
User Interface Design for Responsive Web Applications

Hernán Casalánguida and Juan Eduardo Durán
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Medina Allende s/n, Córdoba, Argentina

hcasalan@hal.famaf.unc.edu.ar, duran@mate.uncor.edu

Keywords: Web Engineering, Rich Internet Applications, User Interface Models, Responsive Frameworks.

Abstract: The design of web applications that adapt to different kinds of devices is now a necessity. The responsive

web design (RWD) is an actual approach to this problem. There exists a large quantity of responsive

frameworks (RF) for developing RWDs. In particular for the domain of Rich internet applications and for

the adaptation of applications to different kinds of devices we have found a few adaptive design approaches

that start with abstract user interface (UI) models; however, such approaches did not take into account the

use of RFs. The problem of defining a development process from an abstract UI model to a RF is interesting

due to some reasons; a good process should consider: an abstract UI model whose elements are abstractions

for RF widgets, the use of tools for RFs that generate part of the final UI code, the use of model

transformations to map abstract UI elements onto widgets of the RF. In this paper we created an abstract UI

model called RIAAD2 that considers abstractions for all the UI elements of a selected set of RFs, and we

developed a process for the creation of a final UI using a RF that considers the above requirements.

1 INTRODUCTION

Due to the dramatic increase in the amount of

internet accesses from mobile devices and tablets,

the design of web applications that adapt to different

kinds of devices (e.g. cell phones, tablets, laptops,

desktops) is now a necessity.

During the last years RWD (see (Peterson,

2014)) has become an efficient solution to these

problems; with this kind of design it is provided for

the users of a web site the same content and a similar

user experience; this reduces costs and time to

market, because a RWD of a web application works

across all devices. Now there exists a large quantity

of RFs (e.g. Bootstrap, JQuery Mobile, HTML

Kickstart, Foundation, Skeleton) which allow to

develop RWD for web applications.

For the domain of Rich internet applications

(RIA) and for the adaptation of applications to

different kinds of devices we have found only a few

adaptive design approaches (i.e. in them a server

detects the device, and the browser will load the

version of the site that is optimized for that device;

i.e., only mobile-optimized assets are downloaded)

that start with abstract UI models: (Cirilo et al.,

2012), (Manca, 2013) and (Ghiani et al., 2014);

however, such approaches do not consider RFs.

The problem of defining a development process

from an abstract UI model to a RF is interesting due

to the following reasons: 1) the wide use of RF in

industry, 2) responsive applications do not require

an additional architecture at server side, 3)

responsive applications are applications for internet

(complex architectures at the server side for making

adaptations are adequate for intranets), 4) when a

modification is needed, a new version of the

responsive application is constructed (in the other

approaches it will be necessary to generate the code

for each device again). Such a process should satisfy

the following requirements:

R1: the use of an abstract UI model whose

elements are abstractions for widgets of RFs.

R2: the use of tools for RFs that generate part of

the code for the RF.

R3: the use of the model transformation

approach to map UI elements of the abstract UI

model onto widgets of the RF.

We did not find a UI design notation that is an

adequate abstraction of the most important RFs; in

addition, we did not find a method for the

construction of a final UI considering a selected RF

and an abstract UI model.

The objectives of this work are: a) to develop an

abstract UI notation for RIAs, such that the widgets

of the best RFs (according with some criteria) are

refinements of the UI elements of this UI notation,

and this UI notation abstracts from implementation

details, development technology and target device,

and is independent from modality; b) to define a

development process contemplating the above

requirements, and the code considers at least widgets

and layout.

In this paper we selected the most successful and

useful RFs (according with some criteria) (Sec. 2);

to satisfy R1 we created a new version of the RIA

Abstract Design notation (see (Casalánguida and

Durán, 2013)) called RIAAD2; all the widgets of the

selected RFs are refinements of UI elements of

RIAAD2 (Sec. 3); furthermore, we defined a

development process satisfying the above

requirements (Sec 4); for this purpose, we defined a

table that maps RIAAD2 UIEs onto widgets of the

selected RFs; next using this table we explained how

to transform a RIAAD2 UI model into a more useful

model to be used during implementation; finally, we

provide some tasks using this model, and a RF’s tool

to construct the final UI.

