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Abstract. This paper proposes a systems theory approach to the modeling of onset and
evolution of criminality in a territory, which aims at capturing the complexity features of
social systems. Complexity is related to the fact that individuals have the ability to develop
specific heterogeneously distributed strategies, which depend also on those expressed by
the other individuals. The modeling is developed by methods of generalized kinetic theory
where interactions and decisional processes are modeled by theoretical tools of stochastic
game theory.

1. Plan of the Paper

This paper aims at developing a systems theory approach to the modeling of criminality
phenomena in a territory. This objective is pursued bearing in mind the idea that all
living systems in general, and social systems in particular, are complex [4]. This feature, as
observed in [9], as well as in the collection of articles [5], is related to the fact that individuals
have the ability to develop specific strategies, which depend also on those expressed by the
other individuals. These strategies are heterogeneously distributed. Moreover, individuals
in socio-economic systems are able to learn from their experience. This implies that the
expression of the strategy evolves in time, and consequently that interaction dynamics
undergo modifications.
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The main feature of these systems is that their collective overall behavior is determined
by the dynamics of their interactions, while the modeling of individual dynamics does
not lead in a straightforward way to a mathematical description of collective emerging
behaviors. Therefore, the challenging objective of the modeling consists in transferring the
dynamics at the scale of individual entities into collective emerging behaviors.

The contents are mainly motivated by two well defined hints. The first one is related to
the idea that the dynamical processes in Economics and Social Sciences are highly affected
by individual (rational or irrational) behaviors, reactions, and interactions. These concepts
have begun to impose themselves to the traditional assumption of rational socio-economic
behavior, starting from the concept of bounded rationality [39]. Therefore, the contribution
of mathematics to a deeper understanding of the relationships between individual behaviors
and collective outcomes may be fundamental [9]. This new methodological approach looks
at Economics, and Social Sciences in general, as evolving complex systems, where interac-
tions among heterogeneous individuals can even produce unpredictable emerging outcomes
[3, 25]. In this context, mathematical tools are required to capture the evolving features
of socio-economic systems and incorporate some of their main complexity features. Pos-
sibly up to the ability to predict the so-called black swan, which is defined to be a rare
event, showing up as an irrational collective trend generated by possibly rational individual
behaviors [40].

This paper focuses on criminality being motivated by an increasing interest in the public
safety and security in cities. An important contribution is that of Felson [21] who gives -from
a criminologist’s point of view- some basic hints for mathematicians concerning the modeling
of crime. He introduces the presence of three fundamental elements that participate in
the phenomena, namely offenders, targets and guardians. Additional phenomenological
interpretations are given in [22] and [34].

Many of the existing models refer to the spatially homogeneous case, while some others
introduce the geographic or spatially dependent component in kinetic theory [30] and sta-
tistical [16, 38] methods. Tools of games theory [31] have been successfully used to model
criminality, starting from the so-called prisoner’s dilemma and moving towards more so-
phisticated games. In [37], a game involving N players is considered, where each of them
may express four different strategies: paladin, apathetic, informant or villain, while in [29]
a network study is considered by taking into account subgroups of players through sacred
value networks [41]. Methodologically different approaches can be based on deterministic
dynamical systems [14, 32].

The second hint is offered by recent developments of methods of kinetic theory and
statistical mechanics in fields far from the classical one of molecular fluid dynamics. Meth-
ods of the generalized kinetic theory have been first applied to model the social dynamics
of insects [24], followed by a blow up in a rapidly growing literature covering a variety of
applications. Among them and without claim of completeness, modeling of social systems
[1, 19], opinion formation with dynamics over networks [27], migration phenomena [26],
selective mutations in epidemiology [18] and Darwinian mutation and selection on cancer
phenomena contrasted by immune cells [8, 13, 17].

The mathematical approach developed in the previously cited papers belongs to the
so-called kinetic theory for active particles, for short KTAP approach, which refers to
large population of living entities interacting with rules modeled by theoretical tools of
game theory. The collection of surveys [12] witnesses the beginning of a systematic use of
methods of the kinetic theory in a variety of applications, which have been subsequently
developed in the last decades by several authors, among others [20, 23, 35].
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Focusing on the contents of the paper, let us consider a population of individuals dis-
tributed in a certain territory, they can be subdivided into citizens, criminals and detectives.
Each aggregation of individuals expresses with a certain intensity its own function-strategy.
For instance citizens operate to improve their own wealth, criminals to subtract it to them
and to hide themselves from the chase of detectives, who operate to contrast criminality.
The modeling approach aims at studying the interplay between individuals of different ag-
gregations and their growth or decay, which can include transition from one population to
the other. Various concomitant causes can, in general, play a role in the development or de-
pletion of criminality, for instance migration phenomena and welfare policy. An interesting
objective consists in looking for extreme events, namely the so-called black swan [40].

This paper is organized through five more sections. In detail, Section 2 presents a
phenomenological description of the complex system treated in this paper, subsequently
a modeling strategy is proposed. Section 3 introduces, starting from the description of
interactions at the scale of individuals, the mathematical structures suitable to provide the
basis for the derivation of specific models. A mathematical model is derived in Section 4
based on the said general framework for a society with wealth distribution constant in time.
Some simulations are presented in Section 5 in order to test the predictive ability of the
model. Finally, Section 6 focuses on the development of a general systems theory approach
to sociology.

