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Misner spacetime is among the simplest solutions of Einstein’s equation that exhibits a Cauchy horizon
with a smooth extension beyond it. Besides violating strong cosmic censorship, this extension contains
closed timelike curves. We analyze the stability of the Cauchy horizon and prove that neighboring
spacetimes in one parameter families of solutions through Misner’s in pure gravity, gravity coupled to a
scalar field, or Einstein-Maxwell theory end at the Cauchy horizon developing a curvature singularity.
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I. INTRODUCTION

The possibility of smoothly extending a solution of
Einstein’s equations beyond the maximal Cauchy devel-
opment of compact or asymptotically simple data is an
undesirable feature of general relativity (GR). From a
3þ 1 viewpoint, the evolution of the three-metric ceases
to be nonunique at the Cauchy horizon, predictability
being lost in a classical theory. Strong cosmic censorship
(SCC) is the conjecture that generic solutions of GR
cannot be extended beyond a Cauchy horizon. Notably,
these pathologies occur among the most important
solutions of GR: all double horizon black holes in the
Kerr Newman family, those where either charge or
angular momentum, or both, is nonzero. In these black
holes the inner horizon is a Cauchy horizon for any
Cauchy surface connecting both copies of spatial infinity
io, and the standard analytic extension beyond it is
unique only if we enforce the nonphysical requirement
of analyticity. In the rotating case, moreover, causality is
completely lost in the analytic extension since it is
possible to connect any two given events in this region
with a future directed timelike curve [1]; in particular,
there are closed timelike curves through any point. A
simple argument first given by Penrose in [2] (see also
[3]) suggests that any perturbation of these solutions will
actually end at the Cauchy horizon with a curvature
singularity. The instability of the Cauchy horizon was
illustrated for the Reissner Nordström spacetime in [4],
using a model with a cross flow of outgoing and ingoing
lightlike fluxes. An instability of transverse derivatives of
test scalar fields along the Cauchy horizon of an extremal
Reissner-Nordström black hole was recently found in
[5,6]; the analogous result for extremal Kerr black holes
is given in [7].
Misner spacetime is obtained from the half x0 < x1 of

Minkowski space by identifying points connected by a
fixed boost. In spite of its simplicity, the resulting space-
time has a rich structure that includes a Cauchy horizon
with closed timelike curves beyond it. Since it is a flat

spacetime, it is possible to obtain explicit solutions for
scalar and Maxwell test fields and use these results in
perturbation theory to order higher than one for the coupled
scalar-gravity and Maxwell-gravity systems. We use these
results, as well as perturbations in pure gravity, to show that
Misner spacetime is an isolated solution in any of these
theories. More precisely, we prove that given a one
parameter family of solutions through Misner’s in any of
these theories, neighboring solutions develop a curvature
singularity that truncates the spacetime at the Cauchy
horizon except for fine-tuned cases.
We review the construction of Misner space in Sec. II

where we also analyze in detail the null geodesics, as they
provide insight into the evolution of massless fields. In
Sec. III we prove that a zero scalar field on a Misner
background is a nongeneric solution within the Einstein-
scalar field theory: except for fine-tuned cases, perturba-
tions of this solution within Einstein-scalar field theory
develop a curvature horizon that truncates the spacetime at
the Cauchy horizon. The analogous result is proven for
Einstein-Maxwell theory in Sec. IV, and then for pure
gravity in Sec. V.
For simplicity, we have performed calculations in

compactified Misner space M2 × T 2, where M2 is two-
dimensional Misner space, and T2 a 2-torus. We can
recover the noncompact case by taking the limit
a; b → ∞ of the periods a and b of the spatial coordinates
y and z. This amounts to a few changes in the test field
expressions, such as replacing Fourier series in ðy; zÞ with
Fourier transforms.

II. MISNER SPACETIME

This section is a review of Misner spacetime. It serves
the double purpose of introducing its key features and
setting the notation we use in the following sections. Most
of the material presented in this section can be found
elsewhere (see, e.g., Ref. [8]).
Consider the half-space ~M2 of two-dimensional

Minkowski spacetime,
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ds2 ¼ −ðdx0Þ2 þ ðdx1Þ2 ¼ −dudv;

u ¼ x0 − x1; v ¼ x0 þ x1; ð1Þ

defined by the condition v < 0. We introduce coordinates

ψ ¼ − ln

�
v
vo

�
; t ¼ −uv; ð2Þ

with vo < 0 a constant used for dimensional purposes. The
line element in these coordinates is

ds2 ¼ −dψdt − tdψ2; ð3Þ

and the boost

B∶ ðu; vÞ → ðexpðγÞu; expð−γÞvÞ; γ > 0; ð4Þ

is given by

ðψ ; tÞ → ðψ þ γ; tÞ: ð5Þ

Two-dimensional Misner space M2 is defined as the
quotient of ~M2 under the action of the subgroup G ¼
fBnjn ∈ Zg of the Lorentz group in 1þ 1 dimensions; that
is, points in ~M2 which are related by Bn for some n ∈ Z
are considered equivalent, with M2 being the set of
equivalence classes. Since ðψ ; tÞ and ðψ þ nγ; tÞ; n ∈ Z
represent the same point of M2, and t extends from minus
to plus infinity, two-dimensional Misner space has the