For illustrating the RIAAD2 notation and the

development process we considered a case study

consisting of a system of online file storage.

2 RESPONSIVE FRAMEWORKS

The development of several versions of an appli-

cation for different devices is usually not a good

option, because it is expensive. For this reason,

during the last five years, several RF have appeared

for the development of responsive web applications.

A RF is a framework for RWD.

In this section we evaluate and select RFs to

build responsive web applications. For the selection

of RFs we considered the following requirements:

a) the RF can be used with all kinds of actual

devices (i.e. mobile devices, tablets and desktops);

b) the RF has a rich set of widgets (i.e. widgets for

content structures, access structures based on links,

access structures not only based on links – i.e. they

contain in addition to links, controls for input/items

for content- and buttons);

c) the RF includes a responsive grid system for

layout. A responsive grid system is grid system (i.e.

a grid) that appropriately scales up to N columns as

the device or viewport size increases; it includes

predefined classes for easy layout options, as well as

powerful mixins for generating more semantic

layouts;

d) the RF is popular (i.e. number of search results in

web search engines and amount of external libraries

defined using the RF).

The following RFs are discarded, because they

do not satisfy requirement a): Blueprint- only for

desktops-, Flaminwork- only for desktops-, G5

Framework- only for desktops -, Easy Framework -

only for desktops -, Elements – only for desktops-,

Bluetrip - only for desktops -, ElasticCss – for

desktops and mobile devices, but not for tablets. The

following frameworks satisfy requirement a):

Bootstrap, Mobile Boilerplate, Foundation, jQuery

Mobile, HTML Kickstart, Less and Skeleton.

Next, we discarded the following RFs: Less (see

http://lessframework.com/), because it is powerful

for layout definition, and does not have a rich set of

UI widgets (it includes only a responsive grid

system and sets of typography presets); Skeleton

(see http://getskeleton.com/), because of the scarcity

of the widgets (it only includes elements for buttons,

forms, grids and typography presets); Mobile

Boilerplate (see https://html5boilerplate.com/),

because it offers a front-end template for cross-

browsing, performance optimization, optimizations

for browsers of mobile devices, but it does not

include widgets.

The 4 RFs that satisfy the above requirements

are: Bootstrap (see (Sossou and Shenov, 2014)),

jQuery Mobile (see http://jquerymobile.com/),

Foundation (see http://foundation.zurb.com/) and

Html KickStart (see http://getkickstart.com/). All of

these RF have a rich set of widgets, and include a

responsive grid system.

3 AN ABSTRACT UI MODEL

Requirements for an Abstract UI Notation. Given

the great amount and variety of RFs, we think it is a

good idea to consider an abstraction level above that

of RFs; more specifically, it is desirable to have an

abstract UI design notation satisfying the following

requirements: 1) its elements are abstractions for RF

UIEs; 2) it abstracts from layout and style; 3) it is as

independent as possible from modality and from

implementation technology (this requirement was

posed for UsiXML abstract UI models; see

(Limbourgh 2004)); 4) it has a rich set of access

structures and of content structures (this is to avoid:

the necessity to choose between too much RF UIEs

for refining an abstract UIE, and the necessity to

infer different choices of UIEs of a RF from an

abstract UIE); 5) it has a rich set of classes for UIEs

used to generalize metaclasses (e.g. content structure

to generalize list, tree and grid); this is to allow

future extensions of the abstract UI model.

Some reasons to have an abstract UI model are:

a) In (Thevenin, 2001) it is said that the variety of

context of use for an application stresses the need for

UI abstractions able to factor out details relevant to

specific contexts; from these abstractions, it is

possible to obtain context specific representations by

progressive refinements. b) (Limbourgh 2004) says:

“to have abstractions to improve comprehension,

reasoning and manipulation of what a UI is”. c) To

ensure some form of consistency between

requirements artifacts and the final UI - see (Puerta,

1997). d) (Cockburn, 2002) says that if software

team members spend little time modeling or

documenting applications, this becomes a problem

when the team is dismantled and other people needs

to maintain the software.

