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Abstract

In this paper we prove the correctness of a compiler for a call-by-name language using step-indexed logical
relations and biorthogonality. The source language is an extension of the simply typed lambda-calculus
with recursion, and the target language is an extension of the Krivine abstract machine. We formalized the
proof in the Coq proof assistant.
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1 Introduction

There are many tools and frameworks available to analyze programs and to prove

desirable properties about them, for instance, that they meet their specification.

Several methods of static analysis such as program verification, and abstract inter-

pretation can be used to lower the chance of letting errors go into deployed programs.

However, a machine seldom executes source programs directly. Instead, they are

translated into low-level programs with the help of a compiler. Therefore, we must

consider the potential errors that the compilation process might introduce: a naive

translation of a source program may easily invalidate its properties, making the ef-

fort initially invested useless. Dynamic program analysis, such as testing, may help

finding errors in the executable code, but it is not enough when it comes to critical

systems, which demand greater guarantees of security and reliability. It becomes

necessary to prove that the compiler preserves semantics, that is, that the program
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generated by the compiler behaves exactly as the semantics of the source program

indicates.

Since the first proofs of compiler correctness appeared many years ago [20,21],

there has been a considerable amount of progress in the topic. Of particular im-

portance is the work of the CompCert project [17], a certified compiler for a large

subset of the C programming language. In the case of functional languages we can

mention [8] which is a certified compiler for the the simply-typed lambda calculus,

and [4] where the source language is a call-by-value functional language, and the

target is a variant of the SECD machine [16].

In order to prove a compiler correct it is necessary to find a connection between

the semantics of the source language and the semantics of the target language. In

general, the latter is described operationally: we define which are the instructions

available in the machine (a real microprocessor or an abstract machine) and how

those instructions modify the configuration as they are executed. On the other

hand, there are many ways to describe the semantics of the source language, and the

structure of the proof of correctness is highly dependent on which method is used.

There are proofs of compiler correctness based on the big-step semantics [9,19],

small-step semantics [2], or denotational semantics [4,8] of the source language,

among others.

In this work we prove the correctness of a compiler for a typed call-by-name

functional language, and the proof is based on the domain-theoretic denotational

semantics of the language. The compiler translates a well-typed term of the source

language into a list of instructions for the Krivine machine (KAM) [15]. We use

step-indexed logical relations [1,3] and biorthogonality [23] to capture the notion of

correctness in a compositional and modular way. These two techniques have been

used before in combination to obtain proofs of compiler correctness [4,5,12] and also

applied in other topics such as program equivalence [11]. As far as we know, no

previous work has applied these techniques to prove the correctness of a compiler

targeting the KAM and for a call-by-name language.

The approach we follow in this paper has been used before by [4] but applied to

a call-by-value language and the SECD machine. In this work we revise the method

in such a way that it becomes applicable in a call-by-name language and the KAM

machine, and we obtained a simpler definition of the logical relations and a cleaner

proof of correctness.

We formalized all the results in the Coq proof assistant, and the code is available

online [25]. We used and extended a domain theory library [6] as a basis for the

formalization of the semantics and the logical relations.

The rest of the paper is organized as follows. In Section 2 we present the

source language and its denotational semantics. We continue in Section 3 with the

target language and its operational semantics. We present a general explanation of

biorthogonality in Section 4 and then we apply this technique in Section 5 in which

we present our first logical relation that we called “denotational approximation”.

In Section 6 we introduce step-indexing and some results about its combination

with biorthogonality. We apply both biorthogonality and step-indexing in Section
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7 to construct the second logical relation called “operational approximation”. We

comment on the formalization in Coq in Section 8 and in Section 9 we conclude.

2 The Source Language

The terms of the source language are the following:

Definition 2.1 (Language terms).

T � t ::= λ t | t1 t2 | n | rec t | m | �n (t1, . . . , tn)

| (t0, t1) | fst t | snd t | ifz t . t′

Hereafter we use the notation T � t to specify both the set defined by the

grammar and our naming convention for meta-variables ranging over it. The first

three constructors correspond to the lambda calculus with de Bruijn indices. The

language also includes a fixed-point operator, integer constants, strict arithmetic

operators, pairs and projections. The last constructor is a conditional projection.

We choose this form of conditional for convenience, but a more familiar constructor

of the form ifz t then t1 else t2 can be expressed as ifz t . (t1, t2). We write �n to

represent any strict arithmetic operator with arity n > 0; operators are written in

prefix position and cannot be partially applied.

The type system is rather simple. We have a single basic type int, and also

arrow and product types. A context is defined to be a list of types, accordingly

with the use of de Bruijn indices.

Definition 2.2 (Types and contexts).

Θ � θ ::= int | θ→ θ′ | θ× θ′

Θ∗ � π ::= [] | θ ::π

We present the typing rules for the language in Figure 1, which are quite familiar.

The conclusion of a typing rule is a judgment of the form π � t : θ which states

that the term t has type θ under the context π.

