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a curvature singularity.

PACS numbers: 04.50.+h,04.20.-q,04.70.-s, 04.30.-w

CONTENTS

I. Introduction 1

II. Misner spacetime 2
A. Null geodesics 3

III. Instability of the Cauchy horizon in Einstein-scalar field theory 5
A. Massless test scalar fields on M2 6
B. Scalar fields on (M<

c , nab) 6
C. Instability of the Cauchy horizon in M<

c 8

IV. Instability of the Cauchy horizon in Einstein-Maxwell theory 8
A. Maxwell fields on M<

c 9
B. Instability of the Cauchy horizon in M<

c 10

V. Instability of the Cauchy horizon in pure gravity 10

VI. Discussion 11

Acknowledgments 11

References 12

I. INTRODUCTION

The possibility of smoothly extending a solution of Einstein’s equations beyond the maximal Cauchy development of
compact or asymptotically simple data is an undesirable feature of General Relativity (GR). From a a 3+1 viewpoint,
the evolution of the three-metric ceases to be non unique at the Cauchy horizon, predictability being lost in a classical
theory. Strong cosmic censorship (SCC) is the conjecture that generic solutions of GR cannot be extended beyond
a Cauchy horizon. Notably, these pathologies occur among the most important solutions of GR: all double horizon
black holes in the Kerr Newman family, those where either charge, angular momentum, or both, are nonzero. In these
black holes the inner horizon is a Cauchy horizon for any Cauchy surface connecting both copies of spatial infinity io,
and the standard analytic extension beyond it is unique only if we enforce the non physical requirement of analyticity.
In the rotating case, moreover, causality is completely lost in the analytic extension, it being possible to connect
any two given events in this region with a future directed timelike curve [1]; in particular, there are closed timelike
curves -CTCs- through any point. A simple argument first given by Penrose in [2] (see also [3]) suggests that any
perturbation of these solutions will actually end at the Cauchy horizon with a curvature singularity. The instability
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of the Cauchy horizon was illustrated for the Reissner Nordström spacetime in [4], using a model with a cross flow
of outgoing and ingoing lightlike fluxes. An instability of transverse derivatives of test scalar fields along the Cauchy
horizon of extremal Reissner-Nordström black hole was recently found in [5, 6], the analogous result for extremal Kerr
black holes is given in [7].
Misner spacetime is obtained from the half x0 < x1 of Minkowski space by identifying points connected by a fixed
boost. In spite of its simplicity, the resulting spacetime has a rich structure that includes a Cauchy horizon with CTCs
beyond it. Being a flat spacetime, it is possible to obtain explicit solutions for scalar and Maxwell test fields and
use these results in perturbation theory to order higher than one for the coupled scalar-gravity and Maxwell-gravity
systems. We use these results, as well as perturbations in pure gravity, to show that Misner spacetime is an isolated
solution in any of these theories. More precisely, we prove that given a one parameter family of solutions through
Misner’s in any of these theories, neighboring solutions develop a curvature singularity that truncates the spacetime
at the Cauchy horizon except for fine tuned cases.
We review the construction of Misner space in Section II where we also analyze in detail the null geodesics, as
they provide insight in the evolution of massless fields. In Section III we prove that a zero scalar field on a Misner
background is a non generic solution within the Einstein-scalar field theory: except for fine tuned cases, perturbations
of this solution within the in Einstein-scalar field theory develop a curvature horizon that truncates the spacetime at
the Cauchy horizon. The analogous result is proved for the Einstein-Maxwell theory in Section IV, and then for pure
gravity in Section V.
For simplicity, we have performed calculations in compactified Misner space M2 × T2, where M2 is two-dimensional
Misner space, and T2 a 2-torus. We can recover the non-compact case by taking the limit a, b → ∞ of the periods a
and b of the spatial coordinates y and z. This amounts to a few changes in the test field expressions, such as replacing
Fourier series in (y, z) with Fourier transforms.

II. MISNER SPACETIME

This Section is a review of Misner spacetime. It serves the double purpose of introducing its key features and
setting the notation we use in the following Sections. Most of the material presented in this Section can be found
elsewhere (see, e.g. [8]).

