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Abstract— We used a  discrete  time version of  viability 
theory in order to study the sustainable therapies  against 
the cancer. We assume that the tumor is composed of two 
subpopulations, one resistant and the another sensitive. We 
consider a discrete model in order to simulate the response 
of this tumor to therapy, and we apply the Bellman equation 
within the viable control framework for calculating viability 
kernel,  so as to determine the existence of a therapy that 
maintain the cell population bounded. Both theoretical and 
numerical results are presented.
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INTRODUCTION

Systematic  administration  of  cytotoxic  drugs  is  the 
primary treatment strategy for patients with disseminated 
cancer. Whereas a wide range of treatment regimens are 
used  in  clinical  practice,  their  fundamental  goal  is 
typically to induce lethal toxicity in the largest possible 

number of tumoral cells. Thus, most research efforts in 
chemotherapy  are  focused  on  discovery  of  agents  and 
combinations of  agents,  doses,  and dose schedules  that 
maximize  the  killing  of  the  tumoral  cells,  while 
minimizing  the  toxicity  for  the  host.  In  most  clinical 
therapies,  patient's  tolerance  is  the  primary  factor  that 
bounds the dose of cytotoxic agents.

Is necessary to mention, that patients with cancer are 
usually  treated  near  the  maximum tolerated  dose,  with 
implicit intent to eradicate (cure) the tumor, even when 
such  an  outcome,  based  on  the  extensive  clinical 
experience, indicates that this is highly improbable [2, 7]. 

A  number  of  mathematical  approaches  have  been 
developed to optimize  the chemotherapy,  as  well  as  to 
limit  the  development  of  resistance.  For  instance,  the 
Norton-Simon model  [8],  found the  treatment  with  the 
highest  possible  dose  over  the  shortest  period  of  time 
(maximum dose density). High dose density is designed 
to  produce  the  maximal  tumoral  cells'  death,  and  to 
minimize  the  evolutionary  potential  of  the  resistant 
clones.  So,  each  patient  typically  receives 
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chemotherapeutic  doses,  near  the  side  effects  tolerable 
limit.  Generally,  high-density  chemotherapy  has 
improved  survival,  but  only  in  rare  cases  the  cure  is 
achieve, just for the most common epithelial tumors. It is 
because of the great heterogeneity in space and time of 
the tumor micro-environment, usually modeling through 
two or  more  subpopulations  of  cells  [7].  One of  these 
populations is sensitive to the therapy, whereas the other 
is resistant. The resistant populations are typically found 
in small numbers, because they fit less than the sensitive 
populations.  Sensitive  cells  have  a  higher  rate  of 
replication.  The  traditional  therapy  looks  for  the 
elimination  of  the  maximum  possible  quantity,  of 
malignant cells; but when this happens, the sensitive ones 
die  and  the  resistant  population,  can  proliferate  freely 
because of the absence of competition (see Fig.1).

We  proposed  an  alternative  approach  to  this 
methodology,  and  we  found  therapies  that  maintain 
bounded  the  sensitive  population;  and  in  this  way  we 
prevent the growth of the resistant cells, allowing that the 
overall  tumor burden,  remains  stable.  This  corresponds 
with  new medical  vision  of  the  cancer,  as  a  chronical 
disease, and which one the patient can live with.

Using the mathematical concept of viability kernel, we 
examined the model in order to find these therapies and 
the set  of  all  viable  states,i.e.  for  which  there  exists  a 
control  policy  maintaining  them  within  a  set  of 
constraints.
Section  2  we  present  the  mathematical  model  for  the 
chemotherapy problem. In Section 3 we present the main 
results of the viability theory in a discrete time version. 
Section  4  is  devoted  to  presented  numerical  results. 
Finally, we provide the conclusions, and the future work.

Fig  Treatment designed to kill maximum numers of cancer cells.

 TUMOR DYNAMICS WITH CHEMOTHERAPY SCHEDULES

For  free  growth  of  heterogeneous  tumor  each 
subpopulation  Pi within  the  tumor  grows  according  to 
following dynamic [7]:
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where  γi represents  the  replication  rate  of  each 
subpopulation  Pi,  and  G represents  the competition for 
resources among different populations. G is given by the 
following equation:
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Finally,  γT is  the maximum theorical  replication rate of 
the entire tumor. 

