
A Comparison of Preschool and Elementary School
Children Learning Computer Science Concepts through a

Multilanguage Robot Programming Platform

Cecilia Martínez
Facultad de Filosofía y

Humanidades
Universidad Nacional de

Córdoba/CONICET
Córdoba, Argentina

cecimart@gmail.com

Marcos J. Gómez
FAMAF, Universidad Nacional

de Córdoba
Córdoba, Argentina

mgomez4@
famaf.unc.edu.ar

Luciana Benotti
Logic, Interaction and

Intelligent Systems Group
FAMAF, Universidad Nacional

de Córdoba/CONICET
Córdoba, Argentina

benotti@famaf.unc.edu.ar

ABSTRACT
This paper describes a school intervention to teach funda-
mental Computer Science (CS) concepts to 3-11 year old
students with a multilanguage robot programming platform
(using drag and drop, Python and C++ languages) in Ar-
gentina. We analyze students’ performance and learning
process based on multiple choice test and classroom obser-
vations. Data show that all students can intuitively learn se-
quence, conditional, loops and parameters and that girls per-
formed slightly better than boys. Older students can easily
combine these concepts to write a program. The multilan-
guage platform promotes student spontaneous exploration
of more sophisticated CS concepts and languages. These
findings imply that introducing CS in mandatory schooling
from an inquiry based approach is both achievable and ben-
eficial.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Education

Keywords
Computer science K-7 outreach, robots, experimental eval-
uation, iconic programming language

1. INTRODUCTION
There has been a lot of debate on whether preschool and

elementary school children should use computers or are de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’15, July 6–8, 2015, Vilnius, Lithuania.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3440-2/15/07 ...$15.00.
http://dx.doi.org/10.1145/2729094.2742599.

velopmentally ready to learn programming [2]. On one side,
children are using computers much earlier each decade [14].

On the other side, this intensive use that many children
have of computers may not be contributing to early ac-
cess of Computer Science as a discipline (CS) which in-
cludes notions of creating and developing technology, pro-
gramming, designing, and automatizing actions. We could
argue that children become software consumers very early
but they do not learn some basics of how this technology
works. Bergen [1] points out that re-programmable toys such
as robots, give children the possibility of creating, imagining,
programming and exploring rather than developing procedu-
ral digital competences.

Previous research suggests [2] that early introduction of
some basic CS concepts benefits both children cognitive de-
velopment and learning about CS. Nevertheless, we still are
debating what kind of CS concepts should be taught in
preschool and elementary school [15]. Some countries such
as Estonia and the UK have recently introduced CS in these
levels [5], but most others—including ours—are still delib-
erating when would it be appropriate to introduce CS in
schools and what content is most suitable for the general
basic education. While research on teaching CS in differ-
ent educational levels is vast, and colleagues have proposed
curricular designs [9, 3], comparisons among different age
groups performance that inform curriculum selection and
scope is not as common [5, 11].

With the purpose of both investigating how children learn
basic CS concepts in schools using programmable toys and
contributing to a CS curriculum selection and scope; we de-
signed an exploratory study to compare how preschool chil-
dren (ages 3 and 5), and elementary school children (ages
8 to 11) learn some basics CS concepts. We piloted CS
lessons in a real school setting focusing on loops, variables,
conditionals, sequence, and parameters; and their applica-
tion to robot programming. We analyzed children’ learning
of CS using a multilanguage robot programming platform
and compared boys and girls performance. The main con-
tributions of this paper are: 1) Analyzing how different age
group of children learn fundamental CS concepts. 2) Intro-
ducing a multilanguage robot programming platform that
permits students to discover new CS concepts on their own,
growing with the platform. 3) Evaluating gender and age

differences in the acquisition of CS concepts in preschool
and elementary school.

We begin the paper summarizing previous work. Then, we
describe a multilanguage robot programming platform and
its rationale. We address the study design followed by our
findings. We close this paper with conclusions and implica-
tions for teaching CS in preschool and elementary school.

