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Spherical Functions:
The Spheres Vs. The Projective Spaces

Juan Tirao and Ignacio Zurrián∗

Abstract. In this paper we establish a close relationship between the spher-
ical functions of the n -dimensional sphere Sn ' SO(n + 1)/SO(n) and those
of the n -dimensional real projective space Pn(R) ' SO(n + 1)/O(n) . In fact,
for n odd a function on SO(n + 1) is an irreducible spherical function of some
type π ∈ ŜO(n) if and only if it is an irreducible spherical function of some type
γ ∈ Ô(n) . When n is even this is also true for certain types, and in the other
cases we exhibit a clear correspondence between the irreducible spherical func-
tions of both pairs (SO(n+ 1),SO(n)) and (SO(n+ 1),O(n)) . Summarizing, to
find all spherical functions of one pair is equivalent to do so for the other pair.
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1. Introduction.

The theory of spherical functions dates back to the classical papers of É. Cartan
and H. Weyl; they showed that spherical harmonics arise in a natural way from the
study of functions on the n-dimensional sphere Sn = SO(n+ 1)/SO(n) . The first
general results in this direction were obtained in 1950 by Gelfand who considered
zonal spherical functions of a Riemannian symmetric space G/K .

The general theory of scalar valued spherical functions of arbitrary type,
associated to a pair (G,K) with G a locally compact group and K a compact
subgroup, goes back to Godement and Harish-Chandra. Later, in [Tir77] the
attention was focused on the underlying matrix valued spherical functions defined
as solutions of an integral equation; see Definition 1.1. These two notions are
related by the operation of taking traces.

A first thorough study of irreducible spherical functions of any K -type
was accomplished in the seminal work of the complex projective plane P 2(C) =
SU(3)/U(2) in [GPT02]. Later, this study was developed in the complex projective
spaces P n(C) for certain K -types; see [PT12].

Let us remember the definition of spherical function. Let G be a locally
compact unimodular group and let K be a compact subgroup of G . Let K̂
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denote the set of all equivalence classes of complex finite-dimensional irreducible
representations of K ; for each δ ∈ K̂ , let ξδ denote the character of δ , d(δ)
the degree of δ , i.e. the dimension of any representation in the class δ , and
χδ = d(δ)ξδ . We shall choose once and for all the Haar measure dk on K
normalized by

∫
K
dk = 1 .

We shall denote by V a finite-dimensional vector space over the field C of
complex numbers and by End(V ) the space of all linear transformations of V into
V . Whenever we refer to a topology on such a vector space we shall be talking
about the unique Hausdorff linear topology on it.
Definition 1.1. A spherical function Φ on G of type δ ∈ K̂ is a continuous
function on G with values in End(V ) such that

i) Φ(e) = I (I= identity transformation).

ii) Φ(x)Φ(y) =
∫
K
χδ(k

−1)Φ(xky) dk , for all x, y ∈ G .

A spherical function Φ : G −→ End(V ) is called irreducible if V has no
proper subspace invariant by Φ(g) for all g ∈ G . The reader can find a number
of general results in [Tir77] and [GV88].

It is known that the compact connected symmetric spaces of rank one are
of the form X ' G/K , where G and K are as follows:

i) G = SO(n+ 1), K = SO(n) , X = Sn.

ii) G = SO(n+ 1), K = O(n) , X = P n(R) .

iii) G = SU(n+ 1), K = S(U(n)×U(1)) , X = P n(C) .

iv) G = Sp(n+ 1), K = Sp(n)× Sp(1) , X = P n(H) .

v) G = F4(−52), K = Spin(9) , X = P 2(Cay) .

