Los precios locales en el Mercado Eléctrico Mayorista

Dr. José Luis Arrufat¹
Lic. A. Enrique Neder²
Dr. Manuel A. Abdala³

I. Introducción

La Ley 24065 fija el marco regulatorio para el desempeño del sector eléctrico argentino, estableciendo la separación entre generación, distribución y transporte de energía eléctrica. A modo de brevísima síntesis, el Mercado Eléctrico Mayorista (MEM) se define como el punto de encuentro entre la oferta y la demanda eléctrica en tiempo real. Aun cuando tanto la oferta como la demanda eléctricas se distribuyen a lo largo de la mayor parte del país, dado que el Sistema Interconectado Nacional (SIN) abarca la totalidad del territorio nacional, con excepción de Misiones y el sur de la Patagonia, se define el precio de mercado en el centro de carga del sistema (nodo Ezeiza). Para vincular los precios correspondientes a otros puntos de la red (nodos), se utiliza el concepto de precio nodal, que refleja las pérdidas de la transmisión eléctrica entre nodos. Dichos factores nodales tienen una dimensión temporal horaria, ya que, por ejemplo, un mismo nodo puede pasar de ser exportador neto de energía a ser importador neto para diferentes horas de un mismo día. Puede consultarse una versión simplificada del funcionamiento del MEM y del mecanismo de sanción de precios horarios basados en el costo marginal de corto plazo en Arrufat (1993) o en Bastos y Abdala (1996).

En el presente trabajo se realiza un análisis teórico para evaluar la normativa relacionada con la aplicación de los denominados "precios locales". Dichos precios locales surgen cuando existen restricciones de transporte en el MEM. El propósito de la normativa de precios locales obedece a la creación de incentivos a

²Expectativa Consultores Económicos y Departamento de Economía y Finanzas. Facultad de Ciencias Económicas. Universidad Nacional de Córdoba. Fax (051) 69-7751; e-mail facultad: eneder@eco.uncor.edu; e-mail Expectativa: expenet@powernet.com.ar
³Expectativa Consultores Económicos. Ituzaingó 1291. 5000 Córdoba. Fax 69-7751; e-mail: expenet@powernet.com.ar
los agentes del MEM para afrontar la construcción de nuevas líneas de transmisión y así eliminar, en todo o en parte, las restricciones de transporte que los afectan.

De esta manera, es posible plantearse dos preguntas:

a) ¿existe un sustento teórico desde el punto de vista económico de un mercado descentralizado como el argentino que respalde esta normativa?, y

b) ¿resultan adecuados los incentivos que surgen de la aplicación de la normativa de precios locales en términos de eficiencia, es decir, provocan o no distorsiones de precios, cantidades, etc., y en términos de equidad, vale decir, afectan la distribución de costos y/o beneficios entre los agentes del MEM afectados?.

Para responder a la primera cuestión se requiere interpretar conceptualmente una restricción de transporte. Desde el punto de vista de un generador en un área oferente neta\(^4\) ("exportadora") las restricciones de transmisión deben ser tratadas como restricciones de demanda en la región aislada. En cambio, para el centro de carga del mercado, la falta de algún vínculo de transporte se toma como una restricción de oferta. Al mismo tiempo, el centro de carga tiene una interpretación similar a la de un área demandante neta\(^5\) ("importadora") que queda desvinculada del mercado. En este área, en consecuencia, la falta de transporte debe entenderse como una restricción de oferta.

Para poder efectuar comparaciones entre el análisis teórico de restricciones de transporte y la implementación de precios locales en la regulación actual, se utilizaron dos caminos: un análisis gráfico de economía del bienestar y un ejercicio simplificado de programación lineal. Ambos enfoques permiten observar las consecuencias económicas de una restricción del transporte eléctrico en un sistema interconectado y, además, en ambos es posible determinar que el cálculo de precios locales posee sustento teórico desde el punto de vista de la teoría económica.

Por razones de simplicidad, el análisis que se efectúa en este trabajo sólo considera generadores térmicos, los cuales tienen un costo de combustible fácilmente identificable. La inclusión de generación hidroeléctrica requeriría contar

\(^4\) Se entiende por área oferente neta aquélla que no sólo abastece su mercado local sino que también envía energía al resto del sistema.