2.1 Denotational Semantics

The denotational semantics of the source language is given in a domain-theoretic

setting because of the presence of the fixed-point operator. In this section, and in

the rest of the paper, we will follow a traditional treatment of domain theory –

for example, we will not comment on how one calculates the supremum of a chain.

In contrast, our formalization in Coq is based on a constructive domain theory

library [6] where the supremum is given by a function (in Coq’s language).

Before coming to the semantics of the language, we recall some concepts and

notations of domain theory. The domain of continuous functions from a domain P
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(TyAbs)
θ ::π � t : θ′

π � λ t : θ→ θ′
(TyApp)

π � t1 : θ→ θ′ π � t2 : θ

π � t1 t2 : θ′

(TyVar)
n < |π| π . n = θ

π � n : θ
(TyRec)

π � t : θ→ θ

π � rec t : θ
(Tyconst)

π � m : int

(TyOp)
π � ti : int i ∈ { 1, . . . , n }

π � �n (t1, . . . , tn) : int

(TyFst)
π � t : θ× θ′

π � fst t : θ
(TySnd)

π � t : θ× θ′

π � snd t : θ′

(TyPair)
π � t0 : θ π � t1 : θ′

π � (t0, t1) : θ× θ′
(TyCond)

π � t : int π � t′ : θ× θ

π � ifz t . t′ : θ

Fig. 1: Typing rules.

to a domain Q is written as [P → Q]. Any set P can be turned into the flat domain

P⊥ by adjoining a least element ⊥; this construction can be turned into a Kleisli

triple whose unit is ι↑ : P → P⊥ and its extension operation for a f : P → Q⊥ is

given by f∗⊥ = ⊥ and f∗ (ι↑x) = f x, for x ∈ P . The semantics of strict arithmetic

operators are based on abstract considerations: for a total function ⊕ : Z× Z → Z

we can get a function ⊕∗ : (Z×Z)⊥ → Z⊥ by ⊕∗ = (ι↑ ·⊕)∗. Since the denotation of

operands will be an unlifted tuple of lifted values, we compose ⊕∗ with the strength,

τA,B : A⊥×B⊥ → (A×B)⊥, to get the function ⊕⊥ = ⊕∗ · τZ,Z; notice that one can
apply the same construction for an n-ary operation. Given a function f : P → D

from the predomain P to a domain D, we write f⊥⊥ : P⊥ → D for the function

such that f⊥⊥ ⊥ = ⊥ and f⊥⊥ (ι↑ x) = f x, for x ∈ P . If f : D → D is a continuous

function over the domain D, then YD f denotes the least fixed-point of f .

As usual, once we choose a domain for the denotation of atomic types, in our case

int, the semantics of arrow types and contexts are determined by the exponentials

and finite products of the underlying category.

Definition 2.3 (Semantics of types and contexts).

� int � = Z⊥
� θ→ θ′ � =

[
� θ � → � θ′ �

]

� θ× θ′ � = � θ � × � θ′ �

� [] � = {∗}
� θ ::π � = � θ � × �π �

In Figure 2 we present the denotational semantics for typing derivations of the

source language. We use the symbol λ̂ as a meta-binder to avoid confusion with the

symbol λ used in abstractions. Also, if γ is a finite product, we write γ � n for its

n-th projection. The coherence of this semantics –meaning that different judgments

of the same expression have the same denotation– has already been proved for a

language even larger than the one we use in this paper [24].
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� � : |π � t : θ| → �π � → � θ �

�π � λ t : θ→ θ′ � γ = λ̂ a . � θ ::π � t : θ′ � (a, γ)

�π � t1 t2 : θ′ � γ = (�π � t1 : θ→ θ′ � γ) (�π � t2 : θ � γ)

�π � n : π . n � γ = γ � n

�π � rec t : θ � γ = Y � θ � (�π � t : θ→ θ � γ)

�π � m : int � γ = ι↑m

�π � �n (t1, . . . , tn) : int � γ = �n
⊥ (d1, . . . , dn)

where dj = �π � tj : int � γ

�π � fst t : θ � γ = d0

where (d0, d1) = �π � t : θ× θ′ � γ

�π � snd t : θ � γ = d1

where (d0, d1) = �π � t : θ× θ′ � γ

�π � (t0, t1) : θ× θ′ � γ = (�π � t0 : θ � γ, �π � t1 : θ′ � γ)

�π � ifz t . t′ : θ � γ = (λ̂ z . if z = 0 then d0 else d1)⊥⊥ d

where d = �π � t : int � γ and (d0, d1) = �π � t′ : θ× θ � γ

Fig. 2: Denotational semantics.

Semantic Chain

The semantics of a typing judgment can be thought of as the limit of increasingly

better defined denotational values. In Figure 3 we define a family of functions � �i,

indexed by natural numbers. It is easy to see that �π � t : θ �i 
 �π � t : θ �i+1,

thus the sequence �π � t : θ �i forms a chain in the domain
[
�π � → � θ �

]
and its

supremum is �π � t : θ �.

Later we prove that each element of the semantic chain �π � t : θ �i approxi-

mates the compiled code for t, a key point in the correctness proof.