Consider the half space M̃2 of two-dimensional Minkowski spacetime

ds2 = −(dx0)2 + (dx1)2 = −du dv, u = x0 − x1, v = x0 + x1, (1)

defined by the condition v < 0. Introduce coordinates

ψ = − ln

(
v

vo

)
, t = −uv, (2)

vo < 0 a constant used for dimensional purposes. The line element in these coordinates is

ds2 = −dψdt− tdψ2, (3)

and the boost

B : (u, v) → (exp(γ)u, exp(−γ)v), γ > 0, (4)

is given by

(ψ, t) → (ψ + γ, t). (5)

Two dimensional Misner space M2 is defined as the quotient of M̃2 under the action of the subgroup G = {Bn|n ∈ Z}
of the Lorentz group in 1+1 dimensions, that is, points in M̃2 which are related by Bn for some n ∈ Z are considered
equivalent, M2 being the set of equivalence classes. Since (ψ, t) and (ψ + nγ, t), n ∈ Z represent the same point of
M2, and t extends from minus to plus infinity, two dimensional Misner space has the manifold structure of a cylinder
S1
ψ × Rt, 2πψ/γ being an angular coordinate of S1 (Figure 1), on which the flat Lorentzian metric (3) is defined.

Since the non vanishing vector field ∂/∂t is always null, it gives a time orientation on M2: we define the future null

half-cone as that where ∂/∂t belongs. This is consistent with the time orientation ∂/∂x0 on the covering M̃2, as can

be seen by lifting ∂/∂t to M̃2, which gives −(2v)−1 (∂/∂x0 − ∂/∂x1), a vector field that lies in the same half-cone of

∂/∂x0 since v < 0 on M̃2.
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FIG. 1. Two dimensional Misner space:

A. Null geodesics

The image under B of the Minkowskian null geodesic v = vo < 0 is the geodesic v = exp(−γ)vo; M2 can therefore

be regarded as the strip S0 ⊂ M̃2 limited by ℓ = {(u, vo), u ∈ R} and Bℓ = {(u, exp(−γ) vo), u ∈ R}, with the
boundary points (u, vo) and (exp(γ)u, exp(−γ)vo) identified for every u ∈ R. This construction is shown in Figure

2, where some of the points to be identified are marked with circles. A geodesic segment in M̃2 connecting identified
points maps onto a closed curve in M2 of square length

∆s2 = −∆u∆v = −2t(cosh(γ)− 1). (6)

These closed curves are timelike in the t > 0 sector and spacelike in the t < 0 sector. The to = 0 segment h connecting
(u = 0, v = vo) with (u = 0, v = exp(−γ)vo) corresponds to a closed null geodesic which is a horizon separating the
causally pathological t > 0 region from the globally hyperbolic t < 0 region.

The vector fields

N1 =
∂

∂t
, Ñ2 = −t ∂

∂t
+

∂

∂ψ
(7)

are geodesic, null and, since Na
1N2b = − 1

2 , future oriented; this explains the arrangement of future half-cones in

Figure 1, from where it is readily seen that any future causal curve crossing h (i.e., ṫ ̸= 0 at t = 0) must satisfy

ṫ > 0 at t = 0. Note that N1 in (7) is affine but Ñ2 is not. In fact, there is no globally defined affine geodesic field

proportional to Ñ2. It is however possible to rescale separately Ñ2 in the t > 0 and t < 0 open sets to obtain a future
null affine geodesic field N2 in each of these regions:

N2 =

{
− ∂
∂t +

1
t
∂
∂ψ , t > 0

∂
∂t −

1
t
∂
∂ψ , t < 0

(8)

The integral curves of N1 starting at (t0, ψ0) at affine parameter s = 0 are

t = t0 + s, ψ = ψ0, −∞ < s <∞. (9)
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FIG. 2. Two dimensional Minkowski space: x0 and x1 are the vertical and horizontal axes. A few orbits of the Lorentz group
are shown, including the u and v axes. Misner space M2 can be regarded as the strip between ℓ (null dashed-line) and Bℓ
(null line in long dashes) with points in ℓ identified with their image under B in Bℓ (this is the t-axis in Fig.1). Some of these
pairs of identified points are marked with circles. The three geodesic segments shown are, from left to right, time-like, null and
space-like; they become closed geodesics in M2. The closed null geodesic h at t = 0 (u = 0) separates the non causal region
M>

2 above it (t > 0, u > 0) from the causal region M<
2 below (t < 0, u < 0).

