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Abstract. Bound and resonance states of quantum dots play a significant role in

photo-absorption processes. In this work, we analyze a cylindrical quantum dot,

its spectrum and, in particular, the behaviour of the lowest resonance state when

a magnetic field is applied along the symmetry axis of the cylinder. To obtain the

energy and width of the resonance we use the complex rotation method. As it is

expected the structure of the spectrum is strongly influenced by the Landau levels

associated to the magnetic field. We show how this structure affects the behaviour of

the resonance state and that the binding of the resonance has a clear interpretation in

terms of the Landau levels and the probability of localization of the resonance state.

The localization probability and the fidelity of the lowest energy state allow to identify

two different physical regimes, a large field-small quantum dot radius regime and a

small field-large quantum dot radius, where the binding of the resonance is dominated

by the field strength or the potential well, respectively.
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1. Introduction

The availability of quantum devices with characteristic length of only a few nanometer

allows the implementation of a number of experimental setups that put under test the

very foundations of Quantum Mechanics. The fact that the radius of a Landau level

is of only a few nanometers for magnetic field strengths of around 10 Tesla allows

the verification of the Aharonov-Bohm effect in quantum rings [1], which leads to the

presence of persistent currents [2]. This persistent currents have been measured even

for one electron states [3]. The quantum rings are formed by only one semiconductor

material, and the fabrication of multiple concentric quantum rings (up to five) can be

achieved with high quality and reliability [4].

The early realization that the quantum dots presented an ideal scenario to study

transitions between electrically confined states and Landau-type magnetic levels [5],

originated numerous theoretical and experimental works attempting to explain the effect

of the confinement potential over the observed spectrum. For example, Peeters and

collaborators studied the spectral properties of two-dimensional parabolic confinement

potential [6], the effect of the confinement in the direction of the field (or z direction)

[7, 8], and the spectral properties of a electron confined in an artificial molecule [9].

Anyway, even in the case of a finite confinement potential in the z direction [8], these

studies were restricted to the discrete spectrum of each problem.

On the other hand, the quantum dot has been appointed as one of the most

promising implementations of a single qubit [10, 11]. There has been a huge amount of

work to circumvent the numerous associated problems: decoherence [12], the coupling

between two qubits (to implement a two-qubit quantum gate) in double quantum dots

has been studied extensively, in particular how it can be tuned using electric fields [13],

magnetic fields [14], or the effect of the confinement of the double quantum dot in a

quantum wire [15], etc.

When dealing with applied magnetic fields, most theoretical studies on quantum

dots focus on strongly localized states, many times achieved using always-bounding

potentials, as the three dimensional harmonic potential or impenetrable walls. The

presence of a constant magnetic field, anyway, is equivalent to a two dimensional

harmonic potential in the plane orthogonal to the field direction. Conversely, there

are far less examples of studies considering finite potentials, in particular those whose

shapes or features allow the presence of resonance states. There is a number of reason to

study finite potentials, from charge transport situations to the effect of resonance states

in luminescent quantum dots. Bylicki and Jaskólski [16] analyzed the binding of shape

resonances through the application of an external magnetic field. They considered an

one-electron spherical quantum dot-quantum well structure (QDQW). In this work we

consider a closely related problem with the purpose of a better understanding of the

transition from a resonance state to a bounded one.

As has been said above, a constant magnetic field induces a two-dimensional

harmonic potential that precludes the appearance of resonances in the plane orthogonal
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to the field, i.e. the loss of particles can take place only in the direction of the field,

closing a number of decaying channels that would be available in absence of the field. In

this sense, it renders almost irrelevant what particular shape has the binding potential,

as long as it allows the appearance of resonances in the direction of the field. So, to

avoid unnecessary complications, we consider a quantum dot model with cylindrical

symmetry whose axis has the same direction that the magnetic field, besides we use the

Effective Mass Approximation (EMA). As it is well known in this approximation the

many-body interactions of the electron trapped in the quantum dot are reduced to a

(simple) bounding potential, and all the parameters of the Hamiltonian, mass, dielectric

constants, and so on are taken as equal to the the bulk parameters.

