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SPHERICAL FUNCTIONS ASSOCIATED TO THE THREE
DIMENSIONAL SPHERE

INES PACHARONI, JUAN TIRAO, AND IGNACIO ZURRIAN

ABSTRACT. In this paper, we determine all irreducible spherical functions ®
of any K-type associated to the pair (G, K) = (SO(4),SO(3)). This is ac-
complished by associating to ® a vector valued function H = H(u) of a real
variable u, which is analytic at «w = 0 and whose components are solutions of
two coupled systems of ordinary differential equations. By an appropriate con-
jugation involving Hahn polynomials we uncouple one of the systems. Then
this is taken to an uncoupled system of hypergeometric equations, leading to a
vector valued solution P = P(u), whose entries are Gegenbauer’s polynomials.
Afterward, we identify those simultaneous solutions and use the representation
theory of SO(4) to characterize all irreducible spherical functions. The func-
tions P = P(u) corresponding to the irreducible spherical functions of a fixed
K-type my are appropriately packaged into a sequence of matrix valued polyno-
mials (P )w>0 of size (£41) x (¢+1). Finally we prove that P, = Py~ 1P, is a
sequence of matrix orthogonal polynomials with respect to a weight matrix W.
Moreover, we show that W admits a second order symmetric hypergeometric
operator D and a first order symmetric differential operator E.

1. INTRODUCTION

The theory of spherical functions dates back to the classical papers of E. Car-
tan and H. Weyl; they showed that spherical harmonics arise in a natural way
from the study of functions on the n-dimensional sphere S™ = SO(n + 1)/SO(n).
The first general results in this direction were obtained in 1950 by Gelfand, who
considered zonal spherical functions of a Riemannian symmetric space G/K. In
this case we have a decomposition G = KAK. When the abelian subgroup A is
one dimensional, the restrictions of zonal spherical functions to A can be identified
with hypergeometric functions, providing a deep and fruitful connection between
group representation theory and special functions. In particular when G is compact
this gives a one to one correspondence between all zonal spherical functions of the
symmetric pair (G, K) and a sequence of orthogonal polynomials.

In light of this remarkable background it is reasonable to look for an extension
of the above results, by considering matrix valued spherical functions on G of a
general K-type. This was accomplished for the first time in the case of the complex
projective plane P»(C) = SU(3)/U(2) in [9]. This seminal work gave rise to a
series of papers including [8, [T}, 13| 26}, 27, [29], where one considers matrix valued
spherical functions associated to a compact symmetric pair (G, K), arriving at
sequences of matrix valued orthogonal polynomials of one real variable satisfying
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an explicit three-term recursion relation, which are also eigenfunctions of a second
order matrix differential operator (bispectral property).

The theory of matrix valued orthogonal polynomials without any consideration
of differential equations was started by M. G. Krein in [24] and [25]. After that the
theory was revived by A. Durdn in [4], who posed the problem of finding matrix
weight functions W with symmetric matrix second order differential operators D.
But the existence of such “classical pairs” (W, D) was first established in [7] and
[12] as a byproduct of what was obtained in [9]. In fact, in [9] for any K-type 7 a
matrix weight function W of size m = degm, a symmetric second order differential
operator D and a sequence of matrix polynomials {P,},>¢ was constructed from
the spherical functions of the pair (SU(3),U(2)). Such a sequence has the following
properties: deg P, = n + m, det Py # 0, P, and P, are orthogonal with respect
to W for all n # n’, DP, = P,A,, and the sequence {P, }n>0 satisfies a three-term
recursion relation. Yet, the sequence {P,, },>0 does not fit directly into the existing
theory of matrix valued orthogonal polynomials as given in [4]. In [7] and [12] we
established such a connection defining the matrix valued function @, by means of
Qn=F, 1p,. It is worth to point out that whenever we are under these hypothesis
one can prove that {Q, }n>0 is a sequence of matrix valued orthogonal polynomials

with respect to W = PfW Py, and that D= Py D Py is symmetric. Related results
can be also found in [12] 28| [15] BT [32].

A different approach to find examples of classical matrix orthogonal polynomials
can be found for example in [5].

The irreducible spherical functions associated to the complex projective space
P,(C) = SU(n + 1)/U(n) of a given K-type are encoded in a sequence of matrix
valued orthogonal polynomials, which are given in terms of the matrix hypergeo-
metric function. The semi infinite matrix corresponding to the three-term recursion
relation turns out to be stochastic. This unexpected result leads to the study of
the random walk with this transition probability matrix, see [14].

The present paper is an outgrowth of [39] and we are currently working on
the extension of these results to the n-dimensional sphere and the n-dimensional
real projective space. The starting point is to describe the irreducible spherical
functions as simultaneous eigenfunctions of two commutative differential operators,
one of order two and the other of order one, and then the irreducible spherical
functions of the same K-type are encoded in a sequence of matrix valued orthogonal
polynomials.

More recently in [2I] the authors studied the irreducible spherical functions of the
pair (G, K) = (SU(2) x SU(2),SU(2)) (SU(2) embedded diagonally) as projections
onto K-isotypic components of irreducible representations of G. This approach
is comparable with the construction of vector valued polynomials given in [23].
Also in [22] the authors come back to the same subject but starting with the
construction of the matrix orthogonal polynomials using a recursion relation and the
orthogonality relations, and by ending with the differential operators. The group
SU(2) xSU(2) is the universal covering group of SO(4) and the image of SU(2) under
the covering homomorphism is SO(3). Thus, the pairs (SU(2) x SU(2),SU(2)) and
(SO(4),S0O(3)) are very closely related. The results of this paper and those in [22]
are in agreement, see Remark at the end of this paper for details. However,
the treatments are very different.
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Briefly the main results of this paper are the following. After some preliminary
developed along the first sections, in Section [5| we are able to explicitly describe
the irreducible spherical functions of the symmetric pair (SO(4),SO(3)) of a fixed
K-type, by a vector valued function P = P(u), whose entries are certain Gegen-
bauer polynomials in a suitable variable u. This is accomplished by uncoupling a
system of second order linear differential equations using a constant matrix of Hahn
polynomials, see Proposition [£.1}

In Section [§] it is established which are those vector valued polynomials P =
P(u) that correspond to irreducible spherical functions, and it is shown how to
reconstruct the spherical functions out of them.

The aim of the last two sections is to build classical sequences of matrix valued
orthogonal polynomials from our previous work. In Section [J] we define a sequence
of polynomial matrices P,,, w > 0, whose columns are the vector valued polynomials
P = P(u) corresponding to some specific irreducible spherical functions of the same
K-type. In Section |10| we consider the sequence ]S = Py 'P, and we prove that
(ﬁw)w>0 is a sequence of matrix orthogonal polynomials with respect to a Welght
function W explicitly given in . Moreover, the matrix differential operators D
and E given in Theorem n satisfy DP = P A, and EP = P Mw, where the
eigenvalues A, and M,, are real diagonal matrices. Thus, D and F are symmetric
with respect to W.

Acknowledgements. We would like to thank the referee for many useful com-
ments and suggestions that helped us to improve a first version of this paper. In
particular she or he pointed out that equation gives an LDU- decomposition
of the matrix weight W; provided the more elegant proof of Lemma asked for
an explicit expression of the sequence defined in equation (48) in terms of known
discrete orthogonal polynomials, see Proposition [0.6} and pointed out that our es-
sential function ¥ defined in equation is, up to a diagonal matrix, equal to the
transposed of the function L in Section 2 of [22].

2. PRELIMINARIES

2.1. Spherical functions.

Let G be a locally compact unimodular group and let K be a compact subgroup
of G. Let K denote the set of all equivalence classes of complex finite dimensional
irreducible representations of K; for each § € K, let & denote the character of 6,
d(0) the degree of 4, i.e. the dimension of any representation in the class §, and
xs = d(8)&s. We shall choose once and for all the Haar measure dk on K normalized
by [ dk=1.

We shall denote by V' a finite dimensional vector space over the field C of com-
plex numbers and by End(V') the space of all linear transformations of V' into V.
Whenever we refer to a topology on such a vector space we shall be talking about
the unique Hausdorff linear topology on it.

Definition 2.1. A spherical function ® on G of type § € K is a continuous function
on G with values in End(V') such that

i) ®(e) = I (I= identity transformation).
i) ®(x)®(y) = [ xs(k™1)®(xky) dk, for all z,y € G.
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The reader can find a number of general results in [34] and [6]. For our purpose
it is appropriate to recall the following facts.

Proposition 2.2 (Proposition 1.2 in [34]). If ® : G — End(V) is a spherical
function of type § then:
i) ®(k1gks) = ®(k1)P(g)P(ka), for all ki, ke € K, g € G.
i) k— ®(k) is a representation of K such that any irreducible subrepresenta-
tion belongs to 0.

Concerning the definition, let us point out that the spherical function ® deter-
mines its type univocally (Proposition and let us say that the number of times
that § occurs in the representation k — ®(k) is called the height of ®.

A spherical function ® : G — End(V) is called irreducible if V' has no proper
subspace invariant by ®(g) for all g € G.

If G is a connected Lie group, it is not difficult to prove that any spherical
function ® : G — End(V) is differentiable (C°°), and moreover that it is analytic.
Let D(G) denote the algebra of all left invariant differential operators on G and let
D(G)¥ denote the subalgebra of all operators in D(G) which are invariant under
all right translations by elements in K.

In the following proposition (V,7) will be a finite dimensional representation of
K such that any irreducible subrepresentation belongs to the same class § € K.

Proposition 2.3. A function ® : G — End(V) is a spherical function of type §
if and only if
i) ® is analytic.
ii) ®(k1gks) = m(k1)®(g)m(k2), for all ki,ke € K, g € G, and ®(e) = I.
iii) [D®](g) = ®(g)[D®|(e), for all D € D(G)X, g € G.

Proof. It ® : G — End(V) is a spherical function of type 0 then ® satisfies iii)
(see Lemma 4.2 in [34]) and @ is analytic (see Proposition 4.3 in [34]). Conversely,
if ® satisfies i), ii) and iii), then D ~ [D®](e) is a representation of D(G)X and
therefore ® satisfies the integral equation ii) in Definition see Proposition 4.6
in [34. O

Moreover, we have that the eigenvalues [D®](e), D € D(G)¥, characterize the
spherical functions ® as stated in the following proposition.

Proposition 2.4 (Remark 4.7 in [34]). Let &,V : G — End(V) be two spherical
functions on a connected Lie group G of the same type § € K. Then & =V if and
only if (D®)(e) = (D¥)(e) for all D € D(G)X.

Let us observe that if ® : G — End(V) is a spherical function, then ® : D —
[D®](e) maps D(G)¥ into Endg (V) (Endg (V) denotes the space of all linear maps
of V into V' which commutes with (k) for all k¥ € K) defining a finite dimensional
representation of the associative algebra D(G)*. Moreover, the spherical function is
irreducible if and only if the representation ® : D(G)® — Endg (V) is irreducible.
In fact, if W < V is ®(G)-invariant, then clearly W is invariant as a (D(G)%, K)-
module. Therefore, if ® : D(G)X — Endg (V) is irreducible then the spherical
function @ is irreducible. Conversely, if ® : D(G)* — Endg (V) is not irreducible,
then there exists a proper (D(G)X, K)-invariant subspace W < V. Let P: V —
W be any K-projection. Let us now consider the following functions: P®P and
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®P. Both are analytic and (P®P)(k1gks) = mw(k1)(P®P)(g)m(ks) for all g € G

and ki,ky € K. Moreover, if D € D(G)X then [D(P®P)](e) = P[D(®)](e)P =

[D(®)](e)P = [D(®P)](e). Therefore, using Remark 4.7 in [34] it follows that

P®P = ®P. This implies that W is ®(G)-invariant. Hence, if ® is an irreducible

spherical function, then ® : D(G)X — Endg (V) is an irreducible representation.
As a consequence of this we have:

Proposition 2.5. Let G be a connected reductive linear Lie group. Then the fol-
lowing properties are equivalent:

i) D(G)X is commutative.

ii) Fwvery irreducible spherical function of (G, K) is of height one.

Lemma 2.6. Let G be a linear Lie group. Given D # 0, D € D(G), there exists a
finite dimensional representation U of G such that [DU](e) # 0.

Proof. We may assume that G is a Lie subgroup of SL(E) for certain real finite
dimensional vector space E. The identity representation of G extends in the usual
way to a representation Ug of G on Ey = ®°FE. Let Uy also denote the corresponding
representation of the universal enveloping algebra U(g) of the Lie algebra g of G.
Then as Harish-Chandra showed (see §2.3.2 of [38]) there exists s € N such that
Us(D) # 0. Finally, by using the canonical isomorphism U(g) ~ D(G), we obtain
[DUS](e) = US(D) # 0. U

Proof of Proposition|2.8 1) = ii). If ® is an irreducible spherical function then @ :
D(G)X — Endg (V) is an irreducible representation. Therefore, Endy (V) ~ C
which is equivalent to ® being of height one.

ii) = i). If ® is a spherical function of height one and D € D(G)¥X, then
[D®](e) = M with X € C. Hence, if Dy, Dy € D(G)¥X we have

[(D1D2)®](e) = [D1®](e)[D2®](e) = [(D2D1)®](e).

On the other hand, we have that the irreducible spherical functions of (G, K)
separate the elements of D(G)¥X. In fact, if D # 0, D € D(G)¥, by Lemma
there exists a finite dimensional representation U of G such that [DU](e) # 0.
By hypothesis we may assume that U is irreducible. Let U = @;_zUs be the
decomposition of U into K-isotypic components and let Ps be the corresponding
projections of U onto Us. Then, there exits 6 € K such that [D(PsUPs)](e) # 0.
Thus, the corresponding spherical function ®s is irreducible and [D®s](e) # 0.
Therefore D1 Dy = Dy D O

In this paper the pair (G, K) is (SO(4),S0(3)). Then, it is known that D(G)¥
is an abelian algebra; moreover, D(G)¥ is isomorphic to D(G)¢ @ D(K)X (See
Theorem 10.1 in [19] or [3]), where D(G)Y (resp. D(K)*) denotes the subalgebra of
all operators in D(G) (resp. D(K)) which are invariant under all right translations
by elements in G (resp. K).