These geodesics are complete and cross h. The integral curves of Ñ2, starting at (t0, ψ0) at affine parameter s = 0
are the future incomplete null geodesics

t = t0 − s, ψ = ψ0 − ln

(
t0 − s

t0

)
,−∞ < s < t0 if t0 > 0 (10)

t = 0, ψ = − ln

(
e−ψ0 − s

s0

)
,−∞ < s < s0 e

−ψ0 , s0 > 0 if t0 = 0 (11)

t = t0 + s, ψ = ψ0 − ln

(
t0 + s

t0

)
,−∞ < s < −t0 if t0 < 0 (12)

For t0 ̸= 0 the above equations imply ψ = ψ0 − ln
(
t
t0

)
, with t → 0+ (t → 0−) at the geodesic future end if t0 > 0

(t0 < 0). These geodesic spiral, asymptotically approaching h as s → |t0|−, see Figure 1. This behavior can be
understood using the construction in Figure 2: a future directed segment along the v direction, starting at a point
p ∈ ℓ, will reach Bℓ at q and emerge at the equivalent point q′ ∈ ℓ which lies closer to h than p, and this process
repeats indefinitely. The affine geodesic h starting at (t0 = 0, ψ0) in the direction of Ñ2 (increasing ψ), has a tangent
vector (eψ/s0)

∂
∂ψ (see (11)), which, being non-periodic in ψ, does not define a vector field on h. This is a peculiar

situation, allowed to closed affine null geodesics in a Lorentzian geometry, for which the vector can scale in every
turn and still have a constant norm. It can be understood by noting that h lifts to the (future affine null) geodesic

h̃ of M̃2 given by u = 0, v = vo(e
−ψ0 − (s/s0)). The n-th turn of h (n = 0, 1, 2, ...) lifts to the intersection h̃n of h̃

with the strip Sn ⊂ M̃2 limited by ℓn = {(u, exp(−nγ) vo), u ∈ R} and Bℓn = ℓn+1, The affine parameter span of

this geodesic segment is exp(−nγ) times that of the segment h1, yet the ψ span is the same, therefore ψ̇ scales as
exp(+nγ) relative to the first turn. An extension of M2 can be constructed that is geodesically complete, but it fails
to be a Hausdorff manifold [8].

The M<
2 subset defined by the condition t < 0 is globally hyperbolic, any t = constant surface is a Cauchy surface

with Cauchy horizon h. The region t > 0 violates causality in any possible form: given any two points p and q in this
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region, there is a future oriented timelike curve from p to q (these curves can be easily constructed with the help of
Figure 2.) Thus, M<

2 is a two-dimensional example of spacetime smoothly extensible beyond a Cauchy horizon, i.e.,
violating SCC, with the extension violating causality in any possible form.

Four dimensional Misner spacetime M is the quotient of the v < 0 half of Minkowski spacetime ds2 = −du dv +
dy2 + dz2 by the boosts (4). The metric is

nab dx
adxb = −dψdt− tdψ2 + dy2 + dz2. (13)

The similarity of the notation nab and the standard notation ηab for the metric of Minkowski spacetime is reminiscent
of the fact that (13) is locally flat, as it comes from a quotient of a sector of Minkowski spacetime (R4, ηab).
As a Lorentzian manifold, M = M2 × R2 with the flat metric dy2 + dz2 on the R2 factor. We may consider x and y
periodic with periods a and b, that is, work instead with Mc = M2 × T2 with the flat metric on the torus. In any
case, the open set defined by t < 0 is globally hyperbolic, the Cauchy surfaces t = (a negative) constant have the
null hypersurface H defined by the condition t = 0 as a future Cauchy horizon, and this four-dimensional spacetime
violates strong form of the cosmic censorship conjecture, as it admits a smooth extension beyond a Cauchy horizon.
This is precisely what happens for the Kerr (also Kerr-Newman and Reissner-Nosrdtröm) black holes, with the inner
horizon replacing H. According to the SCC small departures in the initial data of these spacetimes will develop a
globally hyperbolic spacetime with a null-like curvature singularity in place of the Cauchy horizon, and therefore
admitting no extension beyond it.

The purpose of this paper is to test SCC for M<, the t < 0 sector of M (or its compact slice version M<
c with

periodic x and y) which, in spite of its simplicity (flat metric) has all possible pathologies in an exact solution of
Einsten’s equation. In the following sections we will consider Misner spacetime as an exact solution in Einstein-scalar,
Einstein-Maxwell and pure RG theories, and prove that in any of these theories it is an isolated solution.

