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Abstract. In this paper we study integral operators with kernels

K(x, y) = k1(x−A1y)...km(x−Amy),

ki(x) = Ωi(x)

|x|n/qi
where Ωi : Rn → R are homogeneous functions of degree zero,

satisfying a size and a Dini condition, Ai are certain invertible matrices, and n
q1

+

. . . n
qm

= n − α, 0 ≤ α < n. We obtain the appropriate weighted Lp − Lq estimate,

the weighted BMO and weak type estimates for certain weights in A(p, q). We also
give a Coifman type estimate for these operators.

1. Introduction

Let 0 ≤ α < n, 1 < m ∈ N. For 1 ≤ i ≤ m, let 1 < qi < ∞ such that
n
q1
+ · · ·+ n

qm
= n−α. We denote by Σ = Σn−1 the unit sphere in Rn. Let Ωi ∈ L1(Σ).

If x ̸= 0, we write x′ = x/|x|. We extend this function to Rn \ {0} as Ωi(x) = Ωi(x
′).

Let

ki(x) =
Ωi(x)

|x|n/qi
. (1.1)

In this paper we study the integral operator

Tαf(x) =

∫
Rn

K(x, y)f(y)dy, (1.2)

with K(x, y) = k1(x− A1y)...km(x− Amy), where Ai, are certain invertible matrices
and f ∈ L∞

loc(Rn).
In the case Ai = aiI, ai ∈ R, T. Godoy and M. Urciuolo in [6] obtain the

Lp(Rn, dx) − Lq(Rn, dx) boundedness of this operator for 0 ≤ α < n, 1 < p < n
α

and 1
q
= 1

p
− α

n
. In the case that Ωi are smooth functions, in [12] P. Rocha and M.

Urciuolo consider the operator Tα for matrices A1, . . . , Am satisfying the following
hypothesis

(H) Ai is invertible and Ai − Aj is invertible for i ̸= j, 1 ≤ i, j ≤ m.

They obtain that Tα is bounded from Hp(Rn, dx) into Lq(Rn, dx), for 0 < p < n
α
and

1
q
= 1

p
− α

n
.

For 0 ≤ α < n and 1 ≤ s < ∞ we define
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Mα,sf(x) = sup
B

|B|
α
n

(
1

|B|

∫
B

|f(x)|s dx
) 1

s

where the supremum is taken along all the ballsB such that x belongs toB.We observe
that M = M0,1, where M is the classical Hardy-Littlewood maximal operator, also
for 0 < α < n, Mα = Mα,1 is the classical fractional maximal operator.

It is well known (see [9]) that if w is a weight (i.e. w is a non negative function
and w ∈ L1

loc(Rn, dx)) then Mα is bounded from Lp (Rn, wp) into Lq (Rn, wq) , for
1 < p < n

α
and 1

q
= 1

p
− α

n
, if and only if

sup
B

[(
1

|B|

∫
B

wq

) 1
q
(

1

|B|

∫
B

w−p′
) 1

p′
]
< ∞, (1.3)

where 1
p
+ 1

p′
= 1. The class of functions that satisfy (1.3) is called A(p, q).

Throughout this paper we understand that for p = ∞, (
∫
E
|f |p)

1
p stands for ||fχE||∞,

for any E is a measurable set . With this in mind we define the class A(p, q) still by
(1.3) for all 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. If Ap, p ≥ 1, denotes the classical Muck-
enhoupt class of weights, we note that w ∈ A(p, p) is equivalent to wp ∈ Ap. We
recall that A∞ = ∪p≥1Ap. We recall that the statement w ∈ A(∞,∞) is equivalent
to w−1 ∈ A1.

In [10] and [11] we consider Ωi ≡ 1 and weights satisfying the following condition

There exists c > 0 such that

w(Aix) ≤ cw(x), (1.4)

a.e. x ∈ Rn, 1 ≤ i ≤ m.

We note that if w is a power weight then w satisfies (1.4). Observe that there are
another weights that satisfy this condition. For example consider

w(x) =

{
ln( 1

|x|), if |x| ≤ 1
e
,

1, if |x| > 1
e
,

in [7], it is shown that w ∈ A1 and it is easy to check that for any a ∈ R − {0}
there exists Ca such that w(ax) ≤ Caw(x), a.e. x ∈ R. In [11] we obtain weighted
estimates for this kind of operators and certain weights satisfying (1.4), precisely as
for the classical fractional integral operator Iα (for 0 < α < n) or the singular integral
operator (for α = 0), we prove the Lp(Rn, wp) − Lq(Rn, wq) boundedness of Tα for
weights w ∈ A(p, q), 1 < p < n

α
, 1

q
= 1

p
− α

n
and 0 ≤ α < n.

