

REPOSITORIO DIGITAL UNIVERSITARIO (RDU-UNC)

Granger causality testing for Argentina MERVAL index and the major world stock markets

Sergio Martín Buzzi, Silvia María Ojeda

Ponencia presentada en I Congreso Argentino de Estadística - XLIII Coloquio Argentino de Estadística - XX Reunión Científica del GAB realizado en 2015 en la Universidad Tres de Febrero de la ciudad Autónoma de Buenos Aires. Buenos Aires, Argentina

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional

ISSN 2451-8131

1 ° Congreso Argentino de Estadística (CAE I)

XLIII Coloquio Argentino de Estadística

XX Reunión Científica del GAB

Libro de Resúmenes extendidos

6 al 9 Octubre de 2015

Ciudad Autónoma de Buenos Aires

República Argentina

GRANGER CAUSALITY TESTING FOR ARGENTINA MERVAL INDEX AND THE MAJOR WORLD STOCK MARKETS

SERGIO MARTÍN BUZZI¹, SILVIA MARÍA OJEDA²

¹Departamento de Estadística y Matemática, Facultad de Ciencias Económicas, U.N.C. ²Facultad de Matemática, Astronomía y Física, U.N.C.

sergio.buzzi@eco.unc.edu.ar

SUMMARY

In this paper are analyzed the causal links among a selected group of global stock market indices, with special focus on the role of Argentina MERVAL index. With this objective in mind, two types of non-conventional Granger causality test are performed in order to avoid the theoretical limitations of the traditional test which requires stationary time series. The first test is based in a surplus-lag VAR model and allows testing for Granger causality in the context of non-stationary processes. The second test rests on the estimation of a VARX model and is robust to non-stationarity; long memory; and non-modeled structural breaks. This second test also admits conditioning on endogenous modeled control variables. The estimations are performed using daily data for a long time period, being both testing procedures implemented in the programming language R. Finally the results from both tests are compared and interpreted in order to capture their economic meaning.

Keywords: Granger causality, time series, VARX, stock markets.

Introduction

In this paper, we explore how Argentina MERVAL index is related with the major world stock markets. We use daily data for the period from 1998-12-15 to 2014-05-09 for twenty indices. The indices included and their corresponding countries are: MERVAL (Argentina); BVSP (Brazil); MXX (Mexico); GSPTSE (Canada); GSPC (United States of America); NDX (United States of America); FTSE (United Kingdom); IBEX (Spain); FCHI (France); GDAXI (Germany); SSMI (Switzerland); OMX (Sweden); BSESN (India); HSI (China); SSEC (China); SHENA (China); TWII (Taiwan); KS11 (South Korea); N225 (Japan); and AXJO (Australia). These indices accounts for 90% of the World total market capitalization, approximately.

On the one hand, there are reasons to believe that global stock markets are related, given that investors are constantly looking for new opportunities to earn cash fast, being this phenomenon know as arbitrage.

On the other hand, each market has a different basket of financial actives, fact that may break indices co-movements.

In this context, we analyze how MERVAL index responds to movements on the other markets, using Granger non-causality tests. The choice of this methodology is twofold: first, Granger causality provides an approximation to true causality, and second, it allows us to find markets which are "dominant" or "leading"; given that their movements help us to anticipate followers' movements.

Some previous works, such as Glezakos et al. (2007) and Paramati et al. (2012) tested for Granger causality using return rates (that is, the growth rates of the indices), but as Engle and Granger (1987) point out, if the indices are cointegrated, the correct procedure consist on also adding the long term relationship. Therefore, it is preferable working with a Vector Error Correction Model (VECM) or its Vector Auto Regressive (VAR) representation using the indices or their logarithm, instead of estimating a VAR on differences or in the growth rates.

Development

The indices close values adjusted for dividends and splits were obtained from finance.yahoo.com, and the exchange rates from oanda.com; except for Argentina in which case this source is employed until 2011-10-28. From this date up to 2014-05-09 we use the BONAR X quotations to approximate the underlying exchange rate given that for this period the official exchange rate does not show the true peso/dollar parity.