Extension of the RIAAD Metamodel. The RIAAD

metamodel (see (Casalánguida and Durán, 2013))

satisfies requirements 2) and 3) above, and defines

abstractions for several code patterns, basic UIEs,

access structures and content structures. Some of

the contributions made by RIAAD to the domain of

RIAs are: the representation of editable UIEs, being

them either elementary or content structures; the

definition of abstractions for special UI patterns for

navigation in RIA like breadcrumb and navigation

bar; the representation of UIEs for the edition of

multimedia objects – e.g. audio and video- and of

documents – e.g. presentations and spread-sheets).

The RIAAD metamodel was not developed

taking into account RFs, and for each of the 4

selected RFs: RIAAD has not abstractions for some

of the RF’s widgets, or RIAAD´s UIEs need to be

generalized to be considered as abstractions for

some widgets of RFs.

We decided to modify RIAAD to have an

appropriate abstract UI model satisfying the require-

ments above; the method considered for this task is:

examine the UIEs of the selected RFs, and for each

of them apply the following procedure: if an element

of RIAAD is an appropriate abstraction for the RF’s

UIE, then we are done, else if a RIAAD’s UIE could

be generalized to obtain an appropriate abstraction

for the RF’s UIE, then we make this generalization,

otherwise we define a new UIE that is an abstraction

for the RF´s UIE in the sense of satisfying

requirements 2) and 3); finally, we eliminate some

UIEs from RIAAD that are specific for code

patterns, and are not needed for RFs.

Using this method we developed a new version

of RIAAD called RIAAD2; we added to RIAAD 2

the following new UIEs: Icon, Button, Dialog,

NavGrid, Grid and Alt; in addition, we generalized

from RIAAD: Menu, Breadcumbs, NavigationBar,

Content Structure, Block and Grouping Element.

RIAAD2 adds new UIEs not present in the found

abstract UI modelling notations for RIAs: Icon,

NavGrid, Grid and Dialog. In addition, we changed

the name of some RIAAD UIEs.

Related Work. We compare abstract UI presenta-

tion notations for RIAs that are independent from

modality, implementation technology, abstract from

target device, and have metaclasses for UIs to

generalize metaclasses (see Table 1); in this set we

included the abstract UI notations of the found

adaptive design approaches for RIAs.

Table 1: Comparison of UI metamodels.

 R1 R2 R3 R4
MARIA reg - reg - no Yes

UWE reg + reg no No

RID reg - reg- no No

RIAAD2 good good yes No

R1: Richness of abstract UI elements for content

structures: The AUI metamodel of MARIA

(Paternò, et al., 2009) has not content structures. The

UWE presentation metamodel for RIAs (Kozuruba,

2010) has presentationGroup, iteratedPresentation-

Group and presentationAlternatives, but not trees.

The abstract UI model for RIAs of (Cirilo et al.,

2012) called RID has not content structures.

R2: Richness of abstract UI elements for access

strucutres: The abstract UI metamodel of MARIA

has not access structures. The UWE presentation

metamodel has presentationAlternatives and

iteratedPresentationGroup, but not abstractions for

breadcumbs and navigation bar. The abstract UI

model for RIAs of RID considers TabbedPanel and

AccordionPanel, but not abstracttions for

navigationBar, NaviGrid, Breadcumbs.

R3: Designed for consideration of RF widgets:

Only RIAAD2.

R4: Use of a concrete UI model: Only MARIA.

The RIA methodologies found do not construct

code using a RF.

IFML (http://www.ifml.org/) is a metamodel for

expressing the content and the user interaction with

the UI in applications. IFML is poor for satisfying

R1, R2 and R3. IFML include concepts

about context awareness; however, we did not find

previous work concerning the adaptation of a RIA

application to different devices using IFML.

3.1 RIAAD2 Metamodel

A BasicUiElement can be either an Atomic element

or a MediaObject. A MediaObjects can be: Image,

Video, Audio, Animation, Document. A MediaObject

can be editable or not. An atomic can be: Text,

Numerical, Anchor, Single Choice, Multiple Choice.

Type of edition of an Atomic can be: input (for

information input), editable (for information editing)

and no_editable (for information presentation).

Attribute enabled says if an Atomic is enabled or not

(e.g. if an anchor´s link is enabled for navigation).