2. From a Phenomenological Description to a Modeling Strategy

Let us consider a large population of individuals with a spatially homogeneous distri-
bution over certain territory, say a town or a region. The specific features of the population
are heterogeneously distributed among individuals, who can, however, be subdivided into
different groups such as citizens owning a certain amount of wealth, small or large, crim-
inals of different levels of villainy, and detectives who are in charge of chasing criminals.
Moreover, migration phenomena can be possibly taken into account considering that large
towns can attract people from surrounding areas.

Let us briefly summarize the approach, proposed in [11], to model complex systems by
the KTAP approach.

• Individuals are viewed as active particles, that have the ability to express a specific
strategy, called activity, which defines their micro-state, namely the state at the
microscopic scale.

• Active particles are subdivided into functional subsystems, such that they express
a specific activity for each subsystem.

• The activity variable is heterogeneously distributed over the particles, while the
overall state of the population of active particles is delivered, for each subsystem,
by a distribution function over the micro-state.

• Interactions between particles are modeled by theoretical tools of game theory, while
the equations describing the dynamics of particles are obtained by a balance in the
elementary volume in the space of the micro-states. The inflow and outflow of
particles, into and from the said volume, is determined by interactions.

• The solution of mathematical problems, typically initial and initial-boundary value
problems, provides the time evolution of the aforesaid distribution function and
hence of the macroscopic description obtained by weighted averaged quantities.
Emerging behaviors can be depicted by both distribution function and macro-
quantities.
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An approach, according to the specific features of the class of systems under consider-
ation, can be proposed as described by the following sequential steps:

(1) Subdivision of the overall system into functional subsystems, each of them with the
ability of expressing a different activity (strategy);

(2) Modeling interactions at the micro-scale, namely between active particles of the
same or different functional subsystems; including learning dynamics, which might
generate transition from one subsystem to the other;

(3) Derivation of a mathematical structure suitable to describe the evolution in time of
the distribution function over the micro-state of particles of each subsystem;

(4) Derivation of mathematical models related to the structures introduced in the pre-
vious item;

(5) Analysis and validation of models.

This approach will be formalized, in the next sections, being aware that it is limited
to a simple picture of the complex variety of social and economic dynamics that effectively
occur in our society. Nevertheless, we claim that it has to be regarded as a first step towards
a more general systems theory approach to sociology. This preliminary step will be followed
by the study of more complex case studies outlined in the last section, which looks ahead
to research perspectives.

3. From Interactions to a Structure Modeling Collective Dynamics

This section shows how the strategy presented in Section 2 can be transferred into
the derivation of a mathematical structure that can offer the framework suitable to model
the collective dynamics involving different categories of citizens interacting in a territory.
The contents are presented through the next three subsections corresponding to the first
sequential steps of the aforesaid strategy, where the last paragraph also proposes a critical
analysis in view of the modeling approach. The approach is based on the assumption that
the total number of citizens and the wealth distribution are constant in time.

3.1. Subdivision into functional subsystems and representation. Let us consider
a population homogeneously distributed in a territory. Individuals in the population are
regarded as active particles subdivided into a small number of groups according to the spe-
cific functions they express in the competition treated in this paper. The present approach
aims at studying how the size of these groups evolves in time, how crime arises and can
be controlled in a society, and how the distribution of the level of different expressions
evolves in time. Therefore, in consonance with the phenomenological description given in
the preceding section, the following subdivision into functional subsystems is proposed:

i = 1 Normal citizens, whose microscopic state is identified by their wealth, which consti-
tutes the attraction for the eventual perpetration of criminal acts.

i = 2 Criminals, whose microscopic state is given by their criminal ability, namely their
ability to succeed in the perpetration of illegal acts.

i = 3 Detectives who chase criminals according to their individual ability.

The microscopic variables are assumed to be, for each functional subsystem, a real
variable u taking values in the subsets D1,D2,D3 ⊂ R

+
0 , respectively. Assuming that a

maximal activity value can be identified in each functional subsystem, these three sets
are taken, for the sake of simplicity, to be the interval [0, 1], although it is important to
keep in mind that the meaning of the variable differs from one functional subsystem to
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another. However, worse conditions correspond to lower values of the activity variable,
while increasing values of u correspond to higher abilities to express the strategy.

The following table specifies the activity, micro-scale, variable within each functional
subsystem:

Functional subsystem Micro-state

i = 1, citizens u ∈ D1, wealth

i = 2, criminals u ∈ D2, criminal ability

i = 3, detectives u ∈ D3, experience/prestige

Table 1. Microscopic variable for each functional subsystem.

The representation of the system is delivered by the distribution functions

(3.1) fi : [0, T )×Di → R
+
0 , i = 1, 2, 3,

where T > 0 is a certain final time, possibly ∞. In this way, fi(t, u) du denotes, under
suitable integrability conditions, the number of active particles of the functional subsystem
i whose state, at time t, is in the interval [u, u+ du]. Therefore

(3.2) ni(t) =

∫

Di

fi(t, u) du, i = 1, 2, 3,

defines the size of group i.
At each time t ∈ [0, T ), the total size of the population is given by

N(t) =
3
∑

i=1

ni(t),

which is assumed to remain constant in time. Under this assumption, the distribution
functions can be normalized with respect to N0 := N(0), hence we put

(3.3) N(t) = N0 = 1 for all t ∈ [0, T ),

so that fi defines the fraction of individuals belonging to the functional i-subsystem at each
time t.

