Synthesis, structural characterization and magnetic properties of the monoclinic ordered double perovskites BaLaMSbO₆, with M = Mn, Co and Ni

M. Cecilia Blanco, Juan M. De Paoli, Sergio Ceppi, G. Tirao, Vivian M. Nassis, J. Guimpel, Raúl E. Carbonio

Article Info
Article history:
Received 27 December 2013
Received in revised form 28 March 2014
Accepted 1 April 2014
Available online 13 April 2014

Keywords:
Double perovskites
Magnetic properties
X-ray emission spectroscopy
Neutron powder diffraction

Abstract
Double perovskites BaLaMnSbO₆, BaLaCoSbO₆ and BaLaNiSbO₆, were synthesized by conventional ceramic method in air, as polycrystalline powders. The Mn and Ni compounds belong to the I2/m monoclinic space group, while the Co perovskite belongs to the I 4/m tetragonal space group. Effective presence of Mn⁴⁺ has been well established by X-ray emission spectroscopy for BaLaMnSbO₆ and there is no evidence of Mn⁵⁺. BaLaCoSbO₆ and BaLaNiSbO₆ only show the expected 3D-antiferromagnetic behavior typical of super-superexchange interactions, while BaLaMnSbO₆ displays signs of superparamagnetism in the 40–160 K range, which arises from unbalanced antiferromagnetism inside nanoclusters formed by regions which are rich in Mn⁴⁺–O²⁻–Mn⁵⁺ paths. Neutron powder diffraction data for BaLaMnSbO₆ reveals that at 3 K, only long range order antiferromagnetic arrangement of Mn⁵⁺ spins on 2d octahedral sites is obtained.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of double perovskites A₂BB'O₆, with a rock salt arrangement of B and B' ion has increasing interest because of their wide range of properties. For instance, they can be metallic, half-metallic, ferromagnetic or magnetoresistive, etc. [1–8]. Particularly, in the last years, interest has been renewed due to the appearance of room temperature Colossal Magnetoresistances (CMR) in A₂FeMoO₆ [1–3] and A₂FeReO₆ (A = Ca, Sr, Ba) [5–8].

If B and B' are selected in such a way that only B is paramagnetic, then magnetic properties originate on this ion, either from superexchange or super-superexchange magnetic interactions between the B ions with the rock salt arrangement. The presence of superexchange and super-superexchange paths depends of the B and B' cationic disorder on octahedral sites [9].

A wide number of A₂BB'O₆ double perovskites with A = Ca, Sr and Ba; A' = La, B = magnetic 3d transition metal ions and B' = 4th and 5th rows closed shell transition metal ions or Sb⁵⁺, among others, have already been studied by different authors [10–14]. Most of them are highly ordered double perovskites, with predominant antiferromagnetic interactions showed by their negative Curie Weiss temperatures (θ) (normally with very low values of Neel temperatures Tₕ) and/or magnetic frustration as a consequence of competing interactions between ferromagnetic and antiferromagnetic order. This magnetic behavior is sensitive to the order-disorder between B and B' ions on octahedral sites.

The synthesis of new double perovskites containing M²⁺ and Sb⁵⁺ as B and B' ions using the series Mn²⁺, Co²⁺ and Ni²⁺ (with S = 5/2; 3/2 and 1) are interesting since they offer the possibility to observe the effect on the magnetic behavior of the decreasing magnetic moment at the B site. Here we report, for the first time, the synthesis of these double perovskites, their structural characterization using powder X-ray diffraction (PXRD) and powder neutron diffraction (PND), their magnetic characterization using Magnetization (M) vs. Temperature and M vs. Magnetic field (H) measurements, and Mn ion oxidation state determination from X-ray emission spectroscopy (XES).