\(^5\) Un área demandante neta es aquélla que no se autoabastece y, por lo tanto, requiere del suministro de energía desde el resto del sistema.
con estudios que permitan calcular el valor del agua y también determinar el denominado “costo del agua”.

En el trabajo también se pone de relieve la existencia de prácticas regulatorias que, en principio, se apartan de los conceptos establecidos en el ANEXO 26 de los Procedimientos de la Compañía Administradora del Mercado Eléctrico Mayorista S.A. (CAMMESA), con respecto al cálculo de precios locales. Tales prácticas dan lugar a asimetrías en el tratamiento de áreas exportadoras e importadoras, particularmente a raíz de la declaración de “generación forzada” en estas últimas. Ello genera distorsiones de precios que tienen como primera consecuencia brindar señales equivocadas a los agentes del mercado, generando, por lo tanto, ineficiencia en el sistema. Una segunda consecuencia directa que provoca esta asimetría está relacionada con el reparto de las pérdidas de bienestar social entre los agentes del MEM. Los demandantes de un área importadora neta se estarían beneficiando con precios locales menores a los que deberían regir en teoría, a expensas de los generadores locales, a quienes no se les estaría permitiendo la apropiación de quasi-rentas. Por último, la asimetría genera inequidad en el tratamiento de la cuenta de excedentes y, por lo tanto, en la señal para ampliaciones de transporte entre los agentes involucrados en un área exportadora y los de un área importadora sujeta a restricciones.

Lo que resta del presente trabajo se organiza de la siguiente manera: en la siguiente sección se analiza la restricción de transporte desde la óptica de un área oferente neta, mientras que en la tercera se considera un área importadora neta. La cuarta sección contiene una representación de los cambios en el bienestar que se producen como consecuencia de la aparición de una restricción de transporte a través del uso de un análisis gráfico. En la quinta sección se analizan los mismos temas, recurriendo a un enfoque alternativo basado en la programación lineal. Finalmente, en la sexta sección, se presentan las conclusiones.

II. Restricción en un área oferente neta: enfoque gráfico

En este enfoque se considera la existencia de un área oferente neta, con su propio mercado, el mercado que conforma el resto del Sistema Interconectado Nacional (SIN) y el mercado en su conjunto (ver Figura 1).
Se supone mayor eficiencia en la generación desarrollada en el área oferente neta. No se efectúa ninguna consideración con respecto a factores de nodo ni a la fuente primaria de energía utilizada por los generadores. Los números y funciones consignados son a título meramente ejemplificativo. Se distinguen los siguientes actores económicos: consumidores y generadores de la región restringida, consumidores y generadores del resto del SIN, el transportista y la autoridad regulatoria.

En el mercado se supone que existe una demanda total de 8 unidades de energía, la cual resulta de la agregación de la demanda observada en el área oferente neta (1.5) y en el resto del SIN (6.5). En el ejemplo, el precio de mercado de equilibrio es P^M, al cual los generadores del área oferente neta tendrán un remanente "exportable" (Q^X_0) que es igual a la porción del total consumido por el resto del SIN señalado como (Q^M_0).

A la vez, pueden tenerse como referencia dos precios más que son los "de autarquía" en el área oferente neta P_{Aut}^{aon} y en el resto del SIN ($P_{Aut}^{Rto SIN}$) que serían los precios que regirían si sólo se tuvieran en cuenta ofertas y demandas sin la interconexión entre regiones, es decir, sin "exportación" ni "importación" de energía (restricción total de transporte).

Supóngase ahora que comienza a operar una restricción en la transmisión de energía que hace que los generadores del área oferente neta exporten sólo parcialmente los niveles que anteriormente estaban colocando en el mercado (es decir, se trata de una restricción parcial de transporte). Ello se visualiza en el gráfico del área oferente neta con Q^X_1 (obviamente menor que Q^X_0). Esta porción "exportada" constituye una "importación" de energía que estará realizando el resto del SIN (Q^M_1).

La restricción de oferta en el mercado provoca que sean despachadas máquinas menos eficientes lo cual determina un aumento en el precio de mercado que ahora hemos denominado precio restringido (P^M_{Restr}).