2. PREVIOUS WORK
Starting preschool, children can create, run and debug

simple computer programs using specific platforms that are
both challenging and attainable for most children [2, 10, 8].
The effects and implications of learning CS at such an early
age have also been analyzed. According to Clements [2],
children who use computer assisted programs have the op-
portunity to analyze a situation and reflect on the properties
of objects they have to manipulate.

While exploring how to teach CS to little children some
researchers have found that the difficulties in children pro-
gramming laid in their immature motor skills and on syn-
tax problems [12, 8]. Thus, there has been a vast develop-
ment on specific programming platforms to address the de-
velopmental traits of preschool children (such as Toon Talk,
Scratch Jr, CHERPS, etc). In this context, programming
robots has been an interesting line of work to teach CS to
little children.

Flannery and Berns [7] showed that as a result of robot
programming in preschool, children imagine, plan its action,
and construct a robot. In their study, the authors found
that all 4-6 year old students program short challenges and
explore robot’s capabilities.

Although most interventions to teach programming with
robots achieve high student engagement and task comple-
tion, we still need to understand more how the use of these
platforms promotes learning specific CS concepts. Mor-
gado and Kahn [12] have documented how preschool children
learn competences and concepts such as syntax, parameter
passing, compound procedures, parallelism and concurrency,
communication channel, input and client and servers using
Toon Talk platform. We also need to learn more about what
CS concepts children can understand in different develop-
mental stages to establish a school curricula content and
scope. We found only a handful of studies that compare dif-
ferent age groups performance on similar CS teaching activi-
ties. Magnenat and his colleagues (2014) [11] taught CS with
robot programming to different age groups of children using
event handler language to program a robot action in different
events. Comparing the groups performance with the same
task, they found that most children understood and solved
simple tasks such as moving a robot upon a touch of a button
or identifying robot’s instructions. However, older children
performed better on complex programming that required
several conditions or events. Dagiene et al [5] compared
students from Finland, Sweden and Lithuania ages 7 to 12
performing similar algorithmic thinking tasks exercises. Us-
ing multiple choice questions, they evaluated concepts such
as graphs, search algorithms, data structures, and execut-
ing sequences. They found no strong difference across age
groups, but rather among countries. The authors suggest
that educational context, academic quality and in particu-
lar, reading ability promoted by each school system may be
strongly related to learning CS concepts. Thus, we want to
highlight the value of conducting exploratory studies in pur-

posely selected geographical context that may be transfer-
able to similar places, to contribute to CS curriculum design
appropriate for each region. In this paper we compare dif-
ferent age groups performance on robot programming tasks
and analyze students learning of basic CS concepts in a real
school context in Argentina.

3. A ROBOT PROGRAMMING LANGUAGE
The UNC++Duino programming environment is an exten-

sion of blocklyDuino1, a platform based in blockly, for pro-
gramming Arduino2 boards supporting Grove System. Code
org uses Blockly in their Hour of Code initiative [16]. We
extended blocklyDuino to adapt it to a multiplo N63, an ed-
ucational robot platform created in Argentina and selected
for our pilot study (illustrated in Figure 1). UNC++Duino
includes a drag and drop language, that allows students to
focus in solving CS problems without thinking about syn-
tax. The platform can also be programmed in other full pro-
gramming languages such as Python and C++ with different
levels of language difficulties and expressiveness. The sim-
plest one is the iconic language, but the student can switch
into a more complex one, being C++ the hardest and most
expressive. Our iconic programming language, with no natu-
ral language, allows kindergartners to sixth graders to easily
program the N6 robot. Each block represents an executable
robot action. A set of arrows enables the robot to move
forward (20 cm), turn 90 degrees left or right. We also cre-
ated blocks for control structures such as loops, conditionals,
parameters, among others.The program has a musical block
(represented by a saxophone), allowing kids to choose differ-
ent songs for the robot to play. Two images, one showing the
robot in front of an object, and the other one with nothing
in front of the robot, represent conditional (Figure 1e). We
programmed the platform to translate each iconic block au-
tomatically into Python and C++ encouraging children to
explore into the different languages, seek other robot func-
tions and grow out of the iconic interface