Despite its apparent simplicity, the calculation of the resonance states of one

electron trapped in a bounding potential with an external magnetic field is far from

trivial, in particular for small enough strengths of the field since the Landau levels are

bunched when the strength of the field goes to zero. To obtain the energy and width

of the resonance states we employ the complex scaling method [17] that, together with

a square-integrable variational approximation for the wave function, has been used to

analyze the bound and resonance states of two electron quantum dots [18]. Moreover, as

has been shown in [18], the fidelity of the variational eigenstates is a good tool to detect

the resonance states. In this work we use the fidelity to study the binding of a resonance

and show that it is signaled by a sharp change in the behavior of the fidelity. This feature

is consistent with the behavior observed in the fidelity when the system experiments a

quantum phase transition (in many-body models), is near the ionization threshold or

to a resonance [18]. Recently, the application of concepts from Quantum Information

Theory, as the fidelity or entanglement, has been very fruitful to analyze bound and

resonance states in few body systems as two-electron quantum dots [18, 19, 20, 21], or

two-electron He-like systems [22, 23].

The paper is organized as follows, the quantum dot model and the variational

approximation that provides approximate eigenvalues and eigenfunctions are presented

in Section 2. The analysis of the resonance using complex exterior scaling and the

influence of the Landau levels are presented in Section 3 , while the binding process

is studied, using different methods, in Sections 3,4 and 5. Finally, we summarize and

discuss our results in Section 6. Some rather lengthly and technical results, mostly

matrix elements are deferred to the Appendices

2. Model

The bounding potential of the quantum dot is given by a piecewise function

V (ρ, z) =











V1, ρ < aρ,
az
2
< |z| < az+bz

2

−V2, ρ < aρ, |z| < az
2

0, ρ ≥ aρ, |z| ≥ az+bz
2

(1)

i.e. the potential is a cylindrical well aligned with the z-axis, with two potential steps

at the top and the bottom of the cylinder, where the radius of the cylinder is aρ, its
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height az, the depth of the potential well, −V2, and the height of the potential steps, V1.

This ensures that, for properly chosen constants az, bz, aρ, V1 and V2 the one electron

problem has resonance states without external field.

Even with the introduction of the external field the angular momentum Lz is a

conserved quantity, and its eigenvalues good quantum numbers. So, we focus on states

with zero angular momentum Lz. In this case, the Hamiltonian reads as

H0 = − 1

2µ

(

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+
∂2

∂z2

)

+ V (ρ, z) (2)

where V (ρ, z) is given by Equation 1, µ is the effective mass of the electron in the

semiconductor material. The Equation is written in atomic units. If a magnetic field

B = Bẑ is applied, there is a new term that must be incorporated to the RHS of

Equation 2, which results in the following Hamiltonian [16]

H = H0 +
B2

8µ
ρ2. (3)

The discrete spectrum and the resonance states of the model given by Eq. (3) can be

obtained approximately using square-integrable variational functions Ψv
j [18, 19, 24, 25].

So, if Ψj are the exact eigenfunctions of the Hamiltonian, we look for variational

approximations

Ψj ≃ Ψv
j =

N
∑

i=1

c
(j)
i Φi , c

(j)
i = (c(j))i , j = 1, · · · , N , (4)

where the Φi must be chosen adequately, N is the basis set size, and the (c(j))i are the

linear variational parameters of the Rayleigh-Ritz method.

Since we are interested in null angular momentum eigenfunctions, and taking into

account the symmetries of the Hamiltonian 3, we choose as basis functions

Φi(ρ, z) = ψn(ηρ)φt(νz), (5)

where

ψn(ηρ) =
1√
n + 1

ηe−ηρ/2L(1)
n (ηρ) , (6)

and

φt(νz) =

√

ν

2
e−ν|z|/2L

(0)
t (ν|z|)) , (7)

η and ν are the non-linear variational parameters, L
(1)
n and L

(0)
t are associated Laguerre

polynomials. As has been analyzed in previous works [18, 19], when dealing with

resonance states it is convenient to choose small values for the non-linear variational

parameters. In particular, along this work we use η = ν = 0.01. If ψn(ηρ), where

n = 1, . . . , Nρ, and φt(νz), where t = 1, . . . , Nz, then N = NzNρ.

The matrix elements of the kinetic energy, the bounding potential and the magnetic

field term are given in the Appendix. With all these matrix elements we get a variational

eigenvalue problem

H̃c(j) = Ev
j c

(j), (8)
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where the entries of the matrix H̃ are given by

H̃n,t,s,m = 〈ψnφt|H|ψsφm〉 (9)

The ample range of materials and structures available to design self-assembled

quantum dots precludes the possibility of a very general analysis, however, in part for

comparison reasons, we use similar parameters than those used by Bylicki in [26] and

Bylicki and Jaskólski in [16] to model a quantum dot quantum well structure made of

gallium arsenide (GaAs) composites, i.e. aρ = az = 7nm, bz = 2.5nm, V1 = 0.37eV ,

V2 = 0.108844eV , and µ = 0.041m0. The potential well depth is slightly different from

the value used by Bylicki, but should be chosen so owed to the cylindrical symmetry

employed in this work, conversely to the spherical one used by Bylicki. As we will show,

this set of parameters is consistent with a resonance energy around 20meV with B = 0.