manifold structure of a cylinder S1ψ ×Rt, with 2πψ=γ being
an angular coordinate of S1 (Fig. 1), on which the flat
Lorentzian metric (3) is defined. Since the nonvanishing
vector field ∂=∂t is always null, it gives a time orientation
on M2: we define the future null half-cone as that where
∂=∂t belongs. This is consistent with the time orientation
∂=∂x0 on the covering ~M2, as can be seen by lifting ∂=∂t
to ~M2, which gives −ð2vÞ−1ð∂=∂x0 − ∂=∂x1Þ, a vector
field that lies in the same half-cone of ∂=∂x0 since v < 0

on ~M2.

A. Null geodesics

The image under B of the Minkowskian null geodesic
v ¼ vo < 0 is the geodesic v ¼ expð−γÞvo; M2 can there-
fore be regarded as the strip S0 ⊂ ~M2 limited by l ¼
fðu; voÞ; u ∈ Rg and Bl ¼ fðu; expð−γÞvoÞ; u ∈ Rg, with
the boundary points ðu; voÞ and ðexpðγÞu, expð−γÞvoÞ
identified for every u ∈ R. This construction is shown
in Fig. 2, where some of the points to be identified are
marked with circles. A geodesic segment in ~M2 connecting
identified points maps onto a closed curve inM2 of square
length

Δs2 ¼ −ΔuΔv ¼ −2tðcoshðγÞ − 1Þ: ð6Þ

FIG. 1 (color online). Two-dimensional Misner space.

FIG. 2. Two-dimensional Minkowski space: x0 and x1 are the
vertical and horizontal axes. A few orbits of the Lorentz group are
shown, including the u and v axes. Misner space M2 can be
regarded as the strip between l (null, dashed line) and Bl (null,
long-dashed line) with points in l identified with their image
under B in Bl (this is the t axis in Fig. 1). Some of these pairs of
identified points are marked with circles. The three geodesic
segments shown are, from left to right, timelike, null, and
spacelike; they become closed geodesics in M2. The closed
null geodesic h at t ¼ 0 (u ¼ 0) separates the noncausal region
M>

2 above it (t > 0; u > 0) from the causal region M<
2 below

(t < 0; u < 0).
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These closed curves are timelike in the t > 0 sector and
spacelike in the t < 0 sector. The to ¼ 0 segment h
connecting ðu ¼ 0; v ¼ voÞ with ðu ¼ 0; v ¼ expð−γÞvoÞ
corresponds to a closed null geodesic which is a horizon
separating the causally pathological t > 0 region from the
globally hyperbolic t < 0 region.
The vector fields

N1 ¼
∂
∂t ; ~N2 ¼ −t

∂
∂tþ

∂
∂ψ ð7Þ

are geodesic, null and, since Na
1N2b ¼ − 1

2
, future oriented;

this explains the arrangement of future half-cones in Fig. 1,
from where it is readily seen that any future causal curve
crossing h (i.e., _t ≠ 0 at t ¼ 0) must satisfy _t > 0 at t ¼ 0.
Note that N1 in (7) is affine but ~N2 is not. In fact, there is no
globally defined affine geodesic field proportional to ~N2. It

is, however, possible to rescale ~N2 separately in the t > 0
and t < 0 open sets to obtain a future null affine geodesic
field N2 in each of these regions:

N2 ¼
�− ∂

∂t þ 1
t
∂
∂ψ t > 0

∂
∂t −

1
t
∂
∂ψ t < 0:

ð8Þ

The integral curves of N1 starting at ðt0;ψ0Þ at the affine
parameter s ¼ 0 are

t ¼ t0 þ s; ψ ¼ ψ0; −∞ < s < ∞: ð9Þ

These geodesics are complete and cross h. The integral
curves of ~N2, starting at ðt0;ψ0Þ at the affine parameter
s ¼ 0 are the future incomplete null geodesics

t ¼ t0 − s; ψ ¼ ψ0 − ln

�
t0 − s
t0

�
; −∞ < s < t0 if t0 > 0 ð10Þ

t ¼ 0; ψ ¼ − ln

�
e−ψ0 −

s
s0

�
; −∞ < s < s0e−ψ0 ; s0 > 0 if t0 ¼ 0 ð11Þ

t ¼ t0 þ s; ψ ¼ ψ0 − ln

�
t0 þ s
t0

�
; −∞ < s < −t0 if t0 < 0: ð12Þ

For t0 ≠ 0 the above equations imply ψ ¼ ψ0 − lnð tt0Þ, with
t → 0þ (t → 0−) at the geodesic future end if t0 > 0
(t0 < 0). These geodesics spiral, asymptotically approaching
h as s → jt0j−; see Fig. 1. This behavior can be understood
using the construction in Fig. 2: a future directed segment
along the v direction, starting at a point p ∈ l, will reach Bl
at q and emerge at the equivalent point q0 ∈ l which lies
closer to h than p, and this process repeats itself indefinitely.
The affine geodesic h starting at ðt0 ¼ 0;ψ0Þ in the direction
of ~N2 (increasing ψ) has a tangent vector ðeψ=s0Þ ∂

