petri Nets as a tool for simplifying
the modeling and execution of parallel asynchronous versions
of this kind of algorithms, while using an efficient dynamic task
scheduling implementation. The Cholesky factorization algorithm
was used as testbed. Simulations were carried out as a proof of
concept, based on real execution times on GPGPU’s, and have
shown excellent performances.

Keywords—Petri Net Modelization - Asynchronous Parallel
Execution - Dynamic Task Scheduling - Cholesky Factorization
Algorithm.

I. INTRODUCTION

The fork-join parallelization model is a natural step from a
sequential to a parallel version of an algorithm. An important
drawback is the insertion of synchronization points in the
algorithm which compels all the processors involved in the
execution to wait in idle state, the slowest. This causes poor
performance and scalability in those algorithms in which the
task loads of each parallel thread differ, which is typical of
algorithms with data dependency [1]. QR, LU and Cholesky
factorizations are algorithms with this type of problem.

Tiled algorithms emerge as a solution to the problem of
load balance for dense linear algebra algorithms on multicore
processors [2]. This type of algorithms are an evolution from
rectangular block-based algorithms, in which data reusability
was the concept to optimize. Tiled algorithms presents, as
many LAPACK algorithms do, two fundamentals steps of the
algorithm: panel factorization and trailing submatrix update.
However, now the key concepts are fine granularity and
asynchronicity to achieve better thread level parallelism.

Tiled algorithms divide data in square blocks that allow to
computing “out of order”, thus increasing the number of tasks
that can run in parallel. As with block based algorithms, fac-
torizations and updates consist in applying the proper routines
(“kernels”) among the operations defined in the BLAS [3] and
LAPACK libraries [4]. Block sizes are tuned to achieve good

performance in the execution of the kernels involved in the
algorithm.

The major difference between block and tiled algorithms
is that the former are synchronous, whereas the later are
asynchronous. The difference is well shown graphically in
[5]. Asynchronicity and fine granularity make it possible for
many tasks to run in parallel. “Out of order” means that
while one processor computes a factorization, the others can
simultaneously compute updates.

Since the number of tasks available to run in parallel
exceeds the number of processors, it is possible to do different
selection of tasks, in order to define the scheduling of the
parallel algorithm. Static scheduling are those defined prior the
algorithm execution. Common examples are the left looking
(LL) or right looking (RL), which differ according to whether
priority updates are on the left or on the right of the current
factorization panel [1], [6]. Both algorithms are shown inf
Fig. 1 and 2, and have in common that they are fork-join
synchronized.

Another known technique of static scheduling is look
ahead. As LL and RL, it is based on performing panel
factorization in one thread while the remaining update sub-
matrix from previous stages is done by others threads. It
has been observed that LL and RL are the extreme points
of a wide spectrum of possibilities of task selection, acting
in a parametrized way look ahead as a path for going from
one point to another [1]. All alternatives generate bubbles of
idleness in the algorithm due their static nature.

Directed Acyclic Graphs (DAG) have been used to model
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Fig. 1. Left looking Cholesky
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the algorithms, with the vertex representing the tasks and the
edges, the dependency among them. The graph is also known
as Dependency Graph. Asynchronous execution is helped by
the use of DAG’s to control the dependency of tasks. The DAG
is mainlly used by the scheduler to select the next task [2].

Dynamic scheduling is introduced to improve static
scheduling, by selecting the task on run time according the
availability of free processors and enabled tasks. This type of
scheduling are aimed at preventing the existence of the stalled
points of static schedulers. However, they are complex and
cause overhead in the algorithm execution [6].

Hogg’s research shows no significant advantage in using
dynamic or static schedulers [7]. He also uses a DAG to model
the algorithm and the scheduling control. Concurrency control
and DAG implementation generate an overhead that seems to
consume the improvements of the dynamic scheduler.

Also in the line of dynamic scheduling, LAWN 243 [6]
introduces the use of the “locality” parameter to help the
scheduler dynamically select the next task to be assigned to a
processor, according the previously used data. Improvements
in parallel execution depend on the type of algorithm (LL or
RL), the size of the DAG’s window resident in memory and
the number of tiles into which the matrix is divided.

At the best of our knowledge, all dynamic attemps are
based on DAG, which are good to represent the structure of the
algorithm, but not for the execution and the scheduler. Both are
implemented in an ad-hoc, sophisticated style, without parallel
execution modelization.