Figure 1 shows the variational eigenvalues and the exact LL as functions of the

magnetic field strength B. The spectrum in Figure 1 was obtained using a basis set

size Nz = Nρ = 50. As can be appreciated, the eigenvalues are grouped in sets that

are bounded between Landau levels given by ELL(M,n) = B
µ
(|M |+ n+ 1/2), where M

is the azimuthal angular momentum (in our case M = 0), and n = 0, 1, 2, . . .. A pair

of Landau levels delimits a region of the (B,E) plane, in this zone the eigenvalues are

parallel to the lower Landau level, except for the appearance of avoided crossings. This

particular feature is shown in Figure 1 b).

As can be seen very clearly from Figure 1d), the variational eigenvalues have the

tendency to accumulate above the Landau levels. This feature is similar to the eigenvalue

accumulation observed above the continuum threshold of a two-electron quantum dot

[7, 19]. When a magnetic field is applied, each Landau level works as the bottom of a

continuum. Another salient feature of the spectrum appears for large enough magnetic

fields: one isolated eigenvalue with lower energy than the lowest Landau level. From

a physical point of view, the origin of this state can be understood as follows: for

intermediate values of the magnetic fields the wave function of the electron looks like

an harmonic oscillator wave function in the (ρ, φ) plane and as a free particle in the z

direction. The spatial extent of the wave function on the plane is roughly equivalent to

the radius of a Landau level, that is larger than the radius (in the plane) of the quantum

dot. When the strength of the magnetic field is increased the radius of the lowest Landau

level becomes smaller and smaller reaching, at some point, a size similar to the radius

of the quantum dot, at this point the state becomes localized. As we will show, the

mechanism of localization can be quantified and strongly influences the behaviour of

the resonance states whose energy lies near the localization point, in particular this

mechanism is responsible of the binding of the resonance for large enough magnetic

field [16], we will be back to this point in Section 4.

The similarities between the behaviour of the spectrum analyzed in Figure 1 near

the point where Ev
1 ∼ ELL(0, 0), and the spectrum of a two-electron quantum dot near

the ionization threshold are striking. So, it comes as no surprise that the resonance

states of both models also show some similarities, as we will show later on.
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Figure 1. (Color on-line) The four panels show details of the variational spectrum and

the Landau levels. a) The variational spectrum obtained with a basis set sizeN = 2500.

Each black curve corresponds to a single eigenvalue and the red curves correspond to

the exact Landau levels. b) This panel shows the zone around the second LL (red solid

line). It can be seen how the levels that cross above the second LL have several avoided

crossings before they reach the third one. c) This panel shows the difference between

the lowest variational eigenvalues,Ev

n
, and the first LL , ELL(0, 0), vs. the magnetic

field, for n = 1, . . . , 4. When the difference is smaller than zero, Ev

1
crosses the first LL

as can also be appreciated in panel a) besides, when Ev

1
< ELL(0, 0) the corresponding

eigenstate becomes localized. d) The eigenvalues above the first LL. The figure shows

clearly how the eigenvalues are, basically parallel to the LL and accumulate above it.

3. Detecting the resonance states using complex exterior scaling

The calculation of the energy and width of resonance states offers a number of challenges

that repeatedly leads to the formulation of new methods. Among the most widely used

methods can be mentioned the complex scaling (or complex dilation) method [17], the

complex absorbing potential method [27] and the density of states method [28]. Each

one of these has its advantages and drawbacks. Because we are dealing with a piecewise

potential we resort to the exterior complex scaling (see, for example, Reference [17]).

This method is particularly appealing in our case since for B 6= 0, the complex scaling

should be applied only to the z variable because this is the only direction available to

the electron to get away from the bounding potential. The exterior of the method refers

to the exterior of the region where the potential is not zero so, for B 6= 0 the exterior

complex scaling asks that

z 7−→
{

z′ if |z| ≤ az+bz
2
,

eiθz′ if |z| ≥ az+bz
2

, (10)
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Figure 2. The real and imaginary parts of the resonance eigenvalue E(θ) vs the

magnetic field strength. a) The solid square (blue) dots correspond to the energy of

the resonance and the solid lines correspond to the two lowest Landau level energies.