Additional macro-scale information is given by higher order moments:

(3.4) E
ν
i [fi](t) =

1

ni(t)

∫

Du

uνfi(t, u) du.

In particular, the first order moment E
1
i [fi](t) will be simply denoted by Ei[fi](t).
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3.2. Micro-scale interactions. Let us consider the modeling of interactions at the mi-
croscopic scale, which can modify the micro-state of the interacting pairs and/or promote
transitions from one subsystem to another. Interactions between active particles involve the
candidate h-particle, namely belonging to functional subsystem h, and the field k-particle,
whose states are u∗ and u∗, respectively. After the interaction, the candidate h-particle
can undergo a transition into the micro-state u of the ith functional subsystem, namely
into the state of the test particle, which is representative of the whole system. Another
kind of interactions are those in which the candidate h-particle with state u∗ feels the mean
value Eh within its functional subsystem [27]. Therefore, individuals are subject to follow
a certain tendency, namely an attractive streaming effect.

Theoretical tools of stochastic game theory are used to model the following terms
related to the aforesaid interactions:

• The encounter rate ηhk(u∗, u
∗) between a candidate h-particle with state u∗ and a

field k-particle with state u∗.

• The interaction rate µh(u∗,Eh) between a candidate h-particle, with state u∗, and
the mean activity within its functional subsystem.

• The transition probability density Bihk(u∗ → u|u∗, u
∗), which denotes the probability

density that a candidate h-particle with state u∗ ends up into the state u of the
test i-particle as a result of the interaction with a field k-particle with state u∗,
satisfying that

(3.5)

3
∑

i=1

∫

Di

Bihk(u∗ → u|u∗, u
∗) du = 1,

for all type of inputs (u∗, u
∗) and for all h, k = 1, 2, 3.

• The transition probability density Mh(u∗ → u|u∗,Eh) denotes the probability that
a candidate h-particle with state u∗ ends up into the state u after interacting with
the mean activity value Eh, satisfying that

(3.6)

∫

Dh

Mh(u∗ → u|u∗,Eh) du = 1, for allu∗ ∈ Dh and Eh.

3.3. Derivation of a mathematical structure. The balance of particles in the elemen-
tary volume of the space of micro-states leads to the following structure:

∂tfi(t, u) = Ji[f ](t, u) =

=

3
∑

h,k=1

∫

Dh

∫

Dk

ηhk(u∗, u
∗)Bihk(u∗ → u|u∗, u

∗)fh(t, u∗)fk(t, u
∗) du∗ du

∗

−fi(t, u)

3
∑

k=1

∫

Dk

ηik(u, u
∗) fk(t, u

∗) du∗

+

∫

Di

µi(u∗,Ei)Mi(u∗ → u|u∗,Ei)fi(t, u∗)du∗ − µi(u,Ei)fi(t, u)(3.7)

for i = 1, 2, 3, and where the square brackets are used to denote dependence on the whole
set of distribution functions f = {fi}, in the specific case it is on the mean value.

Before tackling technical issues it is worth discussing in some detail the proper role
played by the mathematical structure (3.7) toward the derivation of particular models. As
it is known [28], the modeling of living systems cannot take advantage of field theories,
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like in the case of inert matter. Therefore heuristic approaches are generally adopted,
relying mainly on personal intuitions of the modelers, while more rigorous approaches can
be developed by grounding models on the preliminary derivation of abstract mathematical
structures consistent with the description presented in Section 2.

4. Derivation of Models

The derivation of the mathematical model is referred to the general structure given
by Eq.(3.7) by particularizing the terms η, µ, B and M. The approach is limited only to
the so-called non-trivial interactions, which are those that modify the micro-state of the
interacting particles.

4.1. Encounter rate. Let us consider the encounter rates ηhk and µh. The modeling
approach is based on heuristic assumptions that let us quantify the frequency of interactions,
depending on the micro-states and distribution functions of the interacting particles. Table
2 presents the encounter rates ηhk for binary interactions between h-candidate and k-
field particles, while Table 3 refers to particles that interact with the mean activity value
within their functional subsystem. η0 and µ0 are positive constants in the expression of the
encounter rates.

Interaction Qualitative description Encounter rate η
Closer social states

1 ↔ 1© tend to interact η11(u∗, u
∗) = η0 (1− |u∗ − u∗|)

more frequently
Experienced lawbreakers

2 ↔ 2© are more expected to η22(u∗, u
∗) = η0(u∗ + u∗)

expose themselves

2 ↔ 3© Experienced detectives η23(u∗, u
∗) = η0

(

(1− u∗) + u∗
)

are more likely to hunt

3 ↔ 2© less experienced criminals η32(u∗, u
∗) = η0

(

u∗ + (1− u∗)
)

Table 2. Non-trivial interactions between a h-candidate particle (repre-
sented by a square) with state u∗ and a k-field particle (represented by a
circle) with state u∗.