Given a function f ∈ L1
loc(Rn, dx) we define the sharp maximal function by

M ♯f(x) = sup
B∋x

1

|B|

∫ ∣∣∣∣f (y)− 1

|Q|

∫
B

|f |
∣∣∣∣ dy,

and the space

BMO = {f ∈ L1
loc(Rn, dx) : M ♯f ∈ L∞(Rn, dx)},

the norm in this space is ||f ||∗ = ||M ♯f ||∞.
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There is also a weighted version of BMO, this is denoted BMO(w) that is described
by the semi norm

∥|f |∥w = sup
B

∥wχB∥∞
(

1

|B|

∫
B

∣∣∣∣f(x)− 1

|B|

∫
B

f

∣∣∣∣ dx) . (1.5)

It is easy to check that
∥|f |∥ ≃ ||wM ♯f ||∞.

In [11] we also obtain the weighted weak type (1, n
n−α

) estimate for w ∈ A(1, n
n−α

) and

w satisfying (1.4). We also prove that if w ∈ A
(
n
α
,∞
)
and w satisfies (1.4) then

∥|Tαf |∥w ≤ C

(∫
(|f |w)

n
α

)α
n

, (1.6)

The key argument to obtain the above stated results was the Coifman type estimate
( see Theorem 2.1 in [11])∫

Rn

|Tαf(x)|pw(x) dx ≤ C

∫
Rn

|Mαf(x)|pw(x) dx,

f ∈ L∞
c (Rn, dx), p > 0 and w ∈ A∞ satisfying (1.4).

For integral operators with rough kernels of the form

TΩ,αf(x) =

∫
Ω(x− y)

|x− y|n−α
f(y) dy,

in [8], [4] and [13] the authors obtain weighted estimates for TΩ,0 for certain functions
Ω homogeneous of degree zero and Ω ∈ Lp(Sn−1) for some p > 1. In [2] the authors
prove the corresponding weighted results, for α > 0. Also in [1] the authors obtain
a Coifman type inequality for general fractional integrals operators with kernels sat-
isfying a Hörmander condition given by a Young function. In §2 we describe this
condition.

In this paper we consider the operator Tα defined in (1.2) where, for 1 ≤ i ≤ m, ki
is given by (1.1) and the matrices Ai satisfy the hypothesis (H). For 1 ≤ p ≤ ∞ and
Ωi ∈ L1(Σ), we define the Lp- modulus of continuity as

ϖ
i,p(t) = sup

|y|≤t

∥Ωi(·+ y)− Ωi(·)∥p,Σ.

We will make the following hypothesis about the functions Ωi, 1 ≤ i ≤ m,

(H1) There exists pi > qi such that Ωi ∈ Lpi(Σ),

(H2)

∫ 1

0

ϖi,pi(t)
dt

t
< ∞.

In §2 we obtain a pointwise estimate that relates (M ♯|Tαf |δ(x))1/δ, for 0 < δ < 1,
with a fractional maximal function of an appropriate power of f . This estimate is the
fundamental key to obtain weighted inequalities for the operator Tα. These inequalities
are developed in §3. We give first a Coifman type estimate for these operators that
allows us to get the adequate weighted Lp−Lq estimate for certain weights in A(p, q).
The results that we obtain in Theorems 3.3 and 3.4 are the analogous of Theorem 1
and 2 in [2]. We also get corresponding weighted BMO and weak type estimates.
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Throughout this paper c and C will denote positive constants, not the same at each
occurrence.

2. Pointwise estimate

We denote by |x| ∼ R the set {x ∈ Rn : R < |x| ≤ 2R} and for 1 ≤ r ≤ ∞

||f ||r,|x|∼R =

(
1

|B(0, 2R)|

∫
B(0,2R)

|f |rχ|x|∼R

) 1
r

.

In [1] the authors introduce the following definition

Definition 2.1. Given 0 ≤ α < n and 1 ≤ r ≤ ∞ we say that k ∈ Hr,α if there exist
c ≥ 1 and C > 0 such that for all y ∈ Rn and R > c|y|

∞∑
m=1

(2mR)n−α||k(.− y)− k(.)||r,|x|∼2mR ≤ C.

In Proposition 4.2 of the mentioned paper they prove that that if ki is as in (1.1)
and Ωi satisfies (H2) then

ki ∈ H n
q′
i
,pi .