Attribute Type of anchor can be: classicalLink (link

with another page/document), bookmarkLink (a link

with a position in the same page) and commandLink

(its selection initiates an action or task). An anchor

contains one or more BasicUiElements different

from anchor and with editableType=no-editable. A

Button represents a button behaving as an anchor

when pressed. An Icon is a graphic representation of

something (e.g. a person or thing) that is symbolic,

or is a noted figure.
In Fig. 1 attribute collapsible means if the

Grouping could be collapsed and expanded. A

ContentStructure (CS) may contain selector

elements and anchors. A CS can be editable (i.e.

allowing the edition of some of its contents) or not.

The attribute filterable means if the CS elements can

be filtered w.r.t. a condition provided by the user;

this attribute can only be used for lists, grids and

trees. An Alt represents the presentation of one

BasicUiElement/CS from a set of BasicUiElement/

CS. A Grid represents the presentation of several

rows of one or more types (a Grid may only contains

records -via childCS- for describing its rows). A

Tree represents a tree whose nodes have content. A

tree contains internal nodes and leaf nodes; both

kinds of nodes contain a text element for the name

of the node and optionally one or more BasicUi-

Elements. UIOutputStructure: - see Fig. 1 – for

presenting information to the user. Notification

means notification of some event, and Dialog means

a decision request. NotificationType is defined as in

RIAAD. A LinksBased represents a link grouping to

access either other UIEs, or performing an action;

some specializations of LinksBased are Menu and

Breadcumb. A Menu contains two or more anchors,

and may contain other menus. A Breadcumb

contains a list of steps; each step has an anchor;

Breadcumbs are used to represent navigation paths,

whose nodes can be visited by selecting steps.

Fig. 2 shows part of the UI for a read Mail

function. Some commands are accessible from the

Mail options menu and from the Reply Button. For

the headers of the mail we use a Mail details anchor

of type CommandLink. The body of the mail is an

Alt CS with alternative text elements: Mail that is

the text of the mail, and Previous mails that is the

text of the mail and the text of the previous mails to

which this mail is a reply.

Figure 1: RIAAD2 classification of UI elements and

UiStructures.

Figure 2: The UI for read Mail function.

A NotOnlyLinksBased - see Fig. 3 - is not based

only on links. A NavigationBar may contain some

text elements of NoEditable type. In a NavAltBlocks

only one block at a time is visible; at most one block

can have zero UiElements; the attribute enabled tells

if the block is enabled for navigation. A NavGrid

represents the presentation of several rows of one or

more types; a NavGrid contain items for describing

its rows; an item contains an anchor with content

displayed for an item, optionally a navigationBar for

parameters providing and/or functionality access and

zero or more BasicUIElements. The attribute

filterable means if the navGrid items can be filtered

w.r.t. a condition provided by the user. A CS/

NavGrid can be a contributor (it can provide

elements to a CS/UiInputStructure). A CS/UiInput

Structure can be receptive (it can receive elements

from other CS/NavGrid).

Figure 3: RIAAD2 NotOnlyLinksBased elements.

4 PROCCESS FOR DEVELOPING

A FUI USING A RF

Requirements for the development Process. They

are: P1. It could start with artifacts of other RIA

methodologies (e.g., a navigation model – transition

from a navigation model to a RIAAD2 model; a

presentation model – abstract/refine it to a RIAAD2

model; a requirements model - from it make the

transition to a RIAAD2 model).

P2. The process should consider the definition of

the abstract UI for the functionality units (e.g. use

cases, tasks, commands, services); however, this is

not enough, because it is necessary to have a global

vision of the UI for functionality access using the

metamodel for abstract UI design.

P3. To define onto which widgets of a RF the

UIEs of the abstract UI model can be mapped; in

case of not exiting such widgets, a mapping of

abstract UIEs onto HTML5 elements should be

defined.

P4. To develop the code for a RIA application

using the RF and a tool for the RF. Such tools are

important, because they generate some of the final

UI of the RIA application.

Related Work. See Table 2. The criteria are:

 Table 2: Comparison of adaptation approaches.