Now, in our case we have that D(G)% is a polynomial algebra in two algebraically
independent generators. This is because the Lie algebra of G is s0(4) ~ s0(3)®s0(3),
hence, if A; and Ay are the Casimirs of the corresponding s0(3), we have that A,
and A, generate D(G)“.

The first consequence of this is that all irreducible spherical functions of our
pair (G, K) are of height one. The second consequence is that to find all irreducible
spherical functions of type 6 € K is equivalent to take any irreducible representation
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(V,m) of K in the class ¢ and to determine all analytic functions ® : G — End(V)
such that

1) @(kigks) = m(k1)®(g)7(k2), for all ki, k2 € K, g € G, and ®(e) = 1.

ii) [A19](g) = A®(g), [A2P](g9) = aP(g) for all g € G and for some A, i € C.
A particular choice of these operators A; and A is given in .

Spherical functions of type d (see Section 3 in [34]) arise in a natural way upon
considering representations of G. If g — U(g) is a continuous representation of G,
say on a finite dimensional vector space E, then

j /K xs(k~))U (k) dk

is a projection of F onto PsE = E(§). If Ps # 0 the function ® : G — End(E(4))
defined by

®(g)a = PsU(g)a, g€ G, ac E5),
is a spherical function of type ¢. In fact, if a € F(d) we have

B(2)®(y)a = PsU(2)PsU(y)a = /K X (k™Y PsU (2)U (k)T () a dk

- (/K o (kD)@ (zky) dk) a.

If the representation g — U(g) is irreducible then the associated spherical func-
tion @ is also irreducible. Conversely, any irreducible spherical function on a com-
pact group G arises in this way from a finite dimensional irreducible representation

of G.

2.2. The groups G and K.

The three dimensional sphere S can be realized as the homogeneous space G/ K,
where G = SO(4) and K = SO(3), where as usual we identify SO(3) as a subgroup
of SO(4): for every k in K, let k= (k9) € G.

Also, we have a decomposition G = K AK, where A is the Lie subgroup of G of
all elements of the form

cosf 0 0 siné
0 1 0 0
a(f) = 0 01 o0 ) 0 € R.
—sinf 0 0 cos@

It is well known that there exists a double covering Lie homomorphism SO(4) —
SO(3) x SO(3), in particular so(4) ~ s0(3) @ so(3). Explicitly it is obtained in the
following way: Let ¢ : SO(4) — GL(A?(R*)) be the Lie homomorphism defined
by

qa(g)(ei nej) = glei) Agles),  g€SO(4),  1<i<j<4,
where {e;}]_, is the canonical basis of R*. Let ¢ : s0(4) — gl(A*(R*)) denote the
corresponding differential homomorphism.

We observe that A%(R?) is reducible as G-module. In fact we have the following
decomposition into irreducible G-modules, A2(R*) = V; & V,, where

Vi =span{e; Aeqs+ea Aes,e1 Neg —ea Aeg,—e1 Aeg —es3 Aegl,

Vo =spanf{e; Aeg —ea Aes,er Aes+ex Aeg,—er Aea+es Aeyt.
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Let P, and P» be the canonical projections onto the subspaces V; and Vs, respec-
tively. The functions defined by

a(g) = Pra(9)y,,  b9) = P2q(9)vs,

are Lie homomorphisms from SO(4) onto SO(V;) ~ SO(3) and SO(V3) ~ SO(3),
respectively. Therefore, in an appropriate basis we have for each g € SO(4) and for
all X € s0(4)

_f(alg) O . _(a(X) O
Hence, we can consider ¢ as a homomorphism from SO(4) onto SO(3) x SO(3)
with kernel {I, —TI}.

2.3. The Lie algebra structure.
The cartan involution of G (respectively of g) is O(g) = I319I5,1 (respectively

Q(X) = 13,1X13’1), where
00
L — ( 00 )
0 -1

The subgroup K is the connected component of the fixed points of © in G. The
corresponding Cartan decomposition of the Lie algebra of G is g = ¢ @ p, € being
the Lie algebra of K and p being the (—1)-eigenspace of 6.

A basis of g = s0(4) over R is given by

0
1
0
0

[eleleliy

00 b b b8 s
Yi=|7 000> Yo=| 1000 |- Ys={(0-100)>
0000 0000 0000

b e o Ty
Yy = 0 000 )> Y5 = 0000 ])> Ys = 000 1)~
~1000 0-100 00-10

Observe that {Y7, Y2, Y3} is a basis of € and {Yy, Y5, Ys} is a basis of p.

Consider the following vectors
1 1 1
Zr=5W+Yy), Z=5Y-Y), Zy=5;MN+Y),

1 1 1
2 2 2
It can be proved that these vectors define a basis of s0(4) adapted to the decom-
position s0(4) ~ s0(3) @ s0(3), i.e. {Z4,Z5, Zs} is a basis of the first summand and
{Z1,Z>,7Z3} is a basis of the second one.

The algebra D(G)¢ is generated by the algebraically independent elements

Z4 Ys—Ya), Zs=-Yo+Ys), Zs (Y1 —Y5).

(2) Ay =-—Z} - 75 - 75, Ny =—27 - 73 - Z3,

which are the Casimirs of the first and the second so(3) respectively. The Casimir
of K will be denoted by Ax, and it is given by —Y? — Y3 — Y.
The complexification of € is isomorphic to s[(2,C). If we define
0 -1 0 il 00 0
= —i =(-i00 = 2
® e=(epe) =) n= ()

then we have that {e, f,h} is an s-triple in ¢, i.e.
e, f1=h,  [he]=2e,  [hf]=-2f.
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We take as a Cartan subalgebra h¢ of so(4,C) the complexification of the max-
imal abelian subalgebra of s0(4) of all matrices of the form

0 = 0 0
—x; 0 0 0
0 0 0 1z
0 0 —22 O
Let €; € hg be given by ¢;(H) = —iz; for j =1,2. Then
A(gc,be) = { +(e1 £ e2) 1 e1,82 € HC },

and we choose as positive roots those in the set AT (gc, he) = {61 — 2,61 + &2}
We define

H =

0 0 1 —i 0 0 1 i

0 0 —i -1 0 0 —i 1
Xewea = | 1 ¢ 0 o | XM= |0 i 0 of

i 1 0 0 —i -1 0 0

0 0 1 —i 0 0 1 i

0 0 i 1 0 0 i -1

Xeeta = | 1 i 0 o "X S0 o
i -1 .0 0 —i 1 0 0

Then, for every H in hc we get that
[H, Xi(crter)] = £(e1 £ €2)(H) X (e, £e)-

Hence, each X ., +.,) belongs to the root-space g+ (c,+c,)-
Then, in terms of the root structure of so(4,C), Ay and Ag become

@ Ay =—Z24iZs— (Zs +iZ4)(Zs — i),
Do =72 +iZ3 — (Zo+i21)(Zo —iZy).

We observe that (Zs —iZ4) = Xey—cy € ey—e, a0d (Z2 —iZ1) = Xci4ey € Beqtes
and Z3, Zg € he.

2.4. Irreducible representations of G and K.

Let us first consider SU(2). It is well known that the irreducible finite dimen-
sional representations of SU(2) are, up to equivalence, (7, Vi)¢>0, where V; is the
complex vector space of all polynomial functions in two complex variables z; and
z2 homogeneous of degree ¢, and 7, is defined by

e I o e (R G ) R (R R

Hence, since there is a Lie homomorphism of SU(2) onto SO(3) with kernel {£I},
the irreducible representations of SO(3) correspond to those representations m; of
SU(2) with £ € 2Ng. Therefore, we have SO(3) = {[m¢]}rean,, even more, if 7 = 7 is
any such irreducible representation of SO(3), it is well known (see [I7], page 32) that
there exists a basis B = {v;} §=o of V; such that the corresponding representation
7 of the complexification of s0(3) is given by

w(h)v; = (€ — 2j)vy,
’f((é)Uj = (E—jﬁ-l)’l)jfl, ('U71 ZO)7
T(fvi =G+ Dvjt1,  (ver1 =0).
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RS

F1GURE 1. The central projection p.

It is known (see [37], page 362) that an irreducible representation 7 € SO(4) has
highest weight of the form 1 = mie1 + maes, where my and mso are integers such
that my > |mga|. Moreover, the representation 7 = 7(;;, m,), restricted to SO(3),
contains the representation m, if and only if

mp > % > |ma.

2.5. K-orbits in G/K.

The group G = SO(4) acts in a natural way in the sphere S®. This action is
transitive and K is the isotropy subgroup of the north pole e, = (0,0,0,1) € S2.
Therefore, S ~ G/K. Moreover, the G-action on S corresponds to the action
induced by left multiplication on G/K.

In the north hemisphere of S3

(83)* = {x: (21,20, 23, 24) € S : 24 >0},

we will consider the coordinate system p : (S%)* — R3 given by the central
projection of the sphere onto its tangent plane at the north pole (see Figure [1f):

r1 T X3
5 X)) = —_—,—, — = .
) ) = (222 — (e
Homogeneous coordinates were also used in the case of the complex projective
plane, see [9]. The coordinate map p carries the K-orbits in (53)* into the K-orbits
in R3, which are the spheres

Se={(y1,y2,u3) ER® : |[yl|® = [P + |y + [ys]* =r*},  0<r<oo.

Then, the interval [0, 00) parameterizes the set of K-orbits of R3.

2.6. The auxiliary function &.

As in [9], to determine all irreducible spherical functions ® of type 7 = my € K
an auxiliary function ®, : G — End(V;) is introduced. In this case it is defined
by

r(g9) =m(alg), g€G,

where a is the Lie homomorphism from SO(4) to SO(3) given in (). It is clear that
. is an irreducible representation of SO(4) and hence a spherical function of type

7 (see Definition [2.1)).
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3. THE DIFFERENTIAL OPERATORS D AND FE

To determine all irreducible spherical functions on G of type = € K, it is equiv-
alent to determine all analytic functions ® : G — End(V;) such that

i) @(kigks) = m(k1)®(g)7(k2), for all ki, k2 € K, g € G, and ®(e) = 1.
ii) [A1®](g) = A®(g), [A2D](g) = p®(g) for all g € G and for some A, i € C.

Instead of looking at an irreducible spherical function ® of type m, we use the
auxiliary function ®, to look at the function H : G — End(V;) defined by

(6) H(g) = ®(9)®x(g)""

We observe that H is well defined on G because @, is a representation of G. This
function H, associated to the spherical function ®, satisfies

i) H(e) =1.
ii) H(gk) = H(g), for all g € G,k € K.
iii) H(kg) =m(k)H(g)m(k™"), for all g € G,k € K.

The fact that ® is an eigenfunction of A; and A makes the function H into an
eigenfunction of certain differential operators D and E on G to be determined now.
Let us define

(7) D(H) =Y{(H) + Y3 (H) + Y¢ (H),
(8) E(H) = (= Ya(H)Y3(®x) + Y5(H)Ya(®r) — Ys(H)Y1(Pr)) ;"

Proposition 3.1. For any H € C*°(G) ® End(V) right invariant under K, the
function ® = H®, satisfies AP = A® and As® = pd if and only if H satisfies
DH = \H and FH = uH, with

A=—4\, p=—2+2)+7-\
Proof. We firstly observe that Z4(®,) = Z5(®r) = Zs(Pr) = 0, because &, is a
representation of G and a(Z;) =0 for j =4,5,6. In fact,

Zi(®x)(9) = L|,_, [®x(9)Pr(exptZ;)] = Brlg)T(a(Z;)) = 0.

On the other hand, since H is right invariant under K, we have that Y, (H) =

Y2(H) = Y3(H) = 0. Since [Y3,Yy] =0, [Y2,Y5] = 0 and [Y7,Ys] = 0, we have that
Z}(H) = 1Y} (H), for j = 4,5,6. Therefore, we obtain

6 6
M(HE,) =~ 3 Z(H) B =~ S VA (H) @, = — D(H)P.

On the other hand, we have

3
No(H®r) = =Y (Z}(H) ®r +2Z;(H) Z;j(®r) + HZ; (®5)),

Jj=1
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We observe that Z1(H) = 1Y, (H). Since Z; = Y3 — Zy, we have Z1(®,) = Y3(®,)
and Z2(®,) = YZ(®,). Similar results hold for Zy and Z3. Therefore,

Dg(H®r) = —(Z7(H) @r + Ya(H)Ys (@) + HYF(Dr))
— (Z3(H) ®r — Y5(H)Y2(®x) + HY; (D))
— (Z3(H) @ + Ys(H)Y1(Pr) + HY (D))
1
= —ZD(H) O, + E(H) P, + HAR (D)
= —iD(H) O, +EH)P, + HOr(Ak).
Since Ak € D(G)X, Schur’s Lemma tells us that #(Ag) = cI. Now we have
Ay (HP,;) = AH®, and Ay(HP,) = pH®, if and only if D(H) = AH and E(H) =
wH, where

1 ~
)\2—1/\ and p=c+A+p.

In order to compute the constant ¢, we take a highest weight vector v € V., and
write Y7, Ya, Y3 in terms of the basis {e, f, g} introduced in . It follows that

#(Ax)o =7 (=(Fe+ )" = (FHe =)= (30)°) v

= _Tlir (—2ef —2fe—h*)v = 17% (2(fe+h) +2fe+h*)v

4
e+ 2)
20 + 02
= j e o=
Thus, ¢ = ¢(¢ 4+ 2)/4 completing the proof of the proposition. O

Remark 3.2. We observe that the differential operators D and E commute. In fact,
from the proof of Proposition [3.1] we have that

D(H) = —4A,(H®,)®, ",
E(H) = My(HD,)0; ' + 1D(H) — 2,
and A; and Ay commute because they are in the center of the algebra D(G).

3.1. Reduction to G/K.

The quotient G/K is the sphere S3; moreover, the canonical diffeomorphism is
given by gK + (g14, god, 934, gaa) € S>.