Theorem 2.2. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). If s ≥ 1 is defined by 1

p1
+ · · · + 1

pm
+ 1

s
= 1 then there exists

C > 0 such that, for 0 < δ ≤ 1 and f ∈ L∞
c (Rn, dx)

(M ♯|Tαf |δ(x))1/δ ≤ C

m∑
i=1

Mα,sf(A
−1
i x). (2.1)

Proof. Let f ∈ L∞
c (Rn, dx), f ≥ 0 and 0 < δ ≤ 1. As in [6] it can be proved that Tα

is a bounded operator from Lp(Rn, dx) into Lq(Rn, dx), for 1 < p < n
α
, and 1

q
= 1

p
− α

n
,

so Tα(f) ∈ L1
loc(Rn, dx) and M ♯

δ(Tαf)(x) is well defined for all x ∈ Rn. Let x ∈ Rn

and let B = B(xB, R) be a ball that contains x, centered at xB with radius R, and

Tαf(xB) < ∞. We write B̃ = B(xB, 4R), and for 1 ≤ i ≤ m we also set B̃i = A−1
i B̃.

Let f1 = f χ∪
1≤i≤m B̃i

and let f2 = f − f1.

We choose a = Tαf2(xB). By Jensen’s inequality and from the inequality

|tδ − sδ|1/δ ≤ |t− s|,

which holds for any positive t, s,(
1

|B|

∫
B

|(Tαf)
δ(y)− aδ|dy

)1/δ

≤
(

1

|B|

∫
B

|Tαf(y)− a|dy
)

≤
(

1

|B|

∫
B

|Tαf1(y)|dy
)
+

(
1

|B|

∫
B

|Tαf2(y)− a|dy
)

= I + II.

We consider first the case 0 < α < n.
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I =
1

|B|

∫
B

|Tαf1(y)|dy

≤ 1

|B|

∫
B

m∑
i=1

∫
B̃i

|K(y, z)|f(z)dz dy =
m∑
i=1

1

|B|

∫
B̃i

f(z)

∫
B

|K(y, z)|dy dz.

If z ∈ B̃i∫
B

|K(y, z)|dy ≤
∫
{y∈B:|y−A1z|≤|y−Arz|, 1≤r≤m}

|K(y, z)|dy

+ · · ·+
∫
{y∈B:|y−Amz|≤|y−Arz|, 1≤r≤m}

|K(y, z)|dy
(2.2)

For 1 ≤ l ≤ m and j ∈ N, let

C l
j = {y ∈ B : |y − Alz| ≤ |y − Arz|, 1 ≤ r ≤ m and |y − Alz| ∼ 2−j−1R}.

We observe that if y ∈ B then |y − Alz| ≤ 5R < 8R. By Hölder’s inequality

∫
{y∈B:|y−Alz|≤|y−Arz|, 1≤r≤m}

|K(y, z)|dy ≤
∞∑

j=−3

∫
Cl

j

|K(y, z)|dy

≤ C
∞∑

j=−3

[
||k1(.− A1z)χCl

j
||p1 . . . ||km(.− Amz)χCl

j
||pm(2−jR)n/s

]
.

(2.3)

If pl < ∞, then

||kl(.− Alz)χCl
j
||pl =

(∫
2−j−1R≤|u|≤2−jR

(
|Ωl(u)|
|u|n/ql

du

)pl
)1/pl

≤ C2
jn
ql R

− n
ql

(∫
2−j−1R≤|u|≤2−jR

|Ωl(u)|pl du
)1/pl

≤ C2
jn
ql R

− n
ql 2

−jn
pl R

n
pl ||Ωl||pl ,

(2.4)

where the last inequality follows since Ωl is homogeneous of degree zero. We observe
that if pl = ∞ we also have

||kl(.− Alz)χCl
j
||∞ ≤ C2

jn
ql R

− n
ql ||Ωl||∞.
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For 1 ≤ r ≤ m, r ̸= l,we observe that if y ∈ C l
j then |y−Arz| ≥ |y−Alz| > 2−j−1R,

so if pr < ∞

||kr(.− Arz)χCl
j
||pr ≤

(∑
k≥0

∫
{2−j+k−1R≤|u|≤2−j+kR}

(
|Ωr(u)|
|u|n/qr

)pr
)1/pr

≤ C
∑
k≥0

2(j−k) n
qr R− n

qr 2(−j+k) n
pr R

n
pr ||Ωr||pr

≤ C2
j n
qirR− n

qr 2−j n
pr R

n
pr ||Ωr||pr

∑
k≥0

2k(
n
pr

− n
qr

)