The value for B = 0 was obtained performing the complex rotation in the coordinates

ρ and z. b) The width of the resonance vs the magnetic field. As the magnetic field

increases its value the width of the resonance goes to zero, signaling its binding.

where z is the coordinate to be complex scaled, and θ is the rotation angle. The complex

scaling turns the resonance states into normalizable states (with a different norm) which

can be analyzed with the variational approach usually employed in Hermitian problems,

i.e. the energy and width of the resonance state can be obtained approximately as an

isolated complex eigenvalue of a finite (complex) Hamiltonian, if H(θ) is the complex

scaled Hamiltonian, then we get a complex variational eigenvalue problem

H̃(θ)d(j) = Ev
j (θ)d

(j), (11)

where the entries of the matrix H̃(θ) are given by

H̃k,n,l,m(θ) = 〈ψkφn|H(θ)|ψlφm〉 . (12)

Another advantage of the complex scaling method is given by the similarities between

the matrix elements in Equation 12 with the ones calculated in Equation 9.

Figure 2 shows the behaviour of the energy and width of the lowest resonance as

a function of the magnetic field strength. The binding of the resonance can be clearly

observed, i.e. the width of the resonance drops to zero when the magnetic field strength

increases its value. To obtain the data shown in Figure 2a) and b) we looked for the

best value obtainable from the method, the complex rotation was performed for different

values of θ and the best approximation corresponds to the stationary points of the θ-

trajectory [17].

The exterior complex scaling methods works nicely for intermediate values of the

magnetic field. Anyway, if B ≤ 5T, or B ≥ 16T, the convergence of the method is,

at least, questionable, see Figure 3. For small fields the method struggles to provide a

reliable value for the resonance eigenvalue because, as can be appreciated from Figure 2,

forB ≈ 5T the resonance “enters” in the continuum above the second Landau level (LL).
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Figure 3. (Color on-line) a) The imaginary part vs the real part of the complex

rotation eigenvalues . All the eigenvalues were calculated for B = 5T and different

rotation angles. From top to bottom, the eigenvalues correspond to θ = 0.1 (black • ),

θ = 0.11 (red ), θ = 0.12 (green �), up to θ = 0.2. The three fan-like sets of data

are related to the first three LL’s. Is is clear that the the leftmost fan and the central

one start to overlap around 27meV. For B < 5T the overlap grows larger making

more difficult to look for the resonance data. b) The θ trajectory of the resonance

eigenvalue. The symbols correspond to the angles shown in panel a). The eigenvalues

that form the θ trajectory can also be observed in panel a), they lie near the bump

that presents the leftmost fan around 2meV

In this region the approximate eigenvalues that enter from the region above the first

Landau level “collide” with the eigenvalues that lie between the first and second LL. The

successive collisions, and the corresponding avoided crossings, can be well appreciated

in Figure 1b).

The binding of the resonance, i.e. that the width of the resonance becomes zero for

large enough field strengths can not be understood only studying the spectrum. In the

next Section, we will introduce a quantity that will allows us to study the associated

eigenstates. As we will show, the analysis of the eigenstate corresponding to the isolated

eigenvalue that appears below the first LL, see Figure 1a), gives a physical picture of

the binding process.

In what follows, and up to the end of this Section, we want to focus in the results

of the complex rotation method between Landau levels. The scenario between LL’s can

be better appreciated in Figure 3. The Figure shows the complex spectrum obtained

when the complex rotation is performed accordingly with Equation 10 for different

values of θ. In this Figure it is clear why the method is termed complex rotation, the

continuum part of the spectrum now lies in the complex plane over straight lines, the

angle between the lines and the real axis equal to 2θ. When B 6= 0, the data for different

θ’s form “hand-fans” of data, i.e. sets of straight lines with a common origin in the real

axis. Each one of these sets can be associated to a single LL, the leftmost hand-fan

corresponds to first LL, the middle one to the second LL, and the rightmost to the third

LL. Again, this structure can be attributed to role that each LL plays as the bottom of
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a continuum of levels. Effectively, the distance between the origins of each set of lines,

over the real axis, is exactly equal to the distance between the LL at the magnetic field

strength considered. As the magnetic field strength decreases, the data of the different

fans overlaps making very difficult to distinguish the eigenvalues corresponding to the

resonance.

Figure 3b) shows the trajectory in the complex plane of the eigenvalue associated

to the resonance state. As can be appreciated, the eigenvalues are much less scattered

in energy than in width. This feature is typical of the complex rotation method.