A key factor to achieve a performing parallel algorithm,
is to minimize processor idle time due to synchronization.
Asynchronous execution is a big step in this path. Scheduling
is another. Tiled algorithms improve the parallelism of an
algorithm by increasing the number of tasks. The drawback
lies in the complexity of managing a large number of parallel
asynchronous tasks. The lack of a model for this results in
complex or pre-developed libraries implementations [6], [8].

Our research has two main objectives:

• To model the structure and parallel execution of dense
linear algebra algorithms with a simple tool.

• To improve performance by minimizing processor idle
time through the use of dynamic scheduler

The second objective follows the first: with a simple model,
dynamic overheads decrease and the scheduler can perform an
adequate selection without loss of performance.

Petri Net is the formalism chosen to represent the algo-
rithm. Its capability to represent parallel processes is known.
A few additions to this well-known formalism are enough to
achieve our objectives. As a “proof of concept” we develop a
simulation tool to represent and execute the Petri Nets, which
simulates different running parameters.

Cholesky factorization was chosen as a testbed algorithm.
We follow the kernels and DAG representation used in tiled al-
gorithm as defined in [9]. These kernels are xPOTRF, xGEMM,
xTRSM and xSYRK, where x can be ’s’ or ’d’ depending on
whether single or double precision data are used.

II. PETRI NET MODEL OF PARALLEL ALGORITHMS

A Petri Net (PN) is a bipartite directed graph consisting of
Places and Transition nodes. Usually, Places represent “states“
and Transitions “actions“. Arcs always link a Place to a
Transition (acting as input) or vice versa (acting as output).
There are tokens, which only exist in Places, and represents
“facts“. The overall state evolves when a transition is ”fired“,
moving tokens from input places to output places. A transition
can be fired when all input places have enough tokens [10].
This net is also known as Token Petri Net (TPN).

Petri Nets are used to model the algorithm, with operations
(kernels to execute) represented by Transitions and data rep-
resented by Places. Input parameters are represented by arcs
that go from Places to Transitions, and operations results, by
arcs from Transitions to Places.

Petri Nets can model the algorithm dependencies, and
can also describe the execution by means of the firing of
Transitions. The following subsections explain how the net is
used for both purposes.

A. Coloured Petri Net

Coloured Petri Nets (CPN) are one type of the many
defined as ”High Level Petri Nets“. The major difference with
TPN is that tokens have different values (”colours“) from a
domain. This permits to model with a high level of abstraction.
Here, transitions are enabled by having not only enough tokens
in their input places but also from the ”color“ defined. CPN
definition is taken from from [10], [11].

Coloured Petri Nets permit to model complex nets at high
level in a simple manner. DAGs of task dependencies with
many blocks divisions are difficult to understand due to their
large number of nodes (see Fig. 10 of LAWN 243 [6]). To
model tiled algorithms with CPN, the main domain used to
define tokens is tile position, represented by the row-column
pair.

The strategy to model the algorithm is:

1) Each operation is represented by one transition
2) For each transition, there are as many input Places as

data blocks parameters are involved in the operation.
3) No more places or transitions are used.
4) Output arcs represent data dependency.

To specify conditions in places, we extend or restrict
the tile-block domain. Also, multisets are used to represent
repetitions of blocks, and function arc expressions, to limit
token flowing [11].

Fig. 3 shows the CPN that represents the Cholesky algo-
rithm. It has only four transitions and eight places, according
to the strategy suggested. The name of the places follow the
number of the block used in each operation. Color token is
represented by < x,y >, multiset repetitions by braces {x},
and functions arcs are only booleans of the form if(cond).

In each place, the domains used are:

For potr1 and trsm2, the domain is < i, i >, i = 1 . . . n.

For trsm1, syrk1, and gemm1, the domain is < j, i > j =
2 . . . n, i = 1 . . . j − 1, j > i



potr1 trsm2
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< i, i >

< i, i >
{n− i}
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< j, j, i + 1 >
if(i+ 1 < j)
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if(i+ 1 = j)

gemm3 gemm

< i, q >
< j, q >

< j, i, q >

< j, i, q + 1 > if(q < i− 1)

< j, i >
if(q = i− 1)

Fig. 3. Coloured Petri Net that represents Cholesky factorization algorithm.