≤ C2j
n
qr R− n

qr 2−j n
pr R

n
pr ||Ωr||pr ,

(2.5)

the last inequality follows since pr > qr. Again if pr = ∞ we get

||kr(.− Arz)χCl
j
||∞ ≤ C2

jn
qr R− n

qr ||Ωr||∞

Then from (2.3), (2.4) and (2.5) we obtain

∫
{y∈B:|y−Alz|≤|y−Arz|, 1≤r≤m}

|K(y, z)|dy

≤ C
∞∑

j=−3

2
jn
q1 R

− n
q1 2

−jn
p1 R

n
p1 ||Ω1||p1 . . . 2

j n
qmR− n

qm 2−j n
pmR

n
pm ||Ωm||pm(2−jR)n/s

≤ CRα||Ω1||p1 . . . ||Ωm||pm .

(2.6)

So

I ≤ C
m∑
i=1

Rα

|B|

∫
B̃i

f(z)dz ≤ C
m∑
i=1

Mαf(A
−1
i x) ≤ C

m∑
i=1

Mα,sf(A
−1
i x).

On the other hand

II =
1

|B|

∫
B

|Tαf2 (y)− Tαf2 (xB)| dy

≤ 1

|B|

∫
B

∫( ∪
1≤i≤m

B̃i

)c |K(y, z)−K(xB, z)|f(z)dzdy

≤
m∑
l=1

1

|B|

∫
B

∫
Zl

|K(y, z)−K(xB, z)|f(z)dzdy,

where

Z l =

( ∪
1≤i≤m

B̃i

)c∩
{z : |xB − Alz| ≤ |xB − Arz|, for 1 ≤ r ≤ m} . (2.7)
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We estimate now |K(y, z)−K(xB, z)| for y ∈ B and z ∈ Z l. It is easy to check
that

|K(y, z)−K(xB, z)|

≤
m∑
i=1

[
i∏

r=1

|kr−1(xB − Ar−1z)||ki(y − Aiz)− ki(xB − Aiz)|
m∏
r=i

|kr+1(y − Ar+1z)|

]
(2.8)

where we define k0 = km+1 ≡ 1.
For simplicity we estimate the first summand of (2.8), the other summands follow in
analogous way. For j ∈ N, let Dl

j = {z ∈ Z l : |xB − Alz| ∼ 2j+1R}. We use Hölder’s
inequality to get

∫
Zl

|k1(y − A1z)− k1(xB − A1z)|
m∏
r=2

|kr(y − Arz)|f(z)dz

=
∞∑
j=1

∫
Dl

j

|k1(y − A1z)− k1(xB − A1z)|
m∏
r=2

|kr(y − Arz)|f(z)dz

≤
∞∑
j=1

||(k1(y − A1·)− k1(xB − A1·))χDl
j
||p1

m∏
r=2

||kr(y − Ar·)χDl
j
||pr ||fχDl

j
||s.

(2.9)

Now, if pl < ∞,

||kl(y − Al·)χDl
j
||pl =

(∫
Dl

j

|Ωl(y − Alz)|pl

|y − Alz|
npl
ql

dz

) 1
pl

≤ C(R2j)
− n

ql

(∫
{2jR<|y−Alz|≤2j+3R}

|Ωl(y − Alz)|pldz
) 1

pl

≤ C(2jR)
− n

ql
+ n

pl

(∫
{1<|u|≤8}

|Ωl(u)|pldu
) 1

pl

≤ C(2jR)
− n

ql
+ n

pl ||Ωl||pl

(2.10)

where the first inequality follows since |xB − Alz|/2 ≤ |y − Alz| ≤ 2|xB − Alz|. If
pl = ∞ we also get

||kl(y − Al·)χDl
j
||∞ ≤ C(2jR)

− n
ql ||Ωl||∞

For r ̸= l, we observe that if z ∈ Dj
l then |xB − Arz| ≥ |xB − Alz| ≥ 2j+1R, so we

decompose Dl
j =

∪
k≥j(D

l
j)k,r where

(Dl
j)k,r = {z ∈ Dl

j : |xB − Arz| ∼ 2k+1R} (2.11)
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If pr < ∞,

||kr(y − Ar·)χDl
j
||pr =

∞∑
k≥j

(∫
(Dl

j)k,r

|kr(y − Arz)|prdz

) 1
pr

≤ C||Ωr||pr
∞∑
k≥j

(2kR)−
n
qr

+ n
pr

≤ C||Ωr||pr(2jR)−
n
qr

+ n
pr

(2.12)

where the geometric sums converges since pr > qr. If pr = ∞,

||kr(y − Ar·)χDl
j
||∞ =

∞∑
k≥j

||kr(y − Ar·)χ(Dl
j)k,r

||∞

≤ C||Ωr||∞(2jR)−
n
qr .