The function H associated to the spherical function @ is right invariant under
K; then, it may be considered as a function on S3, which we also called H. The
differential operators D and E introduced in ([7)) and , define differential operators
on S3.

Lemma 3.3. The differential operators D and E on G define differential operators
D and E acting on C°°(S3) @ End(V,).

Proof. The only thing we need to prove is that D and E preserve the subspace
C>(G)X @ End(V;).

Given an irreducible spherical function ® of type 7 and the function ®, intro-
duced in Subsection let H(g) = ®(g) ®,1(g). Consider any D € D(G)¥ and
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the right translation 7(g) = gk. Then
ro(DH)(g) = i (A(H®7))(9)m (k)" @7 (9) =
e (A)(ri(H®x))(g)m (k)" @7 (9) = A(H®x)(9)27 ' (9) = DH(g),
showing that DH is right K-invariant. ]

Now we give the expressions of the operators D and E in the coordinate system
p: (9%)* — R? introduced in and given by

xr1 T2 I3

) = (22, 2) — ()

Ty T4 T4
We need the following propositions which require simple but lengthy computa-
tions. The outlines of the proofs appear in the Appendix.

Proposition 3.4. For any H € C*°(R?) ® End(V,) we have
2
D)) = (U4 ) (3 + 1) Hygs + (05 + 1) Hyay + (53 + 1) Hyy
+2(y1y2Hy,yy + Y2ysHy,ys + Y193 Hy,y,) +2(y1 Hy, +y2Hy, + ySHy3))~

Proposition 3.5. For any H € C*°(R?) ® End(V;) we have

0 —Y2—Y1Y3 —Ys+yi1y2
E(H)(y) =Hy, 7 <y2+y1y3 0 —1-y} >
ys—y1y2 14y 0
0  —yayst+y1  14+y3 0 —1-y3 yity2ys
+ Hy27.T (y2y3y1 0 y3y1y2> + Hysﬂ' < 1442 0 y2y1y3> .
—1-y3 ysty1u2 0 —y1—Y2y3 —y2+y1ys O

3.2. Reduction to one variable.
We are interested in considering the differential operators D and E given in
Propositions [3.4] and [3.5 applied to functions H € C*°(R?) @ End(V;) such that

H(ky) = m(k)H (y)m(k) !, for all k € K,y € R.

Hence, the function H = H(y) is determined by its restriction to a section of the
K-orbits in R3. We recall that the K-orbits in R3 are the spheres

Sr={ (Y1, y2,y3) €R*: |yl® = | |* + |w2l* + lys> =7r°}, 0<r<oo.

In each orbit S, we choose the point (r,0,0) € R? as a representative.
This allows us to find ordinary differential operators D and E defined on the
interval (0, c0) such that

(D H)(r,0,0) = (DH)(r),  (EH)(r,0,0) = (EH)(r),
where H(r) = H(r,0,0).

Remark 3.6. We observe that the differential operators D and E commute because
they are the restrictions of the commuting differential operators D and E.

In order to give the explicit expressions of the differential operators D and E ,
and starting from Propositions [3.4] and we need to compute a number of second
order partial derivatives of the function H : R® — End(V) at the points (r,0,0),
with » > 0. Given y = (y1,¥2,y3) € R? in a neighborhood of (r,0,0), » > 0, we
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need a smooth function onto K = SO(3) that carries the point y to the meridian
{(r,0,0) : 7 > 0}. A good choice is the following function

1 L s
9) AW = [ ﬁ Tl
vs o mlte Tertw Il
Then

y = A(y)(llyll,0,0)".

It is easy to verify that A(y) is a matrix in SO(3) and it is well defined in
R3 — {(y1,0,0) € R3:y; <0}.

The proofs of the following propositions are similar to those in the case of the
complex projective plane considered in [9], see Propositions 13.2 and 13.3 in that
paper. Let us consider the following elements in £

(10) A1 = By — Eho, Ay = E31 — Eis, A3 = E3y — Eb3.

Proposition 3.7. Forr > 0 we have

OH dH
GTJI(T,QO) *W(T),
OH 1 oH 1

O (0,0 =\ i a0y, )
8y2 (T7O7O) r [ﬂ-( 1)’ (T’) )
Proposition 3.8. Forr > 0 we have

0*H d*H
W(T,O,O) —W(r%

5oz 0.0 = (P (A F) + Y (40 = 2 () B () )
0*°H 1 dH . 9 ~ ~ .. 2 . ~ .
@(r, 0,0) =3 (Tdr + 7 (A2)" H(r) + H(r)w (As)” — 27 (Az) H(r)7 (As2) ) .

Now we can obtain the explicit expressions of the differential operators D and E.
Theorem 3.9. Forr > 0 we have

*H _(1+r2)2dH
2

2 —

dr? + r dr

D(HE)(r) = (1+1?)

e ;7’2) (#(Al)Qﬁ(r) + H(r)i(Ay)? - 27%(A1)f[(r)7'r(A1))
+ W) ()2 ) + BOYr(A0)? — 26 H()7(A))

Proof. Since D(H)(r) = D(H)(r,0,0), from Proposition [3.4] we have

D<ﬁ)(7") =1+ 7"2)((1 + Tz)Hylm + Hy,y, + Hyyyy + QTHyl)-
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Using Propositions [3.7] and 3.8 we get

D) (r) =(1+12) i+ 28

(1+7r?)

1

+ 5 (F A0 + o (0° - 2 (4) B (41) )

+ 7,12(% (A2)? H(r) + H(r)7t (As)® — 27t (As) H(r)7 (A2)> .

Now the theorem follows easily.

U
Theorem 3.10. For r > 0 we have
=~ dH : 17, =
E(H)(r) = -1 +12)i(Ag) = = [#(A0), Hr)| 7 (r A + Ao)
1r. ~ .
= [W(AQ), H(T)] (A1 — rAy).
Proof. Since E(H)(r) = E(H)(r,0,0), from Proposition [3.5| we have
E(H)(r) = Hyw (0 0 <120 )+ Hypr (Sr00) 4 Hr (800
(H)(r) = Hy (0 0, 10 ) Hy (r00) + Hyi (19 8).
Now, from Proposition [3.7] we get
~ dH . 1. =
E(H)(r) ==~ (1+ )i (4g) = [w (A1) ,H(r)] i (rA; + As)
1. ~ .
+ - [w (Asy) ,H(r)} (A1 — 1 As),
which is the statement of the theorem. O

Theorems [3.9] and are given in terms of linear transformations. Now we will
give the corresponding statements in terms of matrices by choosing an appropriate
basis of V. We take the sl(2)-triple {e, f, h} in tc ~ sl(2,C) introduced in (3).

If 7 = my is the only irreducible representation of SO(3) with highest weight ¢/2,
we recalled in Subsection that there exists a basis B = {Uj}§:0 of V; such that
T (h)v; = (€ = 2j)v;,
(11) w(e)v; =l —j+1vj_1, (v-1=0),
T(f)v; =G+ Dvjs1, (v =0).
Proposition 3.11. The function H associated to an irreducible spherical function
D of type m € K simultaneously diagonalizes in the basis B = {Uj}§:0 of V.

Proof. Let us consider the subgroup M = {mg : § € R} of K, where

1 0 0
(12) mg= (0 cosf sind
0 —sinf cosé
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Then, M is isomorphic to SO(2) and fixes the points (r,0,0) in R3. Also, since the

function H satisfies H(kg) = w(k)H (g) 7(k~1) for all k € K, we have that
H(r) = H(r,0,0) = H(mg(r,0,0)") = 7(mg)H(r,0,0)m(m, )
= ﬂ(mg)ﬁ(?‘)ﬂ'(m;l).

Hence, H(r) and 7(mg) commute for every r in R and every mgy in M.
On the other hand, notice that mg = exp(64h) and then 7(my) = exp(7(85h)),
but from we know that 7(h) diagonalizes and that its eigenvalues have multl—

plicity one. Therefore, the function H (r) simultaneously diagonalizes in the basis
B:{vj}fzo of V. O

Now we introduce the coordinate functions Ej (r) by means of

(13) H(r)v; = hy(r)v;,
and we identify H with the column vector
(14) H(r) = (ho(r), ..., he(r))".

Corollary 3.12. The functions H(r), 0 < r < oo, satisfy (DH)(r) = XH(r) if and
only if
(U 2)%R 4+ 28R B2 1) (= ) (g — )
+ L= G+ V(b1 — hy) = Ahy,

forallj=0,...,¢.

Proof. Using the basis B = {v;}_y of V (see (11))) and writing the matrices A;
and Ay in terms of the sl(2)-triple {e, f, h}, see (3),

%(e—l—f), A2=E31—E13:%(€_f)7

we have that Theorem says that (DH)(r) = AH(r) if and only if

Ay =By — Eip =

M) 0y = (1+ R 1) 0y + 28
r? ~ ~ N
_ (12;2 ) (ﬁ—(e—i— f)2 H(r) + H(T)ﬁ(e+f)2 - 27-7'(64— f)H(T)’fr(e—}— f)) .
r? ~ ~ _
+ (12;2 ) (7'7(6 — 2 H(r) + Hr)w(e — £)? = 2@(e — f)H(r)i(e — f)) v,
for 0 < j < /.
As [e, f] = h, we have that this is equivalent to

(1+1r2)?

L) o

AH (r)v; = (1+12)2H" (r) v; + 2

(1+72)
2r2

= 20 () H(r)&(f) + & () H(r)i(e)) v;

[(ﬁ(h) + 20 (f)i(e) VH (r) vy + H(r) (i (h) + 27(f)i(e)) v
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for 0 < j < {. Now, using , we obtain that (DH)(r) = AH(r) if and only if

Ahj(r)v; = (1+ %)) (r)v; + 2Mh; (r)v;
(1+72%)
212

r

{((f?j) +25(0 = §+ 1) Yy (r) vy + hy(r)((€ = 25) +2§(€ — 5 + 1)) v;

—Q«ﬂ—ﬁﬁﬂﬂvxj+1>+jﬁplvx£—j+1»v4,

for0<j </
It can be easily checked that this is the required result. (I

Corollary 3.13. The functions H(r), 0 < r < oo, satisfy (EH)(r) = pH(r) if and
only if

— (0 — 2) 1R+ £ ((j + 10— §)(hyar — hy) = §(0— G+ 1) (R — %—))

3 (04 D@1 =)+ 5+ Dsa — ) ) =
forallj=0,...¢.
Proof. We proceed in a way similar to the proof of Corollary Using the s((2)-

triple {e, f, h} and the matrices Ay, Ay and A3 (see (10))), from Theorem we
have that (EH)(r) = pH(r)(r) if and only if

pE(r) oy =(L+ ) () (A3) vy — - [ (A), ()] 7 (rAs + A) v

+% {7} (As) ,ﬁ(r)} 7 (A1 —rAsa) vy,

for every v; in B = {v;}4_.
As in the proof of Theorem we write Ay, A and Aj in terms of {e, f, h}
(see (3),
1 1 )
A1:§(€+f)7 A2:§(€*f), Az =—5h.

Hence, (DH)(r) = AH(r) if and only if

pH(ryo; = [7 (e + £), B 7 (rle+ 1)~ il — 1)y

1. ~ . .
+ [T le= N HE)| 7 e+ )= r(e—f))v; —i
for 0 < j < £. And that is equivalent to

pE(r) vy = — i) () oy () [ ), B 7
(=) [ (), H () #(e) v

for0<j </
Finally, we use to obtain
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LRy @ = ey + e+ 1 )~ F)G D)

phjv; = —

1 N ~ .
+ 5(?‘ —i)j(hj—1 — hy) (€ — j + 1) vy,

for 0 < j < £. Therefore, the corollary is proved.

In matrix notation, the differential operators D and F are given by

1—|—r) an (l—i—r)
72

DI = (14 220" 4 24 (Cy+ Co)

EH =

H + ;7(01 Co)H + = (01 +Co)H
where the matrices are given by

Apg = Z] 0(5 2]) 3.3
(15) Co=1i(l—j+1)(Ejj—1— Ej ),

Cr =35m0 + D)= §)(Ej a1 — Ej )
When £ = 0, we are in the scalar case and the matrices Cy, C, and Aq are zero.
It is well known that the zonal spherical functions on the sphere S3 are given, in
an appropriate variable z, in terms of Gegenbauer polynomials C¥(z) with v =1
and n =0,1,2,... (see [I] page 302). Therefore, in some variable z, the functions
H should satisfy a differential equation of the form

(1—2?)y” —3zy +n(n+2)y =0.
This suggests the following change of variable

(16) € (0,1].

v L

Vitr?’
Remark. Tt is worth noticing that if ¢ = ka(0)k', with k, k" € K, a(f) € A and
gK = (x1,22,x3,24) € (5*)*, then

u = cos(h),
because
_ 1 _ 1 I
u(g) = VAT ireitiveitet x4 = cos(6).
We put
(17) H(u)=H (177“2) and h;(u) = h; (7”;“2) .

Under this change of variables, the differential operators D and E are converted
into two new differential operators D and E. We get the following expressions for
them,

d’H dH 1
T Ut T (Co+C1)

dH i U
19 FEH = \/ 1—u2A —Cy)H Co+C
( ) U 0 2 m( 0) + 5 ( o+ 1)
At this point there is a shght abuse of notation, since D and E were used earlier
to denote operators on R3.

(18) DH = (1 —u?)
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Remark 3.14. Clearly from Remark [3.6] we have that the differential operators D
and E' commute.

4. EIGENFUNCTIONS OF D

We are interested in determining the functions H : (0,1) — C**! that are
eigenfunctions of the differential operator

d*H dH 1
DH=(1-v*)— —3u— + ——(Co + C1)H
( u)du2 udu+1—u2(0+ DA,
ue (0,1).
It is well known that such eigenfunctions are analytic functions on the interval
(0,1) and that the dimension of the corresponding eigenspace is 2(¢ + 1).