∂ψ [see
Eq. (11)], which, being nonperiodic in ψ , does not define a
vector field on h. This is a peculiar situation, which is
allowed for closed affine null geodesics in a Lorentzian
geometry, for which the vector can scale in every turn and
still have a constant norm. It can be understood by noting
that h lifts to the (future affine null) geodesic ~h of ~M2 given
by u ¼ 0; v ¼ vo½e−ψ0 − ðs=s0Þ�. The nth turn of h
(n ¼ 0; 1; 2;…) is lifted to the intersection ~hn of ~h with
the strip Sn ⊂ ~M2 limited by ln ¼ fðu; expð−nγÞvoÞ; u ∈
Rg and Bln ¼ lnþ1. The affine parameter span of this
geodesic segment is expð−nγÞ times that of the segment h1,
yet the ψ span is the same; therefore, _ψ scales as expðþnγÞ
relative to the first turn. An extension of M2 can be
constructed that is geodesically complete, but it fails to be
a Hausdorff manifold [8].

The M<
2 subset defined by the condition t < 0 is

globally hyperbolic; any t ¼ constant surface is a
Cauchy surface with Cauchy horizon h. The region
t > 0 violates causality in any possible form: given any
two points p and q in this region, there is a future oriented
timelike curve from p to q (these curves can be easily
constructed with the help of Fig. 2.) Thus, M<

2 is a two-
dimensional example of spacetime smoothly extensible
beyond a Cauchy horizon, i.e., violating SCC, with the
extension violating causality in any possible form.
Four-dimensional Misner spacetimeM is the quotient of

the v < 0 half of Minkowski spacetime ds2 ¼ −dudvþ
dy2 þ dz2 by the boosts (4). The metric is

nabdxadxb ¼ −dψdt − tdψ2 þ dy2 þ dz2: ð13Þ

The similarity of the notation nab and the standard notation
ηab for the metric of Minkowski spacetime is reminiscent of
the fact that (13) is locally flat, as it comes from a quotient
of a sector of Minkowski spacetime ðR4; ηabÞ.
As a Lorentzian manifold, M ¼ M2 × R2 with the flat

metric dy2 þ dz2 on theR2 factor. We may consider x and y
periodic with periods a and b, that is, work instead with
Mc ¼ M2 × T2 with the flat metric on the torus. In any
case, the open set defined by t < 0 is globally hyperbolic,
the Cauchy surfaces t ¼ (a negative) constant have the null
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hypersurface H defined by the condition t ¼ 0 as a future
Cauchy horizon, and this four-dimensional spacetime
violates a strong form of the cosmic censorship conjecture,
as it admits a smooth extension beyond a Cauchy horizon.
This is precisely what happens for the Kerr (also Kerr-
Newman and Reissner-Nordström) black holes, with the
inner horizon replacing H. According to the SCC, small
departures in the initial data of these spacetimes will
develop a globally hyperbolic spacetime with a null-like
curvature singularity in place of the Cauchy horizon, and
therefore admitting no extension beyond it.
The purpose of this paper is to test SCC for M<,

the t < 0 sector of M (or its compact slice version M<
c

with periodic x and y) which, in spite of its simplicity
(flat metric), has all possible pathologies in an exact
solution of Einstein’s equation. In the following sections
we consider Misner spacetime as an exact solution in
Einstein-scalar, Einstein-Maxwell and pure RG theories,
and prove that in any of these theories it is an isolated
solution.

III. INSTABILITY OF THE CAUCHY HORIZON
IN EINSTEIN-SCALAR FIELD THEORY

Let Φ be a massless scalar field minimally coupled to
gravity on the manifold M<

c ¼ S1ψ ×Rt<0 × T2
ðy;zÞ. The

field equations are

Gab ¼ 8π

�
ð∂aΦÞð∂bΦÞ −

1

2
gabgcdð∂cΦÞð∂dΦÞ

�
; ð14Þ

0 ¼ gcd∇d∇cΦ; ð15Þ

where ∇a is the Levi-Civita derivative of gab. These
equations admit the solution

Φo ¼ 0; gab ¼ nab: ð16Þ

In this section we prove that, although this solution can be
extended to Mc ¼ S1ψ × Rt × T2

ðy;zÞ (i.e., add the t ≥ 0

sector), any neighboring solution of the system (14)–(15)
on the manifold M<

c develops a curvature singularity as
t → 0−. To this end, consider a monoparametric family of
solutions ðΦλ; ðgλÞabÞ such that

ðgλ¼0Þab ¼ nab; Φλ¼0 ¼ Φo ¼ 0: ð17Þ

With n overdots, we denote the nth derivative with respect
to the parameter λ, evaluated at λ ¼ 0; then