Now for l = 1

||(k1(y−A1·)− k1(xB −A1·))χD1
j
||p1 ≤ C||(k1(y−xB + ·)− k1(·))χ|x|∼2j+1R||p1 (2.13)

Since n/p2 + · · ·+ n/pm − (n/q2 + · · ·+ n/qm) = α−n/s−n/p1+n/q1 then (2.10),
(2.12) and (2.13) imply∫

Z1

|k1(y − A1z)− k1(xB − A1z)|
m∏
r=2

|kr(y − Arz)|f(z)dz

≤ C

∞∑
j=1

(2jR)
n
q1

− n
p1 ||(k1(y − xB + ·)− k1(·))χ|x|∼2j+1R||p1(2jR)α

(
1

(2jR)n

∫
D1

j

f s(z)dz

) 1
s

≤ CMα,sf(A
−1
1 x)

∞∑
j=1

(2jR)
n
q1

− n
p1 ||(k1(y − xB + ·)− k1(·))χ|x|∼2j+1R||p1

≤ CMα,sf(A
−1
1 x),

(2.14)
where the last inequality follows since k1 ∈ H n

q′
1
, p1 .

For l ̸= 1 we observe that

||(k1(y − A1·)− k1(xB − A1·))χDl
j
||p1 ≤

∞∑
k≥j

||(k1(y − A1·)− k1(xB − A1·))χ
(Dl

j
)k,1

||p1

≤ C

∞∑
k≥j

(2kR)
n
p1

− n
q1 (2kR)

n
q1

− n
p1 ||(k1(y − xB + ·)− k1(·))χ|x|∼2k+1R||p1

≤ C(2jR)
n
p1

− n
q1 ,

(2.15)
where the last inequality follows since p1 > q1 and since k1 ∈ H n

q′
1
, p1,. So as in the

case l = 1 we obtain
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∫
Zl

|k1(y − A1z)− k1(xB − A1z)|
m∏
r=2

|kr(y − Arz)|f(z)dz ≤ CMα,sf(A
−1
l x).

(2.16)
Then

II ≤ C
m∑
i=1

Mα,sf(A
−1
i x).

Now we start with the case α = 0.
If pi = ∞ for all 1 ≤ i ≤ m, we decompose

(
1

|B|

∫
B

|(T0f)
δ(y)− aδ|dy

)1/δ

≤
(

C

|B|

∫
B

(T0f1)
δ(y)dy

)1/δ

+

(
C

|B|

∫
B

|(T0f2)
δ(y)− aδ|dy

)1/δ

= I + II.

To estimate I we observe that

|T0f(x)| ≤ C

∫
|x− A1y|−

n
q1

...|x− Amy|−
n
qm f(y)dy = CTf(x). (2.17)

In [11] we obtain that the operator T is of weak-type (1,1) with respect to the
Lebesgue measure. Thus we take 0 < δ < 1 and we use Kolmogorov’s inequality (see
exercise 2.1.5. p. 91 in [7]) to get

I ≤ C

|B|

∫
Rn

f1(y)dy ≤
m∑
j=1

C

|B|

∫
B̃j

f(y)dy

≤ C

m∑
j=1

Mf(A−1
j x).

To estimate II, we first use Jensen’s inequality and then we proceed just as in the
case 0 < α < n to get

II ≤ C

m∑
j=1

Mf(A−1
j x),

and so the theorem follows in this case.
If pi < ∞ for some 1 ≤ i ≤ m, by Jensen’s inequality

(
1

|B|

∫
B

|(T0f)
δ(y)− aδ|dy

)1/δ

≤
(

1

|B|

∫
B

|T0f(y)− a|dy
)

≤
(

1

|B|

∫
B

|T0f1(y)|dy
)
+

(
1

|B|

∫
B

|T0f2(y)− a|dy
)

= I + II.
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As in [6] it can be proved that T0 is bounded on Lp(Rn, dx) for 1 < p < ∞. So by
Hölder’s inequality

I ≤
(

1

|B|

∫
B

|T0f1(y)|pdy
) 1

p

≤ C

(
1

|B|

∫
Rn

|f1(y)|pdy
) 1

p

≤ C

m∑
j=1

M0,pf(A
−1
j x).

As before, to estimate II we proceed as in the case 0 < α < n to get

II ≤ C

m∑
j=1

M0,sf(A
−1
j x),

If we chose p = s the theorem follows in this case. �

3. Weighted estimates

Our next aim is to obtain weighted Lp−Lq estimates for the operator Tα and certain
classes of weights. The fundamental tool to get these results is the following theorem
where we prove a Coifman type inequality.