III. INSTABILITY OF THE CAUCHY HORIZON IN EINSTEIN-SCALAR FIELD THEORY

Let Φ be a massless scalar field minimally coupled to gravity on the manifold M<
c = S1

ψ×Rt<0×T 2
(y,z). The field

equations are

Gab = 8π
[
(∂aΦ)(∂bΦ)− 1

2gab g
cd(∂cΦ)(∂dΦ)

]
(14)

0 = gcd ∇d∇cΦ, (15)

where ∇a is the Levi-Civita derivative of gab. These equations admit the solution

Φo = 0, gab = nab. (16)

In this section we will prove that, although this solution can be extended to Mc = S1
ψ × Rt × T 2

(y,z) (i.e., add the

t ≥ 0 sector) any neighboring solution of the system (14)-(15) on the manifold M<
c develops a curvature singularity

as t→ 0−. To this end, consider a monoparametric family of solutions (Φλ, (gλ)ab) such that

(gλ=0)ab = nab, Φλ=0 = Φo = 0. (17)

Denote with n overdots the n− th derivative with respect to the parameter λ, evaluated at λ = 0, then

Φλ = λΦ̇ + 1
2λ

2Φ̈ + ... (18)

(gλ)ab = nab + λġab +
1
2λ

2g̈ab + ... (19)

and similarly for any other tensor field. From (14)-(15) we obtain for the Ricci scalar R

Rλ = 1
2λ

2R̈+O(λ3) (20)

where

R̈ = 16π nab(∂aΦ̇)(∂bΦ̇), (21)

and

0 = nab∂a∂bΦ̇. (22)
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Note that Φ̇ satisfies the equation of a test scalar field on the Misner background (that is, without back-reaction
effects). Yet, it gives information on the Ricci scalar up to order two for the coupled scalar-gravity system (14)-(15).
Motivated by this observation, we devote the following subsections to the study of test scalar fields on M<, starting
with (y, z) independent fields, that is, scalar fields on M<

2 . This will we used to prove that R in (20) diverges as
t→ 0− for generic solutions of the theory (14)-(15) near (17).

A. Massless test scalar fields on M2

Massless scalar fields Φ̃ on M̃2 satisfy ∂u∂vΦ̃ = 0, they are a superposition Φ̃ = R(u) + L(v) of left and right
moving waves. For fields defined on M2, the extra condition

R(eγu)−R(u) = L(v)− L(e−γv) = c (23)

should be imposed, where c is a constant and c = 0 if limu→0R(u) exists. Using the inverse of (2),

v = vo e
−ψ, u =

{
−voeψ+ln(|t|/v2o), t > 0

voe
ψ+ln(|t|/v2o), t < 0,

(24)

and introducing L(v) = L(voe
−ψ) =: l(ψ), condition (23) reads l(ψ)− l(ψ + γ) = c, which implies that there exists a

periodic function l̂, l̂(ψ + γ) = l̂(ψ), such that

l(ψ) = l̂(ψ)− c

γ
ψ. (25)

A similar analysis for R(u) in (23) using (24) leads to

Φ =

{
l̂<(ψ) + r̂<(ψ + ln(|t|/v2o)) +

c<
γ ln(|t|/v2o), t < 0

l̂>(ψ) + r̂>(ψ + ln(|t|/v2o)) +
c>
γ ln(|t|/v2o), t > 0

(26)

where all hatted functions are periodic with period γ, and therefore bounded if they are to be smooth in the corre-
sponding t > 0 or t < 0 half-space. Note that limt→0 Φ(t, ψ) along curves in the open set M<

2 cannot exist unless

c< = 0 and r̂< is a constant, which may then be absorbed into l̂< to set r̂< = 0 (a similar analysis applies for M>
2 ).

Continuity across h (t = 0) would furthermore require l̂< = l̂> =: l̂. Thus, the only solutions that are continuous

through M2 are the left moving waves Φ = l̂(ψ) for all t. This is the condition, and the fields dealt with in [9].

B. Scalar fields on (M<
c , nab)

The massless scalar field Φ equation on (M<, nab) is

0 = 4t
∂2Φ

∂t2
− 4

∂2Φ

∂ψ∂t
+ 4

∂Φ

∂t
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= �2Φ+∆2Φ, (27)

where ∆2 = ∂2y + ∂2z and �2 is the massless scalar field operator on M<
2 . Solutions of (27) can be written as

Φ = ϕ(0)(ψ, t) + ϕ(1)(ψ, t, y, z), (28)

where

ϕ(0)(ψ, t) ≡
1

ab

∫ a

0

dy

∫ b

0

dz Φ(ψ, t, y, z) (29)

is a (y, z)-independent solution of �2ϕ0 = 0,

ϕ(0)(ψ, t) = l̂(ψ) + r̂(ψ + ln(|t|/v2o)) + c
γ ln(|t|/v2o), (30)
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and

ϕ(1) =
∞∑

k,l,n=−∞
(l,n) ̸=(0,0)