Above the second LL the complex rotation method should be complemented with

some ad hoc assumptions to identify the points that belong to the θ-trajectory. The main

assumption is rather physical: the complex rotated eigenvalues can be approximated by

ELL+tan (2θ)En, i.e. they form a straight line in the complex plane that form an angle

of 2θ with the x-axis, En is a variational eigenvalue. This approximation works nicely

except near a resonance. The second assumption is similar: a given complex eigenvalue

Eν(θ) should not change too much if θ is changed, say

|Eν(θ + δθ)− Eν(θ)| ≤ δθ|Eν(θ)|, (13)

where δθ is small enough. Applying these assumptions and discarding complex

eigenvalues that jump from a hand-fan to another (see Figure 3a)) it is feasible to

obtain stabilized values for Eres above the second LL.

4. Detecting the resonance states using Localization Probability

As we will show in this Section, the binding of the resonance for large enough magnetic

field is a consequence of the strong localization experienced by the wave function

corresponding to the lowest eigenvalue. As a matter of fact, the localization allows

to follow the resonance through the spectrum. To quantify the localization of an

approximate eigenfunction Ψv
j , we calculate the probability that the electron is localized

in the potential well,

Pj =

∫ az
2

− az
2

∫ aρ

0

∣

∣Ψv
j (ρ, z)

∣

∣

2
dρ dz , (14)

where Pj is the probability attributable to the localization of Ψv
j .

Figure 4a) shows the probability P1 as a function of the magnetic field strength

for the lowest variational eigenvalue, while Figure 4b) shows the probability Pj for

j = 2, 3, . . . , 8. The curves are shown in different panels because of their respective

scale.

It is worth to mention that despite the variational eigenvalues do not show any

sudden changes near B ∼ 17T, except for the lowest one when it crosses the first LL,

the probability of localization into the well shows a well defined maximum for a large

number of eigenvalues.

For small values of the magnetic field, the probability of localization P1 . 10−3 and

is a very smooth function of B. This behaviour changes abruptly near B ∼ 17T, and
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Figure 4. The localization probability vs the magnetic field strength. The left panel

shows P1 (black solid line), i.e. the probability corresponding to the lowest variational

eigenvalue, and 〈|z|〉
1
(red dashed line). The scale of the right ordinate axis corresponds

to P1, while the scale of the left one corresponds to 〈|z|〉
1
. The right panels shows, from

top to bottom, P2 (solid line), P3 (dotted-line), . . ., P8. The localization probabilities

show a peak where the corresponding eigenvalue crosses near the resonance, after and

before the peak the eigenstate is extended.

for larger values of B the localization probability grows up to values larger than 0.1,

see Figure 4a). It is clear that this behaviour is not compatible with an extended wave

function. Since we are approximating the exact solutions of the eigenvalue problem

with square-integrable functions, the value of the localization probability can not drop

to zero, in the continuum region and far away from a resonance state, the variational

eigenfunctions resemble a plane wave that is extended in a cylindrical spatial region

with radius R ∼ 1/η and length L ∼ 1/ν, where η and ν are the non-linear variational

parameters. For this reason, in the continuum region and far away from a resonance,

we estimate the localization probability as P1 ∼ azaρην ∼ 10−3.

The localization of Ψv
1 and can be further analyzed using the expectation value

〈|z|〉1 =
∫ az

2

− az
2

∫ aρ

0

|Ψv
1(ρ, z)|2 |z|dρ dz , (15)

where |z| is the absolute value of z. Consistently with the behaviour observed for the

localization probability, the expectation value 〈|z|〉1 is very large for B < 17T and drops

its value around two orders of magnitude for B > 17T, see Figure 4a). We conclude

that the wave function of the lowest variational eigenvalue becomes bounded. For the

example that we are analyzing, 〈|z|〉1 ∼ 540 nanometers, for B = 0, and drops to

〈|z|〉1 ∼ 3 nanometers for B ∼ 18T. This last value is consistent with the longitudinal

dimension of the quantum dot. Besides, as shown in Figure 1a), the lowest eigenvalue

is isolated from the continuum for B > 17T.

