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CONJUGACY CLASSES OF p-CYCLES OF TYPE D

IN ALTERNATING GROUPS

FERNANDO FANTINO

Abstract. We classify the conjugacy classes of p-cycles of type D in

alternating groups. This finishes the open cases in [AFGV]. Also we

determine all the subracks of those conjugacy classes which are not of

type D.

1. Introduction

In the context of the Lifting method [AS], the problem of the classification
of finite-dimensional complex pointed Hopf algebras over non-abelian groups
can be approached by the study of Nichols algebras associated to pairs (X, q),
where X is a rack and q a 2-cocyle, see [AG]. Since the computation of
all cocycles of a rack is hard, it is useful to have tools that ensure that
the corresponding Nichols algebra B(X, q) has infinite dimension for any 2-
cocycle q; we say that X collapses if this happens. It was shown in [AFGV,
Thm. 3.6] that any finite rack of type D collapses.

The racks of type D have a nice behavior with respect to monomorphisms
and epimorphisms of racks. Indeed, if Y ⊆ X is a subrack of type D, then
X is of type D, and if p : Z → X is an epimorphism of racks with Z finite
and X of type D, then Z is of type D. Besides, it is well-known that any
finite rack can be decomposed as a union of indecomposable subracks and
that every indecomposable rack X admits a projection X → Y with Y a
simple rack, i. e. a rack without proper quotients. We recall also that the
classification of finite simple racks is known, see [AG] and [Jo].

These facts suggest that the notion of racks of type D is useful for an
approach for the classification problem of finite-dimensional pointed Hopf
algebras over non-abelian groups and it establish a first step for that problem:
to classify finite simple racks of type D, see [AFGaV, §2.6].

One of the most important family of finite simple racks are the conju-
gacy classes of finite non-abelian (almost) simple groups. In [AFGV], all
the conjugacy classes of type D in symmetric and alternating groups were
determined, except the conjugacy classes of p-cycles in Ap and Ap+1.
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This article is a contribution to the problem of classification of finite simple
racks of type D. Explicitly, we determine when the conjugacy classes of
elements of order p, with p ≥ 5 prime, in the alternating groups Ap and
Ap+1 are of type D or not.

We summarize our results in the following statement.

Theorem 1.1. Let p be a prime number, p ≥ 5, and m ∈ {p, p+ 1}. Let O

be a conjugacy class of p-cycles in Am.

(I) If m = p, then O is of type D if and only if p ≥ 13 and p = rk−1
r−1 ,

with r a prime power and k is a natural number.

(II) If m = p+ 1, then O is of type D if and only if p ≥ 7 and p = rk−1
r−1 ,

with r a prime power and k is a natural number.

This result finishes the open cases in [AFGV, Thm. 4.1], i. e. it concludes
the classification of conjugacy classes of type D in alternating groups.

The family of primes p of the form rk−1
r−1 , with r a power of a prime number,

contains the Mersenne primes and the Fermat primes. The primes p of this
form with p < 1000 are: 3, 5, 7, 13, 17, 31, 73, 127, 257, 307 and 757, see
Remark 3.1.

2. Preliminaries

Throughout the paper M11, M12, M23 and M24 denote the corresponding
Mathieu simple groups and Lk(r) means the projective special linear group,
r a prime power. For m ∈ N, Gm denotes the m-th roots of 1 in C.

2.1. A rack is a pair (X, ⊲), where X is a non-empty set and ⊲ : X ×X →
X is a function, satisfying the following conditions: for every x ∈ X, the
function x⊲− : X → X is bijective and x⊲ (y ⊲z) = (x⊲y)⊲ (x⊲z), for all x,
y, z ∈ X. Any subset of a group G stable by conjugation is a rack with the
conjugation as function ⊲. In particular, a conjugacy class of G is a rack.

A rack (X, ⊲) is said to be of type D1 if it contains a decomposable subrack
Y = R

∐
S such that r ⊲ (s ⊲ (r ⊲ s)) 6= s, for some r ∈ R, s ∈ S. It is easy

to see that a conjugacy class O of a group G is a rack of type D if and only
if there exist σ, τ ∈ O such that

(Ax. 1) (στ)2 6= (τσ)2,

(Ax. 2) σ and τ are not conjugated in 〈σ, τ〉,

where 〈σ, τ〉 means the subgroup generated by σ and τ .