3 The Target Language

3.1 The Abstract Machine

We use an abstract machine as our target language. Abstract machines are often

used as an idealized model of execution; they are in general simpler than a real

machine since they lack certain hardware details that would otherwise complicate

the reasoning and the analysis of its behaviour. They are therefore suitable as an

intermediate language for compilation [10]. We proceed with the definition of the
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� �i : |π � t : θ| → �π � → � θ �

�π � t : θ �0 γ = ⊥

�π � λ t : θ→ θ′ �i+1 γ = λ̂ a . � θ ::π � t : θ′ �i (a, γ)

�π � t1 t2 : θ′ �i+1 γ = (�π � t1 : θ→ θ′ �i γ) (�π � t2 : θ �i γ)

�π � n : π . n �i+1 γ = γ � n

�π � rec t : θ �i+1 γ = �π � t : θ→ θ �i γ (�π � rec t : θ �i γ)

�π � m : int �i+1 γ = ι↑m

�π � �n t1, . . . , tn : int �i+1 γ = �n
⊥ (d1, . . . , dn)

where dj = �π � tj : int �i γ

�π � fst t : θ �i+1 γ = d0

where (d0, d1) = �π � t : θ× θ′ �i γ

�π � snd t : θ �i+1 γ = d1

where (d0, d1) = �π � t : θ× θ′ �i γ

�π � ifz t . t′ : θ �i+1 γ = (λ̂ z . if z = 0 then d0 else d1)⊥⊥ d

where d = �π � t : int �i γ and (d0, d1) = �π � t′ : θ× θ �i γ

Fig. 3: Semantic chain.

components of our machine. The instructions are the following:

Definition 3.1 (Machine instructions).

I � c, c′ ::= Grab � c | Push c � c′ | Access n

| Fix � c | Pair (c, c′) | Fst | Snd

| Frame �n | Op | Const m

The first three instructions correspond to the classic KAM that are sufficient

to evaluate the pure lambda calculus. We have added new instructions to handle

recursion, strict arithmetic operators, pairs, and conditionals. We now define the

components of the machine and some meta-variables as follows:
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Definition 3.2 (Machine components).

Closures: Γ � α ::= (c, η)

Environments: H � η ::= [] | α :: η

Operators: Ops � �n

Stack values: M � μ ::= α | [�n m • α] | 〈α, α′〉

Stacks: S � s ::= [] | μ :: s

Configurations: W = Γ× S � w ::= (α, s)

A machine configuration is a pair (α, s) where α is a closure and s is a stack. A

closure is also a pair (c, η) where c is an instruction and η is a machine environment;

which is itself a list of closures. A stack value can be either a closure, a frame, or a

pair of closures. We use frames [27] to store the arguments of operators throughout

execution: a frame [�n m • α] has three components: the list m of arguments

already computed, a hole to indicate the argument that is being computed at the

time, and a list α of closures for computing the remaining arguments. The transi-

tion rules of the KAM are shown in Figure 4; they define a deterministic relation

−→ ⊆ W×W . We use the symbol “|” in the rules to help the reader to distinguish

the components of the configuration.

3.2 Compilation

Now that we have defined both the source and the target language, we present

in Figure 5 the compilation function: each well-typed term is mapped into KAM’s

code. For a closed term t of type int, we expect that the execution of ((� t �, int, []), [])

leads to a configuration ((Const m, η), []) if � � t : int �() = ι↑m. In the next

sections we will prove that statement.

As a simple example, consider the compilation of the term (λx. x ∗ 2) 3 that

with our syntax is written (λ (∗) (0, 2)) 3,

� (λ (∗) (0, 2)) 3 �π, int =

Push (Const 3) � Grab � Push (Const 2) � Push (Access 0) � Frame (∗) .

A step-by-step execution of this code might be useful to understand the transi-

tion rules. In particular, this example illustrates how frames are used to compute
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(Grab � c, η) | α :: s −→ (c, α :: η) | s

(Push c � c′, η) | s −→ (c′, η) | (c, η) :: s

(Access n, η) | s −→ η . n | s

if n < |η|

(Fix � c, η) | s −→ (c, η) | α :: s

where α = (Fix � c, η)

(Pair (c0, c1), η) | α :: s −→ α | 〈α0, α1〉 :: s

where αi = (ci, η)

(Fst, η) | 〈α0, α1〉 :: s −→ α0 | s

(Snd, η) | 〈α0, α1〉 :: s −→ α1 | s

(Frame �n, η) | α1 ::α :: s −→ α1 | [�n • α] :: s

if |α| = n− 1

(Const m0, η) | [�n m • α′, α] :: s −→ α′ | [�n m, m0 • α] :: s

(Const m0, η) | [�n m • ] :: s −→ (Const m, η) | s

where m = ��n �m,m0 and |m| = n− 1

(Const m0, η) | 〈α0, α1〉 :: s −→ αi | s

where i = 0 if m0 = 0 and i = 1 otherwise.