The scenario depicted above leads us to the following conclusion, the resonance

above the first LL is triggered by the “collision” of the bounded state, corresponding

to the lowest eigenvalue, with the continuum above the first LL. The avoided crossings

originated by this collision can be clearly appreciated in Figure 1c), and reinforces the
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interpretation that the binding of the resonance is produced when a bounded state

appears for large enough magnetic field. In this sense, the resonance state behaves

as a shape resonance and the radial potential owed to the magnetic field is the one

changing its shape. The crossing of the lowest eigenvalue with the first LL corresponds,

obviously, to the continuum threshold. Finally, as is the case in shape resonances, when

the lowest eigenvalue is bounded and isolated the resonance width is zero, which explains

the binding of the resonance for large enough fields.

The behaviour of the localization probabilities Pj , with j > 1 is quite different.

These Pj are not monotonically increasing functions of B in contradistinction with

P1, instead they shown a more or less pronounced maximum for some value of B, see

Figure 4b). The height of the maximum of a given Pj depends on the sharpness of the

avoided crossing experienced by the corresponding eigenvalue. Sharper avoided crossings

lead to higher maxima, smoother ones lead to lower maxima. This is consistent with

the numerical spectrum obtained, since the avoided crossing of a low lying eigenvalue is

always sharper than the avoided crossing of a higher eigenvalue.

We interpret that the peak in a given localization probability appears when the

corresponding eigenvalue is a reasonable approximation for the resonance energy at

that particular value of B. In other words, Eres(B
peak
j ) ≈ Ev

j (B
peak
j ), where Bpeak

j is the

value of the magnetic field where Pj attains its maximum. The Ev
j (B

peak
j ) allow to track

down the resonance states from the localization point up to the second LL, above the

second LL the spectrum shows a multiple-continua region, generating multiple avoided

crossings due to two-continua interaction that this method can not distinguish from the

avoided crossings due to resonances. The Ev
j (B

peak
j ) are shown in Figure 7, where they

are compared to the resonance energies obtained using the other methods discussed in

this work.

5. Detecting the resonance states using the Fidelity

For a given quantum state ψ, that depends on a parameter λ, a measure of how much

it changes when the parameter is varied is given by the fidelity, F , which is defined as

F∆λ(λ) = |〈ψ(λ−∆λ), ψ(λ+∆λ)〉|2 , (16)

where ∆λ is a small variation of the parameter.

The fidelity has been extensively used to characterize the analytical properties of

quantum states near a quantum phase transition in quantum spin chains models [29],

quantum phases of matter [30],or bound and resonance states in atomic or quantum dot

models [18]. In two-electron quantum dots, it has been shown that the fidelity of the

approximate variational eigenstates detect the resonance states and allow to calculate

approximately its energy [18]. To achieve this, the fidelity of many eigenstates should

be calculated as a function of the external parameter that drives the system from bound

to unbounded states. In this work, this parameter is the magnetic field strength.

From its definition, Equation 16, it is clear that most of the time F∆λ ≈ 1, except

for very special cases. On the other hand the fidelity should drop to zero if the system
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Figure 5. The function Gn vs the magnetic field. The figure shows the function for

the first six variational eigenvalues, G1 , G2, . . ., G6, solid (——), dotted (· · · · · ·), short-
dashed (- - - -), long-dashed (— — —), dot-dashed (— · —) and double dot-dashed

(— · · —) lines respectively. The peak where each curve attains its maximum value is

clearly appreciable. Bn is given by the abscissa of the peak (see the text).

experiments a rather sudden change [29]. For this reason, often it is convenient to study

the function

Gn(λ) = 1− |〈Ψv
n(λ−∆λ),Ψv

n(λ+∆λ)〉|2 . (17)

Figure 5 shows the behaviour of the Gn function for n = 1, 2, . . . , 6, as function of

the magnetic field strength. Each curve has a more or less well defined peak for a given

value of the magnetic field, Bn. The values En(Bn), i.e. the value of the variational

eigenvalues at their respective peaks of the function Gn, give a very good approximation

for the resonance energy at the points Bn. This way to obtain a estimation for the

resonance energy does not allow to obtain it for arbitrary magnetic field strength values

since the values Bn are not chosen at will, they are obtained from the fidelity data and

depend on the basis set size, the non-linear variational parameters, the basis functions

used, and so on, this has been pointed out previously in Reference [18]. Nevertheless the

method provides another tool to analyze resonance states. The fidelity method works

best when the width of the resonance is not too wide, so it is to be expected that it will

be more precise near the localization point.

Before presenting the results of the localization and fidelity methods with respect to

the resonant states, we want to stress the relationship between both quantities. Let us

call Bp(aρ) the critical value of the magnetic field such that the localization probability

of the first variational eigenvalue becomes noticeable for a given quantum dot radius

aρ, and BF(aρ) the magnetic field value such that the function G1 attains its maximum

value as a function of B. Figure 6 shows the values of both quantities, Bp(aρ) and

BF(aρ), for several values of the quantum dot radius aρ. The agreement between both

critical quantities is striking.