The indices were expressed in American dollars in order to isolate the distortions produced by the effect of currency depreciation. The growth rate of MERVAL index seems to be an extraordinary one in certain periods but this impression vanishes when the index is expressed in dollars. It is logic to think that investors compare international stocks performance using a common currency.

Classic Granger non-causality tests require stationary time series, provided that if any of the series is not I(0) the Wald test employed for testing restrictions in a VAR model does not follow its standard asymptotic distribution under the null hypothesis.

Toda and Yamamoto (1995) developed a Granger testing procedure based in an augmented-lag VAR model which allows us to testing for Granger causality in a non-stationary context. This test rests on the estimation of a reduced form VAR(p) model with s additional lags, being s the maximum integration order of the series under study. After that, standard Wald tests are computed considering only the first p lags. This test can be used whether all the variables have the same integration order (and possibly cointegrated), or in the case that there are variables with different integration order as well. Provided that all the series were found to be I(1), we incorporate only an additional lag to guarantee that the Wald tests follow the usual asymptotic chi-square distribution under the null hypothesis.

We also estimate an extension of the Toda Yamamoto test which was developed by Bauer and Maynard (2012).

In this latter procedure, three kind of variables are used: y_t is a vector of independent variables of order k_y ; z_{1t} is a vector of exogenously modeled forcing variables of order k_{z1} ; y z_{2t} is a vector of optional control variables of order k_{z2} . The objective is to test if z_{1t} Granger-cause y_t after controlling for z_{2t} . This test is done by means of the estimation of the following VARX model:

$$\boldsymbol{y}_{t} = \sum_{j=1}^{p} \left(\psi_{y_{j}} \boldsymbol{y}_{t-j} + \psi_{z2_{j}} \boldsymbol{Z}_{2t-j} \right) + \sum_{j=1}^{p_{z1}+1} \psi_{z_{1j}} \boldsymbol{Z}_{1t-j} + \boldsymbol{\varepsilon}_{y,p}$$
(1)

and testing the joint parameter restriction $\psi_{z_{1j}} = 0$ for $1 \le j \le p_{z_1}$. It must be noted that the condition $\psi_{z_{1,p+1}} = 0$ is not tested. The inclusion of the additional lag of z_{1t} guarantee that the Wald test asymptotic distribution is the usual one.

Equation 1 may be rewritten in the form:

$$y_{t} = \psi_{x1} X_{1t}^{-} + \psi_{x2} X_{2t}^{-} + \varepsilon_{yt,p}$$
⁽²⁾

where
$$x_{1t}^{-} = z_{1t}^{-}$$
 y $x_{2t}^{-} = \begin{bmatrix} y_{t}^{-}, z_{2t}^{-}, z_{1t-p_{2t}-1}^{-} \end{bmatrix}$, being $y_{t}^{-} = \begin{bmatrix} y_{t-1}^{-}, ..., y_{t-p}^{-} \end{bmatrix}$; $z_{2t}^{-} = \begin{bmatrix} z_{2t-1}^{-}, ..., z_{2t-p}^{-} \end{bmatrix}$;
 $z_{1t}^{-} = \begin{bmatrix} z_{1t-1}^{-}, ..., z_{1t-p_{2t}}^{-} \end{bmatrix}$; $\psi_{y}^{-} = \begin{bmatrix} \psi_{y1}^{-}, ..., \psi_{yp}^{-} \end{bmatrix}$; and $\psi_{z2}^{-} = \begin{bmatrix} \psi_{z21}^{-}, ..., \psi_{z2p}^{-} \end{bmatrix}$. Or in staked form;
 $Y = X_{1}\psi_{x1}^{-} + X_{2}\psi_{x2}^{-} + E_{p}$
(3)

where $Y = \left[y_{p_{max}+1}^-, ..., y_T^- \right]$, for $p_{max} = \max \{ p, p_{z1} + 1 \}$, and X_1, X_2, E_p stack $x_{1t}^-, x_{2t}^- y \varepsilon_{yt,p}^-$ in analogous fashion. Using this notation, the hypothesis are: $H_0: \psi_{x1} = 0$; and $H_A: \psi_{x1} \neq 0$. Also, Bauer and Maynard (2012) demonstrate that under the null the Wald statistic