The equation DH = AH is a coupled system of £ + 1 second order differential
equations in the components (ho, ..., hy) of H, because the (¢ + 1) x (¢ + 1) matrix
Cy+C1 is not a diagonal matrix. But fortunately the matrix Cy+C1 is a symmetric
one, thus diagonalizable. Now we quote from [10] the Proposition 5.1.

Proposition 4.1. The matriz Cy+Cy is diagonalizable. Moreover, the eigenvalues
are —j(j + 1) for 0 < j < £ and the corresponding eigenvectors are given by u; =
(Uo,,---,Us;) where

Uk,j = 3% (_j’l_,ligj+1 ; 1) )
an instance of the Hahn orthogonal polynomials.

Therefore, if we define H(u) = U~ H(u), we get that DH = AH is equivalent
to
?H dfH 1 . §
S 3ut - VyH=\H
du? Ydh T 12 ® ’
where Vo = Y0207 + 1)Ej ;.

In this way we obtain that DH = AH if and only if the j-th component ]:Lj (u)
of Fl(u), for 0 < 7 < ¢, satisfies

(1)

(20) (1—u?) ﬁ;/(u) — 3uiz;-(u) —J(7+ 1)@%@) — Ahj(u) = 0.

If we write A = —n(n + 2) with n € C, and h;(u) = (1 — u?)7/?p;(u). Then, for
0 < j <, pj(u) satisfies

(21) (1= u)p (u) = (25 + 3) upy(u) + (n — 5)(n + j + 2)p; (u) = 0.

Making a new change of variable, s = (1 —u)/2, s € [0, 3), and defining p;(s) =
pj(u) we have

(22)  s(L=s)pj(s)+ (I + 35— (25 +3)9)pj(s) + (n = j)(n+j +2)p; =0,
for 0 < j < £. This is a hypergeometric equation of parameters
a=-n+j, b=n+j+2, c:jJr%.

Hence, every solution p;(s) of for 0 <s< % is a linear combination of

—ntjnti+2 . —j—1/2 —n—1/2,n+3/2,
oF) ( PRy ,s) and s oF iy is)-
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Therefore, for 0 < j < ¢, any solution h;(u) of (20), for 0 < u < 1, is of the form

hyto) = a1 — 2, (T )

—(j —n—1/2,n+3/2 —u
+b; (1—u?) " UHD/2m ( ,j/ﬂ/; / ,17) ;

(23)

for some a;,b; € C.

Therefore, we have proved the following theorem.

Theorem 4.2. Let H(u) be an eigenfunction of D with eigenvalue A = —n(n+2),
n € C. Then, H is of the form

H(u) =UT(u)P(u) + US(u)Q(u)
where U is the matriz defined in ,
¢

YA
T(u) =Y (1-u?)2E;, S =Y (1-u?) U+D2g;,

=0 =0

P =(po,...,pe)t and Q = (qo,--.,qe)" are the vector valued functions given by
—n+tjnt+i+2, 1-
pj(u) = a;oFy ( s ?1?“) ;
—n—1/2,n43/2  1—
q;(u) = bj 2l ( n—j/+1r;2 / 71Tu) )
where a; and b; are arbitrary complex numbers for j =0,1,...,¢.

Going back to our problem of determining all irreducible spherical functions @,
we recall that ®(e) = I; then, the associated function H € C*(R?®) @ End(V;)

satisfies H(0,0,0) = I. In the variable r € R, we have that lim,_,o+ H(r) = I.
Therefore, we are interested in those eigenfunctions of D such that

lim H(u) = (1,1,...,1) € C*L.
u—1-
From Theorem we observe that
lir? P(u) = (ag,a1,...,ap) and lim Q(u) = (bo,b1,--.,be).
u—1-

u—1-

Moreover, the matrix T'(u) has limit when v — 17, while S(u) does not. Therefore
an eigenfunction H of D has limit when v — 17 if and only if the limit of Q(u)

when ©w — 17 is (0,...,0). In such a case we have that
(24) lim H(u)= lim UT(u)P(u) = U (ap,0,...,0)" =aop(1,...,1)".
u—1- u—1-

In this way we have proved the following result.

Corollary 4.3. Let H(u) be an eigenfunction of D with eigenvalue A = —n(n+2),
n € C, such that lim,_,,- H(u) exists. Then, H is of the form

H(u) =UT(u)P(u)
¢
with U the matriz defined in , T(u) = Z(l — uz)j/QEjj, and P = (po,...,pe)t

§=0
is the vector valued function given by

piw) =aiof (TEEETSY), 0<i<e
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where a; are arbitrary complex numbers for j = 1,2,...,L. We also have that
lim,_ - H(u) = ao(1,1,...,1) . Particularly, if H(u) is associated to an irre-
ducible spherical function, then ag = 1.

5. EIGENFUNCTIONS OF D AND F

In this section we shall study the simultaneous solutions of DH (u) = AH (u) and
FEH(u)=pH(u), 0 <u<1.

We introduce a matrix function P(u), defined from H (u) by
(25) H(u)=UT(u) P(u),

where U is the matrix defined in and T'(u) = Zﬁzo(l —u?)/2E;.
The fact that H is an eigenfunction of the differential operators D and E makes
P an eigenfunction of the differential operators

(26) D= (UT@)) 'DUT(w) and E=(UT(uw) 'EUT()),
with, respectively, the same eigenvalues A and p.

The explicit expressions of D and E shall be given in Theorem but first we
recall some properties of the Hahn polynomials.

For real numbers «, 8 > —1, and for a positive integer N the Hahn polynomials
Qn(z) = Qun(z; o, 8, N) are defined by

Qn(z) = 3 ( —n, ;ajrln-ta-&-ﬁ-&-l 1) , forn=20,1,...,N.
Taking a =8 =0, N =/, x = j, n = k, we obtain
Ujk = Qk(j) = 3F» ( BLTEAT 1)

These Hahn polynomials are examples of orthogonal polynomials, see [20] equation
(1.5.2):

y4 . . . .
s D0+ Vgt o G+ D)
(27) > Q;(NQk(r) = 4; (27 + 1)(—5]- A= g ryan

Also these Hahn polynomials satisfy a three-term recursion relation in the vari-
able j, see [I] equation (d) on page 346,
(=7 +D)+G+1)(C =) = k(k+1))Ujy,
=il =3+ DUj—1+ G+ = )Ujs1k-
Also, they satisfy a three-term recursion relation in the variable k, see [I] equation

(c) on page 346,

. {4+k+1 k+1)({—k
(29) (6 —2))Uje = BEH Y, ) BEVER G

(28)

Karlin and McGregor in [I8] also proved that the Hahn polynomials satisfy a
first-order recurrence relation that combines the variables j and & (see also [30],
equation (36)):
a0 (h(— )~k +j+1) + 2(, (= ) Unn

=20+ 1)l — )Ujs1,6 — k(k+ L+ 1)Uj -1

We will need the following technical lemma.
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Lemma 5.1. Let U = (Uj) be the matriz defined by
(31) Ui = o (7572 F051)),
and let Ag, Cy and Cy be the matrices introduced in . Then,
U1 AU = Qo + Qu,
(32) U (Cy + Co)U = —Vg,
U HCy — Co)U = Q1J — Qo(J + 1),

where
-1 ¢
Vo= (i +1)E;;, J =Y jEj,
i=0 =
-1 ¢
+1)(0+5+2 £=j+1
Qo = u 2)§+3] )EJJ+17 Zj(zgjl )EJJ 1-

3=0
Proof. To prove that U=t AqU = Qo + Q1 is equivalent to verifying that
AU =U(Qo + Q1)-
By taking a look at the jk-entry for 5,k =0,..., ¢, we obtain that

Okl k+1)(6—k
(0 =2))Ujk = Ujp—1 (2k+1 )+U %il)

This is the three-term recursion relation in the variable k given in (29)).

Observe that U~1(Cy + Co)U = —Vj is a direct consequence of Proposition
Also, it follows directly by considering every jk-entry of (Cy + Co)U = —UV}y and
by using the recursion relation (28]).

Now we have to prove that

“HCL = Co)U = =Qo(J + 1) + Q1.

By using (Cy + C1)U = —UVj, it is equivalent to prove that

—2C0U =U(=Qo(J + 1) + Q1J + Vo);
therefore, if we look at the jk-entry, what we need to verify is

_Q(CO)j,jUjk - Q(Co)j,jflUj—Lk
= —Ujk-1(Q0)_1.4(J + Vi + Ujk1(Q1) gy 1 1Tk + Ui (Vo) g s
or, equivalently, we have to prove that
2§(0 —j+D)Ujr —2j(€ —j + L)Uj—1,k

(33) = MO MERDER g 1)

By using the recurrence relation , we can write Uj x41 in terms of Uj; and
Uj k—1. Therefore, the identity becomes

(25(€ =5 +1) = k(£ = 2j) = k(k + 1)) U
=2l —j+ VU165 —k(l+k+1)Uj -1,
Finally, we use to write U;_1 1 in terms of Uj4q 5 and Ujj and obtain
(k(C = )=k(k +j +1) +2( + 1)(€ = 7)) Ujn
=2+ 1)l = NDUjs1,6 — k(k + L+ 1)Uj k-1,
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which is exactly the identity in (30]), and this concludes the proof of the Lemma
b1l O

Theorem 5.2. The operators D and E defined in are given by
DP = (1 —-u?*)P" —uCP' — VP,
EP %((1—u)Qo—i-Ql)P/—%uMP—%V()P,

where

e e

=3 (2j+3)E;, V=Y i +2)E;,
=0 J=0
-1 ¢

1)(# 2 4 1

Qo = %Emﬂ’ Q1= %E g —1s
=0 =1
L— -1
ZJH C+i+2)E 4, Vo= i +1)Ej;

Jj=0

Proof. Let H = H(u) = UT(u)P(u). We start by computing D(H) for the differ-
ential operator D introduced in .

DH = (1 -v*)UTP" + (2(1 —vw*)UT’ — 3uUT) P’
+ (1= UT" = 3uUT' + 15 (Cy + C1)UT) P
_ UT((1 —u?)P" + (201 —u)T T’ — 3u) P’

+ (1= e T T = 3T T + o+ CUT) P).
Since T is a diagonal matrix, we easily compute
‘
T_l(u)Tl( = T a- u2) Z] 5355 1T”(u) = m Zj((] - 1)u2 - 1) Ejj'
j=0

Also, from we have that U~ (Cy+C1)U = —V;. Since Vj is a diagonal matrix,
it commutes with T" and we get

(1 — )T = 3uT ™7 + 1LT*1U*1(C0 +C)UT

14

1—u2 GG = Du? —j+3ju* — j(j + 1)) Ej; = V.
0

j=

Now, for the differential operator E introduced in , we compute E(H) with

H(u) =UT (u)P(u).
— %\/1 —W2AUTP
T <;\/1 —W2AUT +

2 u
——(C1 — C)UT + =(Cy + C1)UT
2@( 0) ( 0 1) )
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= UT(% 1— 2T YUt AUTP + (; 1— 2T 'UtA,uT’
7 U 1
A At Y (o T+ =Tyt T|P).
+a==l U (C1 = Co)UT + 5T'U ! (Co + C1)U
From Lemma above we have that U 'AoU = Qo + Q1. By using T =
2520(1 —u?)I/2E,;, we get
1—uw2T U AUT = V1— 2T HQo+ Q)T = (1 — u*)Qo + Q1.

From and the fact that T is diagonal, we have that T—1U =} (Co+C1)UT = —Vj.
Then, it only remains to prove that

(38 VIR U AT 4 T (G - G)UT = —ub,
— U

Since T'(u) = =% JT(u), where J = Zﬁ:o JE;;, we have to prove that

1—u

(35) T U A UJT —U(Cy = Co)U)T = /1 — u?M.
From Lemma [5.1] we have
U AUJ = UHC1 = Co)U = (@1 + Qo) — Q1J + Qo(J +1) = Qo(2J +1)
-1
= (j+1)(€+]'+2)Ej,j+1:M.
J
Since T' = Z?:o(l —u?)I/2E;, is satisfied and this completes the proof of the
theorem. ]

Il
=)

The function P is an eigenfunction of the differential operator D if and only
if the function H = UT(u)P(u) is an eigenfunction of the differential operator
D. From Theorem we have the explicit expression of the function P(u) =

(p()(u), s 7p5(u))t7

—n+jn+j+2 1— —(i —n—1/2,n4+3/2 1—
pj(u) = aj oF ( Ry 517") +b; (1 —u?) (J+1/2)2F1( it 17“)
where a; and b; are in C, for 0 < j < /4.

Since we are interested in determining the irreducible spherical functions of the
pair (G, K), we need to study the simultaneous eigenfunctions of D and E such
that there exists a finite limit of the function H when v — 17.

From Theorem we have that lim,_,;- H(u) is finite if and only if

. 2\—(j+1)/2 —n—1/2,n4+3/2  1—u
ullgl_ by (1 —u?) U2 ( fj/+1/2 / 71T)

exists and is finite for all 0 < j < ¢. This is true if and only if b; = 0 for all
0 < j < {. Therefore, lim,_,;- H(u) is finite if and only if lim,_,,- P(u) is finite.

From Corollarywe know that an eigenfunction P = P(u) of D in the interval
(0,1) has a finite limit as w — 17 if and only if P is analytic at uw = 1. Let us now
consider the following vector space of functions into C**+1,

W = { P = P(u) analytic in (0,1] : DP = AP }.

A function P € W), is characterized by P(1) = (ag, - ,a). Thus, the dimension

of Wy is £ + 1 and the isomorphism Wy ~ C**! is given by

v:Wy—C* P PQ).
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The differential operators D and E commute because the differential operators
D and E commute (see Remark [3.14]).

Proposition 5.3. The linear space Wy is stable under the differential operator E
and it restricts to a linear map on W. Moreover, the following is a commutative
diagram

W)\—E>W)\

(36) ul J”

ottt X e
where L(\) is the (€ +1) x (¢ + 1) matriz
L)) = finc’l(V +A)—iM -1V,
-1
. Jj(e— J+1) J=DE+D)+A . i+1) (04542
- Z 2(25—1)(25+1) )Ej,jfl - zz Ll 2 . )Ej7j+1
7=0

0
i(j+1
_ Z J(J2 )Ejj-
=0

Proof. The differential operator E takes analytic functions into analytic functions,
because its coefficients are polynomials, see Theorem [5.2] A function P € W, is
analytic, then lim,_,;- EP( ) is finite. On the other hand, since D and E commute,
the differential operator E preserves the eigenspaces of D. This proves that Wy
is stable under E. In particular, F restricts to a linear map L()\) on W), to be
determined now.