For gemm2 the domain is < j, i >, j = 3 . . . n, i =
1 . . . j − 2, j > i

For syrk2 the domain is < j, j, i >, j = 2 . . . n ∧ i =
1 . . . j − 1 ∧ j > i

For gemm3 the domain is < j, i, q >, j = 3 . . . n, i =
2 . . . n− 1, q = 1 . . . i− 1 ∧ j > i ∧ i > q

The inital places mark is:

• In potr1: < 1, 1 >

• In trsm1: < i, 1 >, i = 2..n

• In syrk2: < i, i, 1 >, i = 2..n

• In gemm3: < j, i, 1 >, j = 3..n, i = 2..j − 1

In this way, a tiled algorithm is generically defined by a
CPN, and any consideration in the number of tiles is dispensed
with, it being only a parameter for domain definition. Its
simplicity and facility to analyze the parallel algorithm are
highlighted.

Nevertheless, CPNs are not used to execute the algorithm.
The overhead necessary to abstractly represent domains and
function arcs is expensive in terms of high performance
computing. On the other hand, the CPN developed in this
way fulfill the definition of well-formed CPNs [10]. This
type of nets are easily transformed to a TPN, which have
a computational implementation that is simple and light to
execute.

B. Token Petri Net

The previous section shows the facility to model a parallel
algorithm with a CPN and the procedure used to define places
and transitions. The resulting net is easily unfolded to a TPN.

To unfold a CPN we follow the steps defined in Diaz [10].
Each Place Pj in a CPN has a Domain D(Pj) associated with
it, and is unfolded to generate as many Places in TPN as is
the cardinality of D(Pj) in the colored Place. The repetitions
from the bag that represent the Place must be respected. Thus,
each Place in TPN is associated with an unique value from
the pairs (color, place) in CPN and repeated according the bag
pair cardinal.

The unfolding for Transitions is similar: for each Transition
in CPN there will be generated as many Transitions in TPN as
the cardinal of the Cartesian Product of all its input Places in
the CPN, respecting the cardinal of the bag in each Place. Each
Transition in TPN is associated with a unique value from tuples
of the Cartesian Product, repeated as the respective cardinal of
the bags of each input place.

Input Arcs in CPN is unfolded to TPN from the corre-
sponding unfolded Place / Transition in TPN. The same occurs
for output arcs, with reference to the condition of the guard
function.

Table in Fig. 4 show an unfolding example for Places from
CPN to TPN, for the case of 3 × 3 tiles divisions. The names of
Places in TPN follow the respective name in CPN, concatenate
with the color of the token that is represented. For example,
syrk132, is the Place in TPN, that came from Place syrk1
with color < 3, 2 > in CPN, and represents the first argument
in syrk operation of the tile in third row, second column.
Graphically, the unfolded TPN of the example is shown in
Fig. 5.

It is not difficult to see how fast the number of Places and
Transitions in TPN grow with an incresing number of tile di-
visions. It is practically impossible to show and understand its
graphical representation. However, the matricial representation
is elementary and easy to use. The importance of unfolding
is that a TPN can be represented with two matrices and one
vector of natural numbers, and that elementary matrix - vector
operations models the execution of the net.

The structure of TPN net can be represented by Nega-
tive and Positive Incidence Matrix (NIM / PIM). Both have
dimension p × t, where p is the number of Places and t
is the number of Transitions. Each position in the matrix
represents the relation between a pair place/transition, which is
the equivalent of an arc between them in terms of graph theory.
A position with zero represents absence of arc. A positive value
represents the number of tokens that will be absorbed / injected
by the transition depending on Negative or Positive case, if the
transition is fired.

Token existence in Places is represented by a Mark Vector
(MV). It has dimension 1 × p, and values are also naturals
numbers. Values represents the number of tokens that exists in
the respective Place.

The matricial representation highlights the facility to com-
pute enabled transitions and to fire them. We call NI−j and
PI+j the j-th column (transition) in NIM and PIM respectively.
By computing MV −NI−j , if the result has no negative values,
MV has enough tokens in the input Places of j-transition, and
thus can be fired.