The zonal (i.e. of trivial K -type) spherical functions on X ' G/K are the
eigenfunctions of the Laplace-Beltrami operator that only depend on the distance
d(x, o) , x ∈ X , where o is the origin of X . In each case we call them ϕ0, ϕ1, ϕ2, . . . ,
with ϕ0 = 1 , and let ϕ∗j(θ) be the corresponding function induced on [0, L] by ϕj ,
where L is the diameter of X . These functions turn out to be Jacobi polynomials

ϕ∗j(θ) = cj P
(α,β)
j (cosλθ),

with cj defined by the condition ϕj(0) = 1 and λ , α and β depending on the pair
(G,K) . By renormalization of the distance we can assume λ = 1 and L = π , (cf.
[Hel65, p. 171]). Now we quote the following list from [Koo73, p. 239]:

i) G/K ' Sn : α = (n− 2)/2 , β = (n− 2)/2 .

ii) G/K ' P n(R) : α = (n− 2)/2 , β = −1/2 .

iii) G/K ' P n(C) : α = n− 1 , β = 0 .

iv) G/K ' P n(H) : α = 2n− 1 , β = 1 .
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v) G/K ' P 2(Cay) : α = 7 , β = 3 .

Therefore, at first sight, the zonal spherical functions on the sphere and on
the real projective space seem to be two completely different families (to clarify this
point see the Appendix). But we prove in this paper that to know all the spherical
functions associated to the n-dimensional sphere is equivalent to know them for the
n-dimensional real projective space. Precisely, we state a direct relation between
matrix valued spherical functions of the pair (SO(n + 1), SO(n)) and of the pair
(SO(n+1),O(n)) . In first place we prove that, for n even the spherical functions of
the sphere and the spherical functions of the real projective space are the same, i.e.,
a function Φ on SO(n+1) is an irreducible spherical function of type π ∈ ŜO(n) if
and only if there exists γ ∈ Ô(n) such that the function Φ is a spherical function of
type γ . When n is odd there are some particular cases in which one has the same
situation as when n is even, and we show that these cases are easily distinguished
by looking at the highest weight of the corresponding SO(n)-types. For the generic
cases we show how every irreducible spherical function of the projective space is
explicitly related with two spherical functions of the sphere; see Theorem 3.3.

An immediate consequence of this paper is obtained by combining it with
[PTZ12], where all irreducible spherical functions of the pair (SO(4), SO(3)) are
studied and exhibited. Therefore, by applying Theorem 3.1 we also know all
spherical functions of the pair (SO(4),O(3)) , which as functions on SO(4) are the
same as those of the pair (SO(4), SO(3)) .

2. Preliminaries

Spherical functions of type δ ∈ K̂ arise in a natural way upon considering rep-
resentations of G . If g 7→ τ(g) is a continuous representation of G , say on a
finite-dimensional vector space E , then

Pδ =

∫
K

χδ(k
−1)τ(k) dk

is a projection of E onto PδE = E(δ) . The function Φ : G −→ End(E(δ)) defined
by

Φ(g)a = Pδτ(g)a, g ∈ G, a ∈ E(δ),

is a spherical function of type δ . In fact, if a ∈ E(δ) we have

Φ(x)Φ(y)a = Pδτ(x)Pδτ(y)a =

∫
K

χδ(k
−1)Pδτ(x)τ(k)τ(y)a dk

=

(∫
K

χδ(k
−1)Φ(xky) dk

)
a.

If the representation g 7→ τ(g) is irreducible then the spherical function
Φ is also irreducible. Conversely, any irreducible spherical function on a compact
group G arises in this way from a finite-dimensional irreducible representation of
G .
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Now we recall some known facts ([GW09, §5.5.5]) about how one obtains the
irreducible finite-dimensional representations of O(n) from the irreducible finite-
dimensional representations of SO(n) , in order to deeply understand our main
results: Theorems 3.1, 3.2, 3.3.

Let us take a ∈ O(n) depending on n :

a = diag(1, . . . , 1,−1), if n is even,
a = diag(−1, . . . ,−1), if n is odd.