C(k,l,n)(t)e
2πikψ/γe2πily/ae2πinz/b, (31)

with

C(k,l,n)(t) :=
1

γab

∫ γ

0

dψ

∫ a

0

dy

∫ b

0

dz ϕ(1)e
−2πikψ/γe−2πily/ae−2πinz/b. (32)

Equation (27) reduces to

t
d2C(k,l,n)

dt2
+ (1− iν)

dC(k,l,n)

dt
−
(m
2

)2

C(k,l,n) = 0, (33)

where

m ≡ 2π

√
l2

a2 + n2

b2 , ν ≡ 2πk

γ
. (34)

Introducing

x ≡ m
√
−t ∈ (0,∞) C(k,l,n) = eiν ln(x) D(k,l,n), (35)

(33) gives a Bessel equation of imaginary order for D(k,l,n):

x2
d2D(k,l,n)

dx2
+ x

dD(k,l,n)

dx
+ (x2 + ν2)D(k,l,n) = 0, (36)

which admits the following two real, bounded, linearly independent C∞ solutions for x ∈ (0,∞) (we follow the
notation and conventions in http://dlmf.nist.gov/10.24 ):

J̃ν(x) := sech
(
1
2πν

)
Re(Jiν(x)) Ỹν(x) := sech

(
1
2πν

)
Re(Yiν(x)). (37)

Thus

C(k,l,n) =
(
A(k,l,n)J̃ν(x) +B(k,l,n)Ỹν(x)

)
eiν ln(x) (38)

and A(−k,−l,−n) = A∗
(k,l,n) for real Φ. The functions (37) satisfy

J̃ν(x) = J̃−ν(x), Ỹν(x) = Ỹ−ν(x) (39)

and have the following asymptotic behavior: as x→ ∞ (t→ −∞)

J̃ν(x) =
√

2
πx cos

(
x− π

4

)
+O(x−3/2) (40)

Ỹν(x) =
√

2
πx sin

(
x− π

4

)
+O(x−3/2), (41)

as x→ 0+ (t→ 0−)

J̃ν(x) =

√
2 tanh(πν/2)

πν cos (ν ln(x/2)− γν) +O(x2) (42)

Ỹν(x) =
√

2 coth(π|ν|/2)
π|ν| sin

(
|ν| ln(x/2)− γ|ν|

)
+O(x2) (43)

where γν is defined by

exp(iγν) =

(
sinh(πν)

πν

)1/2

Γ(1 + iν) (44)
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C. Instability of the Cauchy horizon in M<
c

The instability of the Cauchy horizon in M<
c is expressed as follows:

Theorem 1: Let ((gλ)ab,Φλ) be a one-parametric family of solutions for the Einstein-real scalar field equations
(14)-(15) on the manifold M<

c = S1
ψ ×Rt<0 × T 2

(y,z). Assume that λ = 0 corresponds to Misner spacetime (16). Let

Rλ be the Riccci scalar of gλ, then equations (20)-(22) hold and, generically, R̈ ∼ 1/t as t→ 0−.

Proof: There only remains to prove that, with the exception of fine tuned solutions, R̈ ∼ 1/t as t→ 0−. From (22),

R̈ = R̈(0)(0) + R̈(1)(1) + 2R̈(0)(1) (45)

where

R̈(i)(j) = −4
∂ϕ(i)

∂ψ

∂ϕ(j)

∂t
− 4

∂ϕ(i)

∂t

∂ϕ(j)

∂ψ
+ 8

∂ϕ(i)

∂t

∂ϕ(j)

∂t
+ 2

∂ϕ(i)

∂y

∂ϕ(j)

∂y
+ 2

∂ϕ(i)

∂z

∂ϕ(j)

∂z
(46)

and ϕ(i), i = 0, 1 were defined in (28)-(31).
From (30) we obtain

R̈(0)(0) =
4

γt

[
r̂′(ψ + ln(|t|/v2o)) +

c

γ

] [
c

γ
− l̂′(ψ)

]
(47)

Since the derivative of a periodic function cannot be a nonzero constant, R̈00 can only vanish identically if c = 0 and

either r̂ or l̂ vanish identically. For generic one-parametric solutions of the Einstein-scalar field theory R̈00 ∼ 1/t

near the Cauchy horizon. This divergence could only be canceled by the 1/t contribution from R̈11 (implied by the
asymptotic behavior (42)-(43)) by fine tuning the constants in these independent pieces of the scalar field.
If we restrict to fields that decay along past directed causal curves, we need to set c = 0. This does not prevent the
divergence (47) except, once again, for the fine tuned case of pure left or right moving waves.