The importance of studying racks of type D lies on the following result.

Theorem 2.1. [AFGV, Thm. 3.6] If X is a finite rack of type D, then

B(X, q) has infinite dimension for all 2-cocycle q. �

1The letter D stands for decomposable.
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This result is based on [HS, Thm. 8.6], a consequence of [AHS].

2.2. Let Sm and Am be the symmetric group and alternating group in m
letters, respectively. Let σ ∈ Sm. It is well-known that the conjugacy class
OSm

σ of σ in Sm coincides with the set of permutations in Sm with the same
type, i. e. the cycle structure, as σ. On the other hand, if σ ∈ Am and
OAm

σ denotes the conjugacy class of σ in Am, then either OSm
σ = OAm

σ or else

OSm
σ = OAm

σ ∪OAm

(1 2)⊲σ a disjoint union of two conjugacy classes in Am. This

last case occurs if and only if σ is a product of disjoint cycles whose lengths
are odd and distinct.

Let m ≥ 5. In [AFGV, Thm. 4.1], it was proven that

• if σ ∈ Am and the type of σ is different from
(i) (32), (22, 3), (1m−3, 3), (24), (12, 22), (1, 22),
(ii) (p), (1, p), p prime,
then OAm

σ is of type D;
• if σ ∈ Sm and the type of σ is different from (i), (ii) and

(iii) (2, 3), (23), (1m−2, 2),
then OSm

σ is of type D.

The classes in (i) and (iii) above are not of type D, see [AFGV, Rmk. 4.2].

In the present paper we are concerned about the remaining cases: the
conjugacy class of p-cycles, p prime, in Am and in Sm with m ∈ {p, p + 1}.
For some values of p the problem was already considered in [AFGV]:

• if the type of σ is (p), then O
Ap
σ is of type D for p = 13, 17, 31, and

O
Ap
σ is not of type D for p = 5, 7, 11;

• if the type of σ is (1, p), then O
Ap+1
σ is of type D for p = 2q − 1 a

Mersenne prime, and O
Ap+1
σ is not of type D for p = 5, 11.

Remarks 2.2. (a) The two conjugacy classes of p-cycles in Ap (resp. in Ap+1)

are isomorphic as racks.

(b) If σ is a p-cycle and O
Ap
σ is of type D, then O

Ap+1
σ is of type D.

2.3. Subgroups of Am generated by two p-cyles, p prime. Let m,
p ∈ N, p odd prime. For σ ∈ Am we define supp(σ) := {i ∈ {1, . . . ,m} :
σ(i) 6= i}, i. e. supp(σ) is the set of points in {1, . . . ,m} moved by σ.

The main tool to prove Theorem 1.1 is the following result.

Theorem 2.3. [FW] Let σ, τ two p-cycles in Am, with m = | supp(σ) ∪

supp(τ)|. Then one of the following must occur:

(i) m = p and 〈σ, τ〉 ≃ Z/pZ;

(ii) m = 2p and 〈σ, τ〉 ≃ Z/pZ× Z/pZ;

(iii) m = p = rk−1
r−1 and 〈σ, τ〉 ≃ Lk(r);

(iv) m = p+ 2, p is a Mersenne prime and 〈σ, τ〉 ≃ L2(p+ 1);

(v) m = p+ 1 and 〈σ, τ〉 ≃ L2(p);
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(vi) m = p = 11 and 〈σ, τ〉 ≃ L2(11), M11;

(vii) m = p = 23 and 〈σ, τ〉 ≃ M23;

(viii) m = p+ 1 = 12 and 〈σ, τ〉 ≃ M12, M11 or L2(11);

(ix) m = p+ 1 = 24 and 〈σ, τ〉 ≃ M24;

(x) m = p+1, p is a Mersenne prime and 〈σ, τ〉 is a Frobenius group with

kernel an elementary abelian 2-group of order m and complement of

order p;

(xi) m = p + 1, p is a Mersenne prime, H = Lk(2), 2k = m, k 6= 3

and 〈σ, τ〉 is isomorphic to the semi-direct product of an elementary

abelian 2-group by H with H acting in its natural action;

(xii) m = p+ 1 = 3 and 〈σ, τ〉 ≃ S3; or

(xiii) 〈σ, τ〉 ≃ Am.