From Theorem [£.2] we have

W(B(P)) = (EP)(1) = £QP'(1) — AMP(1) - 3VoP(1).
But we can obtain P’(1) in terms of P(1). In fact, if we evaluate DP = AP at
u =1 we get

P'(1) = -C~H(V +\)P(1).

Notice that C' is an invertible matrix. Hence,

V(E(P)) = —5QiC7H(V + M) P(1) — §MP(1) — 3VoP(1)

=L(\)P(1) = L(\) v(P).

This completes the proof of the proposition. ([l

Remark 5.4. If A = —n(n + 2), with n € C, then we have

-1
J(l=j+1)(n—j+1)(n+j+1) : (G+1)(¢+5+2)
o 2 By —i Yy REHERE,

LA =1

(37) 7=

J(J+1)E

'M“ EMN

Il
o

J

Corollary 5.5. All eigenvalues p of L(\) have geometric multiplicity one, that is,
all eigenspaces are one dimensional.
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Proof. A vector a = (ag,a1,...,ap)" is an eigenvector of L(\) of eigenvalue p, if
and only if {a; }ﬁzo satisfies the following three-term recursion relation

s j(l—j+1)(n—j+1)(ntj+1) j(j+1)
(38) j =i J J _J 32

- (j+1)(4+5+2)
2(2j—1)(2j+1) j—1 — i

Q. Qi1 = M ag,

for j =0,...,0 — 1 (where we interpret a_; = 0), and

. f(n—L4+1)(n+€+1) £(£+1) -
(39) 1 W ap_—1 — B} Ay = UQyg.

From these equations we see that the vector a is determined by ag, which proves
that the geometric multiplicity of the eigenvalue p of L(A) is one. (I

Remark 5.6. The values of p for which the equations and have a solution
{a;}_, are exactly the eigenvalues of the matrix L().

The equations , for j =0,...,¢—1, are used to define aq, . . ., ay starting with
any ag € C. The equation is an extra condition (a “closing equation”) that
the coefficients a; should satisty in order for a = (ao,...,ar) to be an eigenvector
of L(\) of eigenvalue p.

Finally, we get the main result of this section which is the characterization of
the simultaneous eigenfunctions H of the differential operators D and E in (0,1),
which are continuous in (0, 1]. Recall that the irreducible spherical functions of the
pair (G, K) give raise to such functions H.

Corollary 5.7. Let H(u) be a simultaneous eigenfunction of D and E in (0,1),
continuous in (0,1], with respective eigenvalues A = —n(n 4+ 2), n € C, and pu.
Thus, H is of the form

¢
with U the matriz given in (1)), T(u) = Z(l —u*)?Ej;, and P = (po, ..., pe)*
is the vector valued function given by

_ —ntj it 1w
pj(u) = a; o1 ( j+3/2 T)

where {aj};“]-zo satisfies the recursion relations and B9). We also have that
H(1) =ao(1,1,...,1)t. In particular, if H(u) is associated to an irreducible spher-
ical function we have that ag = 1.

Remark 5.8. The condition H(1) = (1,...,1)" implies that P(1) is a vector whose

first entry is equal to 1.

In S3, the set
{xe — (vV1-62,0,0,0): 60 € [-1,1] }

parameterizes all the K-orbits. Notice that for § > 0 we have that 2y € (S3)*, and

p(zg) = (¥ 1;‘92,070). Therefore, in terms of the variable r € [0,00) we have that
r =X 1;02, and then, in terms of the variable v € (0,1] we get u = \/ﬁ = 0.

Hence, given an irreducible spherical function ® of type 7 € K , if we consider the
associated function H : S% — End(V;) defined by

H(g(0,0,0,1)") = ®(9)®;'(9), g€G,
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we have that
(40) H(v/1—4?2,0,0,u) = diag{ H(u)} = diag{UT (u)P(u)},

where H(u), u € (0,1], is the vector valued function given in Corollary and
diag{H (u)} means the diagonal matrix valued function whose kk-entry is equal to
the k-th entry of the vector valued function H (u).

6. EIGENVALUES OF THE SPHERICAL FUNCTIONS

The aim of this section is to use the representation theory of G to compute the
eigenvalues of an irreducible spherical function ® corresponding to the differential
operators A; and A,. From these eigenvalues we shall obtain the eigenvalues of
the function H as eigenfunctions of D and F.

As we described in Section [2] there exists a one to one correspondence between
irreducible spherical functions of (G, K) of type § € K and finite dimensional
irreducible representations of G that contain the K-type d. In fact, every irreducible
spherical function ® of type § € K is of the form

(41) ®(g)v = P(0)1(g)v, g € G, v € P(6)V,,

where (7,V;) is a finite dimensional irreducible representation of G, which contains
the K-type 0, and P(J) is the projection of V, onto the K-isotypic component of
type 6.

The irreducible finite dimensional representations 7 of G = SO(4) are parame-
terized by a pair of integers (mq,mga) such that

my > |mal,

while the irreducible finite dimensional representations 7, of K = SO(3) are pa-
rameterized by £ € 2Nj.

The representations 7(,,, m,) restricted to SO(3) contain the representation
if and only if my > £/2 > |ms]|. Therefore, the equivalence classes of irreducible
spherical functions of (G, K) of type m; are parameterized by the set of all pairs
(m1,ma) € Z* such that

mp 2> % > |ma].
We denote by
@Eml’mﬂ, with  mq > g > |mal,
the spherical function of type 7, associated to the representation 7(,,, m,) of G.

(m1,ma2)
L

Theorem 6.1. The spherical functon ® satisfies

A1‘P§ml’m2) = 1(m1 —ma)(my —ma + 2)¢§m1’m2)7
Ap®(mm2) = 1(my +ma)(my +ma + 2)p(mm2)

Proof. We start by observing that the eigenvalue of any irreducible spherical func-
tion ® corresponding to a differential operator A € D(G)%, given by [A®](e), is a
scalar multiple of the identity. Since A; and Ay are in D(G)%, we have that

[Alq)gmth)](e) = %(ml,mz)(Al) and [Agéynl’mz)](e) = ’f-(mlﬂnz)(AQ)'

These scalars can be computed by looking at the action of A; and Ay on a
highest weight vector v of the representation 7(,,, m,), whose highest weight is of
the form myeq + maes.
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Recall that
Ay = (iZ6)* +iZ6 — (Zs +iZ4)(Zs — iZ4),
Ao = (i23)* +iZ5 — (Zo +iZ1)(Zy — i 7).
Since (Zs — iZ4) and (Zy — iZ7) are positive root vectors and Zg, Z3 € b, we get
Fomama) (DU = Fnyma) (126)0 + Fnyma) (i26)0 = (my — ma)(my — mag + 2)v,
Fomyma) (D2)V = Fimy ma) (123)%0 + Finyma) (123)0 = +(my + ma)(my +ma + 2)o.
This completes the proof of the theorem. O

Now we give the eigenvalues of the function H associated to an irreducible spher-
ical function, corresponding to the differential operators D and F.

ma)

Corollary 6.2. The function H associated to the spherical function (ngl’
DH = M\H and EH = pH with

satisfies

A=—(m1 —mz)(my —ma +2), u:—wf;m—k(ml—kl)mg.

Proof. Let ® = q)éml’mz). From Proposition we have that A;® = A\® and
As® = 1@ if and only if DH = AH and EH = pH, where the relation between
the eigenvalues of H and @ is

A= —4), p=—1000+2)+1 -

Now the statement follows easily from Theorem [6.1] O

Corollary 6.3. The function P associated to the spherical function @ﬁml’mz), defined
by H(u) = UT(u)P(u) (see ([25)), satisfies DP = AP and EP = pP with

A= —(myg —ma)(my —mg + 2), u:—%+(m1+l)m2.

Remark 6.4. Notice that we have just proved that the eigenvalue A can be written
in the form
A=—n(n+2), with n € Nj.

Proposition 6.5. If ® is an irreducible spherical function of (SO(4),SO(3)), then
®(—e) = +1I. Moreover, if & = <I>§m1’m2) and g € SO(4), then

B(—g) = ®(g) if mi+mo=0 mod (2)
—®(g) if mi+ma=1 mod (2).

Proof. As we mentioned in Section [2| every irreducible spherical function of the
pair (SO(4),S0(3)) of type m, is of the form ®(g) = Pr7(g), where 7 € SO(4)
contains the K-type m and Py is the projection onto the m-isotypic component of
V.
Let 1 be the highest weight of 7 = (mq, mga) € 80(4), ie. 1 =myer + maes (see

Subsection . We have that

07 00

—e—en (718 1)

0 0-x0

therefore, if v is a highest weight vector in V; of weight 7, we have

T(—e)v = e Mty — 4y
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Since 7(—e) commutes with 7(g) for all g € SO(4), by Schur’s Lemma 7(—e¢) is a
multiple of the identity . Thus,

I, ifmi+me=0 mod(2)
7(—e) = { —1I, ifmi —|—mz =1 mod (2) -
Therefore,
®(—g) = Pr7(=g) = Pr7(—e)7(9) = 7(—€)®(g).

Hence, the proposition is proved. O

7. THE FUNCTION P ASSOCIATED TO A SPHERICAL FUNCTION.

In the previous sections we were interested in studying the irreducible spherical
functions ® of a K-type m = my. This is accomplished by associating each function
® to a C'*'-valued function H, which is a simultaneous eigenfunction of the differ-
ential operators D and E in (0,1), given in and ([19), continuous in (0,1] and
such that H(1) = (1,...,1). This function H is of the form

H(u) =UT(u)P(u),
where U is the constant matrix given in and T'(u) = Zﬁ:o(l —u?)/2E;.
In this way we have associated each irreducible spherical function ® to a function

P(u), analytic in (0,1], which is a simultaneous eigenfunction of the differential
operators D and F, explicitly given in Theorem by

DP = (1—-u*)P" —uCP —VP,
EP = (112100 + Q1) P uMP — 40P

From Corollary we have that a vector valued eigenfunction P = (po, ..., ps)*
of D with eigenvalue A = —n(n + 2) and such that lim,_,;- P(u) exists is given by

—n+jn+i+2, 1- .
piw) =aoFy (TUEEETSY) L 0=y,
where a; are arbitrary complex numbers for j =1,2,...,7.

Let us introduce the following vector space of functions into C¢*!, defined for
n € Ng and p € C,

(42) Vo = {P = P(u) analytic in (0,1] : DP = —n(n +2)P, EP = uP}.

We observe that V, ,, # 0 if and only if 4 is an eigenvalue of the matrix L(\)
given in , with A = —n(n + 2). We are interested in considering only the cases
Vn,u # 0.

From Corollary we have that a function P € V, , is of the form P =
(po, - - ., pe)t, where

(43) pi(u) = a; oFy (_nﬁgﬁjw; 1_7“) . 0<j<y,

and the coeflicients {%’}5:0 satisfy the recursion relations (38]).

We observe that the equation is automatically satisfied because p is an
eigenvalue of the matrix L(\) given in (37).

If the function P is associated to an irreducible spherical function, then we have
ap = 1, because the condition H(1) = (1,...,1) implies that P(1) is a vector whose
first entry is 1, see .

Proposition 7.1. If P € V), ,, then P is a polynomial function.
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Proof. Let P(u) = (po(u),...,pe(u)) € C**L. From Corollarywe have that the
entries of the function P are given by

— i, i4+2 vy
(11) piw) = agaly (TR )

where the coefficients {a; }§=0 satisfy the recursion relation , for some eigenvalue
wof L(A).

For 0 < j < n, the function p;(u) is a polynomial function, while for n < j < ¢
the series defining the hypergeometric function is not finite. Hence, in this case we
have that p; is a polynomial if and only if the coefficient a; is zero.

From the expression of E in Theorem for 0 < j < ¢ we have

; i+1) (L4542 j(6—j+1
Hp; =3 ((1 —u?)Y 2)§'+3j )p;Jrl + ](23‘11 )p;'fl)

(45) ,
—2u(f + D)(0+j +2)pjsr — 550G + 1)pj,

where we interpret p_1 = pg41 = 0.
By induction on j, suppose that p; and p;_; are polynomial functions and let

pit1(u) = 350 bru”. Then,
p(u) = 555 (1= w?)pj 1 (w) = upjsr (u)

= 573 D (k4 Dbryr — (k+ 2 + 2)b 1)

k>0
is also a polynomial function in w, (where as usual we denote b_; = 0). Let
m = deg(p). Thus, for k > m we have
Y
br+1 = % b1,

then |bgy1| > |bg—1] for & > m. Since lim, ;- pj41(u) exists, we have that by =0
for & > m. Thus, p;41 is a polynomial. Also, we conclude that if n < ¢ the j-th
entry of P is p; =0 forn < j < /.

O

Corollary 7.2. The function P(u) associated to an irreducible spherical function ®
of type 1y is a C*T 1 -valued polynomial function.

Proof. We only have to recall that the function P associated to the irreducible

spherical function @gmhmﬂ of type m¢ belongs to V, ,,, with n = m; —my € Ny and

= _8(6442) + (mq + 1)mg (see Corollary . O

8. FroM P 1O ¢

8.1. Correspondence between polynomials and spherical functions.

In this subsection we will prove that, given m, € K , there is a one to one
correspondence between the vector valued polynomial eigenfunctions P(u) of D
and E such that the first entry of the vector P(1) is equal to 1, and the irreducible
spherical functions ® of type m.

Theorem 8.1. There is a one to one correspondence between the irreducible spherical
Junctions ® of type mp € K, £ € 2Ny, and the functions P in V, , # 0 such that
P(1)=(1,a1,...,as).
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Proof. Given an irreducible spherical function of type my, we have already proved
that the function P associated to it belongs to the space V, ,,, and P(1) has its first
entry equal to one.