Theorem 3.1. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). Let s ≥ 1 be defined by 1

p1
+ · · · + 1

pm
+ 1

s
= 1, 0 < p < ∞ and

let w ∈ A∞ satisfying (1.4). Then there exists C > 0 such that, for f ∈ L∞
c (Rn, dx),∫

Rn

|Tαf(x)|pw(x) dx ≤ C

∫
Rn

|Mα,sf(x)|pw(x) dx,

always holds if the left hand side is finite.

Proof. Let w ∈ A∞, then there exists r > 1 such that w ∈ Ar. For 0 < p < ∞ we
take 0 < δ < 1, such that 1 < r < p/δ, thus w ∈ Ap/δ. If ||Tαf ||p,w < ∞ then also
||(Tαf)

δ|| p
δ
,w < ∞. Under these conditions we can apply Theorem 2.20 in [5], p. 410,

and from theorem (2.2) we get∫
Rn

|Tαf(x)|pw(x) dx ≤
∫
Rn

(M(Tαf)
δ(x))p/δw(x) dx

≤ C

∫
Rn

(M ♯
δ(Tαf)(x))

pw(x) dx

≤ C

∫
Rn

(
m∑
i=1

Mα,sf(A
−1
i x)

)p

w(x) dx

≤ C
m∑
i=1

∫
Rn

(Mα,sf)
p(x)w(Aix) dx

≤ C

∫
Rn

(Mα,sf(x))
pw(x) dx,

where the last inequality follows since w satisfies (1.4).
�
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Lemma 3.2. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). Let s ≥ 1 be defined by 1

p1
+ · · ·+ 1

pm
+ 1

s
= 1, let ws ∈ A

(
p
s
, q
s

)
with 1 < p < n

α
and 1

q
= 1

p
− α

n
. If f ∈ L∞

c (Rn, dx) then Tα(f) ∈ Lq (Rn, wq) .

Proof. The proof follows similar lines than the proof of Lemma 2.2 in [11]. Since
ws ∈ A

(
p
s
, q
s

)
then wq ∈ Ar with r = 1 + q

s
1

( p
s )

′ =
q
n
(n
s
− α).

Let Mj = max {|Ajy| : |y| = 1} and let M =max1≤j≤m {Mj} . Suppose
supp f ⊆ B(0, R). If |x| > 2MR and y ∈ supp f, then for 1 ≤ i ≤ m,

|x− Aiy| ≥ |x| − |Aiy| = |x| − |y|
∣∣∣∣Ai

y

|y|

∣∣∣∣ ≥ |x| −RM ≥|x|
2
,

so by Hölder’s inequality,

|Tαf(x)| =
∣∣∣∣∫ k1 (x− A1y) · · · km (x− Amy) f(y) dy

∣∣∣∣
≤ ||k1(x− A1·)χ{|x−A1·|≥ |x|

2
}||p1 ...||km(x− Am·)χ{|x−Am·|≥ |x|

2
}||pm ∥f∥s .

Now,

||ki(x− Ai·)χ{|x−Ai·|≥ |x|
2
}||pi =

∑
k∈N

||ki(x− Ai·)χ{|x−Ai·|∼2k−2|x|}||pi

≤ C
∑
k∈N

(
2k |x|

)− n
qi ||Ωiχ{|·|∼2k−2|x|}||pi ≤

∑
k∈N

(
2k |x|

)− n
qi
+ n

pi ||Ωi||pi

= C |x|−
n
qi
+ n

pi ∥Ωi∥pi .
So

|Tαf(x)| ≤ C |x|
m∑
i=1

− n
qi
+ n

pi ∥Ω1∥p1 ... ∥Ωm∥pm ∥f∥s = C |x|α−
n
s ∥f∥s .

Thus ∫
|x|>2MR

|Tαf(x)|q wq(x)dx =
∑
k∈N

∫
|x|∼2kMR

|Tαf(x)|q wq(x)dx

≤ C
∑
k∈N

∫
|x|∼2kMR

|x|(α−
n
s )q wq(x)dx ≤ C

∑
k∈N

(
2kMR

)(α−n
s )q wq(B(0, 2k+1MR).