Fig. 4: Machine transitions.

the arguments of a strict operator:

Push (Const 3) � Grab � Push (Const 2) � Push (Access 0) � Frame (∗), η, s −→

Grab � Push (Const 2) � Push (Access 0) � Frame (∗), η, (Const 3, η) :: s −→

Push (Const 2) � Push (Access 0) � Frame (∗), (Const 3, η) :: η, s −→

Push (Access 0) � Frame (∗), η′, (Const 2, η′) :: s where η′ = (Const 3, η) :: η −→

Frame (∗), η′, (Access 0, η′) :: (Const 2, η′) :: s −→

Access 0, η′, [(∗) • (Const 2, η′)] :: s −→

Const 3, η, [(∗) • (Const 2, η′)] :: s −→

Const 2, η′, [(∗) 3 • ] :: s −→

Const 6, η′, s .
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�λ t �π, θ→ θ′ = Grab � � t �θ ::π, θ′

� t1 t2 �π, θ′ = Push (� t2 �π, θ) � � t1 �π, θ→ θ′

�n �π, π . n = Access n

� rec t �π, θ = Fix � (� t �π, θ→ θ)

�m �π, int = Const m

��n (t1, . . . , tn) �π, int = Push (� tn �π, int) � . . . � Push (� t1 �π, int) � Frame �n

� (t0, t1) �π, θ× θ′ = Pair (� t0 �π, θ, � t1 �π, θ′)

� fst t �π, θ = Push Fst � � t �π, θ× θ′

� snd t �π, θ = Push Snd � � t �π, θ× θ′

� ifz t . t′ �π, θ = Push � t �π, int � � t′ �π, θ× θ

Fig. 5: Compilation function.

Note that, unlike the SECD machine, the Krivine abstract machine does not store

the final value in the top of stack. Instead, one has to look at the entire final closure

to infer the value computed by the machine. In this example, assuming s = [], the

final closure is (Const 6, η′).

4 Biorthogonality

Biorthogonality is a well-known technique that has been used in program equiva-

lence [23], realizability [14], and compiler correctness [4,12]. The general idea can

be explained as follows.

Let E and T be two sets, and |= ⊆ E × T a relation between those two sets.

If we think T as a set of tests, and |= as a satisfability relation, then e |= t states

whether an element e ∈ E satisfies the test t ∈ T . Suppose T0 is a subset of T , we

write T �
0 for the set of elements that satisfy all the tests in T0:

T �
0 = {e ∈ E | for all t ∈ T0, e |= t } .

As a concrete example, if T are formulas and E are models of a particular logic,

then T �
0 is the set of models that satisfy all the formulas in T0. We can also define

a dual operation to obtain the set of tests that are satisfied by all the elements in

a subset E0 ⊆ E :
E⊥
0 = {t ∈ T | for all e ∈ E0, e |= t } .

The operators ⊥ and � are often called orthogonal, and it is a well-known fact

that they form an antitone Galois connection [7,22]. As a consequence, the function

( )⊥� : P(E) → P(E) is a closure operator for the poset 〈P(E), ⊆〉.
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The key point of biorthogonality is that for a given set E0 we can obtain the set

E⊥�
0 which is an extension of E0 that satisfies all the tests in E⊥

0 . That is, we are able

to extend the set E0 without “losing” any test and hence maintaining the satisfability

relation. In the next section we present the concrete use of biorthogonality that is

useful for our purposes.

5 Denotational Approximation

In this section we prove the correctness of the compiler for terms whose denotation

is different from bottom. The strategy is to define a logical relation which states

when a denotational value d approximates a closure α at type θ; then we prove the

fundamental lemma of logical relations, finally concluding that the compilation of

a term is approximated by every element of its semantic chain.

Our logical relation is parameterized over a set of observations of the KAM.

Given a set of observations R ⊆ W = Γ × S, we use biorthogonality to define this

logical relation – following the terminology of the previous section, we will say that

stacks are tests for closures. All the reasoning of this section assumes that R is

closed by anti-execution, i.e. (α, s) ∈ R and (α′, s′) −→∗(α, s) implies (α′, s′) ∈ R;

moreover, to keep our reasoning constructive we will also ask for the existence of

an “excluded” closure: that is an α̂ such that (α̂, s) �∈ R for any s ∈ S (a closure

that does not satisfy any test). Termination is an example of an observation which

is closed by anti-execution and has an excluded closure (think of the compilation of

rec λx.x).

The relations �θ, �θ⊆ Γ × � θ � are defined by mutual recursion over types as

follows:

Definition 5.1 (Denotational approximation).

α �θ ⊥ for any closure α ,

(Const m, η) �int ι↑m ,

(Grab � c, η) �θ→ θ′ f iff for all α and d, if α �θ d then (c, α :: η) �θ′ f d ,

(Pair (c0, c1), η) �θ× θ′ (d0, d1) iff (c0, η) �θ d0 and (c1, η) �θ′ d1 ,

α �θ d iff α ∈ Γθ(d)⊥R�R , where Γθ(d) = {α | α �θ d } .