And let φ be the involutive automorphism of SO(n) defined by

φ(k) = aka,

for all k ∈ SO(n) . Notice that when n is odd φ is trivial and O(n) = SO(n) ×
F , where F = {1, a} . Therefore in this case the irreducible finite-dimensional
representations of O(n) are of the form γ = π ⊗ 1 or γ = π ⊗ ε where π is
an irreducible finite-dimensional representation of SO(n) and ε is the nontrivial
character of F . Thus we have the following theorem.

Theorem 2.1. If n is odd O(n) = SO(n)×F , and ŜO(n)× F̂ can be identified
with the unitary dual of O(n) , under the bijection ([π], 1) 7→ [π⊗1] and ([π], ε) 7→
[π ⊗ ε] .

If n is even we have O(n) = SO(n) o F . Let us denote by Vπ the vector
space associated to π ∈ ŜO(n) , then set Vπφ = Vπ and let πφ : SO(n)→ End(Vπφ)
be the irreducible representation of SO(n) given by

πφ = π ◦ φ.

In this situation, in the following two subsections we shall consider two cases:
πφ ∼ π and πφ � π .

2.1. When πφ is equivalent to π .
Take A ∈ GL(V ) such that πφ(k) = Aπ(k)A−1 for all k ∈ SO(n) . Then

π(k) = π(a(aka)a) = πφ(aka) = Aπ(aka)A−1 = Aπφ(k)A−1 = A2π(k)A−2.

Therefore, by Schur’s Lemma, we have A2 = λI . By changing A by
√
λ−1A we

may assume that A2 = I . Let εA be the representation of F defined by

εA(a) = A.

Now we define γ = π · εA : O(n)→ GL(V ) by

γ(kx) = π(k)εA(x), (1)

and it is easy to verify that γ is an irreducible representation of O(n) . Moreover,
if B is another solution of πφ(k) = Bπ(k)B−1 for all k ∈ SO(n) , and B2 = I ,
then B = ±A . In fact, by Schur’s Lemma, B = µA and µ2 = 1 . In the set of all
such pairs (π,A) we introduce the equivalence relation (π,A) ∼ (TπT−1, TAT−1) ,
where T is any bijective linear map from V onto another vector space, and set
[π,A] for the equivalence class of (π,A) .
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Proposition 2.2. When n is even O(n) = SO(n) o F . Let us assume that
πφ ∼ π . If γ = π · εA , then γ is an irreducible representation of O(n) . Moreover,
γ′ = π · ε−A , is another irreducible representation of O(n) not equivalent to γ .
Therefore, the set {[π,A] : πφ(k) = Aπ(k)A−1, A2 = I} can be included in Ô(n)
via the map [π,A] 7→ [π · εA] .

Proof. The only thing that we really need to prove is that γ′ � γ . In fact,
if γ′ = TγT−1 for some T ∈ GL(V ) , then, since γ′|SO(n) = γ|SO(n) = π , Schur’s
Lemma implies that T = λI . Hence −A = γ′(a) = Tγ(a)T−1 = γ(a) = A is a
contradiction.

2.2. When πφ is not equivalent to π .
Assume that n is even and that πφ � π . Let us consider the SO(n)-module
Vπ × Vπ and define

γ(k)(v, w) = (π(k)v, πφ(k)w), γ(ka)(v, w) = (π(k)w, πφ(k)v), (2)

for all k ∈ SO(n) and v, w ∈ Vπ . Then it is easy to verify that γ : O(n) →
GL(Vπ × Vπ) is a representation of O(n) .