Interaction Qualitative description Encounter rate µ
Criminals interact with

2 ↔ E2 with the mean value through µ2(u∗,E2) = µ0|u∗ − E2|
the mean-micro state distance

Detectives interact with
3 ↔ E3 with the mean value through µ3(u∗,E3) = µ0|u∗ − E3|

the mean micro-state distance

Table 3. Non-trivial interactions between a h-candidate particle (repre-
sented by a square) with activity u∗ and the mean activity value Eh.
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4.2. Transition probability densities. The modeling of the transition probability den-
sities Bihk(u∗ → u|u∗, u

∗) is performed under the simplified assumption that the output of
the interaction is a delta function over the most probable value. This choice needs dealing
with some technical features related to the modeling of interactions as Eq. (3.7) requires
that the output of the interaction belongs to the open interval (0, 1) and the distribution
functions have compact support on this interval. The parameters of the model take values
in [0, 1). Table 4 defines their meaning.

Parameters

αT Susceptibility of citizens to become criminals
αB Susceptibility of criminals to reach back the state of normal citizens
β Learning dynamics among criminals
γ Motivation/efficacy of security forces to catch criminals
λ Learning dynamics among detectives

Table 4. Parameters involved in the table of games.

Bearing this in mind, the so-called table of games, that gives the probability distri-
butions of candidate’s payoffs conditioned to the states of the interacting individuals, is
proposed according to the following assumptions:

• The social structure of the population i = 1 is assumed to be fixed, namely, the
time interval is sufficiently short that the wealth distribution is constant in time.

• Citizens are susceptible to become criminals, motivated by their wealth state. More
in detail, a candidate citizen with activity u∗ interacting with a richer one with
activity u∗ > u∗ can become a criminal, mutating into functional subsystem 2 with
a very low criminal ability u = ε ≈ 0. In particular it is assumed that the transition
probability increases with decreasing wealth:

(4.1)















B2
11(u∗ → u|u∗, u

∗) =
1

ε
αT (1− u∗)u

∗χ[0,ε)(u),

B1
11(u∗ → u|u∗, u

∗) = (1− αT (1− u∗)u
∗)δu∗(u),

where χ[0,ε) denotes the indicator function for the interval [0, ε).

• Criminals interact among themselves resulting in a dynamics by which less experi-
enced criminals mimic the more experienced ones, moreover also interaction with
less experienced lawbreakers increases the level of criminality

(4.2) B2
22(u∗ → u|u∗, u

∗) = δu∗+β(1−u∗)u∗(u),

where 0 ≤ β < 1 .

• Detectives of functional subsystem h = 3 chase criminals of functional subsystem
k = 2 and the latter are constrained to step back decreasing their activity value as
the price to be paid for being caught. At the same time, detectives gain experience
from a well-done job increasing their activity. Due to this action criminals are
induced to return to the state of normal citizens with probability which increases
with decreasing values of their level of criminality and increasing values of skill of
detectives:

(4.3) B3
32(u∗ → u|u∗, u

∗) = δu∗+γu∗(1−u∗)(u),
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Figure 1. Interaction between citizens may end up, in the mutation of one
of the interacting individuals, into the functional subsystem of criminals.

Figure 2. Progression to higher values of criminality.

Figure 3. Interaction between detectives and criminals may cause a reduc-
tion of the criminal’s activity and an increase of the detective’s activity.

and

(4.4)















B1
23(u∗ → u|u∗, u

∗) =
1

ε
αB(1− u∗)u

∗χ[0,ε)(u),

B2
23(u∗ → u|u∗, u

∗) = (1− αB(1− u∗)u
∗) δu∗−γu∗u∗(u).

The dynamics of interactions is visualized in Figures 1–3, where black and gray bullets
correspond, respectively, to pre-interaction and post-interaction states.

4.3. Modeling the stream effect. Functional subsystems of criminals and detectives are
subject to interactions with their respective mean activity values. The dynamics is similar
to that of Eq.(4.2), in which only those who are less experienced than the mean tend to
learn and move towards it

(4.5) M2(u∗ → u|u∗,E2) = δβu∗+(1−β)E2
(u).

Analogously, also detectives show a trend toward the mean value

(4.6) M3(u∗ → u|u∗,E3) = δλu∗+(1−λ)E3
(u),
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where 0 ≤ λ < 1 is related to the tendency of detectives to approach the mean security
level of the forces.

4.4. Derivation of the model. The mathematical structure (3.7) can be specified for
each distribution function fi by means of the tables of games given by Eqs.(4.1)-(4.6) and
the interaction rates proposed in Tables 2 and 3. Accordingly, the evolution equations read:

∂tf1(t, u) = −αT (1− u)f1(t, u)

∫ 1

0
η11(u, u

∗)u∗f1(t, u
∗)du∗

+
1

ε
αBχ[0,ε)(u)

∫ 1

0

∫ 1

0
η23(u∗, u

∗)(1− u∗)u
∗f2(t, u∗)f3(t, u

∗)du∗du
∗,(4.7)

∂tf2(t, u) =
1

ε
αTχ[0,ε)(u)

∫ 1

0

∫ 1

0
η11(u∗, u

∗)(1 − u∗)u
∗f1(t, u∗)f1(t, u

∗)du∗du
∗

+

∫ 1

0
χ[βu∗,1](u)