Computing the difference for all the columns, determines
all the transitions that are enabled to fire. By construction,



Place in CPN Domain in CPN Places in TPN

potr1
< i, i > potr111
i = 1 . . . n potr122

potr133

trsm1

< j, i > trsm121
j = 2 . . . n trsm131
i = 1 . . . j − 1 trsm132
j > i

trsm2 < i, i > trsm211 {2}
{n− 1} repetitions trsm222 {1}

syrk1
< j, i > syrk121
j = 2 . . . n syrk131
i = 1 . . . j − 1 syrk132
j > i

syrk2
< j, j, i > syrk2221
j = 2 . . . n syrk2331
i = 1 . . . j − 1 syrk2332
j > i

gemm1

< j, i > gemm121 {1}
j = 2 . . . n
i = 1 . . . j − 1, j > i
{n− j} repetitions

gemm2

< j, i > gemm231 {1}
j = 3 . . . n
i = 1 . . . j − 2, j > i
{j−i−1} repetitions

gemm3

< j, i, q > gemm3321
j = 3 . . . n
i = 2 . . . n− 1
q = 1 . . . i− 1
j > i > q

Fig. 4. Unfold example for Places for the Coloured Petri Net in Fig.3
supousing only 3 × 3 tiles divisions.

Places of the unfolded TPN have only one transition to
act as input. That guarantees the no competition of enabled
transitions for input tokens, and that all enabled transitions
can be fired simultaneusly.

To modelize the net execution, an additional function is
defined in order to compute the set of transitions enabled to
be fired. The function is h : N1×p×Np×t → N1×t, which has
parameters M y NI−, and its result values are:

h(j) =

{
0 if (M −NI−j ) has negatives values
1 if (M −NI−j ) else

j = 1 . . . t

then h positions with value 1 reference to transitions enabled
to be fired.

Firing all enabled transitions defines a new mark for Mark
Vector (MV’):

MV ′ = MV − h×NIM t + h× PIM t (1a)

III. EXECUTION MODEL

DAGs can model dependencies of tasks in a parallel
algorithm, but they do not modelize the execution. Petri Nets
have implicit modelization of execution: by representing tasks

potr111

trsm211(1) trsm211(2)potr1

trsm121 trsm131

syrk121 syrk131gemm121

trsm21

gemm231

trsm31

syrk2221

potr122 syrk21

trsm222

potr22 gemm3321 trsm132

gemm32 syrk2331

syrk2332

syrk31

syrk132

trsm32 potr133 syrk32

potr33

Fig. 5. Token Petri Net unfolded from the Coloured Petri Net in Fig.3
suposing only 3 x 3 tiles divisions.

as Transitions, all enabled Transitions are those that can be
executed.

Nevertheless, TPN is not sufficient to model the execution
of a parallel algorithm. It has no information about the running
time of a task, and has no limit about the number of processors
that execute the task.

To solve the problem of execution time, we use Timed
Petri Nets (TiPN) [10]. They have an important feature, the
representation of the time in Transitions. By adding a delay
between the time in which tokens are absorbed from input
places and the time in which tokens are injected in output
places, transitions can represent the notion of execution time.

Firing a transition k in TiPN implies an MV update in two
times:

MV ′ = MV −NI−k in tini (2a)
MV ′′ = MV ′ + PI+k in tini + ∆(Tk) (2b)

where tini is the initial firing time, and ∆(Tk) is the execution
time of task Tk.

To solve the problem of the availability of many processors,
we define an execution model. The model consists of a set of
processors and one TiPN that represent the algorithm and its
dependencies as we have used along this paper. Each processor
knows how to do the task that each transition represents.
The TiPN is shared by all the processors. Each processor



1 While main a l g o r i t h m n o t f i n i s h e d
2 I f can ho ld t h e mutua l e x c l u s i o n
3 Compute f u n c t i o n h
4 De f i ne t h e t a s k to do
5 Update MV by a b s o r b i n g t o k e n s
6 Free t h e e x c l u s i o n
7 Task e x e c u t i o n
8 I n j e c t t o k e n s in MV
9 Else

10 Delay
11 Endif
12 End

checks the TiPN state to select a task to do, from all enabled
transitions. To prevent multiple selection of the same task, a
mutual exclusion mechanism is added to the TiPN.

Each processor executes the following pseudo-code parallel
execution algorithm:

Details of processor execution pseudo-code:

• Main algorithm is the represented by the Petri Net.