Proposition 2.3. Assume that n is even and π ∈ ŜO(n) , then O(n) = SO(n)o
F . Moreover, if πφ � π and we define γ : SO(n)×F → GL(Vπ×Vπ) as in (2), then
γ is an irreducible representation of O(n) . Also γ′ : SO(n)× F → GL(Vπ × Vπ) ,
defined by

γ′(k)(v, w) = (πφ(k)v, π(k)w), γ′(ka)(v, w) = (πφ(k)w, π(k)v),

for all k ∈ SO(n) and v, w ∈ Vπ , is an irreducible representation of O(n) , but it
is equivalent to γ . Therefore, the set {{[π], [πφ]} : [π] ∈ ŜO(n)} can be included
in Ô(n) via the map {[π], [πφ]} 7→ [γ] .

Theorem 2.4. Assume that n is even. We split Ô(n) into two disjoint sets:
(a) {[γ] : γ|SO(n) irreducible} and (b) {[γ] : γ|SO(n) reducible} .

(a) If [γ] is in the first set and π = γ|SO(n) , then

πφ(k) = π(aka) = γ(aka) = γ(a)π(k)γ(a),

for all k ∈ SO(n) . Therefore πφ ∼ π and γ is equivalent to the representa-
tion π · εA constructed from π and A = γ(a) in (1).

(b) If [γ] is in the second set, let W be the representation space of γ . Let
Vπ < W be an irreducible SO(n)-module. Then W = Vπ ⊕ Vπφ as SO(n)-
modules, and γ is equivalent to the representation γ′ defined on Vπ ×Vπ by
(2).

2.3. The highest weights of π and πφ .
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When n is even it would be very useful to know when π ∈ ŜO(n) is equivalent
to πφ . In that direction we prove a very simple criterion in terms of the highest
weight of π .

For a given ` ∈ N , we know from [VK92] that the highest weight of an
irreducible representation π of SO(2`) is of the form mπ = (m1,m2,m3, . . . ,m`)
∈ Z` , with

m1 ≥ m2 ≥ m3 ≥ · · · ≥ m`−1 ≥ |m`|.

We state the following simple result, which relates the highest weights of π
and πφ .

Theorem 2.5. If mπ = (m1,m2,m3, . . . ,m`) is the highest weight of π ∈
ŜO(2`) then mπφ = (m1,m2,m3, . . . ,−m`) is the highest weight of πφ .

The matrices Iki, 1 ≤ i < k ≤ 2` , with −1 in the place (k, i) , 1 in the
place (i, k) and everywhere else zero, form a basis of the Lie algebra so(2`) . The
linear span

h = 〈I21, I43, . . . , I2`,2`−1〉C
is a Cartan subalgebra of so(2`,C) .

Now consider

H = i(x1I21 + · · ·+ x`I2`,2`−1) ∈ h,

and let εj ∈ h∗ be defined by εj(H) = xj , 1 ≤ j ≤ ` . Then for 1 ≤ j < k ≤ ` ,
the following matrices are root vectors of so(2`,C) :

Xεj+εk = I2k−1,2j−1 − I2k,2j − i(I2k−1,2j + I2k,2j−1),

X−εj−εk = I2k−1,2j−1 − I2k,2j + i(I2k−1,2j + I2k,2j−1),

Xεj−εk = I2k−1,2j−1 + I2k,2j − i(I2k−1,2j − I2k,2j−1),

X−εj+εk = I2k−1,2j−1 + I2k,2j + i(I2k−1,2j − I2k,2j−1).

(3)

We choose the following set of positive roots

∆+ = {εj + εk, εj − εk : 1 ≤ j < k ≤ `}

so that
mπ = m1ε1 +m2ε2 + . . .+m`ε`.

Now we can prove Theorem 2.5.

Proof. First we prove that the highest weight vector vπ of the representation
π is also a highest weight vector of πφ : For every root vector Xεj±εk with 1 ≤
j < k < ` we have that Ad(a)Xεj±εk = Xεj±εk . And, when k = ` we have that
Ad(a)Xεj±ε` = Xεj∓ε` . Hence, if we denote by π̇ and π̇φ the representations of
the complexification of so(2`) corresponding to π and πφ , respectively, we have
π̇ ◦ Ad(a) = π̇φ and thus

π̇φ(Xεj±εk)vπ = π̇(Ad(a)Xεj±εk)vπ = π̇(Xεj±εk)vπ = 0,
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for 1 ≤ j < k < ` . When k = ` we have

π̇φ(Xεj±ε`)vπ = π̇(Ad(a)Xεj±ε`)vπ = π̇(Xεj∓ε`)vπ = 0.

