CHAPTER FOUR

¹H NMR Spectroscopy and MR Imaging with Hyperpolarised Substances

Dirk Graafen^{*,†}, Sandro Ebert^{*}, Oliver Neudert^{*}, Lisandro Buljubasich[‡], María Belén Franzoni[‡], Jan Falk Dechent^{*}, Kerstin Münnemann^{*}

*Max Planck Institute for Polymer Research, Mainz, Germany

[†]Department of Radiology, Johannes Gutenberg University Medical Center, Mainz, Germany [‡]FAMAF Universidad Nacional de Córdoba, IFEG CONICET, X5016LAE Córdoba, Argentina

Contents

170
172
172
173
179
186
186
187
193
195
195
198
206
209
209

Abstract

Despite their wide applicability in natural sciences, NMR and MRI still suffer from their inherently low sensitivity. This can be overcome by hyperpolarisation techniques, such as parahydrogen-induced polarisation and dynamic nuclear polarisation. Here, we focus on the generation of ¹H-hyperpolarised substances with both methods. We especially address the severe lifetime issue of the accomplished ¹H hyperpolarisation by demonstrating the production of hyperpolarised liquids in a continuous flow fashion and the storage of hyperpolarisation in slowly relaxing singlet states. Another problem of