The proof uses the list of 2, 3-transitive simple groups appearing in [Ca].

2.4. On projective special linear groups. Let r, k ∈ N, with r a prime
power. The projective special linear group Lk(r) has order

|Lk(r)| =
r

k(k−1)
2

d

k∏

i=2

(ri − 1),

where d = gcd(k, r − 1), see [Ar]. Assume that p := rk−1
r−1 is prime. Then k

is prime and d = 1. The group Lk(r), which coincides with SLk(r) in this
case, is a primitive group contained in Ap. Indeed, Lk(r) is a 2-transitive
permutation group of degree p, see [Is, Lemma 8.29]. Notice that SLk(r)
has elements of order p see [Da, Corollary 3]. On the other hand, a Sylow
p-subgroup of Lk(r) has order p, it is self-centralizer and its normalizer has
order pk. Hence, the number of conjugacy classes of elements of order p in
Lk(r) is even and equal to (p − 1)/k. For more information on the number
of conjugacy classes in finite classical groups see [M] and [W].

Remark 2.4. Let p be prime as above, with p ≥ 13.

(a) We claim that t := (p− 1)/k ≥ 4. Indeed, this is easy to see for k = 2

and k = 3. For k ≥ 5, the result follows from p ≥ 2k − 1 ≥ 4k+1 which can

be proven by induction on k.

Let σ be an element of order p in Lk(r) ⊂ Ap. We recall that O ∩ 〈σ〉 =

{σℓ |J(ℓ, p) = 1 }, where J(ℓ, p) is the Jacobi symbol of ℓ and p, see [AFGV,

Claim 1, p. 240]. Let K := {C1, . . . , Ct} be the set of conjugacy classes of

elements of order p in Lk(r) and take ℓ such that J(ℓ, p) = −1. The set K

splits into two sets K1 := {Ci | Ci ⊂ O
Ap
σ } and K2 := {Ci | Ci ⊂ O

Ap

(1 2)⊲σ}. It

is easy to see that K1 and K2 have the same cardinality. Indeed, if Ci ∈ K1,

then Cℓ
i := {xℓ |x ∈ Ci} ∈ K2; now, the result follows using that the function
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ϕℓ : O
Ap
σ → O

Ap

(1 2)⊲σ , given by ϕℓ(x) = xℓ, is bijective and it induces a

bijection between K1 and K2.

(b) If O1 and O2 are two conjugacy classes of elements of order p in Lk(r),

then there exist σ ∈ O1 and τ ∈ O2 such that the order of the element στ is

different from 1, 2 and p. This follows from [Go, Thm. 2] which states that in

any finite simple group of Lie type G the product of any two conjugacy classes

consisting of regular semisimple elements contains all semisimple elements

of the group. We recall that an element g ∈ G is called regular semisimple if

the order of its centralizer in G is relatively prime to the characteristic of the

corresponding finite field. In our case, any element of order p has centralizer

of order p, thus it is regular semisimple since p and r are relatively prime.

2.5. Let G be a finite group, O a non-trivial conjugacy class of G, and
σ, τ ∈ O. Assume that (στ)2 = (τσ)2; this amounts to saying that τστ
commutes with σ or, equivalently, that στσ commutes with τ .

Lemma 2.5. If the centralizer of σ in G is cyclic of order |σ|, then the order

of 〈σ, τ〉 is at most |σ|2. If, in addition, |σ| is prime, then σ and τ commute

or |στ | = 2.

Proof. Since τστ commutes with σ, we have that τστ = σi, for some i.

Thus, 〈σ, τ〉 is at most |σ|2. We also have that στσ = τ j , for some j. Then

σi+1 = τ j+1 because of the assumption (στ)2 = (τσ)2. Assume that |σ| = p,

with p prime. If j + 1 6= 0 mod (p), then τ ∈ 〈σ〉, whereas if j + 1 = 0

mod (p), then στσ = τ−1, and |στ | = 2. �

Lemma 2.6. Let G be a finite group and let O be a conjugacy class of G

whose elements have order p, with p an odd prime. Assume that

(a) the centralizer in G of an element in O has order p, and

(b) there exists a subgroup H of G such that O contains two different

conjugacy classes O1, O2 of H.