Φλ ¼ λ _Φþ 1

2
λ2Φ̈þ � � � ð18Þ

ðgλÞab ¼ nab þ λ_gab þ
1

2
λ2g̈ab þ � � � ð19Þ

and similarly for any other tensor field. From (14)–(15) we
obtain for the Ricci scalar R

Rλ ¼
1

2
λ2R̈þOðλ3Þ ð20Þ

where

R̈ ¼ 16πnabð∂a
_ΦÞð∂b

_ΦÞ; ð21Þ

and

0 ¼ nab∂a∂b
_Φ: ð22Þ

Note that _Φ satisfies the equation of a test scalar field on the
Misner background (that is, without backreaction effects).
Yet, it gives information on the Ricci scalar up to order two
for the coupled scalar-gravity system (14)–(15). Motivated
by this observation, we devote the following subsections to
the study of test scalar fields on M<, starting with ðy; zÞ
independent fields, that is, scalar fields on M<

2 . This will
be used to prove that R in (20) diverges as t → 0− for
generic solutions of the theory (14)–(15) near (17).

A. Massless test scalar fields on M2

Massless scalar fields ~Φ on ~M2 satisfy ∂u∂v
~Φ ¼ 0;

they are a superposition ~Φ ¼ RðuÞ þ LðvÞ of left- and
right-moving waves. For fields defined on M2, the extra
condition

RðeγuÞ − RðuÞ ¼ LðvÞ − Lðe−γvÞ ¼ c ð23Þ

should be imposed, where c is a constant and c ¼ 0 if
limu→0RðuÞ exists. Using the inverse of (2),

v ¼ voe−ψ ; u ¼
�
−voeψþlnðjtj=v2oÞ t > 0

voeψþlnðjtj=v2oÞ t < 0;
ð24Þ

and introducing LðvÞ ¼ Lðvoe−ψÞ ≕ lðψÞ, condition (23)
reads lðψÞ − lðψ þ γÞ ¼ c, which implies that there exists a
periodic function l̂, l̂ðψ þ γÞ ¼ l̂ðψÞ, such that

lðψÞ ¼ l̂ðψÞ − c
γ
ψ : ð25Þ

A similar analysis for RðuÞ in (23) using (24) leads to

Φ ¼
�
l̂<ðψÞ þ r̂<ðψ þ lnðjtj=v2oÞÞ þ c<

γ lnðjtj=v2oÞ t < 0

l̂>ðψÞ þ r̂>ðψ þ lnðjtj=v2oÞÞ þ c>
γ lnðjtj=v2oÞ t > 0;

ð26Þ

where all hatted functions are periodic with period γ, and
therefore bounded if they are to be smooth in the corre-
sponding t > 0 or t < 0 half-space. Note that limt→0Φðt;ψÞ
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along curves in the open set M<
2 cannot exist unless

c< ¼ 0 and r̂< is a constant, which may then be absorbed
into l̂< to set r̂< ¼ 0 (a similar analysis applies for M>

2 ).
Continuity across h (t ¼ 0) would furthermore require
l̂< ¼ l̂> ≕ l̂. Thus, the only solutions that are continuous
through M2 are the left-moving waves Φ ¼ l̂ðψÞ for all t.
These conditions and fields are dealt with in [9].

B. Scalar fields on ðM<
c ;nabÞ

The massless scalar field Φ equation on ðM<; nabÞ is

0 ¼ 4t
∂2Φ
∂t2 − 4

∂2Φ
∂ψ∂tþ 4

∂Φ
∂t þ

∂2Φ
∂y2 þ ∂2Φ

∂z2
¼ □2Φþ Δ2Φ; ð27Þ

where Δ2 ¼ ∂2
y þ ∂2

z and □2 is the massless scalar field
operator on M<

2 . Solutions of (27) can be written as

Φ ¼ ϕð0Þðψ ; tÞ þ ϕð1Þðψ ; t; y; zÞ; ð28Þ

where

ϕð0Þðψ ; tÞ≡ 1

ab

Z
a

0

dy
Z

b

0

dzΦðψ ; t; y; zÞ ð29Þ

is a ðy; zÞ-independent solution of □2ϕ0 ¼ 0,

ϕð0Þðψ ; tÞ ¼ l̂ðψÞ þ r̂ðψ þ lnðjtj=v2oÞÞ þ
c
γ
lnðjtj=v2oÞ;