1

1− βu∗
η22

(

u− βu∗

1− βu∗
, u∗
)

f2

(

t,
u− βu∗

1− βu∗

)

f2(t, u
∗)du∗

+

∫ 1

0
χ[0,1−γu∗](u)

1

1 − γu∗
η23

(

u

1− γu∗
, u∗
)[

1− αB

(

1−
u

1− γu∗

)

u∗
]

·f2

(

t,
u

1− γu∗

)

f3(t, u
∗)du∗

−f2(t, u)
3
∑

k=2

∫ 1

0
η2k(u, u

∗)fk(t, u
∗)du∗

+
1

β
χ[(1−β)E2,β+(1−β)E2](u)µ2

(

u− (1− β)E2

β
,E2

)

f2

(

t,
u− (1− β)E2

β

)

−µ2(u,E2)f2(t, u),(4.8)

and

∂tf3(t, u) =

∫ 1

0
χ[γu∗,1](u)

1

1 − γu∗
η32

(

u− γu∗

1− γu∗
, u∗
)

·f3

(

t,
u− γu∗

1− γu∗

)

f2(t, u
∗)du∗ − f3(t, u)

∫ 1

0
η32(u, u

∗)f2(t, u
∗)du∗

+
1

λ
χ[(1−λ)E3,λ+(1−λ)E3](u)µ3

(

u− (1− λ)E3

λ
,E3

)

f3

(

t,
u− (1− λ)E3

λ

)

−µ3(u,E3)f3(t, u).(4.9)

5. Simulations and Critical Analysis

The mathematical structure proposed in Eq. (3.7) has generated, as we have seen, a
model stated in terms of a system of ordinary differential equations. Coupling this system
to the initial conditions, the statement of the initial value problem is as follows:

(5.1)

{

∂tfi(t, u) = Ji[f ](t, u),

fi(0, u) = f0i (u)
for i = 1, 2, 3,

where the operators Ji[f ] have been defined in Eq. (3.7) and in the specific model Eqs.
(4.7)–(4.9), and f0i ∈ L1(0, 1), with f0i ≥ 0 a.e. in [0, 1] for i = 1, 2, 3. Let us now consider



MODELING THE ONSET AND EVOLUTION OF CRIMINALITY 11

the space X = [L1(0, 1)]3, endowed with the norm

‖ψ‖ =
3
∑

i=1

‖ψi‖1 =
3
∑

i=1

∫ 1

0
|ψi(u)|du,

and let

X+ =
{

ψ ∈ L1(0, 1) : ψ ≥ 0 a.e. in [0, 1]
}

and X+ = {ψ ∈X : ψi ∈ X+, i = 1, 2, 3}

denote the positive cones of L1(0, 1) and X, respectively.
A natural solution space for problem (5.1) is C1([0, T ),X), 0 < T ≤ ∞, that is the

space of [L1(0, 1)]3–functions f = f(t) of class C1([0, T )).
We shall denote by f0 = (f01 , f

0
2 , f

0
3 ). Due to the normalization (3.3), we assume

that ‖f0‖ = 1. This implies immediately that if f is a non-negative solution of (5.1) (i.e.
f ∈ C1([0, T ),X+)), then ‖f(t, ·)‖ = 1 for all t ∈ [0, T ), by Eqs. (3.5)–(3.6).

The following classical existence and uniqueness theorem can be stated:

Theorem 5.1. Let f0 be in X+, and suppose that there exist two positive constants Cη, Cµ
such that

sup
(u∗,u∗)∈[0,1]2

ηhk(u∗, u
∗) ≤ Cη, sup

u∗∈[0,1]
sup
ψi∈X+

µi(u∗,Ei[ψi]) ≤ Cµ,

for all h, k, i = 1, 2, 3. Let Mi = Mi(u∗, u,Ei[ψi]) and µi = µi(u∗,Ei[ψi]) be Lipschitz

continuous with respect to ψi for all i = 1, 2, 3. Then (5.1) admits a unique solution

f ∈ C1([0,∞),X+).

This result follows from an application of the Banach fixed point theorem, where the
Lipschitz property of the right hand side of the first equation in (5.1) leads to local existence
and uniqueness, while positivity is shown by taking the exponential form of the differential
equation. Then, a continuation argument leads to existence and uniqueness of solutions
for large times. The technical details of the proof are given in Appendix. The interested
reader is also addressed to [2, 15, 36] for proofs referred to equations with similar structure
and analytic properties.

Simulations have to be selected to put in evidence emerging behaviors of interest to
test the predictive ability of the model. Therefore, some specific case studies are selected
with the aim to investigate the relationship between the social structure and the levels of
criminality in a society. In particular, it is important to understand how the prosperity of
a society and the social differences between individuals impact on the rise of criminal acts.
The focus is limited not only to the influence of the mean wealth value, but also to the
shape of the wealth distribution at equal mean wealth value.

These two topics are treated in the next two subsections, while the importance of
the number of effective security agents to fight against criminality is studied in the third
subsection. Then, although the development of an exhaustive sensitivity analysis of all
parameters is not treated here, a detailed study of the role of two of them is proposed in in
the fourth subsection, namely focusing on the susceptibility of citizens to become criminals
αT and the efficacy of security forces γ, in order to test their importance in the prevention
of crime. Finally, Table 5 summarizes the result of all simulations.