Therefore vπ is a highest weight vector of πφ .
Notice that Ad(a)I2j,2j−1 = I2j,2j−1 for 1 ≤ j < ` and that Ad(a)I2`,2`−1

= −I2`,2`−1 , then

π̇φ(iI2j,2j−1)vπ = π̇(Ad(a)iI2j,2j−1)vπ = π̇(iI2j,2j−1)vπ = mjvπ,

for 1 ≤ j < ` . When k = ` we have

π̇φ(iI2`,2`−1)vπ = π̇(Ad(a)iI2`,2`−1)vπ = −π̇(iI2`,2`−1)vπ = −m`vπ.

Hence the highest weight of πφ is

m = (m1,m2, . . . ,m`−1,−m`).

Corollary 2.6. An irreducible representation π of SO(2`) , ` ∈ N , of highest
weight m = (m1,m2, . . . ,m`) is equivalent to πφ if and only if m` = 0 .

Remark 2.1. The referee considered worth noting the following proof of The-
orem 2.5 in terms of fundamental weights and the Dynkin diagram of so(2`,C) .
The simple roots are

ε1 − ε2, . . . , ε`−1 − ε`, ε`−1 + ε`.

These correspond to nodes of the Dynkin diagram. Conjugation by a corresponds
to the non-trivial outer automorphism of so(2`,C) , which in turn corresponds to
the non-trivial symmetry of the Dynkin diagram. Hence Ad(a)∗(εi−εi+1) = εi−εi+1

if 1 ≤ i ≤ ` − 2 and Ad(a)∗(ε`−1 − ε`) = ε`−1 + ε` . Therefore Ad(a)∗(εi) = εi if
1 ≤ i ≤ `− 1 and Ad(a)∗(ε`) = −ε` .

Since conjugation by a also preserves the set of positive roots, π(a) trans-
forms a dominant vector of Vπ of weight (m1, . . . ,m`−1,m`) into a dominant vector
of Vπφ of weight (m1, . . . ,m`−1,−m`) .

3. Spherical Functions

Let (Vτ , τ) be a unitary irreducible representation of G = SO(n + 1) and (Vπ, π)
a unitary irreducible representation of SO(n) .

Let us assume that n is odd. Then O(n) = SO(n)× F and the irreducible
unitary representations of O(n) are of the form γ = π ⊗ 1 or γ = π ⊗ ε . Suppose
that π is a sub-representation of τ|SO(n)

. Let us observe that a ∈ O(n) as an
element of G becomes −I ∈ G . Clearly τ(−I) = ±I . Take γ = π ⊗ 1 if
τ(−I) = I and γ = π ⊗ ε if τ(−I) = −I . Then γ is a sub-representation of
τ|O(n)

. Let Φτ,π and Φτ,γ be, respectively, the corresponding spherical functions of
(G, SO(n)) and (G,O(n)) .

Theorem 3.1. Assume that n is odd. If Φτ,π(−I) = I , take γ = π ⊗ 1 , and if
Φτ,π(−I) = −I , take γ = π ⊗ ε . Then Φτ,π(g) = Φτ,γ(g) for all g ∈ G .
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Proof. As SO(n)-modules Vτ = Vπ ⊕ V ⊥π . But since τ(a) = τ(−I) = ±I the
decomposition Vτ = Vπ ⊕ V ⊥π is also an O(n)-decomposition. Hence, the SO(n)-
projection Pπ onto Vπ is equal to the O(n)-projection Pγ onto Vπ . Therefore
Φτ,π(g) = Pπτ(g)Pπ = Pγτ(g)Pγ = Φτ,γ(g) , completing the proof.