En el área oferente neta, sin embargo, el precio caerá hasta P_1^{aon} como consecuencia de que la restricción de transporte debe visualizarse como una caída en la demanda en esta área. Este nuevo precio, que surge de igualar oferta y demanda (del área más exportaciones) en la zona aislada, resulta inferior al que prevalece en el mercado como un todo.
Como consecuencia de la baja en el precio en el área oferente neta, los demandantes de energía en esta región se benefician y se perjudican los generadores, ya que en su conjunto no pueden exportar los niveles que desearían. La cuantificación de estas pérdidas y beneficios se explican en forma más detallada en sección cuarto.

Si existiese un transportista con poder de mercado, dicho transportista se beneficiaría con la restricción ya que se apropiaría de la diferencia de precios entre lo que pagan los demandantes del mercado y lo que reciben los generadores del área oferente neta, que asciende a \([P_{\text{M}_{\text{Restr}}} - P_{\text{A}_{\text{ap}}}] \cdot Q_{\text{Restr}}\). Sin embargo, las prácticas regulatorias prevalecientes le impiden al transportista apropiarse de este excedente. El destino final de este monto se afecta a la Cuenta de Excedentes por Restricción del Transporte, cifra que luego sería destinada para ayudar a financiar la expansión del sistema de transporte en el corredor donde se presentó la restricción.

III. Restricción en un área demandante neta

Sin necesidad de referencia al análisis gráfico y siguiendo un razonamiento equivalente al realizado anteriormente, se puede arribar a las siguientes conclusiones:

a) En la zona aislada se produce un incremento del precio de la energía eléctrica, lo que redundaría en un aumento del excedente de los productores y en una caída del excedente de los consumidores.

b) El transportista, al producirse una brecha entre el precio de importación de la zona aislada y el precio de exportación del resto del SIN, se apropiaría en primera instancia de dicha diferencial de precios. Sin embargo, por consideraciones análogas a las realizadas anteriormente, la autoridad regulatoria imputa esos montos transfiriéndolos a la Cuenta de Excedentes por Restricción de Transporte, cuyo destino futuro sería para ayudar a financiar una ampliación de capacidad de transmisión.

\(^6\) Cabe aclarar, no obstante, que los demandantes de la zona oferente neta no experimentan, en forma horaria, el impacto de la restricción de transporte sobre los precios (locales) que deberían enfrentar. La señal de la restricción les llega en forma estabilizada a través de los precios estacionales que se derivan de las programaciones trimestrales.
No obstante las anteriores conclusiones, cabe aclarar que en la práctica, cuando se trata de un área importadora sujeta a restricción, a las máquinas locales llamadas a generar no se les permite fijar precios ya que son declaradas de generación forzada y, por lo tanto, sólo son remuneradas a su costo operativo.

Este precio local, así definido, está distorsionado porque no corresponde a un "precio de racionamiento" de tipo económico sino que resulta de una combinación del precio de mercado y lo que hace falta para cubrir el costo operativo de las máquinas despachadas en el área local que han sido declaradas como generación forzada.

Al no fijar precios los generadores del área desvinculada, los demandantes tampoco receptan la señal de ampliación del transporte vía precios locales ya que éstos no se determinan como indicaría la teoría y la normativa vigente.

Esto indicaría que en la práctica CAMMESA no brinda un tratamiento igualitario a las áreas desvinculadas, usando criterios disímiles según se trate de un área exportadora o importadora neta.

IV. Cambios en el bienestar social derivados de una restricción de transporte. Análisis gráfico.

Mediante el uso de curvas de oferta y demanda convencionales (es decir, con pendientes positiva y negativa, respectivamente) se podrán mostrar las diferentes pérdidas de bienestar social que se generan en el mercado a consecuencia de una restricción de transporte (ver Figura 2).

Nuevamente, se distingue en el análisis un área "exportadora neta" de energía eléctrica, otra "importadora neta" (el resto del SIN) y el mercado en su conjunto.