Figure 1: The N6 robot

Figure (1a), shows a program that allows children to move
the robot 60 cm. Simply selecting arrows make it easy for
all students to code. In contrast, coding with blocklyDuino
(1b), requires working with numbers, time delay, engine
like objects and calculating the relation between the defined
speed and time to advance 60 cm. If we wanted the robot
turn 90 degrees to the left, on UNC++Duino, students sim-
ply select the Turn left arrow block (1c). Image (1e) shows

1https://github.com/gasolin/BlocklyDuino
2http://www.arduino.cc/
3http://www.robotgroup.com.ar/index.php/productos/
131-robot-n6#especificaciones

UNC++Duino BlocklyDuino

Advance

(a) (b)

Turn left

(c) (d)

Conditional

(e) (f)

Table 1: Comparison between UNC++Duino and blockly-
Duino.

how students can program their own Object detector robot
selecting the pictures representing the conditions (1f).

4. STUDY DESIGN
We describe the school context where we conducted the

study outlining the different interventions in preschool and
elementary school.

4.1 The Setting for the Study
We made the intervention in a privately run school re-

ceiving state public and students’ tuition funds. There are
no children below the poverty line and most children have
middle class, professional parents. The school follows an
experience based pedagogy and organizes its curriculum on
problem, case and project based learning. The institution
has strong links with the School of Education at Cordoba
National University, and constantly organizes professional
development events for their teachers. We decided that this
context provided a unique opportunity to pilot discovery
based CS teaching experiences. Our team provided mate-
rials and expertise on teaching CS and the school provided
expertise on reaching elementary and preschool children.

4.2 The Preschool Intervention
University professors and preschool teachers designed an

academic unit to program a robot following three stages.
During the first stage, students acted as the robots who
followed their peers commands. Teachers designed a floor
game that consisted on a 5 by 5 square grid with obstacles
and targets randomly sprawled in the grid. Children chose
a sequence of arrows that took the robot (i.e., the child)
to the matching target. There were three types of arrows:
straight, turn right and turn left. Students made one to one
correspondence (one arrow followed by one movement) to

play this game. Also, children placed arrows in the specific
square where the robot had to move making spatial corre-
spondence as well.

The second stage consisted in replicating the floor game
into a board game using a table size cardboard and toy
robots. Similar to the floor game, children made one to
one spatial and movement correspondence but moving a toy
robot instead of their bodies. This was the first step to
detaching their bodies from the robot’s actions.

In the third stage children programmed the N6 robot in a
computer with the described platform UNC++Duino. Chil-
dren programed the robot to run on the floor squared grid
using notions of sequence and parameter. Then, children
programmed the robot to avoid objects using conditionals
working freely on the floor without the grid. Finally, 5 year-
old students learned Loop. The task required advancing the
robot many times using only two lines of code.

4.3 The Elementary School Intervention
From May to December 2014 a university professor in CS

and member of our research team taught CS lessons to 8-11
years old children for one hour a week. Before the profes-
sor took over, students have learned a mix of offimatics and
LOGO. However, upon recalling previous knowledge, stu-
dents remembered almost no CS concepts. Similar to the
preschool experience, there were three different stages.

During the first stage, children worked with Code.org [16]
tutorials using concepts such as sequence, conditionals and
loops. In the second stage, students developed their own
animations using the platform Alice [4, 6]. In the final stage,
students programed the N6 robots with the UNC++Duino
platform focusing on sequence, conditionals, parameters, and
loops.

4.4 Data Collection and Analysis
In all, 190 students participated in this exploratory study.

Table 2 describe participants’ distribution.