IV. INSTABILITY OF THE CAUCHY HORIZON IN EINSTEIN-MAXWELL THEORY

Let Fab be a Maxwell field coupled to gravity on the manifold M<
c = S1

ψ × Rt<0 × T 2
(y,z). The Einstein-Maxwell

field equations

Rab = 2FacFbdg
cd − 1

2gabFcdFefg
ecgdf (48)

∇[aFbc] = 0, ∇aFab = 0, (49)

admit the solution

Fab = 0, gab = nab, (50)

which can be extended to Mc = S1
ψ × Rt × T 2

(y,z). In this section we will prove that generic neighboring solution

of the system (48)-(49) on the manifold M<
c develop a curvature singularity as t → 0−. The Ricci scalar vanishes

identically for the Einstein-Maxwell system, the singularity arises in the quadratic curvature invariant

Q = RabRcdg
acgbd. (51)

Consider a monoparametric family of solutions ((Fλ)ab, (gλ)ab) such that

(gλ=0)ab = nab, (Fλ=0)ab = 0. (52)

As in the previous Section, n overdots are used to indicate the n − th derivative with respect to the parameter λ,
evaluated at λ = 0. We have

(Fλ)ab = λḞab +
1
2λ

2F̈ab + ... (53)

(gλ)ab = nab + λġab +
1
2λ

2g̈ab + ... (54)
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and

Qλ = 1
4! λ

4
....
Q +O(λ5) (55)

where
....
Q = R̈abR̈cdn

acnbd (56)

R̈ab = 2ḞacḞbdn
cd − 1

2nabḞcdḞefn
ecndf . (57)

Note that Ḟ satisfies the equations of a test Maxwell field on the Misner background, that is

∇[aḞbc] = 0, nbc∇cḞab = 0, (58)

where ∇c is the covariant derivative of nab, and that this test Maxwell field gives information on the leading term of
the curvature scalar Q, which is fourth order in λ.

A. Maxwell fields on M<
c

Test Maxwell fields on theM<
c background are relevant to the Cauchy horizon stability problem because, according

to equations (56) and (58), they give the leading order contribution to the Q = RabR
ab curvature scalar in Einstein-

Maxwell theory on this manifold.
The second Betti number of M<

c = S1
ψ × Rt<0 × T 2

(y,z) is 3, the three dimensional space of closed non-exact two

forms is generated by dψ ∧ dy, dψ ∧ dz and dy ∧ dz. Since these two-forms are divergence free for the flat metric n,
the general solution of the Maxwell equations on the background nab is

F = Kdψ ∧ dy + Ldψ ∧ dz +Mdy ∧ dz + dA(0) + dA(1) (59)

where, as done with the scalar field, we have split Ab = A
(0)
b + A

(1)
b with £∂/∂yA

(0)
b = £∂/∂zA

(0)
b = 0. We chose the

one-forms A
(j)
b in the Lorenz gauge ∇bA

(j)
b = 0, then Maxwell equations reduce to

∇bA
(j)
b = 0, nab∇a∇bA

(j)
c = 0 (60)

Introducing A
(0)
b (ψ, t) =

∑
k∈Z C

k
b (t) exp(2πikψ/γ) in (60) we find, after treating separately the k = 0 and k ̸= 0

terms and then summing up the series, that

A
(0)
ψ (ψ, t) = 2at+ l̂(ψ) + r̂(ψ + ln(−t/v2o))

A
(0)
t (ψ, t) = a+ t−1b+ t−1r̂(ψ + ln(−t/v2o))

A(0)
y (ψ, t) = cy ln(−t/v2o) + l̂y(ψ) + r̂y(ψ + ln(−t/v2o)

A(0)
z (ψ, t) = cz ln(−t/v2o) + l̂z(ψ) + r̂z(ψ + ln(−t/v2o))

This can be simplified using the residual gauge freedom A
(0)
c → A

(0)
c + ∂cχ, n

ab∂a∂bχ = 0. Taking an appropriate χ
of the form (30) we get a vector potential of the form

A
(0)
ψ (ψ, t) = 2at+ l̂0

A
(0)
t (ψ, t) = a

A(0)
y (ψ, t) = cy ln(−t/v2o) + l̂y(ψ) + r̂y(ψ + ln(−t/v2o))