Let α ∈ Γ and d ∈ � θ �, then α �θ d is read “d is an approximation of type

θ to the closure α” but we often omit the type and just write “d approximates

the closure α”. In a sense, the set Γθ(d) contains the closures that are “strongly

approximated” by d, and Γθ(d)⊥R�R is the extension of this set obtained through the

orthogonal operators. Note that, in this definition, the transitions of the machine

are not relevant except in the restrictions we imposed to the set of observations.

We let ⊥ to be an approximation of any closure; this is consistent with the

idea of approximation since ⊥ is a value with a minimum amount of information.

Since Γθ(⊥) = Γ, by the “excluded closure” assumption, we know Γθ(⊥)⊥R = ∅;
consequently s ∈ Γθ(d)⊥R always implies d �= ⊥. The fact that R is closed by
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anti-execution leads to the following (trivial) lemma:

Lemma 5.2 Let α, α′ ∈ Γ and s, s′ ∈ S. If (α′, s′) −→∗ (α, s), α �θ d and

s ∈ Γθ(d)⊥R then (α′, s′) ∈ R.

We define a relation �π between machine-level environments and denotational

environments, as a point-wise extension of the �θ relation.

Definition 5.3 (Denotational approximation for environments).

[] �[] ()

α :: η �θ ::π (d, γ) iff α �θ d and η �π γ.

If we follow the general schema of biorthogonality presented before, the elements

of Γθ(d)⊥R are the tests that a closure must satisfy to be approximated by the value

d. Since this set depends on the type θ, we can also talk about “tests of type θ”

(which is a frequent terminology in the literature about realizability). In Krivine’s

realizability tests of arrow types θ→ θ′ are stacks α :: s where α is a realizer of θ and

s is a test of type θ′; as the following lemma shows, that is a good characterization

in our setting.

Lemma 5.4 Let α ∈ Γ, s ∈ S, f ∈ � θ→ θ′ �, d ∈ � θ �. If α �θ d and

s ∈ Γθ′(f d)⊥R then α :: s ∈ Γθ→ θ′(f)⊥R .

Proof. In order to prove α :: s ∈ Γθ→ θ′(f)⊥R we take α′ ∈ Γθ→ θ′(f) and prove

(α′, α :: s) ∈ R. Since Γθ′(f d)⊥R is not empty we know f d �= ⊥ and hence f �= ⊥.

Therefore, we have by inversion that α′ is a closure of the form (Grab � c, η) where

η ∈ H and c ∈ I. Moreover, since α �θ d we have (c, α :: η) �θ′ f d. Consequently,

since (α′, α :: s) −→ ((c, α :: η), s) and s ∈ Γθ′(f d)⊥R we conclude (α′, α :: s) ∈ R.�

Analogously, it is easy to see that tests for a product type θ× θ′ can be defined

as those stacks having a “projection” at the top followed by a test for the projected

type. For the sake of brevity we do not show characterization of tests for int, which

can be found in the formalization.

Lemma 5.5 Let s ∈ S, η ∈ H, d0 ∈ � θ �, d1 ∈ � θ′ �. If s ∈ Γθ(d0)
⊥R

then (Fst, η) :: s ∈ Γθ× θ′((d0, d1))
⊥R . In a similar manner, if s ∈ Γθ′(d1)

⊥R then

(Snd, η) :: s ∈ Γθ× θ′((d0, d1))
⊥R .

The next lemma provides various ways to combine closures using machine in-

structions, in order to obtain new approximations of different types. This is an

important property since it essentially says that we can merge “correct” code frag-

ments (potentially generated by different compilers, or hand-written) to obtain a

larger code fragment that is also correct.

Lemma 5.6 (i) If (c, η) �θ→ θ′ f and (c′, η) �θ d, then (Push c′ � c, η) �θ′ f d.

(ii) If η �π γ and n < |π|, then (Access n, η) �π.n γ � n.

(iii) If (c, η) �θ→ θ f and (Fix � c, η) �θ d, then (Fix � c, η) �θ f d.
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(iv) If (ci, η) �int di for all i ∈ { 1, . . . , n }, then
(Push cn � . . . � Push c1 � Frame �n, η) �int �n

⊥ (d1, . . . , dn).

(v) If (c, η) �θ× θ′ (d0, d1), then (Push Fst � c, η) �θ d0 and

(Push Snd � c, η) �θ′ d1.

(vi) If (c, η) �θ× θ (d0, d1) and (c′, η) �int d, then

(Push c′ � c, η) �θ (λ̂ z . if z = 0 then d0 else d1)⊥⊥ d.

By using Lemma 5.6, we can easily prove that the compilation of a typing

derivation is related with every element of its semantic chain.

Lemma 5.7 (Denotational approximation of compiled code) If η �π γ

then for all i, (� t �π, θ, η) �θ �π � t : θ �i γ.

Proof. The proof is by induction in the typing derivation. However, in the case

of the fixed-point operator, we need a nested induction over the index i. We now

show the proof for that case.

Let c = � t �π, θ→ θ, let fi = �π � t : θ→ θ �i γ, and di = �π � rec t : θ �i γ.