School level Pre Pre Elem Elem
Number of students participating 25 30 70 65
Number of students tested 17 26 42 43
Student’s age 3-4 5-6 8-9 10-11

Table 2: Participants Distribution(some students were ab-
sent on the test day).

All students programmed the robot employing sequences,
parameters, conditionals, and loops in different tasks. Tasks
required either using one concept (e.g. sequence), a combi-
nation of concepts (e.g. sequence and conditional) or apply-
ing concepts to two different programming situations (e.g.
using the same program the robot must run in two different
labyrinth). After each lesson, children took the same mul-
tiple choice test to assess how different age groups under-
stood each CS concept. The test included 7 different mul-
tiple choice programming tasks. A “simple” task required
applying one or two concepts (such as combining sequence
and conditional to make an obstacle dodger robot). A “com-
plex tasks” required combining concepts and selecting a pro-
gram to solve two different problems. Thus, a higher level
of abstraction.

We also conducted lesson observations during all of the
robot programming classes. Observations allowed us to gather

data on student engagement with programming and on trans-
ferring concepts learned with other platforms. In this paper,
we only report on the robot programming stage to compare
how preschool and elementary school children learned basic
CS concepts and applied them to robotic programming. We
do not present data on students learning other CS concepts
with code.org or Alice.

Because the focus of this paper is understanding how dif-
ferent age group of children understand basic CS, we com-
pared results of both preschool and elementary school inter-
ventions. We analyzed test results with descriptive statis-
tics. We crossed preschool and elementary school data and
compared gender differences in elementary school. We trian-
gulated these results with qualitative data from observations
that provided further indicators of emerging themes.

5. RESULTS
In this section we present age and gender differences in

learning CS concepts at preschool and elementary school.
Figure 2 summarizes the multiple choice test results showing
performance by age group. Because of organizational issues,
not all age groups were tested on all concepts.

Figure 2: Percentage of correct test results per age group
and CS concept (Capital S, stands for Simple y Capital C
stands for Complex).

5.1 Learning Sequences
23 out of 26 preschool children selected the right sequence

of instructions. Lesson observations indicated that most
preschool children could provide a series a sequential in-
structions including both straight arrows interleaved with
turn arrows. By the time children played the board game
and programmed a robot on the computer they could clearly
indicate the amount and orientations of arrows needed to
make the robot get to target. Divergent thinking was also
present as children suggested different paths for the robot to
get to target. However, systematically, 3-4 years old placed
one arrow only when the robot had to turn instead of select-
ing both an straight and turning arrow. This last group of
preschool students also had difficulties realizing that robots
run the sequence code written on the computer. Linking the
virtual world of the screen with the concrete spatial move-
ments of the robots was not a problem for 5 years old.

Most elementary school students performed high on both
the simple and complex sequence multiple choice test. Ob-
servations showed that students solved the sequence chal-
lenge in five minutes and quickly moved into discovering
other types of commands and robot functions. Only 2 groups
of students took longer to program the robot because in-
stead of reading the task they simply wrote the sequence
they wanted the robot to run. Based on observation data,
both simple and complex sequence were not challenging for
elementary school students. However, most importantly we
observed that the activity of programming a robot seemed
to encourage exploration of other CS concepts. Elementary
school children of all age groups immediately designed new
robot challenges. For example, one observations in 4th grade
(9 to 10 years old) indicated:
“Because the proposed challenge is to simple, students cre-

ate their own circuit. The loudest and more ‘active’ group
of the class, is the one thinking the most complex challenge
where the robot has to run under a chair made tunnel. They
walk the circuit with their bodies and go back and forth from
the circuit to the computer to decide each line of code. Only
2 out of 30 children did not complete the task. One group
wants the robot to run in circles, another is experimenting
how the robot run into things. From this exploration children
demand learning about sensors and turning upon an obsta-
cle. One student asks how a proximity sensor is activated.