The equivalence classes of irreducible spherical functions of (G, K) of type my
are parameterized by the set of all pairs (m,mg) € Z? such that

mp 2> % > |ma].

Every irreducible spherical function @Emhmﬁ corresponds to a vector valued
eigenfunction Pz(ml’m2) of the operators D and E whose eigenvalues, according to
Corollary are respectively

Ameme) — ) —mg)(my — ma + 2),

py™ ) = 2 (g 4 1)my.

Easily one can see that for different pairs (my,ms) the pairs of eigenvalues

(Afmema) L fmeme)y are different. Thus, each eigenfunction PL™ ™) is associated

to a unique irreducible spherical function @éml’m”.

On the other hand, from we know that P € V, , if and only if P(u) =
(po(u), ..., pe(u))t is of the form

pj(u) = a; oFy (_”';j_’g;;jw; 1_Tu> , forall0<j</¥,
where {aj}§:0 satisfies . Thus, a = (ag, - ..,as)! is an eigenvector of the matrix
L()\) with eigenvalue p. In particular there are no more than ¢+1 linear independent
eigenvectors. If P € V,, , then P is a polynomial function; hence, when n < ¢ we
have that
a; =0, forn<j </

Thus, the eigenvectors of L(\) live in a subspace of dimension n + 1 and, hence,
there are at most n + 1 linear independent eigenvectors. From Corollary we get
that every eigenspace of L()\) is one dimensional. Therefore we conclude that, up
to scalars, there are no more than min{¢ + 1,n + 1} eigenvectors of L(\).

Hence, it is enough to prove that for each A = —n(n+2), with n € Ny, there are
exactly min{¢ 4+ 1,n + 1} irreducible spherical functions of type 7, € K.

It is easy to verify (see Figure [2)) that there are exactly min{¢ 4+ 1,n + 1} pairs
(m1,me) € Z x Z, satisfying

(46) my > % > |mo] and m; —me =n.

This concludes the proof of the theorem. O

If we take n = m; — mg and k = £/2 — my in Corollary we have that for an
eigenfunction P(u) of D and E, associated to an irreducible spherical function of
type m¢ € K, the respective eigenvalues are of the form

A=-nn+2), pu=—-LtE+D)+n—k+5+1)(5-k),

with 0 <n and 0 < k < min(n, £).

Now we can state the main theorem of this paper.
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/2

FIGURE 2. Pairs (mj, my) that contain the K-type /.

Theorem 8.2. There exists a one to one correspondence between the irreducible
spherical functions of type m¢ € K and the vector valued polynomial functions
P(u) = (po(u),...,pe(w))t with
—n4jnt+ji+2, 1—
pj(u) = a; o ( iy Tu) :
where n € Ny, ag =1 and {aq; }gzo satisfies the recursion relation

; A=+ D) (n—j+1) (n+j+1)
2(2j-1)(25+1)

for0< 3 <{l—1, and pu of the form
p=—h (G (k= ) (- ),
fork € Z,0 <k <min{n,(}.

_ JG+y o SUHDE++2) )
j—1— "5 a1t 2 aj+1 = pag,

8.2. Reconstruction of an irreducible spherical function.

Fixed ¢ € 2Ny we know that a function P = P(u) as in Theoremis associated
to a unique irreducible spherical function ® of type m; € K. Now we show how to
explicitly construct the function ® from such a P. Recall that P is a polynomial
function.

Let us define the vector function H(u) = UT(u)P(u) = (ho(u), ..., he(u)), u €
[—1,1], with U and T'(u) as in Corollary[5.7 and let diag{ H (u)} denote the diagonal
matrix valued function whose kk-entry is equal to the k-th entry of the vector valued
function H (u).

On the other hand, if we consider the function H : S — End(V;) associated
to the irreducible spherical function ®, from Corollary and we know that

for u € (0,1)
H(vV1—u?,0,0,u) = H(u).

Therefore, since both functions in the equality above are analytic in (—1,1) and
continuous in [—1, 1], we have that

H(v1—42,0,0,u) = H(u),

for all u € [—1,1].
Since H(kx) = m(k)H(z)m,; ' (k) for every = € S® and k € K, we have found
the explicit values of the function H on the sphere S®. Then, we can define the
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function H : G — End(Vy,) by
H(g) = H(gK), g€G.
Finally, we have that the irreducible spherical function ® is of the form

®(g) = H(9)®x,(9), 9€G,
where @, is the auxiliary spherical function introduced in Subsection

9. HYPERGEOMETRIZATION

In this section, for a fixed ¢ € 2Ny we shall construct a sequence of matrix valued
polynomials P,, closely related to irreducible spherical functions of type m, € K.
Given a nonnegative integer w and k = 0,1,2,...,¢, the integers m; = w + £/2
and my = —k + £/2 satisfy
|

Nl
N
[ 1N

w5 >E5>|-k+

Then, we can consider
Plwt/2.—k+t/2)
YA 9

the spherical function of type m, € K associated to the G-representation T(m1,ms)-

Also let us consider the matrix valued function P, = P,(u), whose k-th col-
umn (k = 0,1,2,...,¢) is given by the C**'-valued polynomial P associated to
‘I)éw+é/2,—k+€/2).

From Corollary we have that the k-th column of P, is an eigenfunction
of the operators D and E with eigenvalues A\, (k) = —(w + k)(w + k + 2) and
fw(k) = w(k — k) — k(% + 1) respectively.

Explicitly, we have that the jk-entry of the matrix P, is given by

), —w—k+j,w+k+7
(a7) Pulwlye =} oFs (7R 0 - w/2),

where af"* = 1 for all k and {a}”’k ¢y satisfies

I D (k=i 4 1) (wrkj 1) wk G+ gwk _ GED(+2) jwk
(48) 2(25—1)(25+1) j—1 2 j 2 j+1

= (w(t —k)— k(£ +1)) a}”’k.

From Proposition with n = w + k, we have that [P, (u)];x is polynomial on
u. Therefore, we have the following results.

Proposition 9.1. The matrix valued polynomials P, defined above satisfy
DP, = P,A, and EP, = P,M,,
where Ay = o Ao (k) Eg, My = Sk i (k) Exg, and
Ao(k)=—(w+Ek)(w+k+2)  and  pu(k)=w’ —k)— k(5 +1).

For the particular case w = 0, we have the following explicit formulas for a?’k.

Proposition 9.2. We have
ok (207K 5!
(49) YT =)
a?’kzo for0<k<j<U{.

for0<j<k<Y,
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0,

j k satisfy the

Proof. Clearly ag’k = 1; then, we only need to check that these a
following three-term recursive relation:

(=41 (k—j+1)(k4+j4+1) 0.k iG+1) 0k . (G+1)(+j+2) 0,k k(0+2) 0,k
(50) ,L]( 12(2);71)1(%1(1)1 )aj71_3(32 )aj _ )(2 J )aj+1__( )a )

2 J

Notice that if the coefficients a?’k are given by , for 0 < j < k </ we have

C 0k 2j—1 0k
ia;0) = — 55519,

Hence, for 0 < j < k < ¢ (50)) is equivalent to

_J'(Z*j+1)(k+j+1)a07k _ JG+1)
2(2j+1) j 2

0k _ k—j 0k

and iajy = 55770

D E+5+2)(k=j) 0.k _ _k(t+2) 0k
2(2j+1) j 2 J

0k
4
which can be easily checked.

If j = k41 we have

§ (EAD (= (r 1)+ D (k= (k1) 1) (k4 (k1) +1) 0k _
2(2j—1)(25+1) E— Y

which is true. And if j > k+2 we just have 0 = 0. Therefore, the coefficients given
by satisfy and the proof is finished. [

9.1. The hypergeometric operators. Now we introduce the matrix valued func-
tion ¥ defined by the first “package” of spherical functions P, with w > 0, i.e.,

U(u) = Py(u).
From and we observe that U(u) is an upper triangular matrix. Moreover,
U(u) = (¥,),k is the polynomial function given by
(25 + 1)(—2i)7 k!j!cj+1_
(k+j4+1) k=i

(51) Ui = (w), for0<j<k<U{,

where C,]:;(u) is the Gegenbauer polynomial
cio= (3277 ) (it o),

Since the k-th column of ¥ is an eigenfunction of D and E with eigenvalues
Xo(k) = —k(k+2) and po(k) = —k:(% + 1) respectively, the function ¥ satisfies
(52) DU =UA, and EV = UM,
where Ag = Ei:o Ao(k)Egr and My = Zi:o o (k) B

Remark 9.3. The entries of the diagonal of ¥(u) are nonzero constant polynomials,
thus we have that ¥(u) is invertible.

Moreover, the inverse W(u)~! is also an upper triangular matrix polynomial. This
can be easily checked, for instance, using Cramer’s rule, because the determinant
of U(u) is a nonzero constant.

Theorem 9.4. Let D and E be the differential operators defined in Theozem and
let U the matriz valued function whose entries are given by . Let D=9"'D¥
and E = U~'EV, then

DF =(1 — u?)F" 4 (—uC + 81)F' 4 AoF,
EF =(uRy + Ry)F' + MyF,
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for any C>=-function F on (0,1) with values in C*+1, where

4
C=) (2j+3)Ej; S1=2_ 20 + DBy
=0 =0
-1 -1 d
- - :
Ry=Y Gp L S Uip Ry=) (5-0)Ei;
§=0 3=0 =0
‘ L
Ao=> —j(j +2)E;;, Mo =) —j(§+1)E;;.
i=0 =0

Proof. By definition we have
DF = (1 —u®)F" + U '[2(1 — u®)¥ — uCV)F’
+ U1 - u?) P —uC¥ — V] F,
EF = 107 (1 —u?)Qy + Q1|0 F’
+ U (1= uH)Qo + Q1) W — LuMT — LV F.
By using we observe that
(1 —u*)V" —uC¥ — VU = DU = UA,,
H1=u®)Qo+ Q) — fuM¥ — LVU = EW = UM,

To complete the proof of this theorem, we use the following properties of the
Gegenbauer polynomials (for the first three see [20] page 40, and for the last one
see [33], page 83, equation (4.7.27))

A
92 4y = ),

(54) 2(n + A\uC(u) = (n+ 1)y 1 (u) + (n +2X — 1)Ci_ (u),

(53)

dc) + 12 A +n—1)
55 (=GR + (-2 = - PR D o),
2A—1
o) BN = Ol - uClw),
We need to establish the following identities
(57) [2(1 — u?)¥' —uCV] = ¥(—uC + 1),
(58) HA = u*)Qo + Q1Y = V(uRy + Ry).

Since is a matrix identity, by looking at the jk-place we have
2(1 = u?) Wy — uCyy ¥ = — W juChp + g1 (S1)k—1,k-

Multiplying both sides by (%iﬁ(%;));w and using we have

d . . . )
2(1 — UQ)@C,J:} —w(2j+3)CLT = —u(2k + 3)C{T L+ 2(k + j + )OI

and by setting A=3j+ 1 and n =k — j we get
A

2(1 — uQ)d(Z” —u2A+1)C) = —u(2(n+\) + 1)Cr +2(n+2)\ - 1)C)_;.
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A
To see that this identity holds, we use to write ddi" in terms of C;) and C’r’?;ll,

(54) to express C;_; in terms of C) and C;,, and then we recognize the identity
(56). Thus, we have proved .

Now we need to verify the matrix identity . The jk-entry is given by (see
Theorem for the definition of the matrices @y and Q1)
11 =) (Q0)j i1 %41k + 5(Q1)j 1V 1k =
wV ik (R2) ek + ¥ k1 (R)kr1,6 + Vi1 (R1)k—1,k-

Again, multiplying both sides by % and setting A\=j+1land n =k — j, we
obtain
N+ A+1) (=A+2)(n+2X2—-1) \_
2 A1 A1 _
(1 u ) n+2)\ Cn—l 4 On+l
—n—A+1)2A=1)(n+A)
£ A—1)) @27 — 1o - ¢ A

2A—1)(n+21—1)
2

Now we firstly use 1’ combined with to write )71 in terms of O and C’,’?_T_},
and then we use (54)) to express Cy_; in terms of C; and C;, ;. Then we get

A
X,

2(n+2X) 2(/\ _ 1) n+1
which is true by . O

(A2 —LA—3A—fn—2n)(2A—1) <UC7)1\(U) + (TL +2A — 1) C)\fl(u) _ C’r)l\+1(u)> — 07

For each w € Ny let us introduced the matrix valued function
(59) P,=U"'P,,

where P, is the matrix valued polynomials introduced in and ¥ the upper
triangular matrix function given in . We recall that the function ¥~! is a
polynomial function, as we observed in Remark Therefore, P, is also a poly-

nomial function. The following result is a direct consequence of Proposition[9.1] and
Theorem

Corollary 9.5. The matriz valued polynomials ]5w = U1 P, satisfy
DP,=P,A,  and  EP, = P,M,,
where A, = Zi:o Aw (k) Egr, My = Zi:o oy (k) Egr, and
Ao(k) = —(w+Ek)(w+k+2)  and  pu(k) =w(k —k) — k(£ +1).

9.2. The explicit expression of the coefficients a}”’k.

In this subsection we give the expression of the coefficients a;”’k7 defined by
the relation (48], in terms of the Racah polynomials. We recall that the Racah

polynomials are defined (see for example (1.2.1) in [20]) by

—k,k+a+5+17—x,x+7+5+1.1
a+1,84+6+1,v+1 '

forn =0,1,... N, where A(z) = x(x+~vy+0d+1) and one of the numbers a+1, f+0+1
or v+ 1 are equal —N, with IV a nonnegative integer.

(60)  Ri(A(x):aB.7.6) = 4Fy (
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If we take
—(+1), B=—(w+k+1), v=0, §=0, N={ x=j,
then the Racah poynomials
Re(A(j)) = Re(A(j); =€ —1,—w — k —1,0,0)

—k,—0—w—-1,-5,j+1
:4F3( hwl ;1>
satisfy the difference equation (see [20], equation (1.2.5))

(61) U=OU 00D Ry (A(j + 1)) + ZHEJUERECED Ry (A(j - 1))
+(2k(w+ €+ 1) —§(j + 1) — £(w + k)) Ri(A(j)) = 0.