Let us assume now that n is even, then O(n) = SO(n)o F . Suppose that
π ∈ ŜO(n) and that π ∼ πφ . Then γ = π · εA , where A ∈ GL(Vπ) is such that
πφ = AπA−1, A2 = I , is an irreducible representation of O(n) in Vπ as we have
seen in Proposition 2.3. Now we use this result to obtain the following Theorem.

Theorem 3.2. Assume that n is even. Let a = diag(1, . . . , 1,−1) ∈ O(n) be
identified with a = diag(1, . . . , 1,−1,−1) ∈ SO(n + 1) . Suppose that π is a sub-
representation of τ|SO(n)

and that π ∼ πφ . Set A = Φτ,π(a) , and take γ = π · εA .
Then Φτ,π(g) = Φτ,γ(g) for all g ∈ G .

Proof. The first thing we have to prove is that A ∈ GL(Vπ) , πφ = AπA−1 and
A2 = I . This last property follows directly from a2 = e .

For all k ∈ SO(n) we have

πφ(k) = π(aka) = τ(aka)|Vπ = τ(a)τ(k)τ(a)|Vπ . (4)

Therefore τ(a)Vπ is a SO(n)-module equivalent to πφ . Since πφ ∼ π , and by
the multiplicity one property of the pair (SO(n + 1), SO(n)) , we obtain that
Vπ = τ(a)Vπ . Therefore A = τ(a)|Vπ ∈ GL(Vπ) and πφ = AπA−1 . Hence Vπ
is an O(n)-submodule of Vτ and the corresponding representation is γ = π · εA .
This implies that the SO(n)-projection Pπ onto Vπ is equal to the O(n)-projection
Pγ onto Vπ . Therefore Φτ,π(g) = Pπτ(g)Pπ = Pγτ(g)Pγ = Φτ,γ(g) . Finally we
observe that Φτ,π(a) = Pπτ(a)Pπ = τ(a)|Vπ , completing the proof.

Let us assume that n is even, and take π ∈ ŜO(n) such that π � πφ . Let
us consider the SO(n)-module Vπ × Vπφ and define γ(k)(v, w) = (π(k)v, πφ(k)w) ,
γ(ka)(v, w) = (π(k)w, πφ(k)v) for all k ∈ SO(n) , v ∈ Vπ and w ∈ Vπφ . Then γ is
an irreducible representation of O(n) in Vπ × Vπφ .

Theorem 3.3. Assume that n is even. Let a = diag(1, . . . , 1,−1) ∈ O(n)
be identified with a = diag(1, . . . , 1,−1,−1) ∈ SO(n + 1) . Suppose that π is a
sub-representation of τ|SO(n)

and that π � πφ . Then τ(a)Vπ ∼ Vπφ as SO(n)-
modules and Vπ ⊕ τ(a)Vπ is an irreducible O(n)-submodule of Vτ equivalent to
the irreducible representation γ in Vπ × Vπφ constructed above. Moreover,

Φτ,γ(g) =

(
Φτ,π(g) Φτ,π(ga)

Φτ,πφ(ga) Φτ,πφ(g)

)
for all g ∈ G .

Proof. That τ(a)Vπ ∼ Vπφ as SO(n)-modules follows from (4). Also, if we
make the identification Vπ × Vπφ ∼ Vπ ⊕ τ(a)Vπ via the SO(n)-isomorphism
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(v, w) 7→ v + τ(a)w , and using again that πφ(k)w = τ(a)τ(k)τ(a)w (see (4)),
we have

γ(k)(v, w) = (π(k)v, πφ(k)w) = (π(k)v, τ(a)τ(k)τ(a)w)

∼ π(k)v + τ(k)τ(a)w = τ(k)(v + τ(a)w)

for all k ∈ SO(n) , and

γ(a)(v, w) = (w, v) ∼ (w + τ(a)v) = τ(a)(v + τ(a)w).