If  the  therapy  is  administered,  the  tumor  growth 
dynamics (1) become in the following  dynamic [7]:
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where σi is the phenotypic sensitivity of the population i 
to
the therapy, a(t) is the therapy to time t, and
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Equation  (4)  represent  the  environmental  sensitivity  to 
time  t,  τS is  the  time  required  for  the  environmental 
sensitivity to increase from 1 to 1.5. We assume that 0 ≤ 
a(t) , 0 ≤ β(t) ≤ 2 and 0 ≤ σi ≤ 1.

VIABILITY THEORY

The  viability  problem  relies  on  the  consistency 
between  a  controlled  dynamic  and  acceptability 
constraints applying both to states and decisions of the 
system  [6].  Such  a  problem  is  frequent  in  biology, 
bioeconomics,  ecology,  robotics  and  sustainability 
sciences in general. The main concepts of this theory are 
as follows.

Dynamical  systems are mathematical objects used to 
model physical phenomena whose state (or instantaneous 
description) changes over time. These models are used in 
financial  and  economic  forecasting,  environmental 
modeling,  medical  diagnosis,  industrial  equipment 
diagnosis, and a host of other applications. 

In  mathematical  language, we  write a  discrete 
dynamical system as follows:
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for  t  =  t0,  t0 +  1,...,T.  Where  t is  the  time  index  and 
belonging to the set  of  natural  numbers  N,  which runs 
from initial time t0 to horizon time, T. On the other hand 
x(t) = (x1(t), ...,xn(t)) is the state of the dynamical system, 
u(t) =  (u1(t),  ...,up(t)) is  the  control  or  decision  and 
function F(t, x(t), u(t)) represents the system evolution.

A. Decision constraints

We consider the conditions:

.Tttu(tB(tu(t ))) ,...,   ,, 0=∀∈
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Where  B(t,x(t))   is  the  set  of  admissible  decisions. 
Generally, these constraints are associated with equality 
and  nequality  requirement,  which  have  the  following 
form bd(t,x(t), u(t)) ≤ 0 and bi(t,x(t), u(t)) = 0.
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B. State constraint

We require that
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The usual window A(t) concerns equality and inequality 
constraints  ad(t, x(t)) ≤ 0 and  ai(t,x(t)) = 0. For the time 
horizon we require  

.)) A(Tx(t ∈  
()

A state trayectory is any sequence x(·) = (x(t0),...,x(T)) and 
similary a control trayectory is any sequence of decisions 
u(·) =  (u(t0),...,u(T − 1)).

 VIABILITY KERNELS

Definition  1: The  viability  kernel  at  time  s ∈ 
{t0, ... ,T } for dynamical system (5) and constraints (6), 
(7) and (8) is the set,  Viab(s), defined by every  x  such 
that  ∃ u(·) and x(·) that starting from x at time s satisfies 
(5), (6), (7) and (8),  ∀ t  {∈ s,...,T}.

From the definition 1 we have that Viab(s)  ⊂ A(s). In 
the following proposition we show a framework in order 
to  calculate  the  viability  kernel,  Viab(t0),  through 
backward induction.

Proposition  1:  if  T <  ∞,  then  Viab(t) satisfies  the 
backward induction, where t runs from T − 1 to t0,

Viab(t) = {x ∈ A(t)| u ∃ ∈ B(t,x),F(t,x,u) ∈ Viab(t + 1)}

and for the time horizon  Viab(T) = A(T).
This last equation is known as the Bellman’s equation in 
the framework of viability.

When the control trayectories depending only on time, 
u: t →  u(t), we can compute the state of system by the 
dynamics:  x(t + 1) = F(t,x(t),u(t));  its the deterministic 
case. But under uncertainty the control rule  is u : (t,x) → 
u(t,  x),  and  we  can  compute  the  control  and  state 
trajectories by the following relations: u(t) = u(t,x(t)), and 
x(t  +1)  =  F(t,x(t),  u(t),w(t)),  where  w(t) represent  the 
uncertain variable. We assume that w(t)  ∈ S(t), so that the 
sequences  w(·)  =  (w(t0),...,w(T  )) belonging  to  Ω  = 
(S(t0),...,  S(T)) capture the idea of possible scenarios for 
the problem. Probabilistic assumptions on the uncertainty 
w(·) may also be added. In such framework we define the 
robust viability kernel.

Definition 2: the robust viability kernel at time t0 is the 
set, Viab1(s), defined by every x such that  u(∃ ·) such that 

 ∀ w(·)  ∈ Ω, x(t)  ∈ A(t), for t = t0,...,T.
In  this  framework  we  have  that  the  robust  viability 

kernel satisfy the backward induction, where t runs from 
T − 1 down to t0.