5.1. Case 1: Dynamics for different mean wealth values. Simulations aim at de-
picting the time evolution of the number of criminals, starting from the ideal situation of
n2(t = 0) = 0, for different values of the mean wealth of citizens. With that purpose we
took a variety of initial conditions f1(0, u), all of which had a small rich cluster and a larger
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low-middle class cluster, as shown in Fig. 4(a), with mean wealth taking values E1 = 0.25,
0.35, 0.44 and 0.53. The solution is computed for large times and Fig. 4(b) represents the
final distribution of criminals f2. Only two curves are shown in this figure for the sake
of clarity. Figure 4(c) shows the evolution of the size of the population of criminals over
time, n2(t), for these different values of E1. In all cases, simulations were developed for the
following values of parameters: αT = 0.01, αB = 0.1, β = 0.1, γ = 0.25 and λ = 0.9. These
figures show that a poor society leads to high levels of crime. This trend holds for a broad
variety of parameters.
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Figure 4. (a) Initial wealth distributions corresponding to different mean
wealth values. All of them consist in a fixed small rich cluster and a large
poorer cluster centered in different points of the activity domain. (b) Large
time distribution of criminals for two of the selected mean wealth values. (c)
Evolution of the size of functional subsystem 2, n2(t), for different values of
E1.

5.2. Case 2: Dynamics for different shapes of wealth distribution. Simulations
are developed corresponding to fixed values of the mean wealth, specifically two values are
selected, low (E1 = 0.2) and high (E1 = 0.6), while two different shapes are considered for
each case corresponding to higher and lower concentrations of wealth in the middle class,
as depicted in Fig. 5(a) and 5(c). In this case we take a non-zero initial condition for the
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number of criminals, considering that n2(0)/n1(0) = 0.05 (corresponding to a society where
the initial number of criminals is 5% of the number of citizens), and we define the quantity

ϕ(t) =
n2(t)− n2(0)

n2(0)
· 102,

as a measure of the relative percentage change in the population of criminals. Simulations
were developed for the set of parameters: αT = 0.0001, αB = 0.15, β = 0.1, γ = 0.15 and
λ = 0.9, Figs. 5(b) and 5(d) report the evolution of ϕ. We can observe that a poorer society
produces a growth in the number of criminals, that is still more accentuated for unequal
wealth distributions. The model is capable to produce the opposite behavior for a richer
society, giving a reduction in the number of criminals for the same choice of parameters.
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Figure 5. (a) Two wealth distributions for a poor society with E1 = 0.2
lead to different curves for the relative change of the population of criminals
(b), where the most unequal distribution generates a larger increase. Anal-
ogously, (c) shows two wealth distributions for a rich society with E1 = 0.6
that generate, for the same set of model parameters, a reduction in the
number of criminals (d).
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5.3. Case 3: On the role of the number of detectives. Another interesting topic
consists in investigating the influence of the number of detectives in the development of
crime. Taking into account the worldwide distribution of police agents per country, the
rates have a median of 303.3 officers per 100,000 people and a mean of 341.8 officers [22].
Of course, these numbers depend on the social and structural differences between countries.
Let us show the evolution of the number of criminals, taking a fixed initial mean wealth
E1 = 0.433 and a fixed ratio n2(0)/n1(0) = 0.1, for different values of n3(0)/n1(0) (in
particular we consider two cases: 1110 and 330 detectives per 100,000 citizens). In all cases
the initial distribution of detectives f3(0, ·) is a Gaussian–type function with mean value
0.5. Figure 6(a) shows the initial distribution of criminals f2(0, ·) and Fig. 6(b) shows the
large time distribution for different values of n3(0)/n1(0). We take the set of parameters:
αT = 0.0001, αB = 0.15, β = 0.05, γ = 0.01 and λ = 0.9. In Figs. 6(c) and 6(d) we show
the evolution of the macroscopic quantities ϕ(t) and E2(t). The results show that for this
selection of parameters the expected number cited in [22] keeps the number of criminals
under control. Larger squads contribute to the reduction in the number of criminals as well
as in the mean criminal ability.

5.4. Case 4: Prevention of crime, is it better to improve the well-being of the

society or to strengthen security forces? Consider a population initially distributed
with n2(0)/n1(0) = 0.05 and with 500 detectives per 100,000 citizens and let us study the
evolution of ϕ(t) with variation of the parameters αT and γ. The initial distribution of
detectives f3(0, ·) is a Gaussian–type function with mean value 0.5. Figure 7(a) shows the
time dynamics of ϕ for different values of αT , and for αB = 0.05, β = 0.1, γ = 0.5 and
λ = 0.9. Fig. 7(b) shows the same dynamics for αT = 0.0002, and different values of γ.
This figure confirms the empirical evidence that an effective action to fight crime consists in
pursuing actions that contribute to reduce αT (education, employment, etc) and to improve
the quality of citizens [34].

5.5. Critical analysis. Simulations performed in the previous subsections tested the pre-
dictive ability of the model regarding to the raise of criminality in a society according
basically to the wealth distribution within it (cases 1 and 2), the importance of the number
of detectives fighting against crime (case 3) and the advantages of developing policies that
guarantee a better well-being (case 4).