Excerpt such as this one showed that, thirsty for more,
students started asking how to control speed, wheels and
other functions. Children spontaneously opened the differ-
ent UNC++Duino interfaces and made changes on the C++
lines of codes that was automatically generated from their
first iconic program.

5.2 Learning Conditionals
In Preschool, children approached the concept of condi-

tional creating their obstacle dodger robot. Classroom ob-
servations noted that the teacher simply asked them “What
would it happen if a box is in the way of the robot?” Spon-
taneously and unanimously children replied “The robot has
to turn”. We showed students the block 1e that would al-
low them to create their own obstacle dodger robot. 3-5
year old children worked in groups of 5 to 6 children and
each group programmed the robot using conditional. Upon
showing them the block representing conditional all of them
placed the turn arrow command when the block showed an
obstacle, and an straight arrow command when the block
showed no obstacles. While 5-6 years old read the code and
predicted robot’s actions, 3-4 years old could not realized
that the robot would performed actions written in the com-
puter.

12 of 17 preschool students solved the conditional mul-
tiple choice test correctly. The 5 students who responded
incorrectly argued that they wanted the robot to crash into
the box. When we asked: “Why did you chose this answer”
they replied “because I want the robot to crash”. Thus, we
inferred that the wrong answers is not related to children’
understanding of conditional, but rather of student’s will.

Similar to the preschool children, elementary students ap-
plied conditional creating their obstacle dodger robot. Ob-
servations notes showed that one group of 10-11 years old
students spontaneously called the conditional“decisions”and
compared this function with the robot music block. Thus,
students immediately transferred the notion of conditional

learned with Hour of Code and Alice platforms. Learning
to program an obstacle dodger robot was intuitively and
fairly easy for students. However, while 8 to 11 year old
children have similar performance on simple conditional, 10
to 11 years old students have better results on complex con-
ditional. We believe that tasks that require combining dif-
ferent fundamental concepts such as sequence, loops and
conditional demands deeper understanding and levels of ab-
straction.

5.3 Learning Loops
Because understanding loops requires some minimal com-

prehension of counting and multiplying, we only taught loops
to 5-6 year old preschoolers. We simply told the students
that the new block allowed writing the many times we wanted
the robot to move forward instead of placing the amount
of arrows we would need. Checking for understanding we
asked:“So, if I write here 4 times what would happen?” Stu-
dents responded“It will advance 4 times. We won’t get tired
of writing so many arrows”(excerpt from observation notes).
Children’ expressions are evidence that there is some under-
standing of loops as a repeated action that provides economy
in programming. Moreover, each of the groups that pro-
grammed a loop selected different numbers of repetitions.
One boy wanted the robot to move forward 10 times, so he
selected a loop of 5 times and place 2 arrows inside. When
we asked what would the robot do with that code, without
hesitation he answered that the robot will move 10 times as
it will advance 5 times each of the 2 arrows.

In elementary school, observation data showed that a group
of students spontaneously asked the teacher where was the
“repeat” instruction when they had to write a simple se-
quence code. Thus, children correctly “assumed” that the
robot program had the loop function, transferring what they
have learned with Alice and Hour of Code. Results on the
loops multiple choice test showed the same performance pat-
tern that we noted for sequence and conditional evaluation.
All students, regardless of age and gender, effectively applied
the concept of loop on simple tasks. However, when the task
required combining concepts such as conditional and loops,
older children performed better.

5.4 Learning Parameters
In order to introduce parameters in preschool, we asked

students that upon completing the sequence they programmed,
the robot must sing a song that matched the target. Within
the block that allowed students to program the robot to
sing, they had three options: sing any of two popular songs,
or remain silent. All of the students were able to add the
singing block at the end of the sequence selecting the appro-
priate song and they were extremely enthusiastic with the
“singing” robot. In addition, about 85% of the students pick
a song that matched a given picture in the test.

