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Abstract—Image segmentation is one of the fundamental
problems in computer vision. In this work, we present a new
segmentation algorithm that is based on the theory of two-
dimensional hidden Markov models (2D-HMM). Unlike most 2D-
HMM approaches we do not apply the Viterbi Algorithm, instead
we present a computationally efficient algorithm that propagates
the state probabilities through the image. This approach can
easily be extended to higher dimensions. We compare the pro-
posed method with a 2D-HMM standard algorithm and Iterated
Conditional Modes using real world images like a radiography
or a satellite image as well as synthetic images. The experimental
results show that our approach is highly capable of condensing
image segments. This gives our algorithm a significant advantage
over the standard algorithm when dealing with noisy images with
few classes.

I. INTRODUCTION

Recently hidden Markov models (HMM) have gained the
attention of researchers from different fields. Still the classical
HMM are generally limited to those areas where the observed
data has only one dimension such as speech recognition
[1], the analysis of genome data [2] or edge detection [3].
There have been early attempts to use HMM for higher-
dimensional tasks like image segmentation but only for the
price of previously converting the two-dimensional data of an
image into a single vector by lining up the rows or the columns
of the image [4]. The drawback of such an ordering is clearly
the loss of information because adjacent pixels in the original
image are torn apart.

In the last years efforts were made to extend the classical
one-dimensional HMM to higher dimensions [5]. The problem
hereby is, that the standard method of parameter estimation
for one-dimensional HMM, the Baum-Welch Algorithm [6],
is not feasible for higher dimensions. Hence, the main issue
is to reduce the computational complexity in order to keep
the n-dimensional HMM feasible. Hereby, one of the most
promising approaches is the so called Viterbi Training [7],
[8].

In this work we introduce a new method called Complete
Enumeration Propagation (CEP) and compare it with Path-
Constrained Viterbi Training (PCVT) as presented by [9] and
Iterated Conditional Modes (ICM) as presented by [10]. The
PCVT is a well established 2D-HMM algorithm for image
segmentation, [3], [11]. Like most 2D-HMM approaches the
PCVT has shown good results for noisy images that can be

considered a Gaussian Mixture Markov Random Field [7],
[12]. The other benchmark algorithm – ICM – is a well studied
segmentation technique evaluated in many works like [13],
[14]. To compare PCVT, ICM and CEP we use several real
world images with a low signal-to-noise ratio and run two
experiments with synthetic images.

This paper is organized as follows: In section 2 we present
the mathematical background of a 2D-HMM and explain
why further assumptions are necessary to make 2D-HMM
feasible. Thereafter, we present two feasible approximations
of a complete 2D-HMM in section 3: PCVT and CEP. In
section 4 we evaluate the results of PCVT, ICM and CEP for
the test images using Cohen’s Kappa coefficient [15]. Finally
we discuss the results in section 5 where we give a clear
recommendation when to use PCVT and when to prefer CEP.

II. THEORY OF TWO-DIMENSIONAL HIDDEN MARKOV
MODELS

Two-dimensional data – like the pixels of an image – can
be handled by a 2D-HMM if we assume the data to be a
Markov Random Field. This means, that, given the image,
the hidden state of pixel (i, j) is conditionally independent of
the pixels outside a certain neighborhood. For pixel (i, j) we
define (i

′
, j
′
) ≺ (i, j) if i

′
< i or i

′
= i and j′ < j. It can be

shown that this definition leads to a 2nd order Markov Mesh
which specifies for state si,j :

P (si,j |si′ ,j′ : (i
′
, j
′
) ≺ (i, j)) = P (si,j |si,j−1, si−1,j).

In figure 1 the relevant pixels of the 2nd order Markov Mesh
are shown. The two pixels (i, j − 1) and (i − 1, j) can be
understood as the “past” of pixel (i, j). In other words we
are moving from the top-left pixel to the bottom-right pixel.
Hence, the initial probabilities for the 2D-HMM depend only
on the first state s0,0 and we can wright

πl = P (s0,0 = l) ∀l ∈ S.

Next, we assume that the observed pixel intensities of one
class are normally distributed. For the sake of completeness let
us consider multispectral images where each pixel is a vector
from Rk so we can calculate the emission probabilities of state



(i,j)(i,j-1)

(i-1,j)

Fig. 1. Transitions among states in a 2nd order Markov Mesh. The gray and
the black pixels fulfill (i

′
, j
′
) ≺ (i, j) but the two black pixels are sufficient

statistics for pixel (i, j) under the Markov assumption.

l ∈ S with mean µl and covariance matrix Σl:

bl(x) = P (x|si,j = l)

=
1

(2π)k/2|Σl|1/2
exp

{
−1

2
(x− µl)

T Σ−1
l (x− µl)

}
Besides that, we consider P (si,j |si,j−1, si−1,j) to be inde-

pendent of the current pixel so we can gather the transition
probabilities in a matrix A where

am,n,l = P (si,j = l|si,j−1 = m, si−1,j = n).