• The exclusion is hold until the tokens are absorbed
from input places, before the processor begins the
task execution. No colission is produced by tokens
injection.

• When more than one transition is enabled, a selection
policy must to placed.

• A delay is introduced if the processor can’t hold the
exclusion to avoid starvation.

The overhead introduced by the parallel execution is de-
fined by three factors. First, the mutual exclusion mechanism,
the execution of which uses few clocks cycles. Second, the
integer matrix and vector operations, which are highly opti-
mized to run in milliseconds in today processors. Third, the
selection policy must be guided by balancing between selection
algorithm and overall algorithm performance. In fact, the sum
of the three factors is several orders of magnitude smaller than
the kernels execution time, which means a minimum overhead.

IV. DYNAMIC SCHEDULING

Task selection between all the enabled tasks is a key factor
in the execution model. In the model implementation, Patterns
from Object Oriented Design was chosen as a design tool. The
design has three basic objects: one Petri Net, many Processors
that interact with the PN, and Selectors that colaborate with
the Processors, to select the next executable task.

Each Processor has a link to the Petri Net Object and a link
to one Selector. The Selector object is responsible for defining
the task that the Processor will do. It is a method that, taking
as input parameters the state of the PN and the processor,
returns the next task to the Processor. The design principle is
to decouple processing from selecting tasks.

Different selecting policies are implemented by simply
implementing the selecting method of Selector accordingly.
This is a way to modelize homogeneous or even heterogeneous
processors with different scheduling policies. Also, static or

dynamic scheduling can be easily implemented using the
appropriate Selector collaborator.

Simulation tests were developed to run static and dynamic
tasks schedulers. In both cases, task assignation to a processor
is dynamic, i.e. static or dynamic refers to the execution
sequence, not the execution processor.

Two static schedulers are tested, following LL and RL
algorithms. They were implemented easily by defining the
order of tasks that Selector must follow. The sequence was
defined from the algorithms shown in Fig. 1 and Fig. 2.

Two dynamic schedulers are tested. Both are based on
DAGs, but differ in the selection metric applied. The first,
called height tree (HT), selects the enabled task that is higher
in the dependency tree. The second, called inverse tree (IT),
select the enabled task that has a longer path to finish in the
graph. By longer path we mean that it has a bigger number of
steps in the longest path from the current to the end task. Non
deterministic selection is done in case of equal height.

potr11

trsm21 trsm31 trsm41

syrk21 gemm2131gemm2141 syrk31 gemm3141 syrk41

potr22

trsm32 trsm42

syrk32 gemm3242 syrk42
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syrk43

potr44
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0

Fig. 6. Dependency graph of Cholesky algorithm, 4× 4 tiles. Right values
references to the stage number in which the task is enabled to fire (bigger
value is earlier).
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Fig. 7. Dependency graph of Cholesky algorithm, 4× 4 tiles. Right values
references to the latest stage number in which a task must to be fired (bigger
value is earlier).



Figures 6 and 7 show examples of DAGs of dynamic
schedulers used in tests. In height tree the level of a task is
assigned according the step in which the task is enabled. In
inverse tree, the level is assigned according to number of steps
in the longest path to the end. For example, task trsm41 has
level 8 in the first graph and level 6 in the second.

Differences between both schedulers are exposed in the
next example. Suppose you have three processors. Following
the dynamic schedulers previously shown, the first step is
compute potr11, and then compute trsm21, trsm31 and trsm41.
In the third step, scheduler height tree, must select any task
from all those that have level 7 assigned, but scheduler inverse
tree will select exactly syrk21, gemm2131 and gemm2141. Is
easy to see in Fig. 7 that syrk21 is a priority tasks in the path
to the end because it enables potr22. Scheduler height tree,
due to its non determination, may delay it selection.

V. SIMULATION RESULTS

Simulations of parallel algorithm were tested with dif-
ferent values for four parameters: matrix size, number of
processors, number of block division and scheduler used. To
test performance, a simulation tool was developed using a
high level language (Smalltalk). The tool takes the number
of blocks and defines all the tasks to be executed; then take
matrix size and decides the block size, and finally it takes
the number of processors and creates the same number of
Processor objects and one thread for each of them to execute in
parallel. According the scheduler, the respective Selector object
is linked to each Processor. The execution of each kernel is
simulated by throwing a time delay according the task.