Proposition 9.6. For w € Ny and 0 < j, k < 0 let

a;f’”“ = (—2i)7 (—w — k); (2];) ()(‘*;*1)‘le(A(j);—z—1,—w—k— 1,0,0).

Then az)”’k =1 and the sequence {aj’w} satisfies the recursion relation .

Proof. 1t is easy to check that ag”k = 1. Thus we start by observing that

L0\ (i1 L (mw—k+) (6—5) :
i GV 5 i kAU + 1),

eHj+1\ "L (25—-1)(e+5+1)
()( ? ) (w+lg—j3r(1)(z 7+ Rk( (G —1)).

iaf = (=20 (~w —k);

iaj’ 1—( 2i)7 (—w — k);

(23)'
The left-hand side of (48) becomes

L—7+1)(w+k 1) (w+k 1 w,k w,
i1 )((2;Ir 1)%;_]+)(1)+ L a;2y —j+ D a;" —i(G+D)(+j+2)a

= (—=2i)7 (—w — k); ()(ﬁ+]+1)—1(](w+k+g+1)(l+g+1) Re(AG = 1))

J+1

(23)'

= 3+ DREAG)) + SEREDEHD Ry (A + 1)),

J 2j+1

By using the difference equation we have that the expression above is equal to
. £45+1
(=20 (—w = k) (5) (H5H)

= (w(t —2k) — k(£ +2))a"".
This turns out to be the right-hand side of and the proof is complete. O

-1

(C(w—+k) = 2k(w+£+1)) Rg(A(j + 1)

Corollary 9.7. For w = 0 we obtain

!

= (2 (—k); .
Proof. We start by observing that for w = 0 the Racah polynomial involved in the
expression of a?’k can be written as a 3F5 function

Ri(A(j);— = 1,—k = 1,0,0) = oFy ( F 17 0) = gy (TIN50,
By Pfaff-Saalschiitz identity (see for example [I], Theorem 2.2.6) we get
—gatt—e1 ) = G025 ey ey
?rFQ( 1,—¢ ) ) (1)j (6*]4‘1)] ( ) ( 7 )(]) :
Now the corollary follows directly from Proposition O
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Remark 9.8. The expression of a?’k in Corollary coincides with the result ob-
tained in .

Corollary 9.9. For 0 < j,k </ the jk-entry of the polynomial P, is given by
) | . 1 Y A
[Pl = (=207 (= = B s () (F) ks (5 )

o (TR - w)2).

10. ORTHOGONAL POLYNOMIALS

The aim of this section is to build classical sequences of matrix valued orthogonal
polynomials from our previous work. This means to exhibit a weight matrix W
supported on the real line, a sequence (ﬁw)wzo of matrix polynomials such that
deg(ﬁw) = w with the leading coefficient of P, nonsingular, orthogonal with respect
to W, and a second order (symmetric) differential operator D such that DP,

P A, where A, is a real diagonal matrix. Moreover, we point out that we also
have a first order (symmetric) differential operator E such that EP, = PwMu,,
where M, is a real diagonal matrix.

From D (see Theorem we obtain a new differential operator D by making
the change of variables s = (1 — u)/2. Thus,

DF =s(1—s)F" — (Sl 5 ¢ + C) F' + AoF.

10.1. Polynomial solutions of DF = A\F.

We are interested in studying the vector valued polynomial solutions of the
equation DF = AF; in particular we want to know when polynomial solutions
exist. We start with

(62) s(1— 8)F" + (B —sC)F' + (Ag — \) F =0,
where
? /—1
c-S . )
B=— ==Y G+ DE; - > G+ 1DEj 1,
=0 =0
L -1 V4
C=>(2j+3)E;, Si=Y (+DEjjx, Ao=-Y i(i+2)Ej;.
§=0 §=0 j

This equation is an instance of a matrix hypergeometric differential equation
studied in [36]. Since the eigenvalues of B are not in —Np, the function F is
determined by Fy = F(0). For |s| < 1 it is given by

> g7
F(s) = oHy (970 s) Fo= Y 5B Cs—Ao + AjFo,  Fp € €Y,
— jl
7=0
where the symbol [B; C; —Ag + A]; is inductively defined by
[B; C;—Ag + AJo = 1,
[B: s —Ao + N1 = (B+4) " ((C+7 = 1) = Ao+ N)[B; C;—Ap + A,
for all 7 > 0.
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Therefore, there exists a polynomial solution of if and only if the coefficient
[B; C; —Ao+ ], is a singular matrix for some j € Ny. Moreover, we have that there
is a polynomial solution of degree w of if and only if there exists Fy € C¢*!
such that [B;C; —Ag + A\ Fo # 0 and

(w(CH+w—-1)—Ag+AN)Fy, =0, where F,=[B;C;—A¢+ AwFo.

The matrix
4
(63) My =w(CH+w—1)=Ag+A=> ((+w)(i+w+2)+NEj;
j=0

is diagonal. Then, it is a singular matrix if and only if A is of the form
(k) = —(k+w)(k+w+2),
for 0 < k < £. We get the following result.

Proposition 10.1. Given A € C, the equation DF = AF has a polynomial solution
if and only if \ is of the form —n(n +2) for n € Ny.

Remark 10.2. Let w € No, 0 < k < £. The eigenvalue A\, (k) satisfies A, (k) =
—n(n + 2) with n € Ny if and only if n = w + k. In particular,

Aw(k) = A (') if and only if w+k =w"+ k.

Now we want to study in more detail the polynomial solutions of DF' = AF. Let
us assume that A = —n(n + 2) with n € Ny. Let

F(s) = Z F;st
i=0
be a polynomial solution of degree w of the equation DF = AF. We have that the
coefficients F; are recursively defined by
Fi+1 = (B + Z)ilMZFZ = [B, C, 7A0 + )\]Z‘Fo,

where M; is the matrix defined in .
The function F is a polynomial of degree w if and only if there exists Fy € C**!

such that
(64) F,=[B;C;—Ao+ NwFo#0 and M,F, =0.

As we said, the matrix M, is singular if and only if A\ = A, (k) for some k such
that 0 < k < ¢, and therefore, we have

(65) w=mn-—k.

Also, we observe that M, F,, = 0 if and only if F, is in the subspace generated by
ex (the k-th vector of the canonical basis of C*+1).

Now we want to prove that it is always possible to choose a vector F, € C/H!
such that [B; C; —Ag + A]wFo = eg. Recall that

[B;C;—Ao+ NwFo=(B+w—1)"'My, ... MiB~*MyFy,
and that, for 0 < i < w, the matrices M,,_; are defined by

L
7=0
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In particular the kernel of the matrix M,,_; is Cegy; for 0 < ¢ < min{w, ¢ — k},
because Ay (k) — Aw—i(j) = 0 if and only if j — i = k (see Remark [10.2).

Let W}, be the subspace in C**! generated by {eg,e1,...,ex}. We observe that
for every j € Ny we have that W, is invariant by (B + j)f1 because it is an upper
triangular matrix. For j < w, Mj is a diagonal matrix whose first k£ + 1 entries are
not zero, thus the restriction of M; to W}, is invertible. Therefore, there exists Fj
such that [B; C; —Ag + A Fy = ei. Then

F(’U,) = 2H]_ (C’_%(H_)\;u) FO

is a vector polynomial of degree w. We observe that Fj is unique in Wy, but not in
C*1. Anyhow, the k-th entry of F is a polynomial of degree w, and all the other
entries are of lower degrees because the leading coefficient F;, is always a multiple
of e .

In this way, we have obtained the following results. In the first one we fix the
eigenvalue A = —n(n + 2) with n € Ny while, in the second one we fix the degree
w of the polynomial F.

Proposition 10.3. Let n € Ng and A\ = —n(n+2). If P is a polynomial solution of
DF = \F of degree w, thenn — ¢ < w < n.

Conwversely, for every w € Ny such that n — £ < w < n, the equation DF = \F' has
a polynomial solution of degree w. Moreover, if w =n —k, 0 < k </, the leading
coefficient of any polynomial solution of DF = \F is a multiple of ey.

Proof. From we have that there exists a polynomial solution of degree w if and
only if w =n — k, with 0 < k < /. In such a case, we have proved that there exists
F, € C**' such that holds and we have that F, is a multiple of eg. O

Proposition 10.4. Given w € Ny there exist exactly ¢ + 1 values of A such that
DF = A\F has a polynomial solution of degree w, more precisely
A=Xp(k)=—=(k+w)(k+w+2), 0<k<L

For each k the leading coefficient of any polynomial solution of DF = A\, (k)F is a
multiple of ey, the k-th vector in the canonical basis of CH1.

10.2. Our sequence of matrix orthogonal polynomials.
The matrix polynomials

Py (u) = W(u) ™' Py(u)
were introduced in .

Proposition 10.5. The columns {]Bﬁ}kzo ¢ of }Sw are polynomials of degree w.

Moreover,

.....

deg (R’ﬁ)k =w and deg (f’[ﬁ) <w, forj#k.
j

Proof. The k-th column of the matrix P, = ¥—1P, is the vector Pk = v-Llpk

w —
where P% is the k-th column of P,. From Corollary we have that PP is a
polynomial function that satisfies

for Ay (k) = —(w + k) (w + k +2) and (k) = w(§ — k) — k(5 +1).
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If w’ denotes the degree of P¥. then we have that w +k — £ < w' < w + k (see
Proposition |10.3). Hence we write

PE=>"A;  with A; € C*,
j=0

Moreover, from Proposition we have that the corresponding eigenvalue of
D should be equal to Ay (k') = —(w’' + k') (w' + K 4+ 2), with 0 < k' < ¢, and the
leading coefficient A, has all its entries equal to zero, except for the k’-th one.
From Remark [10.2] we obtain that

w—w =k —k.
On the other hand, P* satisfies EP¥ = p1,,(k)P¥, where
EF = (uRy + Ry)F' + MyF
is the differential operator given in Theorem [9.4f Then, the coefficients of the
polynomials P* satisfy
(jR2 + Mo — pw(k))Aj + (j + 1) R1Aj41 =0, for 0 < j <,
denoting A,41 = 0. In particular, for j = w’ we have
(66) (w/Rg + My — /.Lw(k))Aw/ =0.
From Theorem [0.4] we have

w'Rg + My — Nw(k)-[ =

(w'(5 = 5) —w(§ — k) + (k= §)(5 + 1)) Ej;.

§=0
From equation we have that the k’-th entry of the matrix w’ Ro + Mgy — i, (k)1
must be zero, then

0=w'(5—K)—wt -k +(Fk-K)E+1).
Since w —w’ = k' — k, we have 0 = (w — w’)(1 4+ k + w), which implies that w’ = w
and k' = k.
Therefore, ]35 is a polynomial of degree w and the only non zero entry of the
leading coefficient of ]35 is the k-th one. O

10.3. The Inner Product.

Given a finite dimensional irreducible representation m = 7y of K in the vector
space Vj, let (C(G) ® End(V;))X*X be the space of all continuous functions @ :
G — End(V;) such that ®(k1gks) = w(k1)®(g)7 (ko) for all g € G, k1, ke € K. Let
us equip V, with an inner product such that 7(k) becomes unitary for all k € K.
Then, we introduce an inner product in the vector space (C(G) ® End(V,))5*¥ by
defining

(67) (1, ) — /G (@1 (9)®2(g)") dg

where dg denotes the Haar measure of G normalized by fG dg = 1, and ®5(g)*
denotes the adjoint of ®5(g) with respect to the inner product in V.
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By using Schur’s orthogonality relations for the unitary irreducible representa-
tions of G, it follows that if ®; and ®, are non equivalent irreducible spherical
functions, then they are orthogonal with respect to the inner product (-, ), i.e.

(P, Dy) = 0.
In particular, if ®; and ®5 are two irreducible spherical functions of type m = 7,
we write as above (see @) ®; = Hi®, and &5 = Hy®, and put
Hl(u) = (ho(u), e ahf(u))ta H2(u) = (fo(’l,t), e af((u))t7
as we did in Subsection B2l
Proposition 10.6. If ®1,®, € (C(G) ® End(V;)) X then

(B, Py) = /\/1—U2Zh u) f;(u) /\/1—u2H2 YH, (u

Proof. Let us consider the element Ey = Ey4 — E4q € g. Then, as so0(4)c =~
5((2,C) @ sl(2,C), ad Eq has 0 and +i as eigenvalues with multiplicity 2.
Let A = expRE; be the Lie subgroup of G of all elements of the form

cost 0 0O sint
0 1 0 0
0 0 1 0 ’
—sint 0 0 cost

Now Theorem 5.10, page 190 in [16] establishes that for every f € C(G/K) and
a suitable c,

a(t) = exptE; = teR.

f(gK) dgic = c. /

G/K K
where the function J, : A — R is defined by

S.(a(t) = ] Isinitv(E)],

vext

» ( / " b (a(D) f (ka() K) dt) dkar

—T

and dggx and dky; are respectively the left invariant measures on G/K and K/M
normalized by fG/K dgg = fK/M dkar = 1. Recall that M was introduced in

and coincides with the centralizer of A in K. In our case we have §,(a(t)) = sin”¢.
Since the function g — tr(®q(g)P2(g)*) is invariant under left and right multi-
plication by elements in K, we have

(68) (D1, Pa) = s /7T sin?t tr (®q(a(t))®a(a(t))*) dt.

™

Also, for each t € [—,0], we have that (I —2(E11 + Ea2))a(t)(I —2(E11 + E22)) =
a(—t), with T — 2(E}; + F22) in K. Then we have

(@1, Bo) = 2c, /ﬂ sin? ¢ tr (@, (a(t))@a(alt))*) dt.