At this point, we can summarize our results in Figure 7. The Figure shows the

energy of the resonant state as a function of B, as it is obtained from the complex
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Figure 6. (Color on-line) The critical fields Bp(aρ) and BF(aρ) vs the quantum dot

radius. The localization probability critical field (red squared dots, ) and the fidelity

critical field (solid black dots, • ) data is shown for several quantum dot radius. The

(blue) dashed curve correspond to the radius of the lowest LL as a function of the

magnetic field. It is clear that for small quantum dot radius the localization takes

place when the cylindrical wave function enters into the cylindrical QD. For larger

QD’s radius the localization is dominated by the quantum well potential and not by

the magnetic field.
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Figure 7. The resonance energy Eres calculated using the three methods depicted in

the text, complex exterior scaling, localization probability, fidelity, the corresponding

values are shown using blue square dots ( ), black circles (◦ ), and magenta diamonds

(♦). The energy of the resonance in the region above the second LL can be obtained

using a modified version of the complex rotation method and is shown using blue open

squares (⊓⊔) .

rotation, fidelity and localization methods.

From Figure 7 is rather clear that both the localization method and the fidelity are

able to follow the resonance from the localization point until the second Landau level.

Anyway, a word of caution is necessary here. The complex rotation method implies a

stabilization procedure that, when properly used, gives an idea about the accuracy of

the results obtained. This is not true for the Fidelity method. The best recipe to obtain
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Figure 8. En(Bn) vs the magnetic field strength. The figure shows the data obtained

using different basis set sizes, N = 30× 30, triangle up open dots; N = 40× 40, square

open dots; N = 50× 50, diamond open dots; and N = 60× 60, solid dots.

stabilized results from the Fidelity method implies picking the largest possible basis set

size, N , with Nz = Nρ. Otherwise, the convergence of the Fidelity data, i.e the values

obtained for the resonance’s energy from the Fidelity, is not uniform. Figure 8 shows the

behaviour of the resonance energy obtained following the Fidelity method with different

basis set sizes. It is worth to mention that the resonance energies obtained with N = 900

and N = 3600 differ in less than 5%

Again, as is the case with the localization probability method to find estimations

for the resonance energy, the fidelity method works properly as long as the resonance

state is well isolated, i.e. the only avoided crossings present in a given region of the

spectrum should be one associated to the resonance. As has been said previously, above

the second LL there is a very large number of avoided-crossings for each eigenvalue. owed

to a multiple-continua scenario. Each Gn has a peak associated to every single avoided-

crossing, making extremely hard to decide which peak corresponds to the resonance

state.

6. Discussion and Conclusions

The external magnetic field precludes the escape of the electron on the (ρ, φ) plane,

for this reason the quantum dot bounding potential consists of a potential well and a

potential step, to ensure the presence of resonance states. In this sense, the problem

has several characteristic lengths, the quantum dot radius, the Landau levels radii, the

length of the quantum dot along the z axis, and so on. The two lengths that come into

play varying the magnetic field strength, for the set of parameters considered in this

work, are the quantum dot radius and the lowest LL radius. The potential well depth

and the other parameters of the QD were chosen to ensure that for B = 0 there were

no bound states.

The localization probability is able to track down the resonance states from the
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localization point up to the second LL. Above the second LL the eigenvalues have too

many avoided crossings, because of the multiple-continua interacting in this region of

the spectrum, rendering the method useless. The many avoided crossings also prevent

the use of the fidelity to detect the resonance above the second LL. Moreover, despite

that the width of the resonance state analyzed is not small when compared with the

resonance energy, the fidelity method provides a good estimation of the last. Anyway,

some precaution must be exercised to obtain accurate and stable results.

Finally, both critical fields, Bp(aρ) and BF(aρ), show two clearly distinguishable

regimes, for small quantum dot radius their values are given by the lowest Landau

level radius, so both are proportional to 1/a2ρ. For large enough quantum dot radius

both critical fields show a different behaviour and, apparently, both are proportional

to (α − βaρ)
2, where α y β are constants. The extent of the small field regime can

be tuned changing the parameters of the bounding potential, Equation 1, extending or

reducing it. The critical behaviour of the eigenvalues in the transition region between

the large field-small quantum dot radius and the small field-large quantum dot radius

will be analyzed elsewhere.
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partial financial support of this project. We would like to thank Dr. Pablo Serra for

helpful comments and the critical reading of this manuscript.