 A1 A2 A3 A4 A5
Cirilo et al 2012 no No yes yes yes

Manca 2013 no No No yes yes

Ghiani et al 2012 no no No yes yes

Process for RIAAD2 yes yes No no no

A1: Transition from an abstract UI model to a

RF. A2: Use of information for mapping abstract UI

elements onto RF widgets.

A3: Construction of different UI versions for

different groups of devices. In (Cirilo et al., 2012)

from a RID model for a group of devices code is

generated for different technologies by applying

M2C transformations (they are implemented as

templates by using the Java Emitter Templates

framework).

A4: Necesity of additional artifacts to make the

transition from an abstract UI model to a final UI

model. (Cirilo et al., 2012) considers the definition

of adaptation rules for each UIE of RID to adapt. In

(Manca, 2013) the definition of adapters for

different purposes is needed (for modality, UI

structure and UI attributes) for code generation.

(Ghiani et al., 2014) considers the definition of

adaptation rules respecting an event/condition

/action template using a XML based format.

A5: Need of an additional server architecture for

adaptation. In (Cirilo et al, 2012) content adapters

are used by a server. In (Manca, 2013) an adaptation

server is considered. (Ghiani et al., 2014) considers

an architecture at the server side for adapting a

concrete UI model to a specific device.

Development of AUI Diagrams. To develop an

abstract UI two tasks are contemplated: the

construction of the UI structures for functionality

access, and the construction of the UIs for each

functionality unit.

For the UI concerning the structure of the

functionality access of the system, access structures

like menus, lists and anchors are used a lot.

For the definition of the UI model showing the

structural view of the functionality access it can be

useful to use previous models of web application

methodologies like navigation models (e.g. UWE

(Kozuruba, 2010) and others), UI models (e.g.

OOWS 2.0 (Valverde Giromé, 2010) and others) or

requirements models showing the organization of

the functionality of the system (e.g., (Rosado da

Cruz, 2010)).

Figure 4: Part of RIAAD2 model for the UI for

functionality Access for a system of online file storage.

Fig. 4 shows part of the UI for the structure of

the functionality access for the system of online file

storage that is shown initially when the user enters

into the system. The User agent grouping includes

structures for the access to functionality: an anchor

including an icon to access to the list of items (files

and folders) sent to trash; a NavAltBlocks Files

commands considering different classifications of

commands (its blocks are automatically chosen

depending on the selected items and its types); a

menu display options for displaying the list of

contents in different ways (i.e. sorting by different

criteria, display as icon, and display as list); a

grouping for accessing functionality concerning the

account of the user. Fig. 4 shows part of the

description of the Files Commands NavAltBlocks

UIE; it consists of four alternative blocks:

commands for selected files, commands when no

item is selected and commands for the selected

elements on the trash. The Trash commands Block,

includes a menu with Restore all and Delete all

anchors of type commandLink to perform operations

for the selected items in the trash.

Figure 5: UI for the use case Load and display files list.

It can happen that we have a prior model of a

methodology describing some functionality units;

this model can be a presentation model, (e.g., UWE

(Kozuruba, 2010), MARIA (Paternò et al, 2009)), a

model to describe requirements (e.g., task models -

e.g., concurrent task trees, see http://www.w3.org

/TR/task-models/-, activity diagrams to describe use

cases – e.g., (Casalánguida and Durán, 2013)). In

(Casalánguida and Durán, 2013), trace relationships

from actions in activity diagrams into RIAAD UIEs

are considered; therefore, for describing the UI for a

UC in RIAAD2 the UIEs of these trace relationships

can be reused.

 Fig. 5 shows the RIAAD2 model for Load and

display files list use case that collects a list of files

and folders, and presents it with the help of a UI.

There is a Grid Files list organized into two types of

records: for files called File item and for folders

called Folder item. The Folder item record includes

the icon for folders, the name of the folder and a

menu for functionality over folder items. The File

item record is similar to the Folder item record.

Mapping Abstract UIEs onto RF Widgets.
Once a RF to be used has been selected, it is

necessary to choose the UIEs of the RF to

implement the UIE of the abstract UI model. To

accomplish this task we constructed a table (it is not

shown by space reasons) that for each structural

abstract UIE and for each of the four selected RF,

provides the final UIEs that can be chosen to

implement the (considered) abstract UIE; such final

UIEs are obtained in the following way: if the RF at

hand contains Final UIEs that can be used to

implement the abstract UIE, then these elements are

listed; otherwise a HTML5 element to implement

the abstract UIE must be provided by the web

designer. For the case that an abstract UIE has more

than one corresponding final UIE in the table for the

RF, the UI designer has to decide which of these

final UIEs is more convenient.