These assumptions are the basis on which we try to find the
optimal hidden state map s∗

s∗ = arg max
s

P (s|O, θ). (1)

where O are the observations and s is any admissible hidden
state map. In θ we gather all the parameters of a 2D-HMM
which are: the inicial probabilities, the means and standard
deviations of each hidden state and the transition probabilities
A.

The exact formulas for the parameters are:

µm =

∑
i,j Lm(i, j)ui,j∑

i,j Lm(i, j)
(2)

Σm =

∑
i,j Lm(i, j) (ui,j − µm) (ui,j − µm)

T∑
i,j Lm(i, j)

(3)

am,n,l =

∑
i,j Hm,n,l(i, j)∑M

l′=1

∑
i,j Hm,n,l′ (i, j)

(4)

where L and H are sums over all possible state maps. See [16]
for the details of the formulas. Note, that for an image of size
(w × z) with M hidden states S = {1, 2, . . . ,M} there are
Mw∗z possible hidden state maps. This huge number of state
maps, even for small images, leads to infeasibility because L
and H can not be calculated.

To solve the problem of computational complexity several
algorithms were proposed in recent years [7], [8]. Almost
all of them apply the Viterbi Algorithm [17] in some way.
In the next section we describe an advanced version of the
Viterbi Training, the Path-Constrained Viterbi Algorithm [9]
and present a new algorithm called Complete Enumeration
Propagation.

III. APPROACHES TO TWO-DIMENSIONAL HIDDEN
MARKOV MODELS

In this section we will introduce two methods that approx-
imate the optimal hidden state map as defined by equation 1.
Note, that both methods use almost the same assumptions but
only the PCVT runs the Viterbi Algorithm.

A. Path-Constrained Viterbi Training
Based on the theoretical foundations from section II the

PCVT can be derived as follows. First of all remember our
notion of “past” as shown by figure 1. We now consider each
diagonal of the image as one step in time, starting with the
top-left pixel. Thus, the diagonals T0, T1, T2 . . . are

T0 = (s0,0); T1 = (s1,0, s0,1); T2 = (s2,0, s1,1, s0,2); . . .

Because we are dealing with a 2nd order Markov Mesh we
can make the Markov assumption and get

P (s) = P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3, . . . , T0)

= P (T0)P (T1|T0) . . . P (Tz+w−2|Tz+w−3).
(5)

Note in equation (5), that each diagonal operates as an
“isolating” element between neighboring diagonals. Hence, we
have transformed the complex two-dimensional model to a
pseudo one-dimensional HMM. The problem we are facing
here, is that each diagonal consists of up to min(w, z) states:
T0 ∈ S, T1 ∈ S2, T2 ∈ S3, . . . , Tz+w−2 ∈ S.

From now on we denote each combination of states on
one diagonal a sequence. Keep in mind, that for M states
a diagonal can have up to Mmin(w,z) sequences – a number
generally too high to be feasible.

The first step to simplify the computation of the 2D-HMM
is to reduce the number of sequences on each diagonal to
N . If we set N to a value much smaller than Mmin(w,z)

we have drastically reduced the computational burden, but
the question arises: How do we select the N sequences? For
the moment we assume that we can evaluate the posterior
of a given diagonal state sequence by simply multiplying
the posteriors of each pixel without considering statistical
dependencies between pixels, i.e.

P (si,j = l|Oi,j , θ) ∝ P (Oi,j |si,j = l, θ)P (si,j = l|θ).

By doing so, it is computationally easy to classify the possible
sequences as more or less probable. Once we have evaluated
the posteriors of all sequences of one diagonal we keep the
most likely N sequences and forget about the rest. This is
clearly a significant simplification but even though we run the
risk of throwing away the sequence that belongs to the optimal
hidden state map s∗ we expect to keep at least some sequences
that are close to the optimal one.

After cutting the number of state sequences on each diago-
nal down to N we are ready to run the Viterbi Algorithm. We
call each diagonal state sequence sd,k where d is the index for
the diagonal with d = 0, 1, . . . , z+w−2 and k = 1, 2, . . . , N
indicates the state sequence. The initial state probabilities π̃k
for pixel (0, 0) are

π̃k = P (T0 = s0,k).