A(0)
z (ψ, t) = cz ln(−t/v2o) + l̂z(ψ) + r̂z(ψ + ln(−t/v2o)) (61)

with a, l̂0, cy and cz constants (the irrelevant constant in A
(0)
t (ψ, t) can be gauged away using the non-periodic harmonic

function χ0 = −aψ). For the Maxwell field we obtain

F (0) = dA(0) =


0 −2a l̂y

′ + r̂y
′ l̂z

′ + r̂z
′

2a 0 (cy + r̂y
′)/t (cz + r̂z

′)/t
∗ ∗ 0 0
∗ ∗ 0 0

 (62)
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where we have omitted the arguments in the periodic (hatted) functions and the order of coordinates is (ψ, t, y, z).
The two field invariants for (62) are

F
(0)
ab F

(0)ab = −32a2 + 8 t−1 [cy
2 + cz

2 + cy(r̂y
′ − l̂y

′) + cz(r̂z
′ − l̂z

′)− l̂y
′ r̂y

′ − l̂z
′ r̂z

′] (63)

and

ϵabcdF
(0)
ab F

(0)
cd = −16t−1[l′zr

′
y − l′yr

′
z + cy(l

′
z + r′z)− cz(l

′
y + r′y)]. (64)

B. Instability of the Cauchy horizon in M<
c

The instability of the Cauchy horizon of M<
c in the Einstein-Maxwell theory is expressed in the following

Theorem 2: Let ((gλ)ab, (Fλ)ab) be a one-parametric family of solutions for the Einstein-Maxwell field equations
(48)-(49) on the manifold M<

c = S1
ψ × Rt<0 × T 2

(y,z). Assume that λ = 0 corresponds to Misner spacetime (50).

Let Qλ be the square Riccci scalar (51) of gλ, then equations (55)-(58) hold and, generically,
....
Q diverges at least as

∼ 1/t2 as t→ 0−.

Proof: According to equations (56) and (57)
....
Q is quartic on Ḟab. Since Ḟab satisfies Maxwell equations on the

flat Misner background (see equation (58)), it is of the form (59). We will focus on the contribution
....
Q ′

to
....
Q that

is quartic in F (0) = dA(0) in (59). Note from (62) that the general F (0) field is finite on any Cauchy slice in M<
c .

A stronger condition of decay as t → −∞ can be enforced by requiring a = 0 (see (63) and (64)). In any case, the

contribution
....
Q ′

, obtained by replacing Ḟ with (62) in (56) and (57) is

....
Q ′

= 512a4 − 256a2 t−1 [cy
2 + cz

2 + cy(r̂y
′ − l̂y

′) + cz(r̂z
′ − l̂z

′)− l̂y
′ r̂y

′ − l̂z
′ r̂z

′]

+ 16 t−2 [l̂z
′2 r̂y

′2 + l̂y
′2 r̂z

′2 + 2l̂z
′2 r̂z

′2 + 2l̂y
′2 r̂y

′2 + 2l̂y
′ l̂z

′ r̂y
′ r̂z

′ + ...+ 2cy
4 + 2cz

4] (65)

where the missing terms in the t−2 coefficient involve growing powers of cy and cz times derivatives of periodic
functions. As t→ 0−, (65) behaves as a bounded function times t−2. This divergence could (in principle) be canceled
out by the remaining contributions to

....
Q , but this could only be done by fine tuning, and will not be the case for

generic mono-parametric solutions of the Einstein-Maxwell system.

V. INSTABILITY OF THE CAUCHY HORIZON IN PURE GRAVITY

The Cauchy horizon of M<
c can also be seen to be unstable in the context of pure gravity. Consider a mono-

parametric family of Ricci flat metrics through nab in (13):

(gλ)ab = nab + λġab +
1
2λ

2g̈ab + ... (66)

As is well known, any algebraic curvature scalar for a vacuum metric is a polynomial on K := RabcdR
abcd and

L := ϵabpqR
pq
cdR

abcd. For (66) we obtain

Kλ = λ2ṘabcdṘefghn
aenbfncgndh + ... (67)

and similarly for Lλ, that is, knowledge of a linearized solution ġab of Einstein’s equation provides information on the
dominant contributions to K and L, which are second order in λ.
Linear gravity on the background (13) can be approached using the formalism in [10], which applies to warped
metrics of any dimensions with an Einstein compact Riemannian manifold factor which, in our case, is the the trivial
2-torus flat metric dy2+dz2. Three different families of modes arise, tensor, vector and scalar, which satisfy decoupled
equations. Among them, the simplest contributions are the two zero modes in the tensor sector, which are constructed
using the divergence free trace free harmonic symmetric tensors dx⊗ dx− dy ⊗ dy and dx⊗ dy + dy ⊗ dx on T2. For
these, the metric perturbation is (the order of coordinates is (ψ, t, y, z))