In order to run simulations, it was used the time of
running of each kernel, obtained for different block sizes,
single precision, from a NVIDIA GTX 470 GPU. CUDA was
used for BLAS kernels and MAGMA for LAPACK kernel
xPOTRF. The results are shown in Table I. In all cases, the
time of communication of all data from main memory to GPU
and vice versa is considered. It was assumed that the main
processor uses one thread to control each GPGPU.

Table II shows results of simulations with only four proces-
sors and block range of 6000 and 8000, single precision. Due to
space limitations, only these results are presented, but they are
representative of other combination of execution parameters.
The metric of performance used is the idleness of processors,
which is calculated as a difference between total execution
time and total of processing time.

For Cholesky factorization algorithm, RL algorithm brings
the best results for static scheduling, which are consistent
with previous work [9]. For dynamic scheduling, inverse tree
brings results which are near the optimum. A timeline for both
schedulers is shown in Figures 8 and 9. Two things are noted:

Kernel Single pres.
6000

Double pres.
6000

Single pres.
8000

Double pres.
8000

potr 0.249 0.882 0.509 1.895
trsm 0.568 2.018 1.122 N/A
syrk 0.465 1.907 1.001 N/A
gemm 0.755 3.506 1.678 N/A
TABLE I. OBSERVED TIME FOR THE KERNELS EXECUTED OVER AN

NVIDIA GTX 470 GPU, IN SECONDS.

Block Size # Blocks # Procs. Algor. Time (sec) % idle time
6000 6 4 LL 17.50 53.66
6000 6 4 RL 13.26 38.77
6000 6 4 HT 10.16 20.56
6000 6 4 IT 9.51 14.97
6000 8 4 LL 40.59 53.45
6000 8 4 RL 26.33 28.47
6000 8 4 HT 20.98 10.95
6000 8 4 IT 20.69 9.65
8000 6 4 LL 36.89 53.35
8000 6 4 RL 27.79 38.08
8000 6 4 HT 21.37 19.64
8000 6 4 IT 19.95 13.96
8000 8 4 LL 85.34 53.16
8000 8 4 RL 55.05 25.37
8000 8 4 HT 44.30 10.21
8000 8 4 IT 43.71 8.97

TABLE II. OBSERVED VALUES OF SIMULATIONS.

the idle time of processors in synchronization points in RL
and the practical absence of idle time in IT.

The nature of the Cholesky algorithm imposes no paral-
lelism in the beginning and in the end of the execution, which
sum four serial tasks. Beyond those points, and also at the
end of execution, there is a limited number of parallel tasks
which produce idle state for some processors. For the rest of
the execution, all processors are always working.

VI. CONCLUSION AND FUTURE RESEARCH

We have developed a model of parallel programming
starting from CPN, unfolding them to TPN and executed by a
set of distributed processors that share in a memory area the
representation of the state of the algorithm, and decouple the
execution from the selection of the next task to do.

The model was used as a simulation tool, but it is easy to
adapt it to running real algorithms. We hope to get performance
improvements, due to the minimal overhead of the scheduling
policy and its almost optimal ”idleness“ rate of processors.

The simulations were based on times taken from a cur-
rently usual multicore - multiGPU machine. Its results show
that important improvements in performance can be obtained
with respect to static scheduler algorithms, using a dynamic
scheduler based on Petri Nets, which is easy to implement.

The model is adaptable to different numbers of processors
and data block partitions: the unfolding of the CPN capture
the number of partitions by generating the respective inci-
dence matrix. Data dependencies are automatically generated.
Besides, the execution model only needs as parameter the
matricial information; thus, to execute different algorithms, no
programming is necessary, it is enough to change the matrix.

Dynamic scheduling can be executed without need of
previous time execution of each kernel. That information is
necessary to achieve an optimal scheduling, at the cost of
more complex schedulers. Our simulations show a result that is
near the optimal, with a very light overload. Others dynamic
scheduling policies may achieve optimal or sub-optimal re-
sults, but they are complex to understand and implement.

Execution on a set of asymmetric processors can be im-
plemented by changing the Selector of task in each processor.