If for some σ ∈ O1 fixed

there exists τ ∈ O2 such that |στ | 6= 1, 2, p,(1)

then O is of type D.

Proof. Let σ ∈ O1. The condition (1) implies that there exists τ ∈ O2 such

that τ does not commute with σ and |στ | 6= 2. By the previous discussion,

(στ)2 6= (τσ)2. Now, since σ and τ are not conjugated in H, the condition

(Ax. 2) holds. �
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Corollary 2.7. Let p be a prime number, p ≥ 5, and let O be the conjugacy

class of p-cycles in Sp. Then O is of type D.

Proof. It follows from Lemma 2.6 with σ = (1 2 · · · p), H = Ap, O1 = O
Ap
σ ,

O2 = O
Ap

(1 2)⊲σ and τ = (1 3) ⊲ σ. �

3. Proof of the main result

Let p ∈ N be an odd prime, with p ≥ 5, and m ∈ {p, p + 1}. Define the
p-cycle σ = (1 2 · · · p) and let O be the conjugacy class of σ in Am. We will
determine when there exists τ ∈ O such that (Ax. 1) and (Ax. 2) hold using
Theorem 2.3. Notice that if 〈σ, τ〉 ≃ Z/pZ or Am, with τ ∈ O, then (Ax. 1)
does not hold for Z/pZ and (Ax. 2) does not hold for Am.

(I) Assume that m = p.

Suppose that p is not of the form rk−1
r−1 , with r a prime power. If p 6= 11, 23,

and τ ∈ O, then 〈σ, τ〉 ≃ Z/pZ or Ap; hence, O is not of type D. If p = 11
and τ ∈ O, then H := 〈σ, τ〉 ≃ Z/11Z, A11, L2(11) or M11. In the last two
cases, (Ax. 2) does not hold since each of the groups L2(11) and M11 have
two conjugacy classes of elements of order 11 and each of them is contained
in different conjugacy classes in A11; indeed, if h ∈ H and |h| = 11, then
each of the two conjugay classes of elements of order 11 in A11 contains some
power hℓ, 1 ≤ ℓ ≤ 10. Hence, O is not of type D. The case p = 23 follows
analogously.

Suppose that p = rk−1
r−1 , with r a prime power. By Subsection 2.4, Ap

contains a subgroup H such that σ ∈ H and H ≃ Lk(r). Assume that
p ≥ 13. By Remark 2.4 (a), there are at least two conjugacy classes O1 and
O2 of H contained in O. We can assume σ ∈ O1; then condition (Ax. 2)
holds for any τ ∈ O2. By Lemma 2.6 and Remark 2.4 (b), condition (Ax. 1)
holds for some τ ∈ O2, and O yields of type D. Finally, if p = 5 or 7, then
O is not of type D. Indeed, if H is a subgroup generated by two p-cycles,
then H ≃ Z/5Z or A5 ≃ L2(4) when p = 5, whereas H ≃ Z/7Z, A7 or L2(7)
when p = 7. Notice that L2(7) has only two conjugacy classes of elements
of order 7.

(II) Assume that m = p+ 1.

Suppose that p is not of the form rk−1
r−1 , with r a prime power. If p 6= 11, 23,

and τ ∈ O, then 〈σ, τ〉 ≃ Z/pZ, Ap+1, Ap or L2(p). In the last two cases,
condition (Ax. 2) does not hold since these groups have two conjugacy classes
of elements of order p (see [FH] or [Ad] for the groups L2(p)) and each of
them is contained in different conjugacy classes in Ap+1. Hence, O is not of
type D. If p = 11 and τ ∈ O, then 〈σ, τ〉 ≃ Z/11Z, A12, A11, M11, M12 or
L2(11). In the last four cases, condition (Ax. 2) does not hold since these
groups have two conjugacy classes of elements of order 11 and each of them
is contained in different conjugacy classes in A12. Hence, O is not of type D.
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If p = 23 and τ ∈ O, then 〈σ, τ〉 ≃ Z/23Z, A24, A23 or M24; therefore, O is
not of type D as above.