From a RIAAD2 model of the RIA application

we propose to automatically generate a new version

of the RIAAD2 model having annotations; each UI

element of the RIAAD2 model is annotated with a

list of widgets of the target RF that are refinements

of the abstract UIE; if the list has a unique element

then the mapping is direct; else the designer has to

select the most adequate widget in the list to be a

refinement of the abstract UIE. This RIAAD2 model

with annotations is useful, because the designer has

not to search the tables to find a mapping; therefore,

his work is simplified.

Implementation of the Final UI. Once the

decisions concerning the mapping of the abstract

UIEs onto final UIEs have been taken, the next step

is to implement the final UI of the application. We

present some tasks that can be accomplished to

implement the final UI of a responsive web

application. As a case study to illustrate the use of

these tasks we considered Bootstrap and the

Pingendo WE free tool (see http://pingendo.com/)

that works with Bootstrap.

The tasks we propose to perform are:

a) To create an empty page; e.g. a Bootstrap

empty page in Pingendo.

b) Considering the requirements of the client,

define the layout of the responsive web application;

e.g., use the UIEs of the layout part of the widgets

window of Pingendo. In general, for this task it is

common to define a Container element of highest

level, and consider inside it an arrangement of rows

and columns according to the desired layout.

 c) Include in each pair (row, column) the UI

elements and access structures for functionality

access; e.g., for this task Pingendo has the sections

Navigation and Buttons; it is very common that such

elements are of kind Button, Button DropDown,

NavBar, Breadcumb.

d) For each functionality unit create an empty

page, then define the layout, and include the

appropriate final UIEs.

e) The abstract UIEs for which there does not

exist a corresponding widget for the selected RF

must be implemented by using either an external

library of widgets or HTML5 elements; e.g., it is

necessary to use the part of HTML source code

edition of the Pingendo tool.

f) Associate the links for functionality access

with the parts of the system that construct the UIs of

the corresponding functionality units. This can be a

URL for a dynamic page, or a piece JavaScript code.

Figure 6: Part of the UI for an online file storage system

using Bootstrap with Pingendo.

Fig. 6 shows the UI for the initial screen for an

online file storage system presented after the user

logged in that was developed using the previous

tasks with Bootstrap and Pingendo, and considers

the access to the functionality of the system and the

UI for two functionality units: Generate and display

files structure and Load and display files list. The UI

contains a layout considering one column, and 4

rows: 1) UI design for the Generate and display files

structure functionality unit using the Breadcumbs

widget of Bootstrap. 2) Elements for functionality

access for Files Commands and Display Options

RIAAD 2 UIEs; it was built using the following

widgets: a Button to create a note, 3 Button Drop-

down (one for creating a file or a folder, another to

choose how to see the list, and another to upload a

file or a folder), and a HTML5 Check Box element

for selecting/deselecting all the list items. 3) UI

design for the Load and display files list function-

ality unit using a list; each item of this list represents

a file or a folder stored by the system, and is

implemented with: an icon for the item’s type, a text

for the item’s name, some icons for functionality

access, a Button Dropdown widget to access some

functionality units, and a CheckBox to select the

item. 4) Access to functionality of Access to Account

Data RIAAD UIE implemented using anchors.

5 CONCLUSIONS

This work considered responsive web applications

from small to big that can be RIAs or not. Our

approach considers the definition of UIs for such

kind of applications considering UIEs and layout,

but not taking into account event processing and

style. We start with some abstraction requirements;

as a consequence, it is possible to concentrate on

requirements and structural aspects of the UI.

Concerning RIAAD2 we have found the

following facts:

 5 RIAAD2’s UIEs (Button, Menu with submenu,

Dialog, Icon, Grid) are not in RIAAD; this

number represent the 50 % of the number of

UIEs types used in the case study of this paper;

in addition, these 5 UIEs have an occurrence in

our case study that represents the 27,8% of the

total UIE occurrences.