Kernels used:
gemm potr syrk trsm

Timeline between 0 segs and 19 segs

Proc1
initpotr11trsm21 syrk21 trsm61 syrk71 gemm2151 gemm3151 gemm3181 gemm4181 gemm6171 trsm32 syrk42 trsm82

Proc2
init trsm31 syrk31 trsm71 syrk81 gemm2161 gemm2181 gemm3171 gemm4171 gemm5181 trsm62 syrk62 syrk82

Proc3
init trsm51 syrk41 trsm81 gemm2131 gemm2171 gemm3161 gemm4161 gemm5171 gemm7181 trsm52 syrk32 trsm72

Proc4
init trsm41 syrk51 syrk61 gemm2141 gemm3141 gemm4151 gemm5161 gemm6181 potr22 trsm42 syrk52 syrk72

Timeline between 19 segs and 38 segs

Proc1
gemm3252 gemm4262 gemm5282 trsm63 syrk53 syrk83 gemm4383 gemm5383 trsm64

Proc2
gemm3272 gemm4252 gemm5262 gemm6282 trsm73 syrk73 gemm4363 gemm5373 gemm7383 trsm84

Proc3
gemm3242 gemm3282 gemm4282 gemm6272 potr33trsm43 syrk43 trsm83 gemm4373 gemm6373 trsm74

Proc4
gemm3262 gemm4272 gemm5272 gemm7282 trsm53 syrk63 gemm4353 gemm5363 gemm6383 potr44trsm54

Timeline between 38 segs and 57 segs

Proc1
syrk64 gemm5474 potr55trsm65 syrk65 gemm6585 potr66 potr77

Proc2
syrk74 gemm5484 trsm85 gemm6575 trsm86 gemm7686

Proc3
syrk84 gemm6474 gemm7484 syrk75 gemm7585 trsm76 syrk76 trsm87 potr88

Proc4
syrk54 gemm5464 trsm75 syrk85 syrk86 syrk87

1

Fig. 8. Simulation timeline, RL scheduler, 8 blocks, 8000 range each, 4 processors

Kernels used:
gemm potr syrk trsm

Timeline between 0 segs and 19 segs

Proc1
initpotr11trsm51 gemm2131 trsm32 syrk32potr33 gemm3242 trsm43 gemm3252 trsm53 gemm3262 trsm63 gemm3272 syrk61 gemm4181gemm5262

Proc2
init trsm41 gemm2141 trsm42 syrk41 gemm2161 trsm81 gemm3161 syrk51 gemm3171 potr44trsm82 gemm5161 syrk53 trsm73gemm3282

Proc3
init trsm31 syrk31 trsm61 gemm3141 trsm52 syrk42 trsm62 gemm4151 gemm2181 gemm4252 gemm3181 gemm4262 gemm5171

Proc4
init trsm21 syrk21potr22 gemm2151 trsm71 gemm3151 gemm2171 syrk43 trsm72 gemm4161 syrk52 gemm4171 gemm4353 trsm54gemm4272

Timeline between 19 segs and 38 segs

Proc1
trsm83 gemm4282 potr55syrk71 gemm6272 syrk64 trsm84 gemm5383 syrk73 gemm6383 syrk74 gemm6484 gemm6585trsm86

Proc2
syrk54 gemm5181 gemm4373 trsm74 gemm4383 syrk72 gemm6282 syrk65 syrk81 gemm5484 trsm85 syrk75 syrk83 syrk84syrk85

Proc3
gemm4363 trsm64 gemm5272 syrk63 gemm6181 gemm5373 gemm7181 gemm5474 trsm75 gemm6474 gemm7383 gemm7484gemm7585

Proc4
syrk62 gemm6171 gemm5363 gemm5282 gemm5464 trsm65 gemm6373 gemm7282 potr66syrk82 gemm6575 trsm76 syrk76

Timeline between 38 segs and 57 segs

Proc1
syrk86 trsm87

Proc2
gemm7686 syrk87

Proc3
potr88

Proc4
potr77

1

Fig. 9. Simulation timeline, IT scheduler, 8 blocks, 8000 range each, 4 processors

By restricting the execution of tasks that have forwarding
dependencies in a non critical path to slower processors, those
processors can help in the overall parallel execution.

Future work will implement the effective execution with
this model, not only for linear algebra factorizations, but for
others algorithms as well. An implementation in a distributed
memory parallel architecture will also be researched.
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