ġab =


0 0 0 0
0 0 0 0

0 0 Ĥ(ψ, t) P̂ (ψ, t)

0 0 P̂ (ψ, t) −Ĥ(ψ, t)

 (68)
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and Einstein’s linearized equation Ṙab = 0 reduces to �2Ĥ = �2P̂ = 0 (equation (4.2) in [10]), whose solution is (see
equation (30))

Ĥ = Ĥl(ψ) + Ĥr(ψ + ln(|t|/v2o)) + CH

γ ln(|t|/v2o) (69)

P̂ = P̂l(ψ) + P̂r(ψ + ln(|t|/v2o)) + CP

γ ln(|t|/v2o). (70)

We will set CH = CP = 0 to keep the perturbation bounded as t → −∞ (note that Ĥ and P̂ are gauge invariant
fields in the linearized gravity theory [10]). For the perturbation (68)-(69) we obtain

K̈ = Ṙab
cdṘcdab = 32t−2 [Ĥ ′′

r Ĥ
′′
l + P̂ ′′

r P̂
′′
l + Ĥ ′′

r Ĥ
′
l + P̂ ′′

r P̂
′
l − Ĥ ′′

l Ĥ
′
r − P̂ ′′

l P̂
′
r − Ĥ ′

rĤ
′
l − P̂ ′

rP̂
′
l ], (71)

which decays along past oriented causal curves and diverges as the future Cauchy horizon is approached. Once again,
this divergence could possibly be canceled from (y, z)-independent contributions to K̈ from the (y, z)-dependent piece
of ġab, but this could only happen after fine tuning, and not for generic solutions around nab

VI. DISCUSSION

Penrose’s heuristic argument anticipating a curvature singularity at the Cauchy horizon of a Kerr-Newman black
hole applies to the horizon h of Misner spacetime. This is readily seen by inspecting Figure 1: an observer crossing
the horizon is exposed to the information traveling -in the geometric optics approximation- along the infinitely many
geodesics of the form (12) originating in his past. He is thus expected to measure a divergent energy density, as it is
easily checked, e.g., in our simplest example: the (y, z)-independent scalar field (30) with c = 0. The stress-energy-
momentum tensor of this field is

Tab =


r̂′2 + l̂′2 r̂′2/t 0 0
r̂′2/t r̂′2/t2 0 0

0 0 2r̂′ l̂′/t 0

0 0 0 2r̂′ l̂′/t

 (72)

where we have suppressed the arguments in l̂′(ψ) and r̂′(ψ+ln(|t|/v2o)) and the order of coordinates above is (ψ, t, y, z).

An observer crossing the horizon with four-velocity u = ψ̇ ∂/∂ψ + ṫ ∂/∂t+ ẏ ∂/∂y + ż ∂/∂z has ṫ ̸= 0 at t = 0. Note

that these coordinates are valid beyond the horizon and hence ψ̇, ṫ, ẏ and ż must all be finite at t = 0. The energy
density the observer measures is, after using the condition ucuc to eliminate the ψ̇ṫ term,

ρ = Tabu
aub = ψ̇2(l̂′2 − r̂′2) +

2r̂′2

t
(1 + ẏ2 + ż2) +

2r̂′ l̂′

t
(ẏ2 + ż2) +

(
r̂′

t

)2

ṫ2. (73)

Only the first term on the right hand side of above remains finite as t → 0−, the others all diverge except for the
trivial r̂ = 0 case. It is interesting to note, however, that there is no curvature singularity in the full Einstein-scalar

field theory unless both r̂ and l̂ are different from zero. This is seen by setting c = 0 in equation (47), which gives

R̈(0)(0) =
−4l̂′(ψ)

γt
r̂′(ψ + ln(|t|/v2o)). (74)

Thus, there are situations where the energy density measured by an observer at the horizon diverges while no curvature
singularity forms. This happens because in this highly relativistic regime, the pressure/tension cancels the energy
density effect on T aa ∝ R unless both left and right moving waves are present. This can easily be seen from (72):

the trace of the two by two (ψ, t) block vanishes and only the (y, z) tensions/pressures, which contain l̂′r̂′ products
contributes to T aa. Note that this happens without violating energy conditions; as is well known, the stress-energy-
momentum tensor of a scalar field satisfies the strong as well as the dominant energy conditions. T ab above can indeed

be diagonalized to the form Ta
b = 2/t diag(|r̂′ l̂′|,−|r̂′ l̂′|, r̂′ l̂′, r̂′ l̂′) in a specific orthonormal tetrad.
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