Proposition  2:  if  T <  ∞,  then  Viab(t) satisfies  the 
backward induction, where t runs from T − 1 to t0,

Viab1 (t) =  {x  ∈ A(t)|∃u  ∈ B(t,x), such that  ∀ w  ∈ S(t), 
F(t,x(t),u(t),w(t)) ∈ Viab1 (t +1)}

and for the time horion Viab1 (T ) = A(T).
This equation is called the Bellman’s equation in the 

robust viability framework.

 COMPUTATIONAL ASPECTS

We program bellman equations in MATLAB R2009a. 
The  main  limitation  of  the  viability  approach  is  its 
computational complexity. The arithmetic operations that 
a  computer  performs  on  these  numbers  are  called 
floating-point or flops. In the viability approach algorithm 
to model (3), for each t = t0,...,T − 1 we have a outer loop 
will be executed  M1 times. On each of these pasees, the 
inner loop is executed M2 times. Were M1 and M2 are the 
grids of populations  P1 and  P2 respectively. For each of 
these iterations we have  M3 iterations corresponding to 
the control grid and for this last loops we have two more 
loops, each of M1 and M2 iterations respectively

 NUMERICAL RESULTS

We  used  the  Bellmann  equation  within  the  viable 
control  framework  to  dynamical  system  (3)  with  two 
populations. We denote the sensitive and resistant cells by 
P1(t) and P2(t) respectively. The unit of measurement for 
Pi(t) is mm3, and for a(t) is [mg/kg]. 

We considered a treatment of 21 days. In table I, we 
show the values assigned to the parameters γ1,  γ2,  σ1 and 
σ2,  which  are  estimated  (We  use  the  method  of  least 
squares) from experiment performed in [8]. We consider 
the following contraints in order to mantain the system 
such that P1(t)  [300, 600]mm∈ 3, P2(t)  [0, 200]mm∈ 3 and 
therapy a(t)  [0,50]mg,  ∈ ∀ t  [0, 21]. Evidently here ∈ t0 = 
0 and T = 21.

Table  Parameters tumor

γ1 γ2 σ1 σ2

0.052 0.027 0.0055 0.0028

Now we consider two different cases.

A.  The deterministic case

We find Viab(t0) through proposition 1 using a grid of 
size 300 × 200. In figure 2 we observe the approximation 
obtained.

Fig : Viability kernel approximation. 

B. The uncertainty case

As the  carcinogenic  cells  population  increases,  it  is 
reasonable  to  assume that  the  accumulation  of  random 
mutations  and  heterogeneous  blood  flow,  may  cause 
significantly variation on the sensitivity’s  levels,  in  the 
therapy that might be applied, at that moment. Then we 
assume  σ1  {0.0035,0.0055}. For example: if  ∈ P1 could 
mutate with some probability  P and we apply a therapy 
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found through  Viab(t0), so may occur that  P(t) does not 
belong to  A(t) for  some  t  [0,  ∈ T ]  (See Fig.  4).  This 
evidences  that  we  must  find  Viab1(t0) what  is  done, 
through the  Bellman’s  equation,  over  the  robust  viable 
framework.  Figure  3  show  the  approximation  of  the 
robust viability kernel using a grid of size 600 × 400.

Fig  Approximation of the robust viability kernel.

CONCLUSIONS 

We  apply  the  viability  theory  to  dynamics  of 
heterogeneous  tumor  with  chemotherapy.  We  want  to 
emphasize that calculating Viab(t0), we can know the set 
of initial conditions, P(t0) = (P1(t0),P2(t0)), with at least a 
therapy,  therapy  which  satisfy  the  corresponding 
constraints.  We  can  also  calculate  therapy  (control)  if 
there.  We  can  say  that  in  the  presence  of  a  tumor, 
approximate  Viab(t0)  allows  us  to  know  in  advance 
whether or not of therapy, a(t), satisfying P(t)  ∈ A(t), t = 
t0,...,T and a(t)  ∈ U(t). The same comment is valid for the 
robust viability kernel Viab1(t0).

As  future  work,  we  propose  to  study  more  long 
therapies than previous therapy, and we will use a SVM 
to approximate Viab(t0) and Viab1(t0) [4, 5].

Fig  Dynamic of tumor with mutation under a therapy  obtained 
from Viab(t0).
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