Since wq ∈ Ar, there exists r̃ < r = q
n
(n
s
− α) such that wq ∈ Ar̃ so

wq(B(0, 2k+1MR) ≤ C2knr̃ (see Lemma 2.2 in [5]) so the last sum is finite.
To study ∫

|x|≤2MR

|Tαf(x)|q wq(x)dx,

we recall that in [6] the authors obtain the boundedness of Tα from Lp(Rn, dx) into
Lq(Rn, dx) for 1 < p < n

α
and 1

q
= 1

p
− α

n
, and so we continue the proof as in [11].

�

We are now ready to prove the weighted boundedness result.
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Theorem 3.3. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). Let s ≥ 1 be defined by 1

p1
+ · · ·+ 1

pm
+ 1

s
= 1. Suppose w satisfies

(1.4) and ws ∈ A
(
p
s
, q
s

)
with s < p < n

α
and 1

q
= 1

p
− α

n
. Then there exits C > 0 such

that for f ∈ L∞
c (Rn, dx),(∫

Rn

|Tαf(x)|qwq(x) dx

) 1
q

≤ C

(∫
Rn

|f(x)|pwp(x) dx

) 1
p

. (3.1)

Proof. Since ws ∈ A(p
s
, q
s
) for 1

q
= 1

p
− α

n
then wq ∈ Ar ⊂ A∞, with r = q

n
(n
s
− α).

By Lemma 3.2 we have that Tαf ∈ Lq(Rn, wq). Moreover we recall that ws ∈ A(p
s
, q
s
)

implies that Mαs is bounded from L
p
s (Rn, w

p
s ) into L

q
s (Rn, w

q
s ), so we apply Theorem

3.1 to obtain(∫
|Tαf(x)|qwq(x)dx

) 1
q

≤ C

(∫
(Mα,sf(x))

qwq(x)dx

) 1
q

= C

(∫
(Mαs|f(x)|s)

q
swq(x)dx

) 1
q

≤ C

(∫
|f(x)|pwp(x)dx

) 1
p

.

�
By a standard duality argument we obtain the following Theorem.

Theorem 3.4. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). Let s ≥ 1 be defined by 1

p1
+ · · ·+ 1

pm
+ 1

s
= 1. Suppose w satisfies

w−1(A−1
i x) ≤ Cw−1(x) for all 1 ≤ i ≤ m and w−s ∈ A

(
q′

s
, p

′

s

)
with 1 < p < n

α
,

1
q
= 1

p
− α

n
and q < s′. Then there exits C > 0 such that for f ∈ L∞

c (Rn, dx),(∫
Rn

|Tαf(x)|qwq(x) dx

) 1
q

≤ C

(∫
Rn

|f(x)|pwp(x) dx

) 1
p

. (3.2)

Proof. We observe that the adjoint T ∗
α of the operator Tα is the integral operator with

kernel
K̃(x, y) = k̃1(x− A−1

1 y) · · · k̃m(x− A−1
m y)

where for 1 ≤ i ≤ m

k̃i(x) =
Ω̃i(x)

|Aix|
n
qi

=
Ω̄i(−Aix)

|Aix|
n
qi

.

It is easy to check that Ω̃i satisfy (H1) and (H2) and also that k̃i ∈ H n
q′
i
,pi for all

1 ≤ i ≤ m. We take g with ||g||q′,w−q′ ≤ 1, thus∫
Rn

Tαf(x)g(x)dx =

∫
Rn

f(x)T ∗
αg(x)dx.

Hence
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||Tαf ||q,wq = sup
g

|
∫
Rn

f(x)T ∗
αg(x)dx| ≤ ||f ||p,wp sup

g
||T ∗

αg||p′,w−p′ .

Since 1
q
= 1

p
− α

n
and 1 < p < q < s′ then 1

p′
= 1

q′
− α

n
and s < q′ < n

α
, so as in Theorem

3.3 we obtain

||T ∗
αg||p′,w−p′ ≤ C||g||q′,w−q′ ≤ C,

thus

||Tαf ||q,wq ≤ C||f ||p,wp .

�

We now obtain an estimate of the type (1.6) for the operator Tα and for certain
weights in the class A(n

α
,∞).

Theorem 3.5. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). If s ≥ 1 is defined by 1

p1
+ · · · + 1

pm
+ 1

s
= 1. If ws ∈ A( n

αs
,∞)

and satisfies (1.4), then there exits C > 0 such that for f ∈ L∞
c (Rn, dx),

∥|Tαf |∥w ≤ C

(∫
(|f(x)|w(x))

n
α dx

)α
n

.

Proof. We observe that if

ws ∈ A
( n

αs
,∞
)

then ||wMα,sf ||∞ ≤ C||fw||n
α
. (3.3)

Indeed by Hölder’s inequality we get

1

|B|1−αs
n

∫
B

|f(x)|sdx ≤ 1

|B|1−αs
n

(∫
B

|f(x)|
n
αw

n
α (x)dx

)αs
n
(∫

B

w−s( n
αs

)′(x)dx

) 1
( n
αs )′

.