 From a total of 12 elements that are either not

present in RIAAD or modified elements of

RIAAD, 8 of them were found when trying to

find in RIAAD UIEs that are abstractions of the

UIEs of the 4 selected RFs.

 12 of the 39 UIEs of RIAAD2 are additions to

RIAAD or modifications of UIEs of RIAAD, this

represents approximately 30%.

Concerning the mapping of RIAAD2 UIEs onto

widgets of RFs, there are 3 cases of not Basic-

UiElements where a decision about which widget of

a RF to use for a UIE of RIAAD is needed: Grid

(not table): 2 decisions in average (i.e. considering

the 4 selected RFs), menu (without nesting): 5

decisions in average, grouping element: 3.5

decisions in average.

The separation between UI for functionality

access and UI for functionality units, the use of the

tasks for implementing the final UI and the table for

the mapping of RIAAD2 UIEs provide a systematic

and disciplined approach to develop final UIs.

Some of the UIEs of RIAAD2 cannot be mapped

onto widgets of a given RF (e.g. Tree and Alt in

Bootstrap, Foundation and HTML Kickstart);

therefore, for these UIEs it is necessary to define

source code in HTML5, JavaScript and CSS.

A work for the future is the study of how to

migrate from legacy RIA applications to RFs; in

particular, we are interested on studying the

automatic/semiautomatic transition from abstract

UI/concrete UI models for RIAs to RIAAD2.

REFERENCES

Casalánguida, H. and Durán, J. E., 2013. A Method for

Integrating Process Description and User Interface Use

During Design of RIA Applications. In ICWE'13, 13th

Intl. Conf. on Web Engineering. Springer Verlag.
Cirilo, C. E.; do Prado, A. F.; Lopes de Souza, W. and

Martinez Zaina, L. A., 2012. Building Adaptive Rich

Interfaces for Interactive Ubiquitous Applica-tions.

"Interactive Multimedia", edited by Ioannis

Deliyannis, ISBN 978-953-51-0224-3, Charpter 11.

Clarissa Peterson, C., 2014. Learning Responsive Web

Design. O'Reilly Media, Inc. ISBN: 9781449362942.

Cockburn, A., 2002. Agile Software Development.

Boston, Addison-Wesley.

Dos Santos Rosado da Cruz A., M., R., 2010. Automatic

Generation of User Interfaces from Rigorous Domain

and Use Case Models. Ph-D Thesis, Departamento de

Engenharia Informática, Faculdade de Engenharia da

Universidade do Porto.

Ghiani, G., Manca, M., Paternò. F., Porta, C., 2014.

Beyond Responsive Design: Context-Dependent

Multimodal Augmentation of Web

Applications. MobiWIS 2014: 71-85.

Kozuruba, S., 2010. Modellbasierte Anforderungs-analyse

für die Entwicklung von adaptiven RIAs. Institut für

Informatik Ludwig-Maximilians-Universität

München, DiplomArbeit.

Limbourgh, Q., 2004. Multi-Path Development of User

Interfaces. PhD-Thesis. Université catholique de

Louvain.

Manca, M., Paternò. F., Santoro, C., Spano, L., D.,

2013. Generation of Multi-Device Adaptive

MultiModal Web Applications. MobiWIS 2013: 218-

232.

Paternò, F., Santoro, C., Spano. L. D., 2009. MARIA: A

universal, declarative, multiple abstraction-level

language for service-oriented applications in

ubiquitous environments. ACM Trans. Comput.-Hum.

Interact., 16(4):1-30.

Puerta, A. R., 1997. A Model-Based Interface

Development Environment, in IEEE Software 14(4),

pp. 41–47.

Sossou, U., Shenoy, A., 2014. Learning Bootstrap. Packt

Publishing. ISBN: 9781782161844.

Thevenin, D., 2001. Adaptation en Interaction Homme

Machine: le cas de la Plasticité, Ph.D. thesis,

Université Joseph Fourrier, Grenoble.

Valverde Giromé, F., 2010. OOWS 2.0: Un Método De

Ingeniería Web Dirigido Por Modelos Para La

Producción De Aplicaciones WEB 2.0. PhD thesis.