Elementary school students easily transferred notions of
parameter previously introduced in Alice. They also en-
joyed the idea of a singing robot, and added the song block
every time they programmed. But in contrast to preschool
children, because the platform allowed to see the code both
in blockly and in C++, children spontaneously switched to
the C++ or python interface, without having previous ex-
perience on them. Upon programming the robot, children
soon wanted to change the robot speed and avoid the pause
between each movement. They had two possibilities: up-

loading the block-code into the robot directly from the plat-
form or they could use the arduino translator and copy the
code into the arduino interface IDE and uploaded from it.
They decided to read the arduino code, without any previous
knowledge about it, and modify it to change speed. First,
they observed that inside the loop function, there were tabs
for the advance method. Upon this discovery, their first in-
tention was to add a numerical argument to modify speed.
When compiling the code, they observed an error, so they
started to read the whole code and discovered the avanzar()
method, without knowing what a method was. They also
learned that in the body of avanzar(), there were many in-
structions such as motor0.setSpeed(50),motor1.setSpeed(50)
and delay(1000). They realized if they changed the argu-
ment of the setSpeed() of both engines they could change
the robot speed and they did it. But the robot still was
moving for only 1 second. So they came back to the arduino
code, and noticed that the instruction delay(1000), was re-
sponsible of engine movement time. They erased the delays
and the setSpeed(0) instructions, making the robot advance
quickly and for a longer time. They continued playing with
the arguments of the instructions, making the robot move
backward or in circles, actions that would not be possible
with the initial version of block code.

5.5 Gender Gaps in CS in Elementary School?
We analyzed test results by gender and identified that

while both boys and girls have similar performance apply-
ing simple concepts, girls did systematically better on com-
plex concepts (Figure 3). About 12% more of the girls were
better at choosing options where loops, conditional and se-
quence were applied. In addition, the teacher noted that at
the beginning of the lesson girls were not enthusiastic with
programming a robot because they assumed it was similar
to playing with toy cars. However, when noting that the
robot responded to their orders or commands, they became
progressively more interested. Boys enthusiasm remained
constant One hypothesis explaining the different achieve-
ment is that girls are generally more focused on academic
tasks while boys at this age are very playful. Previous work
shows that female students have considerable lower marks
in the first year of university than male students. Redmond
et al (2013) [13] argues that their lower marks correlates
with the fact that they have less exposure to computers and
thus, lower confidence with CS. Based on our data, we sus-
pect that the gap between boys and girls may occurs later
during their teenage years.

6. CONCLUSIONS
Through a school intervention focusing on fundamental

CS concepts we found that all children, regardless of their
age group, could intuitively learn sequence, loops, parame-
ters, and conditional, and were capable of applying these no-
tions into robot programming. However, as expected, older
children could combine these concepts to create a new pro-
gram. As obvious as these results may seem, we still need
strong empirical evidence about what CS concepts different
age group can learn to inform the design of a CS school cur-
ricula. We also identified that 3-4 year old students could
not correspond the written code in the computer with the
robot actions. Girls did a slightly better than boys com-
bining CS on robot programming suggesting that the “gen-
der gap” may occur later in the teenage years. Students

Figure 3: Percentage of correct test results per gender and
programming concept

showed high engagement with robots and most importantly,
our multilanguage platform triggered students exploration of
other CS concepts and allowed children to easily switch from
simple to complex languages focusing on concepts rather
than on syntax. There are several implication of these find-
ings. 1) Based on our research we suggest that it is not only
possible to teach CS in K to 12 mandatory schooling but it
is also beneficial in terms of developing CS literacy. 2) Pro-
gramming robots, while it is costly, highly engage our stu-
dents. 3) Inquiry based developmentally appropriate teach-
ing strategies proved valuable because they allowed students
to build intuitively on concepts, explore with their bodies
and apply these concepts to multiple situations, platforms
or environments (such as animations, games, board games,
etc); and then transfer these ideas into robot programming.
This is an important contribution to the field of CS educa-
tion since we are still debating about pedagogical approaches
to introduce CS in schools. 4) Our multilanguage platform
designed for k to 12 students was a great tool to expand
children exploration and knowledge on CS concepts. In gen-
eral children grow out of computer platforms designed for a
particular age group very quickly. Our platform encourage
students to grow with it and because of it. We acknowledge
that further research is necessary with multilanguage plat-
forms, but this could be one direction to encourage children
growth in CS.