ð30Þ

and

ϕð1Þ ¼
X∞

k;l;n¼−∞
ðl;nÞ≠ð0;0Þ

Cðk;l;nÞðtÞe2πikψ=γe2πily=ae2πinz=b; ð31Þ

with

Cðk;l;nÞðtÞ ≔
1

γab

Z
γ

0

dψ
Z

a

0

dy

×
Z

b

0

dzϕð1Þe−2πikψ=γe−2πily=ae−2πinz=b: ð32Þ

Equation (27) reduces to

t
d2Cðk;l;nÞ

dt2
þ ð1 − iνÞ dCðk;l;nÞ

dt
−
�
m
2

�
2

Cðk;l;nÞ ¼ 0; ð33Þ

where

m≡ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

a2
þ n2

b2

s
; ν≡ 2πk

γ
: ð34Þ

Introducing

x≡m
ffiffiffiffiffi
−t

p
∈ ð0;∞Þ; Cðk;l;nÞ ¼ eiν lnðxÞDðk;l;nÞ; ð35Þ

Eq. (33) gives a Bessel equation of imaginary order for
Dðk;l;nÞ:

x2
d2Dðk;l;nÞ

dx2
þ x

dDðk;l;nÞ
dx

þ ðx2 þ ν2ÞDðk;l;nÞ ¼ 0; ð36Þ

which admits the following two real, bounded, linearly
independent C∞ solutions for x ∈ ð0;∞Þ (we follow the
notation and conventions in [10]):

~JνðxÞ ≔ sech

�
1

2
πν

�
ReðJiνðxÞÞ

~YνðxÞ ≔ sech

�
1

2
πν

�
ReðYiνðxÞÞ: ð37Þ

Thus

Cðk;l;nÞ ¼ ðAðk;l;nÞ ~JνðxÞ þ Bðk;l;nÞ ~YνðxÞÞeiν lnðxÞ ð38Þ

and Að−k;−l;−nÞ ¼ A�
ðk;l;nÞ for real Φ. The functions (37)

satisfy

~JνðxÞ ¼ ~J−νðxÞ; ~YνðxÞ ¼ ~Y−νðxÞ ð39Þ

and have the following asymptotic behavior: as x → ∞
(t → −∞),

~JνðxÞ ¼
ffiffiffiffiffi
2

πx

r
cos

�
x −

π

4

�
þOðx−3=2Þ; ð40Þ

~YνðxÞ ¼
ffiffiffiffiffi
2

πx

r
sin

�
x −

π

4

�
þOðx−3=2Þ; ð41Þ

as x → 0þ (t → 0−),

~JνðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tanhðπν=2Þ

πν

r
cos ðν lnðx=2Þ − γνÞ þOðx2Þ;

ð42Þ

~YνðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cothðπjνj=2Þ

πjνj

s
sin ðjνj lnðx=2Þ − γjνjÞ

þOðx2Þ; ð43Þ

where γν is defined by

expðiγνÞ ¼
�
sinhðπνÞ

πν

�
1=2

Γð1þ iνÞ: ð44Þ

STRONG COSMIC CENSORSHIP AND MISNER SPACETIME PHYSICAL REVIEW D 92, 024017 (2015)

024017-5



C. Instability of the Cauchy horizon in M<
c

The instability of the Cauchy horizon in M<
c is

expressed as follows:
Theorem 1: Let ððgλÞab;ΦλÞ be a one-parametric family

of solutions for the Einstein real scalar field equations (14)–
(15) on the manifold M<

c ¼ S1ψ ×Rt<0 × T2
ðy;zÞ. Assume

that λ ¼ 0 corresponds to Misner spacetime (16). LetRλ be
the Riccci scalar of gλ, then Eqs. (20)–(22) hold and,
generically, R̈ ∼ 1=t as t → 0−.
Proof: It only remains to prove that, with the exception

of fine-tuned solutions, R̈ ∼ 1=t as t → 0−. From (22),

R̈ ¼ R̈ð0Þð0Þ þ R̈ð1Þð1Þ þ 2R̈ð0Þð1Þ ð45Þ

where

R̈ðiÞðjÞ ¼ −4
∂ϕðiÞ
∂ψ

∂ϕðjÞ
∂t − 4

∂ϕðiÞ
∂t

∂ϕðjÞ
∂ψ þ 8

∂ϕðiÞ
∂t

∂ϕðjÞ
∂t

þ 2
∂ϕðiÞ
∂y

∂ϕðjÞ
∂y þ 2

∂ϕðiÞ
∂z

∂ϕðjÞ
∂z ð46Þ

and ϕðiÞ; i ¼ 0; 1 were defined in (28)–(31).
From (30), we obtain

R̈ð0Þð0Þ ¼
4

γt

�
r̂0ðψ þ lnðjtj=v2oÞÞ þ

c
γ

��
c
γ
− l̂0ðψÞ

�
: ð47Þ

Since the derivative of a periodic function cannot be a
nonzero constant, R̈00 can only vanish identically if c ¼ 0

and either r̂ or l̂ vanish identically. For generic one-
parametric solutions of the Einstein-scalar field theory,
R̈00 ∼ 1=t near the Cauchy horizon. This divergence could
only be canceled by the 1=t contribution from R̈11 [implied
by the asymptotic behavior (42)–(43)] by fine-tuning the
constants in these independent pieces of the scalar field.
If we restrict ourselves to fields that decay along past

directed causal curves, we need to set c ¼ 0. This does not
prevent the divergence (47) except, once again, for the fine-
tuned case of pure left- or right-moving waves.