En el gráfico correspondiente al mercado se contemplan las ofertas y demandas agregadas tomando en cuenta ambas áreas (la exportadora y el resto del SIN). En el mercado, entonces, se determina el precio spot (P_M) el cual sirve de señal a los generadores del área exportadora neta para abastecer de energía al resto del SIN que es la "zona importadora", situación ésta simbolizada por Q_X e Q_M en cada región, respectivamente.
Considérese ahora una restricción en la transmisión de energía que hace que los generadores de la zona exportadora no puedan colocar en el mercado toda la producción que estarían dispuestos a vender. Esto operaría como una restricción de demanda para los generadores del área exportadora neta y como una restricción de oferta en el mercado en su conjunto, lo cual queda graficado con la sigla O^{Restr}.

En consecuencia, en el mercado se determina un precio superior al anterior, producto de la restricción, al cual se denomina P^{Restr}. Si se analizan los impactos producidos en cada uno de los mercados, se observa que en el mercado en su conjunto se produce una pérdida neta de bienestar, como consecuencia del aumento de precio. Ello puede visualizarse comparando las situaciones existentes entre la fijación del precio P^M y P^{Restr}. La pérdida del excedente de los consumidores corresponde a la superficie $P^{Restr}GHP^M$, mientras que el aumento del excedente de los generadores estará dado por la diferencia entre la superficie $P^{Restr}GJP^M$ y la superficie IJH. De esta manera, la pérdida neta de bienestar será el triángulo JGH.

De la misma forma, en el resto del SIN, para el cual rige también el nuevo precio restringido (P^{Restr}), se produce una pérdida neta de bienestar determinada por la superficie $KLMN$, que surge de comparar la pérdida en términos del menor excedente de los consumidores del resto del SIN (la superficie $P^{Restr}LMP^M$) con la ganancia de bienestar de los generadores dada por la superficie $P^{Restr}KNP^M$.

Realizando el análisis para la región aislada, también existirá una pérdida neta de bienestar. La restricción de demanda hará que el precio en el mercado local baje hasta P^{aen}. La nueva función de demanda quedaría conformada por la curva $ABCEF$ (D^{Restr}). El excedente de los consumidores locales, si se comparan las situaciones existentes entre la presencia de los precios P^M y P^{aen} se verá incrementado en la superficie $P^M VS P^{aen}$, mientras que la disminución en el excedente de los generadores locales (por no poder colocar todo lo que anteriormente vendían en el mercado) será $P^M TF P^{aen}$. La autoridad regulatoria, por su parte, se apropiará del excedente del transportista, que es igual a BCSF, el cual surge de multiplicar la cantidad efectivamente exportada ($VE = BC$) por la diferencial de precios producida por la restricción en transmisión ($P^{Restr} - P^{aen}$). La pérdida neta estará representada por la superficie ETF.
V. Un enfoque alternativo basado en la programación lineal

Debido a que la programación lineal permite la generalización del análisis, en esta sección se considera un caso que toma en cuenta la existencia de tres regiones, a saber: la primera es exportadora neta, la tercera es importadora neta, mientras que la restante exporta e importa simultáneamente.

Una característica adicional de este enfoque consiste en que no sólo se obtienen las cantidades óptimas a generar por cada máquina en cada una de las localizaciones sino que además surgen precios sombra o de cuenta. Dichos precios sombra están asociados a cada una de las restricciones planteadas en la minimización de los costos de generación\(^7\).

Las restricciones incorporadas en este tipo de problema son básicamente tres:

a) Deben abastecerse las demandas de energía eléctrica en cada localización, las cuales, a diferencia del planteamiento realizado con anterioridad por medio del enfoque gráfico, se suponen perfectamente inelásticas. Si bien esto podría parecer restrictivo, resulta, sin embargo, un supuesto realista para describir la demanda en el lapso de una hora.

b) Los equipos generadores tienen una capacidad máxima de generación y sus costos marginales de corto plazo se suponen constantes para todo el intervalo de producción.

c) Restricciones de transmisión, de las que surgen las áreas aisladas por no poder importar o exportar la totalidad de los flujos que llevan a la minimización del costo de generación.

Para cada una de estas restricciones se obtienen precios sombra o de cuenta apropiados, tal como se analizará más adelante.