7. ACKNOWLEDGMENTS
The authors wish to thank Science and Technology Secre-

tary at Universidad Nacional de Cordoba, Google for Edu-
cation, and Manuel Sadosky Foundation at the Argentinean
Ministry of Science, Technology and Productive Innovation.

8. REFERENCES
[1] D. Bergen. Technology in the classroom: Learning in

the robotic world: Active or reactive? Childhood
Education, 77(4):249–250, 2001.

[2] D. H. Clements and J. Sarama. Teaching with
computers in early childhood education: Strategies
and professional development. Journal of Early
Childhood Teacher Education, 23(3):215–226, 2002.

[3] Computing at School Working Group. Computer
Science: A Curriculum for Schools. Computing at
School Working Group, 2012.

[4] S. Cooper, W. Dann, and R. Pausch. Teaching
objects-first in introductory computer science. In
Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education, pages 191–195, 2003.

[5] V. Dagiene, L. Mannila, T. Poranen, L. Rolandsson,
and P. Söderhjelm. Students’ performance on
programming-related tasks in an informatics contest
in finland, sweden and lithuania. In Proceedings of the
2014 Conference on Innovation; Technology in
Computer Science Education, ITiCSE ’14, pages
153–158, New York, NY, USA, 2014. ACM.

[6] W. Dann, S. Cooper, and D. Slater. Alice 3.1
(abstract only). In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
pages 757–757, 2013.

[7] L. P. Flannery and M. U. Bers. Let’s dance the “robot
hokey-pokey!” children’s programming approaches and
achievement throughout early cognitive development.
Journal of Research on Technology in Education,
46(1):81–101, 2013.

[8] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U.
Bers, P. Bontá, and M. Resnick. Designing scratchjr:
support for early childhood learning through computer
programming. In Proceedings of the 12th International
Conference on Interaction Design and Children, pages
1–10. ACM, 2013.

[9] J. Goode, G. Chapman, and J. Margolis. Beyond
curriculum: The exploring computer science program.
ACM Inroads, 3(2):47–53, June 2012.

[10] E. Kazakoff, A. Sullivan, and M. Bers. The effect of a
classroom-based intensive robotics and programming
workshop on sequencing ability in early childhood.
Early Childhood Education Journal, 41(4):245–255,
2013.

[11] S. Magnenat, J. Shin, F. Riedo, R. Siegwart, and
M. Ben-Ari. Teaching a core cs concept through
robotics. In Proceedings of the 2014 Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’14, pages 315–320, New York,
NY, USA, 2014. ACM.

[12] L. Morgado, M. Cruz, and K. Kahn. Preschool
cookbook of computer programming topics.
Australasian Journal of Educational Technology,
26(3):309–326, 2010.

[13] K. Redmond, S. Evans, and M. Sahami. A large-scale
quantitative study of women in computer science at
stanford university. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
SIGCSE, pages 439–444, New York, NY, USA, 2013.

[14] V. Rideout. Zero to eight: Children’s media use in
america 2013. Pridobljeno, 11(1):2014, 2013.

[15] A. Tucker. A model curriculum for k–12 computer
science: Final report of the acm k–12 task force
curriculum committee. Technical report, New York,
NY, USA, 2003. ACM Order No.: 104043.

[16] C. Wilson. Hour of code: We can solve the diversity
problem in computer science. ACM Inroads,
5(4):22–22, Dec. 2014.