IV. INSTABILITY OF THE CAUCHY HORIZON
IN EINSTEIN-MAXWELL THEORY

Let Fab be a Maxwell field coupled to gravity on
the manifold M<

c ¼ S1ψ ×Rt<0 × T2
ðy;zÞ. The Einstein-

Maxwell field equations

Rab ¼ 2FacFbdgcd −
1

2
gabFcdFefgecgdf; ð48Þ

∇½aFbc� ¼ 0; ∇aFab ¼ 0 ð49Þ

admit the solution

Fab ¼ 0; gab ¼ nab; ð50Þ
which can be extended to Mc ¼ S1ψ × Rt × T2

ðy;zÞ. In this

section we prove that generic neighboring solutions of the
system (48)–(49) on the manifold M<

c develop a curvature
singularity as t → 0−. The Ricci scalar vanishes identically
for the Einstein-Maxwell system; the singularity arises in
the quadratic curvature invariant

Q ¼ RabRcdgacgbd: ð51Þ

Consider a monoparametric family of solutions
ððFλÞab; ðgλÞabÞ such that

ðgλ¼0Þab ¼ nab; ðFλ¼0Þab ¼ 0: ð52Þ

As in the previous section, n overdots are used to indicate
the nth derivative with respect to the parameter λ, evaluated
at λ ¼ 0. We have

ðFλÞab ¼ λ _Fab þ
1

2
λ2F̈ab þ � � � ; ð53Þ

ðgλÞab ¼ nab þ λ_gab þ
1

2
λ2g̈ab þ � � � ; ð54Þ

and

Qλ ¼
1

4!
λ4 ⃜QþOðλ5Þ ð55Þ

where

⃜Q ¼ R̈abR̈cdnacnbd; ð56Þ

R̈ab ¼ 2 _Fac
_Fbdncd −

1

2
nab _Fcd

_Fefnecndf: ð57Þ

Note that _F satisfies the equations of a test Maxwell field
on the Misner background, that is,

∇½a _Fbc� ¼ 0; nbc∇c
_Fab ¼ 0; ð58Þ

where∇c is the covariant derivative of nab, and that this test
Maxwell field gives information on the leading term of the
curvature scalar Q, which is fourth order in λ.

A. Maxwell fields on M<
c

Test Maxwell fields on the M<
c background are relevant

to the Cauchy horizon stability problem because, according
to Eqs. (56) and (58), they give the leading order con-
tribution to the Q ¼ RabRab curvature scalar in Einstein-
Maxwell theory on this manifold.
The second Betti number of M<

c ¼ S1ψ ×Rt<0 × T2
ðy;zÞ

is 3; the three-dimensional space of closed nonexact two-
forms is generated by dψ ∧ dy; dψ ∧ dz and dy ∧ dz.
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Since these two-forms are divergence free for the flat
metric n, the general solution of the Maxwell equations
on the background nab is

F ¼ Kdψ ∧ dyþ Ldψ ∧ dz

þMdy ∧ dzþ dAð0Þ þ dAð1Þ ð59Þ

where, as done with the scalar field, we have split Ab ¼
Að0Þ
b þ Að1Þ

b with £∂=∂yA
ð0Þ
b ¼ £∂=∂zA

ð0Þ
b ¼ 0. We chose the

one-forms AðjÞ
b in the Lorenz gauge ∇bAðjÞ

b ¼ 0; then
Maxwell equations reduce to

∇bAðjÞ
b ¼ 0; nab∇a∇bA

ðjÞ
c ¼ 0: ð60Þ

Introducing Að0Þ
b ðψ ; tÞ ¼ P

k∈ZC
k
bðtÞ expð2πikψ=γÞ in

(60) we find, after treating separately the k ¼ 0 and
k ≠ 0 terms and then summing up the series, that

Að0Þ
ψ ðψ ; tÞ ¼ 2atþ l̂ðψÞ þ r̂ðψ þ lnð−t=v2oÞÞ

Að0Þ
t ðψ ; tÞ ¼ aþ t−1bþ t−1r̂ðψ þ lnð−t=v2oÞÞ

Að0Þ
y ðψ ; tÞ ¼ cy lnð−t=v2oÞ þ l̂yðψÞ þ r̂yðψ þ lnð−t=v2oÞ

Að0Þ
z ðψ ; tÞ ¼ cz lnð−t=v2oÞ þ l̂zðψÞ þ r̂zðψ þ lnð−t=v2oÞÞ:

This can be simplified using the residual gauge freedom

Að0Þ
c → Að0Þ

c þ ∂cχ; nab∂a∂bχ ¼ 0. Taking an appropriate
χ of the form (30), we get a vector potential of the form