En los ejemplos que siguen se ha supuesto la existencia de tres generadores térmicos en la zona exportadora neta, cuyos niveles de producción se

\(^7\) Pueden consultarse al respecto Dorfman, Samuelson y Solow (1972) o Layard y Walters (1978).
simbolizan por X_1, X_2 y X_3 y cuyos costos de generación por unidad de energía ascienden a 15, 20 y 25 unidades monetarias por unidad de energía.

La capacidad máxima de generación para cada una de estas unidades térmicas es de 0.5, 0.6 y 2.9 unidades de energía para los generadores 1, 2 y 3, respectivamente. La demanda a abastecer (representada por la variable X_7) en la zona exportadora neta se supone igual a 1.5 unidades de energía.

Por otra parte, suponemos que en la zona importadora y exportadora existen otros tres generadores, representados por los X_4, X_5 y X_6, cuyos costos de generación son de 30, 35 y 40 unidades monetarias por unidad de energía y cuyas capacidades máximas de generación son de 2, 2 y 3 unidades de energía, respectivamente. La demanda de esta zona asciende a 5.5 unidades de energía y está representada por la variable X_8.

Por lo que respecta a la zona importadora, cuenta con un solo generador - simbolizado por X_{10}- cuya capacidad máxima de generación es de una sola unidad de energía.

a) Ejemplo sin restricciones en la transmisión

Se plantea a continuación el problema de programación lineal que consiste en la minimización de los costos de generación para abastecer las demandas referidas, cuya formulación es la siguiente:

$$\text{MIN } 15X_1 + 20X_2 + 25X_3 + 30X_4 + 35X_5 + 40X_6 + 45X_{10}$$

SUJETO A:

2) $X_7 \geq 1.5$
3) $X_8 \geq 5.5$
4) $X_{11} \geq 2$
5) $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_{10} - X_7 - X_8 - X_{11} \geq 0$
6) $X_1 \leq 0.5$
7) $X_2 \leq 0.6$
8) $X_3 \leq 2.9$
9) $X_4 \leq 2$
10) $X_5 \leq 2$
11) $X_6 \leq 3$

73
A continuación se presentan los resultados obtenidos, que consisten en los niveles de generación para cada uno de los generadores del sistema, así como también los correspondientes "precios sombra o de cuenta" asociados a cada restricción del problema.

VALOR DE LA FUNCIÓN OBJETIVO

1) 262.000000

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALOR REDUCCIÓN DE COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.500000</td>
</tr>
<tr>
<td>X2</td>
<td>0.600000</td>
</tr>
<tr>
<td>X3</td>
<td>2.900000</td>
</tr>
<tr>
<td>X4</td>
<td>2.000000</td>
</tr>
<tr>
<td>X5</td>
<td>2.000000</td>
</tr>
<tr>
<td>X6</td>
<td>1.000000</td>
</tr>
<tr>
<td>X10</td>
<td>0.000000</td>
</tr>
<tr>
<td>X7</td>
<td>1.500000</td>
</tr>
<tr>
<td>X8</td>
<td>5.500000</td>
</tr>
<tr>
<td>X11</td>
<td>2.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILAS</th>
<th>EXCEDENTE</th>
<th>PRECIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U HOLGURA</td>
<td>SOMBRA</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>3)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>4)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>5)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>6)</td>
<td>0.000000</td>
<td>25.000000</td>
</tr>
<tr>
<td>7)</td>
<td>0.000000</td>
<td>20.000000</td>
</tr>
<tr>
<td>8)</td>
<td>0.000000</td>
<td>15.000000</td>
</tr>
</tbody>
</table>
Seguidamente se realiza una interpretación económica del significado de cada uno de estos precios sombra: el de la fila 2 representa el costo marginal de abastecer la demanda del área exportadora neta. El de la fila 3 corresponde al costo marginal de abastecer la demanda del resto del sistema. Finalmente, los de las filas 6 a 11, inclusive miden las "cuasi-rentas" de cada uno de los generadores, vale decir, el exceso de remuneración percibida por energía por sobre los costos variables de generación.

b) Ejemplo con restricción de transmisión en la zona exportadora neta

Seguidamente se considera el problema de despacho cuando existe una restricción de transmisión \((X1 + X2 + X3 - X7 \leq 1.5)\). Se espera, obviamente, que esta restricción sea activa, dado que la solución óptima del problema anterior dio lugar a exportaciones de 2.5 unidades de energía.