We want to prove (Fix � c, η) �θ di by induction over i. The case i = 0 is trivial

since d0 = ⊥ (and ⊥ is always an approximation). In the inductive case, we assume

(Fix � c, η) �θ di and prove (Fix � c, η) �θ di+1. We have (c, η) �θ→ θ fi by

inductive hypothesis, and hence by Lem. 5.6 we get (Fix � c, η) �θ→ θ fi di = di+1.�

It is possible to relate the compilation of a term directly to its semantics by

defining an admissible extension of �θ; the interested reader is invited to consult

this extension in the formalization.

Note that Lemma 5.7 holds for any choice of R that satisfies the two condi-

tions we stated before: it must be closed by anti-execution and there must be an

excluded closure. In particular, to prove a “standard” version of the compiler cor-

rectness theorem for closed terms of type int one fixes the set of observation to be

Rm = {w ∈ W | w −→∗ ((Const m, η), []), for any environment η}.

Lemma 5.8 If t is a closed term, and � [] � t : int � () = ι↑m, then there is some

environment η such that ((� t �[], int, []), []) −→∗ ((Const m, η), []).

Proof. In order to prove this result, we use Lemma 5.7 choosing Rm as the set of

observations. We have then (� t �[], int, []) �int � [] � t : int �i () for all i ∈ N. But

since � int � is a flat domain, there is a j ∈ N such that � [] � t : int �j () = ι↑m
and hence we have (� t �[], int, []) �int ι↑m. Since [] ∈ Γint(ι↑m)⊥Rm , by Lemma 5.2

we have ((� t �[], int, []), []) ∈ Rm, which is what we wanted by the definition of Rm.�

In order to prove a similar lemma for divergent terms we use another logical

relation with similar properties.

6 Step-indexed Logical Relations

To prove the correctness of the compiler for terminating terms it was necessary

to relate code fragments with each element of the semantic chain; as the proof of
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Lemma 5.7 shows, this allowed us to make a nested induction when considering the

case for rec t. If the source language were strong normalizing (i.e., by setting aside

the fixed point operator), there would be no need to introduce the semantic chain

and correctness would directly relate the compiled code with the semantics of the

term.

A more general approach to deal with the subtleties introduced by the recursion

operator is using step-indexed logical relations. This method has been used alone

and in combination with biorthogonality to obtain proofs of compiler correctness

[5,12] and program equivalence [1,11], among other topics. The basic idea is that

the logical relation is defined incrementally through a family of relations indexed by

natural numbers. Thus, one can prove different properties about this relation using

induction in the index. Step-indexing is helpful to capture a notion of approximation

at the operational side, analogous to that provided by the semantic chain at the

denotational side. In this section we introduce step-indexed families and show some

results regarding the combination of these families with the orthogonal operators.

Definition 6.1 (Step-indexed family). A family Ri ⊆ A is step-indexed if R0 = A

and for all i ∈ N, Ri+1 ⊆ Ri.

An example of a step-indexed family over the set of KAM configurations is given

by letting Ri be the set of configurations that can make at least i transition steps.

While in the previous section we parameterized all the development over a set

of observations, in the next section we will work with any step-indexed family of

observations closed by anti-execution.

Given a family of observations Ri ⊆ E × T , we can define a binary relation

R ⊆ Ê × T̂ over indexed elements Ê = N× E and indexed tests T̂ = N× T .

Definition 6.2 Let Ri ⊆ E × T be an indexed family, then R ⊆ Ê × T̂ is given by

(i, e)R (j, t) iff (e, t) ∈ Rmin(i,j).

Let us make explicit the definition of the orthogonal operator ( )⊥R for the relation

R:

X⊥R = { (j, t) ∈ T̂ | for all (i, e) ∈ X, (i, e) R (j, t) } ,

which means that to prove (j, t) ∈ X⊥R one has to check that every element (i, e)

in X is related with (j, t) via R. Now we prove that one can simplify the reasoning

when Ri is step-indexed.

Definition 6.3 (Down-closed set). For any set E , we say thatX ⊆ Ê is down-closed

if whenever (i, e) ∈ X and j � i, then (j, e) ∈ X.

Lemma 6.4 Let Ri ⊆ E ×T be step-indexed and X ⊆ Ê, then X⊥R is down-closed.

Proof. Let (j, t) ∈ X⊥R and i � j. Suppose (k, e) ∈ X, then (e, t) ∈ Rmin(k,j).

Since min(k, i) � min(k, j), we have Rmin(k,j) ⊆ Rmin(k,i) and hence (e, t) ∈
Rmin(k,i). Therefore, (i, e) ∈ X⊥R . �

As the following lemma shows, when restricted to down-closed sets, one can give

a simpler definition of ( )⊥R in which it is only necessary to check those elements
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that satisfy i � j.

Lemma 6.5 Let Ri ⊆ E × T . If X is down-closed, then

X⊥R = { (j, t) ∈ T̂ | for all (i, e) ∈ X, i � j implies (e, t) ∈ Ri } .