The different emerging behaviors, corresponding to the aforementioned computational
study, are presented and summarized in Table 5. Although the computational study cannot
be considered exhaustive, still some useful indications are delivered. The most important
one is, according to the authors’ bias, the need of a detailed analysis of the interplay of
different dynamics. In this specific case, the welfare policy and that of the fight against
crime. Previous studies, namely [9] - focused on the dynamics of support and opposition
to regimes - and [19] - focused on the growth or decay of global wealth - have shown that
the interaction of two dynamics can lead to non-expected outputs, in some cases even to
non-predictable events. Presumably, the investigation is worth to be developed even in this
specific social problem studied in this paper.

6. Looking Forward

The contents of this paper suggest various perspectives for further research activity in
the field focusing on simulations and model validation, analytic problems, and understand-
ing the role of space dynamics. Some of topics is presented at an introductory level in the
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Figure 6. (a) Initial distribution of criminals. (b) Large time distribution
of criminals, (c) evolution of ϕ(t) and (d) evolution of the mean criminal
ability, E2(t), for different number of security agents per citizen. Continuous
lines correspond to n3(0)/n1(0) = 3.3 · 10−3 and dashed lines correspond to
n3(0)/n1(0) = 11.1 · 10−3.

next subsections according to a selection based on the authors’ bias. For each of them some
hints for future research activity will be given.

6.1. Critical size of individuals. The survival of functional subsystems might, in some
cases, depend on their size. If the size of a functional subsystem falls below a critical
value Nc, then interactions reduce to transfer individuals from the original one towards
an aggregation to another one or the dynamics is modified. For instance, for detectives,
their action is negligible if the critical size goes below a certain level needed for an efficient
action.

6.2. Topological domains of interactions. Interactions depend also on the domain of
the activity variable, within which each particle has the ability to perceive a sufficient
amount of signals and develop consequently a strategy [6, 10]. According to [10], interactions
occur in a domain Ω ⊆ Du, while sufficient information is achieved if a number nc of
field particles is involved. Integration of fi over the activity variable in a domain Ω =
[u− sm[f ;nc], u+ sM [f ;nc]], which can be called the topological domain of interaction, can
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Figure 7. Time evolution of ϕ(t) for functional subsystem 2, for different
values of (a) αT and (b) γ.

lead to compute sm and sM , where sm, sM > 0. However, the solution is unique only in
some special cases. For instance, when u is a scalar defined over the whole real axis, and the
sensitivity is symmetric with respect to u. On the other hand, if u is defined in a bounded
domain or the sensitivity is not symmetric, additional assumptions are required.

The set Ω is a part of the effective interaction domain, which is the intersection of
the theoretical maximum domain of activity of an individual with the support of fi(t, ·).
The topological domain is concerned with the possible activities of individuals, defined
by their effective domain. The choice of the topological domain depends in this way on
the neighborhood of the activity but also on more preferred activities of the individuals,
although not necessarily measured in the Euclidean distance.

6.3. Dynamic of sub-domains. Local and global interactions. This issue is also
related to the previous Subsection 6.2. Let us first define the concept of sub-domains we
will deal with and assume that each functional population has the same global interests.
One can imagine a scenario in which any population is subdivided in different groups that
may develop different or complementary strategies among them or to cooperate or have
a consensus with individuals or groups of other populations. For example, consider that
the criminal population is divided into two factions with common interests, although they
can compete (or collaborate) with resources based on different strategies in connection
with some other individuals or groups (police or ordinary citizens) that may have confluent
strategy towards a common benefit, at least temporarily. These relationships can bring
this subgroup into more social positions or just to castle on criminal ones. Each of these
subgroups defines a sub-domain of the population of criminals, that shares the main fea-
tures of the whole population but has some specific rules in relation with the other group.
Emergent processes are also a consequence of the interactions of these sub-domains of the
different populations.

On the other hand, the dynamics of each sub-domain might be defined in terms of
the characteristic curves associated with the activity variable. The flux across these curves
must be characterized through the potential generated by the activity, that involves the
sub-domains of the different populations. This is a challenging issue that needs more precise
and detailed definitions which will be discussed in a forthcoming paper.
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Case 1 - Role of the mean wealth

Increasing number of criminals
Decreasing mean wealth of the society =⇒

Increasing criminal ability

Case 2 - Role of the shape of wealth distribution

Equal distribution =⇒ Slow growth in the number
of criminals

Poor society
Unequal distribution =⇒ Fast growth in the number

of criminals
Equal distribution =⇒ Fast decrease in the number

of criminals
Rich society

Unequal distribution =⇒ Slow decrease in the number
of criminals

Case 3 - Role of the number of detectives

Large number of detectives =⇒ Decreasing number of criminals

Case 4 - Role of parameters αT and γ

=⇒ Number of criminals under control
Low susceptibility
to criminality =⇒ Criminal ability under control

=⇒ Decreasing number of criminals (with little
Increasing ability sensitivity)

of detectives =⇒ Decreasing criminal ability

Table 5. Summary of the simulations results.