\[
\text{MIN} \quad 15X1 + 20X2 + 25X3 + 30X4 + 35X5 + 40X6 + 45X10
\]

SÚJETO A:

2) \(X7 \geq 1.5\)
3) \(X8 \geq 5.5\)
4) \(X11 \geq 2\)
5) \(X1 + X2 + X3 + X4 + X5 + X6 + X10 - X7 - X8 - X11 \geq 0\)
6) \(X1 + X2 + X3 - X7 \leq 1.5\)
7) \(X1 \leq 0.5\)
8) \(X2 \leq 0.6\)
9) \(X3 \leq 2.9\)
10) \(X4 \leq 2\)
11) \(X5 \leq 2\)
12) \(X6 \leq 3\)
13) \(X10 \leq 5\)

75
Se consignan a continuación los resultados obtenidos.

VALOR DE LA FUNCIÓN OBJETIVO

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALOR REDUCCIÓN DE COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.500000</td>
</tr>
<tr>
<td>X2</td>
<td>0.600000</td>
</tr>
<tr>
<td>X3</td>
<td>1.900000</td>
</tr>
<tr>
<td>X4</td>
<td>2.000000</td>
</tr>
<tr>
<td>X5</td>
<td>2.000000</td>
</tr>
<tr>
<td>X6</td>
<td>2.000000</td>
</tr>
<tr>
<td>X10</td>
<td>0.000000</td>
</tr>
<tr>
<td>X7</td>
<td>1.500000</td>
</tr>
<tr>
<td>X8</td>
<td>5.500000</td>
</tr>
<tr>
<td>X11</td>
<td>2.000000</td>
</tr>
</tbody>
</table>

Se observa cómo el generador 6 de la zona importadora y exportadora ahora produce 2 unidades de energía, que reemplazan parte de la generación producida por el generador 3 del área exportadora neta (una unidad de energía). Dada la diferencia entre los costos de generación de ambos generadores (40 unidades monetarias del generador 6 versus 25 del generador 3) el costo de abastecer la demanda del sistema como un todo aumentó desde 262 a 277 unidades monetarias.

Seguidamente se muestran los precios sombra asociados a las restricciones de este problema:

<table>
<thead>
<tr>
<th>FILAS</th>
<th>EXCEDENTE U HOLGURA</th>
<th>PRECIOS SOMBRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2)</td>
<td>0.000000</td>
<td>-25.000000</td>
</tr>
<tr>
<td>3)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>4)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>5)</td>
<td>0.000000</td>
<td>-40.000000</td>
</tr>
<tr>
<td>6)</td>
<td>0.000000</td>
<td>15.000000</td>
</tr>
</tbody>
</table>
cuya interpretación es como sigue: la fila 2 representa el costo marginal de abastecer la demanda del área exportadora neta. Se observa una disminución de 15 unidades monetarias debido a la restricción en el despacho. La fila 3 representa el costo marginal de abastecer la demanda en la zona importadora y exportadora, mientras que la fila 4 mide igual concepto para la zona importadora neta. La fila 5 mide el costo marginal para el mercado como un todo.

Debe notarse que el área aislada es fácil de identificar, dado que es allí donde rige un costo marginal diferente del de mercado.

En la fila 6 se aprecia que la capacidad de transmisión se ha transformado en un recurso escaso que recibe una remuneración de 15 unidades monetarias por unidad de energía transportada. Debe recordarse que esta remuneración, en el marco regulatorio vigente, no es retenida por el transportista sino que pasa a formar parte de la Cuenta de Excedentes por Restricción al Transporte.

Las filas 7 a 13, inclusive muestran las cuasi-rentas obtenidas por los siete generadores. Es factible observar que las cuasi-rentas correspondientes a los generadores del área exportadora neta han disminuido, mientras que no se modificaron las de los generadores del resto del sistema.