Then, for x ∈ B, since ws ∈ A
(

n
αs
,∞
)
we get

w(x)

(
1

|B|1−αs
n

∫
B

|f(x)|sdx
) 1

s

≤
(∫

B

|f(x)|
n
αw

n
α (x)dx

)α
n

||wsχB||
1
s∞

(
1

|B|

∫
B

w−s( n
αs

)′(x)dx

) 1
( n
αs )′s

≤ C

(∫
Rn

|f(x)|
n
αw

n
α (x)dx

)α
n

,

thus

w(x)Mα,sf(x) ≤ C||fw||n
α
,

and (3.3) follows.
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Now, using Theorem 2.2 and (3.3), we get

|||Tαf |||w ≃ ||wM ♯Tαf ||∞ ≤ C
m∑
i=1

||wMα,sf(A
−1
i ·)||∞

≤ C

m∑
i=1

(∫
|f(A−1

i x)w(x)|
n
αdx

)α
n

≤ C

m∑
i=1

(∫
|f(x)w(Aix)|

n
αdx

)α
n

≤ C

(∫
|f(x)w(x)|

n
αdx

)α
n

,

where the last inequality follows since w satisfies hypothesis (1.4). �

Finally we prove that Tα satisfies a weighted weak type (1, n
n−α

) estimate for certain
weights in A(1, n

n−α
).

Theorem 3.6. Let 0 ≤ α < n and let Tα the integral operator defined by (1.2). We
suppose that for 1 ≤ i ≤ m, the matrices Ai and the functions Ωi satisfy the hypothesis
(H), (H1) and (H2). If s ≥ 1 is defined by 1

p1
+ · · ·+ 1

pm
+ 1

s
= 1. If ws ∈ A(1, n

n−αs
)

and satisfies (1.4) then there exists C > 0 such that for f ∈ L∞
c (Rn, dx),

sup
λ>0

λ(w
sn

n−αs{x : |Tαf(x)| > λ})
n−αs
sn ≤ C

(∫
|f(x)|sws(x)dx

) 1
s

.

Proof. Given w ∈ A∞ there exists β > 0 and C > 0 such that

w{x : Mf(x) > 2λ,M ♯f(x) ≤ γλ} ≤ Cγβw{x : Mf(x) > λ},
for any γ > 0 (see [3] p.146).

For q ≥ 1, as in Theorem 3.2 in [11], we obtain that

sup
λ>0

λqw{x : Mf(x) > λ} ≤ C sup
λ>0

λqw{x : M ♯f(x) > γλ},

for some γ > 0.
We consider first the case s > 1. If ws ∈ A(1, n

n−αs
) then w

sn
n−αs ∈ A∞. So for

q = sn
n−αs

, we obtain

sup
λ>0

λ(w
sn

n−αs{x : |Tαf |(x) > λ})
n−αs
sn ≤ C sup

λ>0
λ(w

sn
n−αs{x : MTαf(x) > λ})

n−αs
sn

≤ C sup
λ>0

λ(w
sn

n−αs{x : M ♯Tαf(x) > γλ})
n−αs
sn

≤ C sup
λ>0

λ(w
sn

n−αs{x :
m∑
i=1

Mα,sf(A
−1
i x) > Cγλ})

n−αs
sn ,

where the last inequality follows from Theorem 2.2, with δ = 1. Since w satisfies (1.4),
it is easy to check that

w
sn

n−αs{x : Mα,sf(A
−1
i x) > λ} ≤ Ciw

sn
n−αs{x : Mα,sf(x) > λ},
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so

sup
λ>0

λ(w
sn

n−αs{x : |Tαf |(x) > λ})
n−αs
sn ≤ C sup

λ>0
λ(w

sn
n−αs{x : Mα,sf(x) > λ})

n−αs
sn

≤ C sup
λ>0

λ(w
sn

n−αs{x : Mαs|f |s(x) > λs})
n−αs
sn

≤ C

(∫
|f(x)|sws(x)dx

) 1
s

,

where the last inequality follows since ws ∈ A(1, n
n−αs

), and since Mαs is of weak type
(1, n

n−αs
).

If s = 1, Tα is bounded by the operator T defined in (2.17) so we proceed as in the
proof of Theorem 3.2 in [11].

�
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5000 Córdoba, Argentina

E-mail address: urciuolo@famaf.unc.edu.ar