Since Lemmas 6.4 and 6.5 can also be proved for the operator ( )�R , we can

construct an alternative definition of the closure operator.

Lemma 6.6 Let Ri ⊆ E × T be step-indexed and X ⊆ Ê, then

X⊥R�R = { (j, e) ∈ Ê | for all (i, t) ∈ X⊥R , i � j implies (e, t) ∈ Ri } .

7 Operational Approximation

In this section we define a relation of approximation from machine closures to deno-

tational values. In the same vein as in section 5, these relations are defined by means

of the closure operator associated to a set of observations. The logical relation is

parameterized by a step-indexed family of relations Ri ⊆ Γ×S satisfying the follow-

ing condition: (α, s) ∈ Ri and (α′, s′) −→ (α, s) imply (α′, s′) ∈ Ri+1. Note that

this condition implies that each relation of the family is closed by anti-execution.

This time, instead of working with a single relation of approximation, we define

simultaneously two families of relations, �θ
i ,�θ

i ⊆ Γ×� θ �, indexed by natural num-

bers. Roughly speaking, the index measures the “accuracy” of the approximation:

the relation becomes finer as the index increases, starting with the total relation at

index 0, where every closure approximates every denotation.

Definition 7.1 (Operational approximation).

α �θ
0 d ,

(Const m, η) �int
i ι↑m ,

(Grab � c, η) �θ→ θ′
i f iff for all k � i, if α �θ

k d then (c, α :: η) �θ′
k f d ,

(Pair (c0, c1), η) �θ× θ′
i (d0, d1) iff (c0, η) �θ

i d0 and (c1, η) �θ′
i d1 ,

α �θ
k d iff (k, α) ∈ Γθ(d)⊥R�R , where Γθ(d) = { (k, α) | α �θ

k d } .

While in the denotational approximation (Def. 5.1), ⊥ was strongly related with

any closure, now ⊥ is strongly approximated by any closure only at level 0. As a

consequence, we have (k + 1, α) �∈ Γint(⊥); from this and from the fact that Ri is

step-indexed, is easy to show Γint(⊥)⊥R = N × S. This implies that a closure α

which approximates ⊥ at every level must be a divergent closure.

Lemma 7.2 Define Ri = {w | w can make at least i transition steps }. Let α ∈ Γ

such that α �int
k ⊥ for all k ∈ N, then (α, s) diverges for any stack s.

Proof. Given that Γint(⊥)⊥R = N × S, we have that for any pair (N, s) ∈ N × S

it holds (α, s) ∈ RN . That is, (α, s) can make an arbitrarily large number of

transition steps. �
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The intuitive interpretation of the indices given above suggests that when α is

an approximation at index k, it should also be an approximation at a smaller index

j � k. In addition, the approximation relation is monotone with respect to the

domain order.

Lemma 7.3 Let α ∈ Γ, d 
 d′ ∈ � θ �, and j � k. If α�θ
k d then α�θ

j d
′. Similarly,

if α �θ
k d then α �θ

j d′.

From this lemma we deduce that Γθ(d) is down-closed and monotone: d 
 d′

implies Γθ(d) ⊆ Γθ(d′). Moreover the family θk(α) = {d | α �θ
k d} is step-indexed

over � θ �, and each θk(α) is closed by suprema of chains.

It is not surprising that we can construct tests for compound types by combining

tests for simpler types. Recall that this time “tests” are pairs (k, s) where k ∈ N

and s ∈ S. We only show here one way to obtain tests for product types, and there

are other possible combinations that can be examined in the formalization.

Lemma 7.4 Let α ∈ Γ, s ∈ S. If α �int
k ι↑ 0 and (k, s) ∈ Γθ(d0)

⊥R then it

holds (k, α :: s) ∈ Γθ× θ′((d0, d1))
⊥R. Similarly, if α �int

k ι↑m with m �= 0 and

(k, s) ∈ Γθ(d1)
⊥R then (k, α :: s) ∈ Γθ× θ′((d0, d1))

⊥R.

The following lemma presents the operational counterpart of Lemma 5.6, show-

ing that approximations compose well with the constructors of the language. We

show the proof only for the fixed point operator.

Lemma 7.5 (i) If (c, η) �θ→ θ′
k f and (c′, η) �θ

k d, then (Push c′ � c, η) �θ′
k f d.

(ii) If η �π
k γ and n < |π|, then (Access n, η) �π.n

k γ � n.

(iii) If (c, η) �θ→ θ
k f then (Fix � c, η) �θ

k Y � θ � f .

(iv) If (ci, η) �int
k di for all i ∈ { 1, . . . , n }, then

(Push cn � . . . � Push c1 � Frame �n, η) �int
k �n

⊥ d1, . . . , dn.

(v) If (c, η) �θ× θ′
k (d0, d1), then (Push Fst � c, η) �θ

k d0 and

(Push Snd � c, η) �θ′
k d1.

(vi) If (c, η) �θ× θ
k (d0, d1) and (c′, η) �int

k d, then

(Push c′ � c, η) �θ
k (λ̂ z . if z = 0 then d0 else d1)⊥⊥ d.