0

By the definition of the auxiliary function ®,(g) (see Subsection , we have
that @1 (a(t))P2(a(t))* = Hi(a(t))Hz2(a(t))*. Therefore, making the change of vari-
ables cos(t) = u, we have

1 14
(B, Dy) = 20*/ V1I—u2> " hi(u) fi(u)du
—1 j:()



42 INES PACHARONI, JUAN TIRAO, AND IGNACIO ZURRIAN

To find the value of ¢, we consider the trivial case ®; = ®3 = I in and (68).
Therefore, we obtain

+1 :c*/ sin®t (¢ + 1) dt.
Then, we get ¢, = 7~ ! and the proposition follows. [

In Theorems [5.2 and [0.4] we conjugate the differential operators D and E to
hypergeometric operators Dand E given by

D= (UT(uw)¥(u) 'DUT(u)¥(u)) and E = (UT(u)¥(u)) ' BUT(u)¥(w)).
Therefore, in terms of the functions

= (UT(u)¥(u))" Hy and Py = (UT (u)¥(u)) " Hy,
we have

(P, Po)w / Pa(u w) Py (u) du,

where the weight matrix W (u) is given by
(69) wmozg L= @0 ()T () U UT (1) U (w).
From we notice that U*U is a diagonal matrix by the orthogonality of the

Hahn polynomials, precisely

+£+1 (¢ — )

Since T'(u) = Eﬁ, (1—wu )J/2 we have

4 .

Z G+L+ )= ) 2\
( UUT - 2j+1 6'6' (1—u) Ej7

j=

Remark 10.7. Since ¥(u) is an upper triangular matrix, see , we observe that
the decomposition easily leads to the LDU-decomposition of the weight matrix
We recall that ¥(u) is polynomial in u, that U is a constant matrix and that
T(u) = Zgzo(l —u?)J/2E;;. Then it follows that W (u) is a continuous function
on the closed interval [—1,1]. Thus, W is a weight matrix on [—1,1] with finite
moments of all orders.
One may be interested in the reducibility of the weight:

Definition 10.8. A n x n matrix weight function W supported on the interval

(a,b) C R, reduces to a smaller size if there exists a n X n matrix R such that

_ Wl 0 *
W(u) =R ( 0 Wg) R*, for all u € (a,b),

with W; and W5 weight matrices of lower size.

Proposition 10.9. A n x n matriz weight function W supported on the interval
(a,b) C R reduces to a smaller size if the commutant

{A € Myxn: AW (u) =W(u)A, foralluée(a,b)}

is not trivial.
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Proof. If A is in the commutant also is A*, assume that A is not a scalar multiple
of the identity I. Then if A+ A* = cI, for any ¢ € R, we take B = iA + ic/21,
otherwise we take B = A + A*, having then that B is not a scalar multiple of the
identity in the commutant with B = B*. Hence, by the spectral theorem we have
a projection P # I which is a polynomial of B and then P and Q = I — P are in
the commutant. Therefore W(u) = (P + Q)W (u)(P + Q) = PW (u)P + QW (u)Q,
for all u € (a,b).

Let us define the matrix R as the matrix whose first columns are the vectors of
an orthogonal basis of P(C™) and the last columns are the vectors of an orthogonal
basis of Q(C™). Therefore, for all u € (a,b) we have

R*W(u)R = R*PW (u)PR+ R QW (u)QR = ({8) W(u) (§3)+(57) W(u)(§7)-

Hence W reduces to a smaller size. O

In [21] it is proved that the commutant of our weight is a 2-dimensional vector
space (see Proposition 5.5), therefore W reduces to a smaller size. See Theorem 6.5
in [21].

Consider now the sequence of matrix polynomials (P,, (1)) w>o introduced in (59).
The k-th column of P, (u) is given by a vector PX(u) associated to the irreducible
spherical function of type 7y

®§w+€/2,7k+€/2).

Therefore ]55) and ]51’3; are orthogonal with respect to W, i.e.
(70) (PE P¥)w =0 if (w, k) # (W', k).

In other words, this sequence of matrix-valued polynomials squarely fits within
Krein’s theory, and we obtain the following theorem.

Theorem 10.10. The matriz polynomial functions ]Sw, w > 0, form a sequence of or-
thogonal polynomials with respect to W, which are eigenfunctions of the symmetric
differential operators D and E appearing in Theorem . Moreover,

DP, =Py,A, and  EP, = P,M,,
where Ny, = Zi:o Aw(k)Eyg, and M, = Zi:o i (k) Egg, with

Ao(k) = —(w+k)(w+k+2)  and  p(k) =w(E —k) — k(£ +1).

Proof. From Proposition we obtain that each column of ]Sw is a polynomial
function of degree w. Moreover, P, is a polynomial whose leading coefficient is a
nonsingular diagonal matrix.
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Given w and w’, non negative integers, by using we have

(B, P = /_fw(u)*W(u)ﬁw,(u) du
4

1
/ (P () W () P () ) B
k=071

L 1
= Z 6w,w/5k,k’ (/ Pﬁ(u)*W(u)P{jﬁ(u) du) Ek,k’
0 —1

ke k' =
L 1, _
= 5w,w’ Z/ (P,[]f) (U)*W(U)P£/ (’LL) du,) E‘k’]€7
k=071

which proves the orthogonality. Even more, it also shows us that (ﬁw, ]5w>W is a
diagonal matrix. Now, thanks to Corollary it only remains to prove that the
operators D and F are symmetric with respect to W.

Making a few simple computations we have that

<5ﬁw;ﬁw’> = 6w,w’<ﬁwaﬁw’>Aw = 6w,w’AZ}<ﬁwaﬁw’> = <ﬁw7ﬁﬁw’>7

for every w,w’ € Ng, because A,, is real and diagonal. This concludes the proof of
the theorem. ]

Remark 10.11. Following the suggestion of the referee, we include here some com-
parisons between the results in the last sections of this paper and those in [22].

Our differential operators D and E introduced in Theorem are related to the
operators D and E introduced in Theorem 3.1 of [22]. Unfortunately the expression
of E in Theorem 3.1 of [22] is wrong. By starting from the differential operators D
and F in Theorem 4.1 of [22] and changing the variables we obtain the following
relations

D-2E=(D)', —2E=((E) +((t+2)I.
On the other hand the operators D and &, defined respectively in Proposition
6.1 and (6.13) of [22], are related to our operators D and E defined in by
D=(D) —t(t+2)I, —2E=C(E+0((+2)1)'C7,

Y4 —2i)7 515!
where C = Zj:o %EJJ

Our weight W (u) introduced in is equal to the weight W (x) in Theorem 2.1
of [22]. The function L(z) given there is related to our function ¥(u) (see (51))) by

U(u) = OL(u)".

Finally the matrix polynomial function P, (u) given in are related to the poly-
nomial R,, in [22] by

Py(u) = CR,,(15").
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11. APPENDIX
The purpose of this section is to give the proofs of Propositions [3.4] and [3.5
Proposition , For any H € C*°(R?) ® End(V;.) we have

2
D(H)(y) = (1 + [lyll )((y% + 1) Hy,y, + (y% + 1) Hy,y, + (yg + 1) Hy,y,
+ 2(y1y2Hy1y2 + y2y3Hy2y3 + y1y3Hy1y3) + Z(ylHyl + yQHyQ + y3Hy3))'

Proof. ¥rom (7)) we have D(H) = Y2(H) + YZ(H) + YZ(H). We need to give the
expressions of this operators in the coordinate system p: (S3)* — R3

P(if) = (Z» %za ii) = (y173/2,y3)~
We have 4 d
Y2 (H)(g) = - < H (i(g (exp<s+t>y>))|s:t:0,

where p: G — R3, p(g) = p(gK).
From Subsection 2.3 we have Yy = E14 — Fa1, Y5 = Eou4 — FE4p and Yg =
E374 — E4,3 then
p(g(exp(s +1)Ya))
Pg(exp(s +t)Ys))
p(g(exp(s +1)Ys))

(ur(s+1t), vi(s+1t), wi(s+1t)),
(ua(s+1t), va(s+1t), wa(s +1)),
(us(s+1t), vs(s+1), ws(s+1t)).

where
wy(s 1) = g1;sin(s +t) + gi1a cos(s +t) Cuy(s41) = 92j s%n(s +t) 4 gaa cos(s + t)’
gaj sin(s + t) + gaa cos(s + t) gaj sin(s + t) + gaa cos(s +t)
wi(s + 1) = g3 sin(s + t) + gza cos(s + t)
gajsin(s +t) + gaa cos(s +t)’
for j =1,2,3.

By using the chain rule we have
D(H)(9) = Yf(H)( ) + Y5 (H)(9) + Y& (H)(9)

fz Ouj O\ gy OV vy Wy 0wy

- i Yiy1 a 6t Y2Y2 88 (9t Y3Ys3 88 at
u; Ov; | Ou; Iv; Ou; Ow; | Ju; Ow;
+H1y2(88 6t+ ot 8s)+ ”“’3(03 ot + ot 33)

Ovj dw;  Ovj dw; 0?u; 0?v; 62wj
 Hy (5 G+ 5 5 ) HHw s+ Hs gy + Ho g
‘We observe that

% _ % _ 915944 — 14945 32%‘ _ 294j(914g4j - g1jg44)
ds ot 9 ’ dsot i ’
% _ % _ 925944 — 924945 32113‘ _ 294j(924g4j - g2jg44)
ds Ot 93 ’ dsot 934 ’
8103‘ - 8wj _ 935944 — 93494j 82wj - 294j(934g4j - g3jg44)

ds Ot 94 ’ dsot g
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Now we observe that y = (y1,y2,y3) = (£, 224, 24) and recall that g = (gji) is a

944”7 g4’ gaa
matrix in SO(4), therefore its rows are orthonormal vectors. In particular we have

1
— =1+yi+y3+y3=1+|y/*
944

Now the proposition follows after some straightforward computations. O

Proposition . For any H € C*(R3) ® End(V,;) we have

0 —Y2—Y1Y3 —Y3+y1y2
E(H)(y) = Hy, 7 <y2+y1y3 0 —1-y} >
ys—y1y2  1+yi 0
0 —Yy2Y3+y1 1+y§ 0 717?/32» Y1+Yy2y3
+ Hy, 7 (yzys—yl 0 —ys—y1y2> +H,,7 < 1443 0 y2—y1y3> .
—1-y3  ys+yiv2 0 —y1—Y2ys —y2+y1ys O

Proof. From we obtain

™

B(H) = (= Ya(H)Ys (@) + Y5(H)Y2(®5) = Yo (H)Y:(95) ) ;"

3
= (=1 Yoy ;(H) Yaj ()0,
=1
For j =1,2,3 we have
~ ou,; v, ow;
H(plg(exps Yar,))) = Hy 52+ Hyy 55+ Hy 52

where u;, v; and w; are the functions introduced in the proof of Proposition [3.4]
In the other hand we have that

Yip(H) = 5 so

(V)09 (0) = elalexpti)B; () = 5 Pololexpt¥idg ™)
d

= @lt:oﬂ(a(g(eXptYk)g‘l)) = 7(algYrg")),

where ¢ is the function introduced in . It is easy to check that

. 0 —X12—X34 —Xi13+X24
a(X) = | X12+Xz 0 —Xos—X1a |, for all X € so(4).
X13—X21 Xo3z+Xi4 0

Therefore, at s =t = 0 we get
Ou,; v, ow;\ . .
= Z (HU1 (9 ] 1/2 a ] + Hll a ) (a(g}/?)gt))

= Hy (6 S (17520 Vi 0) ) + Byt (a( S5 (17 520V 0'))
+ Hy i (a5, (-1) 529 Yay 1))
= H,,#(@(B1)) + Hypv(a(B2) + Hy,e(a(Bs)).

Now we recall that Y1 = E12 — E21, }/2 = E13 — .E317 Y3 = E23 — E32. It is easy
to verify that

9(Eij — Eji)g' = Z Ikigrj Err.
1<k,r<4
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65”-7 given in the proof of Proposition

S

By using the expressions of 22, %% and
we obtain that
& Ou,
B, = Z(—l)] 7319 Yijg=24 > ((—911944 + 914941) (9k29r3 — Gr3gr2)
=1 1<k,r<4

+ (912944 — 914942)(9r19r3 — gk3gr1) + (— 913944 + 914943)(Gr19r2 — gk2gr1))Ekr-
It is not difficult to verify that the kr-th entry of B is equal to

(B) 1 ( dt(gu 912 913) dt(gn !Jrz.lh?,))
= — € 9r1 gr2 gr3 — € 9k1 9k2 Gk3 .
Vkr 924 944 921 922 923 914 941 942 943

Now we use the following fact: If g is a matrix in SO(n) and g¢(i|j) denotes the
matrix obtained from g deleting the i-th row and the j-th column, then

T o /LJFJ ..
(71) gij = (—=1)"*7 det (g(il5)).
Therefore
0 914934 —9g14924 0
B = 1 914934 0 934+914 —gaag3d
934 —g14924 934+954 0 ga4924
0 —g44934 —ga4ag24 0
. .. . 3 i Ovj .
We proceed in a similar way with By = 77, (=1)? 52gYs—; g* and obtain
1 0 924931 —934—934 9a493a
B, = —g24934 0 924914
2— 35 2 2 0 _
[ 9441924 —924914 gaa9g14
—ga4934 0 gaagi14 0
3 i OQw; t
For By =31 (=1) g Ya—;j 9" we get
1 0 934+93, —934924 —gaagaa
B; = —93,—33a 0 934914 944914
924 g3ag24  —Yg34914 0
944924  —9g44914 0 0
Therefore
0 —924944—g14934 —g34gaa+9gi14g24 1
FE(H)=H, 7| 924944+914934 0 93— 954 —5
1 2
934944—g24914 934+93, 0 944
. 0 —924934+9g14944 934+93, 1
+ Hy27T 924934 —914944 0 —934944—9g14924 5
—934—954 9g34944+914924 0 9aq
. 0 —934—931  914914+g24934 1
+ Hy, 7 931+934 0 924944—914934 2 -
—g14944—9g24934 —g24944+71493a 0 9ia
The proposition follows by observing that y; = Zfi, for j =1,2,3. O
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