Suppose that p = rk−1
r−1 , with r a prime power. By (I) and Remark 2.2

(b), if p ≥ 13, then O is of type D. If p = 5, then the subgroup generated by
two 5-cycles is Z/5Z, A6 or A5; thus, O is not of type D. Finally, if p = 7,
or more generally, p = 2h − 1, with h ≥ 3, is a Mersenne prime, then O is of
type D. Indeed, set q = 2h; then, the group H = Fq ⋊ F

×

q ≃ Fq ⋊ Z/pZ acts
on Fq by translations and dilations. Now, if we identify {1, . . . , q} with Fq,
then H is isomorphic to a subgroup of Sq, see [AFGV].

This finishes the proof of Theorem 1.1.

Remark 3.1. The prime numbers p of the form (rk − 1)/(r − 1), with r a

prime power and p < 1000 are: 3 = 22 − 1, 5 = 42−1
4−1 , 7 = 23 − 1, 13 = 33−1

3−1 ,

17 = 162−1
16−1 , 31 = 25 − 1 = 53−1

5−1 , 73 = 83−1
8−1 , 127 = 27 − 1, 257 = 2562−1

256−1 ,

307 = 173−1
17−1 , 757 = 273−1

27−1 .

It is not known if the family of this kind of primes is finite or not. Indeed,

it contains the families of Mersenne primes and Fermat primes. A discussion

on numbers of this form can be found in [EGSS].

Remark 3.2. (a) The abelian subracks T of O, with σ ∈ T , are contained in

O ∩ 〈σ〉, see Remark 2.4 (a). Thus, any maximal abelian subrack of O has

(p− 1)/2 elements and it is isomorphic to O ∩ 〈σ〉.

(b) Let O(p) be a conjugacy class of p-cycles in Ap not of type D. By the

Theorem 1.1, p = 5, 7 or p is not of the form (rk−1)/(r−1), with r a prime

power. It is clear that a subrack X of O(p) is the union of the conjugacy

classes OH
x , x ∈ X, where H is the subgroup of Ap generated by the elements

of X. Notice that H is a simple group since it is generated by p-cicles in Ap.

Clearly, H is abelian if and only if X is an abelian subrack. Assume that

H is not abelian. Then H must be a 2-transitive simple group of prime

degree; this follows as in the step 5) of the proof of Theorem 2.3 given in

[FW]. Then it occurs that H is as in the cases (iii), (vi), (vii) or (xiii) of

Theorem 2.3. Hence, the non-abelian subracks of O(p) are conjugacy classes

of elements of order p in the subgroups appearing in that cases.

Therefore, the only cases where O(p) has proper non-abelian subracks are

p = 7, 11 and 23, and these subracks are isomorphic to a conjugacy class

of elements of order p in L2(7), L2(11) or M11, and M23, respectively. For

instance, any proper non-abelian subrack X of O(p) has 24 elements for p = 7

and 60 or 720 elements for p = 11; moreover, X is not fixed by conjugation

of any element in O(p) \X.
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(c) Let O be a conjugacy class of p-cycles in Ap+1 not of type D. By the

Theorem 1.1, p = 5 or p is not of the form (rk − 1)/(r − 1), with r a prime

power. As in (b) above, the proper non-abelian subracks of O are conjugacy

classes of elements of order p in the corresponding subgroups appearing in

the proof of Theorem 1.1. They are: A5 for p = 5; A11, L2(11), M11 and

M12 for p = 11; A23, M23 and M24 for p = 23; Ap and L2(p) otherwise.

(d) For the racks O described in (b) and (c) above it would be possible

to decide if the dimension of B(O, q) is not finite, for some 2-cocycle q, as

mentioned in [AFGaV, §2.6]. Indeed, for an abelian subrack T of O and

any 2-cocycle q we could determine if the diagonal braiding associated with

q gives rise to a Nichols algebra of infinite dimension; in that case B(O, q)

would be also of infinite dimension. For this we can use the classification of

finite-dimensional Nichols algebras of diagonal type [H].

In that sense, we compute using RiG (see [GV]) the second abelian rack

cohomology group of some of this racks:

• H2(O(5),C
×) = C

× ×G10. Notice that O(5) ≃ Q12,3 in [V].

• H2(X,C×) = C
× ×G14, with X ⊂ O(7), |X| = 24.

See [AG] for the considered cohomology theory of racks and [AFGaV] for the

use of RiG in our cases. It would be expected that H2(O(p),C
×) = C

××G2p.
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