$$\hat{W} = \operatorname{vec}(Y'X_{1,2})' \left((X_{1,2}'X_{1,2})^{-1} \otimes \left(\frac{1}{T} \operatorname{E}_{\rho}' \operatorname{E}_{\rho}\right) \right) \operatorname{vec}(Y'X_{1,2})$$
(4)

has limiting distribution $\chi^2_{k_y \rho_{z_1} k_{z_1}}$, where $X_{1,2} = X_1 - X_2 (X_2 X_2)^{-1} X_2 X_1$.

It must be noticed that the difference between both tests consist on the fact that the Bauer and Maynard (2012) version allows us to test for Granger causality controlling for other variables, isolating the net influence of a given index over the other one.

Results and Conclusions

In this section, we show the results obtained from the implementation of both Toda and Yamamoto (1995); and Bauer and Maynard (2012) Granger-causality tests.

The lag selection was done using the Akaike Information Criterion (AIC) provided that this criterion is preferred when the sample size is large enough, as in our case.

Table 1 shows the observed values of the chi squared statistic; the degrees of freedom; and the p-values of the Toda Yamamoto Granger-causality tests between MERVAL index and each of the other selected stock markets. According to the results, the Buenos Aires Stock Exchange index Granger-causes all the selected indices with exception of SSMI (Swiss Market Index), SSEC (Shanghai Stock Exchange Index), SHENA (Shenzhen A Index), and TWII (Taiwan Capitalization Weighted Stock Index). Also, MERVAL index is Granger-caused

for almost all the indices, with exception of BVSP (Bovespa Index of Sao Pablo), GSPC (Standard & Poor's Index), and SHENA (Shenzhen A Index).

Table 1

Toda and Yamamoto (1995) Granger causality tests											
	chi2	df	p-value		chi2	df	p-value				
MERV -> BVSP	88.24	31	0.0000	BVSP -> MERV	33.28	31	0.3570				
MERV -> MXX	30.23	4	0.0000	MXX -> MERV	30.23	4	0.0000				
MERV -> GSPTSE	29.95	9	0.0004	GSPTSE -> MERV	15.84	9	0.0704				
MERV -> GSPC	35.57	9	0.0000	GSPC -> MERV	9.14	9	0.4249				
MERV -> NDX	53.67	32	0.0096	NDX -> MERV	56.04	32	0.0054				
MERV -> FTSE	24.36	9	0.0038	FTSE -> MERV	39.41	9	0.0000				
MERV -> IBEX	16.10	3	0.0011	IBEX -> MERV	16.86	3	0.0008				
MERV -> FCHI	50.52	27	0.0040	FCHI -> MERV	68.88	27	0.0000				
MERV -> GDAXI	47.99	23	0.0017	GDAXI -> MERV	61.12	23	0.0000				
MERV -> SSMI	7.75	6	0.2567	SSMI -> MERV	27.13	6	0.0001				
MERV -> OMX	39.73	22	0.0116	OMX -> MERV	59.25	22	0.0000				
MERV -> BSESN	18.80	9	0.0269	BSESN -> MERV	50.36	9	0.0000				
MERV -> HSI	43.94	22	0.0036	HSI -> MERV	95.50	22	0.0000				
MERV -> SSEC	0.95	3	0.8142	SSEC -> MERV	13.52	3	0.0036				
MERV -> SHENA	1.01	3	0.8001	SHENA -> MERV	5.12	3	0.1634				
MERV -> TWII	5.26	3	0.1535	TWII -> MERV	63.72	3	0.0000				
MERV -> KS11	20.81	9	0.0135	KS11 -> MERV	82.84	9	0.0000				
MERV -> N225	13.18	3	0.0043	N225 -> MERV	73.35	3	0.0000				
MERV -> AXJO	53.57	20	0.0001	AXJO -> MERV	175.60	20	0.0000				