6.4. On the role of external actions. The model presented in the Section 4 does not
include an analysis of the role of external actions, which can be applied to reduce criminality
either by repressive (or persuasion) actions, or by improving the expertise of detectives. In
principle, also an educative action can be addressed to citizens to improve their ability to
protect their goods. A simple model consists in assuming that a macro-scale action, say
Ui(t, u) depending on time and activity variables is applied to the functional subsystems
corresponding to the second and third functional subsystem.

The modeling of this action is achieved by inserting it in the transport term, which is
linear if the action depends only on t and u , while it is nonlinear when it depends also on
the distribution functions, Ui[fi](t, u). Of course these actions have a cost, which have to be
related to the benefit of the criminality reduction. Classically, if this aspect is introduced
a control and optimization problem can be developed.



18 N. BELLOMO, F. COLASUONNO, D. KNOPOFF, J.SOLER

6.5. On the role of space dynamics. Models and simulations proposed in the paper refer
to a population homogeneously distributed in space. A variety of real world applications
suggests to extend the study to populations distributed in networks [27], where interaction
between nodes can, in some cases, play an important role in the overall dynamics, for
instance inducing migration phenomena [26]. Also the distribution over space is of practical
interest to understand the real localization of criminality and their level of danger in specific
areas of the territory. The classical problem consists in deriving macroscopic PDEs models
from the underlying description at the microscopic scale. The pioneer ideas of paper [33],
developed in [7] for hyperbolic scaling for multicellular systems with internal structures,
need additional nontrivial studies to take into account the heterogeneous features of the
territory.

Appendix A. Proof of Theorem 5.1

Proof. Consider the Banach space (C T1 , ‖ · ‖∞), where

C
T1 = C([0, T1],X) and ‖f‖∞ = max

t∈[0,T1]
‖f(t, ·)‖

and T1 > 0 will be specified later. Put a > 1 and

C
T1
+ =

{

f ∈ C
T1 : fi(0, u) = f0i (u), fi(t, u) ≥ 0, ‖f‖∞ ≤ a for all t, u, i

}

.

Clearly, C
T1
+ is a non-empty, closed subset of the Banach space C T1 .

Let us now introduce the operator S : C
T1
+ → C T1 , defined for all f ∈ C

T1
+ as

(S f)i(t, u) = e−Ct
{

f0i (u) +

∫ t

0
eCs
[

3
∑

h,k=1

∫ 1

0

∫ 1

0
ηhk(u∗, u

∗)Bihk(u∗ → u|u∗, u
∗)

× fh(s, u∗)fk(s, u
∗) du∗ du

∗ − fi(s, u)

(

3
∑

k=1

∫ 1

0
ηik(u, u

∗) fk(s, u
∗) du∗ − aC̃η

)

+

∫ 1

0
µi(u∗,Ei)Mi(u∗ → u|u∗,Ei)fi(s, u∗)du∗ − fi(s, u)(µi(u,Ei)− Cµ)

]

ds

}

for all (t, u) ∈ [0, T1]× [0, 1] and i = 1, 2, 3, where C = aC̃η + Cµ and C̃η = max{1/5, Cη}.
Let Lµ and LM denote the Lipschitz constants of µi(u∗,Ei[ψi]) and Mi(u∗, u,Ei[ψi])

with respect to ψi, respectively, and take T1 > 0 such that

(A.1) T1 <
1

C
min

{

ln
3a

1 + 2a
, ln

5C + 2aLµ + aLMCµ
5C + 2aLµ + aLMCµ − 1

}

.

The local existence and uniqueness of the solution follows from an application of the
Banach fixed point theorem. Indeed, it is easy to check that if f is a solution of (5.1) in

[0, T1] × [0, 1] then f is a fixed point of S and vice versa. Furthermore, S (C T1
+ ) ⊂ C

T1
+ ,

since for all f ∈ C
T1
+ it results that S f(0, ·) = f0, (S f)i ≥ 0 for i = 1, 2, 3, and for all

t ∈ [0, T1]

3
∑

i=1

∫ 1

0
(S f)i(t, u)du ≤e−Ct

{

‖f0‖+

∫ t

0
eCs
[

2C̃η‖f(s, ·)‖
2 + aC̃η‖f(s, ·)‖

+ 3Cµ‖f(s, ·)‖
]

ds

}

≤ e−Ct + 3a(1− e−Ct)

≤1 + 3a(1 − e−CT1) ≤ a,
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where (A.1) is taken into account.

Now, proceeding as in the proof of [36, Theorem 3.1], we obtain, for all f ,g ∈ C
T1
+ , the

following inequality:

‖S f − S g‖∞ = max
t∈[0,T1]

3
∑

i=1

∫ 1

0
|S f(t, u)− S g(t, u)|du ≤ k‖f − g‖∞,

where k = (1− e−CT1)(5C + 2aLµ + aLMCµ) < 1, by (A.1).

Therefore, the operator S : C
T1
+ → C

T1
+ is a contraction, and by the Banach fixed point

theorem there exists a unique solution f of (5.1) defined in [0, T1] × [0, 1]. By (3.5)–(3.6),
‖f(T1, ·)‖ = 1, then, by iterating the reasoning as in the proof of [15, Theorem 3.5], f can
be extended uniquely to a global solution of (5.1). �
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