Appendix A. Some matrix elements

It is convenient to separate the kinetic energy matrix elements in two contributions, one

corresponding to the radial coordinate,

〈ψn |Tρ|ψs〉 =

〈

ψn

∣

∣

∣

∣

− 1

2µ
∇2

r

∣

∣

∣

∣

ψs

〉

=
η

µ
√

(n+ 1)(s+ 1)

(

1

4
T1 +

1

2
(T2 + T3) + T4

)

(A.1)

and the other corresponding to the z coordinate,

〈φt |Tz|φr〉 =

〈

φt

∣

∣

∣

∣

− 1

2µ
∇2

z

∣

∣

∣

∣

φr

〉

=
η

2µ
√

(n + 1)(s+ 1)

(

1

4
T1z +

1

2
(T2z + T3z) + T4z

)

(A.2)

where

T1 = (n+ 1)δn,s,

T2 =
n
∑

p=0

s−1
∑

q=0

(−1)p+q(n + 1)!(s+ 1)!(p+ q + 1)!

(n− 1− p)!(2 + p)!p!(s− q)!(1 + q)!q!
, (A.3)
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T3 =
n−1
∑

p=0

s
∑

q=0

(−1)p+q(n + 1)!(s+ 1)!(p+ q + 1)!

(n− p)!(1 + p)!p!(s− 1− q)!(2 + q)!q!
,

T4 =
n−1
∑

p=0

s−1
∑

q=0

(−1)p+q(n+ 1)!(s+ 1)!(p+ q + 1)!

(n− 1− p)!(2 + p)!p!(s− 1− q)!(2 + q)!q!

(A.4)

while

T1z = δt,r,

T2z =

t
∑

d=0

r−1
∑

f=0

(−1)t+rt! r!(d+ f)!

(t− d)!(d!)2(r − 1− f)!(1 + f)!f !
, (A.5)

T3z =

t−1
∑

d=0

r
∑

f=0

(−1)t+rt! r!(d+ f)!

(t− 1− d)!(1 + d)!(r − f)!(f !)2
,

T4z =

t−1
∑

d=0

r−1
∑

f=0

(−1)t+rt! r!(d+ f)!

(t− 1− d)!(1 + d)!d!(r − 1− f)!(1 + f)!f !
. (A.6)

(A.7)

The matrix element of the bounding potential can be factorized owed to its piecewise

character and using that there is a potential barrier on the z direction. We get that

〈ψnφt |V (ρ, z)|ψsφr〉 = −V2 IV 2 + V1 IV 1δn,s, (A.8)

the barrier term is, obviously, proportional to V1, while the term proportional to V2
corresponds to the matrix element of the potential well. The matrix elements IV 2 and

IV 1 are given by

IV 2 =
1

√

(n+ 1)(s+ 1)

n
∑

p=0

s
∑

q=0

(−1)p+q(n + 1)!(s+ 1)! IV 21

(n− p)!(1 + p)!p!(s− q)!(1 + q)!q!

×
t
∑

d=0

r
∑

f=0

(−1)d+f t! r! IV 22

(t− d)!(d!)2(r − f)!(f !)2
(A.9)

IV 1 =
1

√

(n+ 1)(s+ 1)

t
∑

d=0

r
∑

f=0

(−1)d+rt! r! IV 11

(t− d)!(t!)2(r − f)!(f !)2
(A.10)

and

IV 21 = (p+ q + 1)!− e−ηa

p+q+1
∑

k=0

(p+ q + 1)!(aη)p+q+1−k

(p+ q + 1− k)
, (A.11)

IV 22 = (d+ f)!− e−νa/2

d+f
∑

g=0

(d+ f)!

(d+ f − g)

(νa

2

)d+f−g

, (A.12)

IV 11 =

d+f
∑

k=0

(d+ f)!

(d+ f − k)!
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×
(

e−aν/2
(aν

2

)d+f−k

− e
−(a+b)ν

2

(

(a + b)ν

2

)d+f−k
)

. (A.13)

The matrix element of the magnetic field term reads as

〈ψn |Hc|ψs〉 =
B2

8µη2
√

(n+ 1)(s+ 1)

×
n
∑

p=0

s
∑

q=0

(−1)p+q(n+ 1)!(s+ 1)!(p+ q + 3)!

(n− p)!(1 + p)!p!(s− q)!(1 + q)!q!
(A.14)
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