Al igual que en los análisis efectuados en secciones anteriores, se desprende que:

a) los consumidores del área exportadora neta se benefician;

b) los generadores de esta misma área pierden excedente de los productores;

c) los consumidores del resto del sistema no se ven, en este caso, desfavorecidos por la suba del precio de la energía eléctrica, la que sí podría producirse en otras circunstancias;
d) los generadores del resto del sistema mantuvieron constante su excedente, aunque en circunstancias ligeramente diferentes podría haberse verificado una suba;

e) el sistema como un todo sufre un perjuicio porque opera con costos más elevados; esto se desprende del valor de la función objetivo que asciende de 262 unidades monetarias, cuando el sistema opera sin restricciones de transmisión, a 277 unidades cuando se activa la restricción de transmisión considerada.

Hay que tener en cuenta que el organismo encargo del despacho debe estar en condiciones de supervisar adecuadamente el desempeño de los actores del mercado para emular la solución competitiva. Resulta inmediato advertir que si algunos generadores tienen un peso importante por representar una fracción considerable de la oferta de la industria eléctrica, en ausencia de controles adecuados podrían asumir comportamientos estratégicos retirando equipos en horarios determinados para manipular el precio de mercado y/o los precios locales. Idéntica consideración se aplica al transportista que no debe estar facultado para comprar o vender energía por las razones señaladas en una sección anterior.

c) Desvinculación de un área importadora neta

En el análisis siguiente se plantea la presencia de una restricción de transmisión que afecta a la zona importadora neta. El marco de análisis es similar al caso a) analizado anteriormente, salvo que se incorpora una restricción adicional. Dicha restricción consiste en que no se puede importar más de una unidad de energía en el área importadora neta.

El problema queda, por lo tanto, planteado como sigue:

\[
\text{MIN } 15X_1 + 20X_2 + 25X_3 + 30X_4 + 35X_5 + 40X_6 + 45X_{10}
\]

Estas consideraciones son similares a las que se realizan habitualmente en los textos de economía internacional con respecto a los aranceles o retenciones óptimos o al manejo de cuotas. Véase, por ejemplo, Krugman y Obstfeld (1994).
Sujeito A:

2) \(X_7 \geq 1.5 \)
3) \(X_8 \geq 5.5 \)
4) \(X_{11} \geq 2 \)
5) \(X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_{10} - X_7 - X_8 - X_{11} \geq 0 \)
6) \(X_{11} - X_{10} \leq 1 \)
7) \(X_1 \leq 0.5 \)
8) \(X_2 \leq 0.6 \)
9) \(X_3 \leq 2.9 \)
10) \(X_4 \leq 2 \)
11) \(X_5 \leq 2 \)
12) \(X_6 \leq 3 \)
13) \(X_{10} \leq 5 \)

Los resultados obtenidos son los siguientes:

VALOR DE LA FUNCIÓN OBJETIVO

1) 267.00000

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VALOR REDUCCIÓN DE COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.500000</td>
</tr>
<tr>
<td>X2</td>
<td>0.600000</td>
</tr>
<tr>
<td>X3</td>
<td>2.900000</td>
</tr>
<tr>
<td>X4</td>
<td>2.000000</td>
</tr>
<tr>
<td>X5</td>
<td>2.000000</td>
</tr>
<tr>
<td>X6</td>
<td>0.000000</td>
</tr>
<tr>
<td>X7</td>
<td>1.000000</td>
</tr>
<tr>
<td>X8</td>
<td>1.500000</td>
</tr>
<tr>
<td>X11</td>
<td>5.500000</td>
</tr>
<tr>
<td></td>
<td>2.000000</td>
</tr>
</tbody>
</table>

79
<table>
<thead>
<tr>
<th>FILAS</th>
<th>EXCEDENTE</th>
<th>PRECIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2)</td>
<td>0.000000</td>
<td>-35.000000</td>
</tr>
<tr>
<td>3)</td>
<td>0.000000</td>
<td>-35.000000</td>
</tr>
<tr>
<td>4)</td>
<td>0.000000</td>
<td>-45.000000</td>
</tr>
<tr>
<td>5)</td>
<td>0.000000</td>
<td>-35.000000</td>
</tr>
<tr>
<td>6)</td>
<td>0.000000</td>
<td>10.000000</td>
</tr>
<tr>
<td>7)</td>
<td>0.000000</td>
<td>20.000000</td>
</tr>
<tr>
<td>8)</td>
<td>0.000000</td>
<td>15.000000</td>
</tr>
<tr>
<td>9)</td>
<td>0.000000</td>
<td>10.000000</td>
</tr>
<tr>
<td>10)</td>
<td>0.000000</td>
<td>5.000000</td>
</tr>
<tr>
<td>11)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>12)</td>
<td>3.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>13)</td>
<td>4.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Al efectuar una comparación con el caso en que no existen restricciones de transmisión, el precio de la zona aislada, vale decir el de la importadora neta, sube de 40 a 45 unidades monetarias por unidad de energía, dado que la máquina que margina, localizada en esa área, tiene ese costo de operación.