Table 2

Bauer and Maynard (2012) Granger-causality tests

	chi2	df	p-value		chi2	df	p-value
MERV -> BVSP	50.69	31	0.0143	BVSP -> MERV	38.34	31	0.1708
MERV -> MXX	5.01	4	0.2861	MXX -> MERV	5.01	4	0.2861
MERV -> GSPTSE	36.71	33	0.3007	GSPTSE -> MERV	34.00	33	0.4193
MERV -> GSPC	41.67	27	0.0355	GSPC -> MERV	48.27	27	0.0072
MERV -> NDX	40.23	38	0.3716	NDX -> MERV	64.21	38	0.0050
MERV -> FTSE	9.77	4	0.0444	FTSE -> MERV	2.38	4	0.6666
MERV -> IBEX	2.68	2	0.2619	IBEX -> MERV	2.13	2	0.3443
MERV -> FCHI	0.61	4	0.9620	FCHI -> MERV	8.36	4	0.0792
MERV -> GDAXI	9.35	5	0.0961	GDAXI -> MERV	11.80	5	0.0376
MERV -> SSMI	6.91	6	0.3290	SSMI -> MERV	6.05	6	0.4173
MERV -> OMX	30.20	20	0.0667	OMX -> MERV	40.62	20	0.0042
MERV -> BSESN	17.89	14	0.2120	BSESN -> MERV	9.73	14	0.7815
MERV -> HSI	34.42	32	0.3524	HSI -> MERV	36.74	32	0.2585
MERV -> SSEC	6.59	4	0.1591	SSEC -> MERV	8.09	4	0.0884
MERV -> SHENA	6.09	6	0.4134	SHENA -> MERV	8.40	6	0.2102
MERV -> TWII	0.58	4	0.9649	TWII -> MERV	2.24	4	0.6917
MERV -> KS11	23.94	20	0.2452	KS11 -> MERV	18.73	20	0.5392
MERV -> N225	6.62	3	0.0851	N225 -> MERV	2.93	3	0.4030
MERV -> AXJO	6.40	4	0.1714	AXJO -> MERV	5.96	4	0.2024

There are several factors that may influence the causality relationships. First, the time zone: markets that open hours before than the other ones are expected, a priori, to be dominant. Second, if markets are a kind of mirror of real economies, movements in stock exchanges of trade partner countries probably will be related. Third, multinational firms which are quoted in various stock exchanges increase the degree of synchronization.

Table 2 shows the observed values of the chi squared statistic; the degrees of freedom; and the p-values of the Bauer and Maynard Granger-causality tests between MERVAL index and each of the other selected stock markets. The results point out that conditioning in other variables produces the break of many causality relationships. Using this analysis, MERVAL index only causes BVSP, GSPC, and FTSE indices, and it is only caused by GSPC, NDX, GDAXI, and OMX indices. Those relationships may be considered as "direct" relationships given that the effect of other markets is isolated.

To sum up, MERVAL index is related with almost all the other considered indices when the analysis is made in a pairwise base. On the other hand, when the analysis includes conditioning on endogenous modeled control variables, many of those relationships vanish.

It must be noted that MERVAL does not cause, and it is not caused by, any oriental market. Also, it is notable the fact that the Brazilian index does not Granger cause the MERVAL index.

References

Bauer, D., & Maynard, A. (2012). "Persistence-robust surplus-lag Granger causality testing". *Journal of Econometrics*, *169*(2), 293-300.

Engle, R. F., & Granger, C. W. (1987). "Co-integration and error correction: representation, estimation, and testing". *Econometrica: journal of the Econometric Society*, 251-276.

Glezakos, M.; Merika, A.; & Kaligosfiris, H. (2007). "Interdependence of major world stock exchanges: How is the Athens stock exchange affected". *International Research Journal of Finance and Economics*, 7(1), 24-39.

Paramati, S.; Gupta, R.; & Roca, E. (2012). "International Equity Markets Integration: Evidence from Global Financial Crisis and Structural Breaks". In *Emerging Markets Risk Management Conference, Hong Kong, August* (pp. 15-17).

Toda, H., & Yamamoto, T. (1995). "Statistical inference in vector autoregressions with possibly integrated processes". *Journal of econometrics*, *66*(1), 225-250.