Proof. Let α = (c, η), let α′ = (Fix � c, η), and d = Y � θ �f . Our goal is to

prove that α �θ→ θ
k f implies α′ �θ

k d, we proceed by induction over k. The

case k = 0 is trivial since �θ
0= Γ × � θ �. Now we assume α �θ→ θ

k+1 f and prove

α′ �θ
k+1 d. We take (l, s) ∈ Γθ(d)⊥R with l � k + 1, and prove (α′, s) ∈ Rl.

We have two cases depending on whether l � k or l = k + 1. In the first case

we use our inductive hypothesis α′ �θ
k d to obtain (α′, s) ∈ Rl. Now assume

l = k + 1. We have (k + 1, s) ∈ Γθ(d)⊥R and hence (k, s) ∈ Γθ(d)⊥R . Since

d = f d we obtain (k, s) ∈ Γθ(f d)⊥R . By inductive hypothesis we have α′ �θ
k d,

and hence (k, α′ :: s) ∈ Γθ→ θ(f)⊥R . We had α �θ→ θ
k+1 f by assumption, and hence

(α, α′ :: s) ∈ Rk. Since (α′, s) −→ (α, α′ :: s) we obtain (α′, s) ∈ Rk+1 = Rl. �
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The fundamental lemma of the logical relation, which states that the compilation

of a typing derivation is an approximation of its semantics, is a direct consequence

of Lemma 7.5.

Lemma 7.6 (Operational approximation of compiled code) For all i ∈ N,

if η �π
i γ, then (� t �π, θ, η) �θ

i �π � t : θ � γ.

Here the relation �π
i is defined as a pointwise extension similarly to 5.3. Lemmas

7.6 and 7.2 lead to the following result.

Lemma 7.7 If t is a closed term, and � [] � t : int � () = ⊥, then the configuration

((� t �[], int, []), s) diverges for any stack s.

Finally, as a consequence of lemmas 5.8 and 7.7, we can state a compiler cor-

rectness theorem.

Theorem 7.8 (Compiler correctness) Suppose t is a closed term of type int. If

� [] � t : int � () = ι↑m, then ((� t �[], int, []), []) −→∗ ((Const m, η), []), for some

η ∈ H. Otherwise, if � [] � t : int � () = ⊥, then ((� t �[], int, []), []) diverges.

8 Formalization

All the results presented in this paper has been completely formalized in the proof

assistant Coq (version 8.4pl6 with Ssreflect 1.5). The formalization is construc-

tive, as we do not assume any classical axiom. We invite the curious reader to

download [25] and explore the formalization as it complements the content of this

article.

Our formal development is based on a domain-theory library by Benton et al. [6]

that provided us with the basis to formalize the denotational semantics of the lan-

guage; our formalization would have taken much more time without that library.

As useful as it was, we found some shortcomings that we turned into extensions:

• The original “extension” function, named kleisli, of the lifting monad has type

kleisli : (P → Q⊥) → (P⊥ → Q⊥). This operator is adequate for a call-by-

value language; in our setting, however this is not enough, the semantics of the

conditional asks for the following operator gkleisli : (P → D) → (P⊥ → D)

where D is any pointed cpo (not necessarily obtained through lifting).

• A formalization of n-ary morphisms and finite products used to implement the

semantics of n-ary operators and to prove some results about them.

• A variety of results regarding Cartesian closed categories, cpos and the compu-

tation of least upper bounds.

We also extended a formalization of sequences (finite and infinite) originally

written in [18]. Our own development (excluding the domain-library) has 6134

lines of code in total, 2096 of which are specifications and 4038 are proofs.
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9 Conclusion and Further Work

We have proved the correctness of a compiler for a call-by-name functional language

by means of logical relations defined using biorthogonality and step-indexing. This

abstract setting provides a certain degree of flexibility with respect to modifications

of the execution environment and it is also modular with respect to the constructors

of the language; in particular, the use of step-indexing enabled us to deal with

inductive proofs in the presence of recursion.

This approach is similar to [4] but with some important differences due to the

order of evaluation (call-by-name instead of call-by-value) and the nature of the

abstract machine (KAM rather than the SECD machine). The lack of difference

between values and terms in the call-by-name setting turns our logical relations

simpler and more intuitive than those in [4]: there is only one kind of approximations

on the operational side (closures) and there is no need for a “monadic lifting”. In

addition, our definition of the orthogonal operators is simpler since there is no need

to parameterize them using environments or any other kind of value.

As future work we plan to extend the source language by enriching the type sys-

tem and adding new constructors. For example, in [26] we proved the correctness

of a compiler for a higher-order imperative language with respect to the big-step

operational semantics of the source language; it would be interesting to obtain a re-

lational proof of compiler correctness. We also intend to investigate the application

of this technique to lazy functional languages targeting the Sestoft abstract ma-

chine [28] or the STG machine [13]. We are also interested in applying the method

to other models of execution closer to real assembly code.
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