Con relación a la zona exportadora neta y al resto del sistema (conectados sin restricciones de transmisión) se observa una caída del precio de 40 a 35 unidades monetarias por unidad de energía.

Cabe recordar que, en la práctica, cuando se presenta un área importadora neta sujeta a una restricción de transmisión, a las máquinas locales llamadas a generar no se les permite fijar precios ya que son declaradas de generación forzada y, en consecuencia, la remuneración que se les fija es sólo su costo operativo. Por lo tanto, el precio local así definido, está distorsionado porque no corresponde a un precio de racionamiento de tipo económico sino que resulta de una combinación del precio de mercado y lo que hace falta para cubrir el costo operativo de las máquinas despachadas en el área local que han sido declaradas como generación forzada.
VI. Conclusiones

Tanto en el enfoque gráfico como en el de programación lineal, es posible observar que los principios generales que rigen la determinación de precios locales tienen sustento desde el punto de vista económico.

Al activarse una restricción de transporte se generan perjuicios sobre los generadores de áreas exportadoras y sobre los demandantes de áreas importadoras. Los demandantes de áreas exportadoras y los generadores en áreas importadoras resultan temporalmente beneficiados.

Para una mejor comprensión de los perjuicios generados, es importante distinguir dos casos, según que la restricción opere sobre una zona exportadora neta o una importadora neta. En el primer caso, los afectados son los generadores del área aislada y los demandantes del resto del mercado. Por el contrario, en el segundo caso, quienes sufren perjuicios son los generadores del resto del sistema y los demandantes del área desvinculada. En ambos casos, la señal de precios locales debería actuar tanto sobre la oferta como la demanda, a los efectos de producir incentivos para la ampliación de la capacidad del transporte.

Se observa que, tanto algunos generadores como algunos demandantes, deberían estar interesados en la búsqueda de soluciones, vale decir incrementar la capacidad de transmisión. De esta forma, se visualiza que el “espectro teórico” de agentes preocupados por incrementar la capacidad de transporte debería ser bastante amplio. En la práctica, sin embargo, la señal no llega con igual intensidad según se trate de perjudicados en un área exportadora o en una importadora.

En el trabajo se detectaron prácticas regulatorias que difieren, en principio, de los conceptos fijados en la normativa vigente con relación al cálculo de precios locales. Se observa un tratamiento asimétrico entre áreas exportadoras y áreas importadoras, a raíz de la declaración de “generación forzada” en estas últimas. Estas asimetrías redundan en una disminución de la eficiencia del sistema y en una inequidad en el reparto de las pérdidas de bienestar entre los agentes del MEM. Los demandantes de un área importadora neta resultarían beneficiados por la existencia de precios locales menores a los que deberían regir en teoría, a expensas de los generadores locales, quienes no estarían extrayendo las cuasi-rentas que podrían obtener.
La asimetría genera, a su vez, inequidad en el tratamiento de la cuenta de excedentes y, por lo tanto, distorsiona la señal económica para la concreción de las obras de ampliación de transporte entre los agentes involucrados en un área exportadora y los de un área importadora sujeta a restricciones.

A lo largo del análisis realizado se ha supuesto que los generadores son térmicos. La extensión del análisis al caso de generación hidroeléctrica requeriría contar con un algoritmo para el cálculo del valor del agua, así como determinar el costo del agua.

BIBLIOGRAFÍA

Figura 1
Impacto de una restricción de transporte:
Limitaciones a la exportación de un área oferente neta.
Perdidas de bienestar social
Impacto de una restricción de transporte:
Figura 2
Los precios locales en el mercado eléctrico mayorista por Arrufat, José Luis; Neder, A. Enrique; Abdala, Manuel se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.