Að0Þ
ψ ðψ ; tÞ ¼ 2atþ l̂0

Að0Þ
t ðψ ; tÞ ¼ a

Að0Þ
y ðψ ; tÞ ¼ cy lnð−t=v2oÞ þ l̂yðψÞ þ r̂yðψ þ lnð−t=v2oÞÞ

Að0Þ
z ðψ ; tÞ ¼ cz lnð−t=v2oÞ þ l̂zðψÞ þ r̂zðψ þ lnð−t=v2oÞÞ

ð61Þ

with a; l̂0; cy and cz constants [the irrelevant constant in

Að0Þ
t ðψ ; tÞ can be gauged away using the nonperiodic

harmonic function χ0 ¼ −aψ]. For the Maxwell field we
obtain

Fð0Þ ¼ dAð0Þ ¼

0
BBBB@

0 −2a l̂y
0 þ r̂y0 l̂z

0 þ r̂z0

2a 0 ðcy þ r̂y0Þ=t ðcz þ r̂z0Þ=t
� � 0 0

� � 0 0

1
CCCCA

ð62Þ

where we have omitted the arguments in the periodic
(hatted) functions and the order of coordinates is
ðψ ; t; y; zÞ. The two field invariants for (62) are

Fð0Þ
ab F

ð0Þab ¼ −32a2 þ 8t−1½cy2 þ cz2 þ cyðr̂y0 − l̂y
0Þ

þ czðr̂z0 − l̂z
0Þ − l̂y

0r̂y0 − l̂z
0r̂z0� ð63Þ

and

ϵabcdFð0Þ
ab F

ð0Þ
cd ¼ −16t−1½l0zr0y − l0yr0z þ cyðl0z þ r0zÞ

− czðl0y þ r0yÞ�: ð64Þ

B. Instability of the Cauchy horizon in M<
c

The instability of the Cauchy horizon of M<
c in the

Einstein-Maxwell theory is expressed in the following.
Theorem 2: Let ððgλÞab; ðFλÞabÞ be a one-parametric

family of solutions for the Einstein-Maxwell field equa-
tions (48)-(49) on the manifold M<

c ¼ S1ψ ×Rt<0 × T2
ðy;zÞ.

Assume that λ ¼ 0 corresponds to Misner spacetime (50).
Let Qλ be the square Ricci scalar (51) of gλ; then
Eqs. (55)–(58) hold and, generically, ⃜Q diverges at least
as ∼1=t2 as t → 0−.
Proof: According to Eqs. (56) and (57), ⃜Q is quartic on

_Fab. Since _Fab satisfies Maxwell equations on the flat
Misner background [see Eq. (58)], it is of the form (59). We
focus on the contribution ⃜Q0 to ⃜Q that is quartic in Fð0Þ ¼
dAð0Þ in (59). Note from (62) that the general Fð0Þ field is
finite on any Cauchy slice in M<

c . A stronger condition
of decay as t → −∞ can be enforced by requiring a ¼ 0

[see Eqs. (63) and (64)]. In any case, the contribution ⃜Q0,
obtained by replacing _F with (62) in (56) and (57), is

⃜Q0 ¼ 512a4 − 256a2t−1½c2y þ c2z þ cyðr̂y0 − l̂y
0Þ þ czðr̂z0 − l̂z

0Þ − l̂y
0r̂y0 − l̂z

0r̂z0�
þ 16t−2½l̂z02r̂y02 þ l̂y

02r̂z02 þ 2l̂z
02r̂z02 þ 2l̂y

02r̂y02 þ 2l̂y
0 l̂z

0r̂y0r̂z0 þ � � � þ 2cy4 þ 2cz4� ð65Þ

where the missing terms in the t−2 coefficient involve growing powers of cy and cz times derivatives of periodic functions.
As t → 0−, Eq. (65) behaves as a bounded function times t−2. This divergence could (in principle) be canceled out by
the remaining contributions to ⃜Q, but this could only be done by fine-tuning and will not be the case for generic
monoparametric solutions of the Einstein-Maxwell system.
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V. INSTABILITY OF THE CAUCHY HORIZON
IN PURE GRAVITY

The Cauchy horizon of M<
c can also be seen to be

unstable in the context of pure gravity. Consider a mono-
parametric family of Ricci flat metrics through nab in (13):

ðgλÞab ¼ nab þ λ_gab þ
1

2
λ2g̈ab þ � � � : ð66Þ

As is well known, any algebraic curvature scalar for a
vacuum metric is a polynomial on K ≔ RabcdRabcd and
L ≔ ϵabpqR

pq
cdR

abcd. For (66) we obtain

Kλ ¼ λ2 _Rabcd
_Refghnaenbfncgndh þ � � � ð67Þ

and similarly for Lλ; that is, knowledge of a linearized
solution _gab of Einstein’s equation provides information on
the dominant contributions to K and L, which are second
order in λ.
Linear gravity on the background (13) can be

approached using the formalism in [11], which applies
to warped metrics of any dimensions with an Einstein
compact Riemannian manifold factor which, in our case, is
the trivial 2-torus flat metric dy2 þ dz2. Three different
families of modes arise—tensor, vector, and scalar—which
satisfy decoupled equations. Among them, the simplest
contributions are the two zero modes in the tensor sector,
which are constructed using the divergence-free, trace-free,
harmonic symmetric tensors dx ⊗ dx − dy ⊗ dy and dx ⊗
dyþ dy ⊗ dx on T 2. For these, the metric perturbation is
[the order of coordinates is ðψ ; t; y; zÞ]