This proves that Vπ ⊕ τ(a)Vπ as an O(n)-submodule of Vτ is equivalent to the
irreducible representation γ in Vπ × Vπφ . Therefore Pγ = Pπ ⊕ Pπφ .

Hence, for all g ∈ G we have,

Φτ,γ(g) = (Pπ ⊕ Pπφ)τ(g)(Pπ ⊕ Pπφ)

= Pπτ(g)Pπ ⊕ Pπτ(g)Pπφ ⊕ Pπφτ(g)Pπ ⊕ Pπφτ(g)Pπφ .

Thus in matrix form we have

Φτ,γ(g) =

(
Φτ,π(g) Φ12(g)
Φ21(g) Φτ,πφ(g)

)
,

where Φ21(g) = Pπφτ(g)|Vπ and Φ12(g) = Pπτ(g)|τ(a)Vπ .
From the identity Φτ,γ(ga) = Φτ,γ(g)τ(a)|Vπ⊕τ(a)Vπ we get(

Φτ,π(ga) Φ12(ga)
Φ21(ga) Φτ,πφ(ga)

)
=

(
Φτ,π(g) Φ12(g)
Φ21(g) Φτ,πφ(g)

)(
0 I
I 0

)
,

which is equivalent to Φ12(g) = Φτ,π(ga) and Φ21(g) = Φτ,πφ(ga) . The theorem is
proved.

4. Appendix

The irreducible spherical functions of trivial K -type of (SO(n + 1), SO(n)) and
(SO(n+1),O(n)) are, respectively, the zonal spherical functions of Sn and P n(R) .
According to our Theorems 3.1 and 3.2 the zonal spherical functions φ of P n(R) ,
as functions on SO(n + 1) , coincide with those zonal spherical functions ϕ of Sn
such that ϕ(−I) = 1 .

As we said in the introduction the zonal spherical functions on the n-
dimensional sphere and on the corresponding real projective space are, respectively,
given by

ϕ∗j(θ) = cj P

(
n−2

2
,
n−2

2

)
j (cos θ), φ∗j(θ) = c′j P

(
n−2

2
,−1

2

)
j (cos θ),

with cj , c′j scalars such that ϕj(0) = 1 = φj(0) , and 0 ≤ θ ≤ π .
In this appendix we explain this apparent inconsistency. To begin with, we

notice that in both spaces the metric is chosen normalized by the diameter L = π .
For a given g ∈ SO(n + 1) we denote by θ(g) the distance in the sphere between
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g · o and the origin o , and analogously we denote by θ′(g) the distance in the
projective space between g · o and the origin o . Thus, it is not difficult to see that

2θ(g) = θ′(g), for 0 ≤ θ(g) ≤ π/2,

2π − 2θ(g) = θ′(g), for π/2 ≤ θ(g) ≤ π.

Therefore we have that
cos(2θ(g)) = cos(θ′(g)), (5)

for any g ∈ SO(n + 1) . In the other hand from [AAR00, (3.1.1)] we know that
Jacobi polynomials satisfy

P
(α,α)
2k (x) =

k!(α + 1)2k

(2k)!(α + 1)k
P

(α,−1/2)
k (2x2 − 1). (6)

Then, if we put x = cos(θ(g)) in (6) we obtain

P
(α,α)
2k (cos(θ(g))) =

k!(α + 1)2k

(2k)!(α + 1)k
P

(α,−1/2)
k (cos(2θ(g))),

hence, using (5) we have that ϕ∗2j(θ(g)) = φ∗j(θ
′(g)) for all g ∈ SO(n+1) . In other

words the following identity between zonal spherical functions holds: ϕ2j = φj as
functions on SO(n+ 1) for all j ≥ 0 .
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