_gab ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 Ĥðψ ; tÞ P̂ðψ ; tÞ
0 0 P̂ðψ ; tÞ −Ĥðψ ; tÞ

1
CCCA ð68Þ

and Einstein’s linearized equation _Rab ¼ 0 reduces to
□2Ĥ ¼ □2P̂ ¼ 0 [Eq. (4.2) in [11]], whose solution is
[see Eq. (30)]

Ĥ ¼ ĤlðψÞ þ Ĥrðψ þ lnðjtj=v2oÞÞ þ
CH

γ
lnðjtj=v2oÞ; ð69Þ

P̂ ¼ P̂lðψÞ þ P̂rðψ þ lnðjtj=v2oÞÞ þ
CP

γ
lnðjtj=v2oÞ: ð70Þ

We set CH ¼ CP ¼ 0 to keep the perturbation bounded as
t → −∞ (note that Ĥ and P̂ are gauge-invariant fields
in the linearized gravity theory [11]). For the perturbation
(68)–(69) we obtain

K̈ ¼ _Rab
cd _Rcd

ab ¼ 32t−2½Ĥ00
r Ĥ

00
l þ P̂00

r P̂
00
l þ Ĥ00

r Ĥ
0
l þ P̂00

r P̂
0
l

− Ĥ00
l Ĥ

0
r − P̂00

l P̂
0
r − Ĥ0

rĤ
0
l − P̂0

rP̂
0
l�; ð71Þ

which decays along past oriented causal curves and
diverges as the future Cauchy horizon is approached.
Once again, this divergence could possibly be canceled
from ðy; zÞ-independent contributions to K̈ from the ðy; zÞ-
dependent piece of _gab, but this could only happen after
fine-tuning, and not for generic solutions around nab.

VI. DISCUSSION

Penrose’s heuristic argument anticipating a curvature
singularity at the Cauchy horizon of a Kerr-Newman black
hole applies to the horizon h of Misner spacetime. This is
readily seen by inspecting Fig. 1: an observer crossing the
horizon is exposed to the information traveling, in the
geometric optics approximation, along the infinitely many
geodesics of the form (12) originating in his past. He is thus
expected to measure a divergent energy density, as it is
easily checked, e.g., in our simplest example: the ðy; zÞ-
independent scalar field (30) with c ¼ 0. The stress-energy-
momentum tensor of this field is

Tab ¼

0
BBBBB@

r̂02 þ l̂02 r̂02=t 0 0

r̂02=t r̂02=t2 0 0

0 0 2r̂0l̂0=t 0

0 0 0 2r̂0 l̂0=t

1
CCCCCA ð72Þ

where we have suppressed the arguments in l̂0ðψÞ and
r̂0ðψ þ lnðjtj=v2oÞÞ, and the order of coordinates above is
ðψ ; t; y; zÞ. An observer crossing the horizon with four-
velocity u ¼ _ψ∂=∂ψ þ _t∂=∂tþ _y∂=∂yþ _z∂=∂z has _t ≠ 0
at t ¼ 0. Note that these coordinates are valid beyond the
horizon, and hence _ψ ; _t; _y, and _z must all be finite at t ¼ 0.
The energy density the observer measures is, after using the
condition ucuc to eliminate the _ψ _t term,

ρ ¼ Tabuaub ¼ _ψ2ðl̂02 − r̂02Þ þ 2r̂02

t
ð1þ _y2 þ _z2Þ

þ 2r̂0 l̂0

t
ð_y2 þ _z2Þ þ

�
r̂0

t

�
2

_t2: ð73Þ

Only the first term on the right-hand side above remains
finite as t → 0−; the others all diverge except for the trivial
r̂ ¼ 0 case. It is interesting to note, however, that there is no
curvature singularity in the full Einstein-scalar field theory
unless both r̂ and l̂ are different from zero. This is seen by
setting c ¼ 0 in Eq. (47), which gives

R̈ð0Þð0Þ ¼
−4l̂0ðψÞ

γt
r̂0ðψ þ lnðjtj=v2oÞÞ: ð74Þ
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Thus, there are situations where the energy density mea-
sured by an observer at the horizon diverges while no
curvature singularity forms. This happens because in this
highly relativistic regime, the pressure or tension cancels
the energy density effect on Ta

a ∝ R unless both left- and
right-moving waves are present. This can easily be seen
from (72): the trace of the two-by-two ðψ ; tÞ block
vanishes, and only the ðy; zÞ tensions or pressures, which
contain l̂0r̂0 products, contribute to Ta

a. Note that this
happens without violating energy conditions; as is well
known, the stress-energy-momentum tensor of a scalar field
satisfies the strong as well as the dominant energy con-
ditions. Ta

b above can indeed be diagonalized to the form

Tb
a ¼ 2=tdiagðjr̂0l̂0j;−jr̂0 l̂0j; r̂0 l̂0; r̂0 l̂0Þ in a specific ortho-

normal tetrad.
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