We denote δd(l) the maximum joint probability of the obser-
vations O0, . . . ,Od and sequences from T0 to Td, where l is
a certain sequence on diagonal d . Given the parameters of
the 2D-HMM we can write

δd(l) = max
k0,...,kd−1

P (s0,k0 , . . . , sd−1,kd−1
, sd,l,O0, . . . ,Od|θ),

for d = 0, . . . , z + w − 2; l = 1, . . . , N.
(6)

Furthermore we collect the pixels on diagonal d in a variable
∆(d) and define

bsd,k(Od) =
∏

(i,j)∈∆(d)

bsd,k(i,j)(Oi,j) (7)

where bsd,k(Od) is the emission probability of sequence k on
diagonal d under the assumption that each pixel is statistically
independent from its neighbors. Finally we can calculate
the transition probability from sequence k on diagonal d to
sequence l on diagonal d+ 1:

ãd,k,l = P (Td+1 = sd+1,l|Td = sd,k, θ)

=
∏

(i,j)∈∆(d+1)

asd,k(i−1,j),sd,k(i,j−1),sd+1,l(i,j)

for d = 0, . . . , z + w − 3; k, l = 1, . . . , N.

(8)

In figure 3 an intuition of what ãd,k,l stands for is given. Now
we are ready to initialize the Viterbi Algorithm with the values

δ0(k) = P (T0 = s0,k), bs0,k(O0) = π̃jbs0,j (O0,0)

∀k = 1, 2, . . . , N.

Then we start the recursion using equations (6), (7) and (8)

δd+1(l) =

[
max

1≤k≤N
δd(k)ãd,k,l

]
bsd+1,l

(Od+1)

∀d = 0, 1, . . . , z + w − 3 ∀l = 1, 2, . . . , N.

After each step we save the index of the most probable
sequence on diagonal d that leads to sequence l on diagonal
d+ 1 in a variable called ϕ:

ϕd+1(l) = arg max
1≤k≤N

{δd(k)ãd,k,l}

∀d = 0, 1, . . . , z + w − 3 ∀l = 1, 2, . . . , N

When the algorithm reaches the last diagonal we use the values
saved in ϕ to track back the most probable path through the
image starting with the bottom-right pixel

s∗z+w−2 = arg max
1≤k≤N

δz+w−2(k)

s∗d = ϕd+1(s∗d+1) ∀d = z + w − 3, z + w − 4, . . . , 1

The final result s∗ contains the optimal path through the N
sequences at each diagonal. Note that this is equal to knowing
the complete hidden state map for the whole image. In figure
2 an example of the PCVT is shown.

Once we know the hidden state of every pixel we can update
the parameters of the 2D-HMM. Instead of the exact formulas
2, 3 and 4 we use approximate formulas for iteration step p,

where I(·) is the indicator function. One can think of these
simplified formulas as “count instead of evaluate”:

µ
(p)
l =

∑z−1
i=0

∑w−1
j=0 I

(
s

(p−1)
i,j = l

)
Oi,j∑z−1

i=0

∑w−1
j=0 I

(
s

(p−1)
i,j = l

) (9)

Σ
(p)
l =

∑z−1
i=0

∑w−1
j=0 I

(
s

(p−1)
i,j = l

)
(Oi,j − µl)(Oi,j − µl)

T∑z−1
i=0

∑w−1
j=0 I

(
s

(p−1)
i,j = l

)
(10)

a
(p)
n,m,l =

∑z−1
i=1

∑w−1
j=1 I

(
s

(p−1)
i−1,j = n, s

(p−1)
i,j−1 = m, s

(p−1)
i,j = l

)
∑z−1

i=1

∑w−1
j=1 I

(
s

(p−1)
i−1,j = n, s

(p−1)
i,j−1 = m

)
(11)

After updating a, µ and Σ we run the PCVT with the new
parameters and iterate until convergence. In summary we can
describe the segmentation algorithm as

Algorithm 1: Path-Constrained Viterbi Training (PCVT)
1) Initialize parameters µl and Σl for l ∈ S.
2) Initialize state map using Maximum Likelihood

Classification.
3) Calculate transition probabilities an,m,l for every

n,m, l ∈ S using equation (11).
4) Choose the best N state sequences for each diagonal

and run Viterbi decoding.
5) Update parameters an,m,l, µl and Σl using equations

(9), (10) and (11).
6) Iterate steps 4) and 5) until convergence.

In algorithm 1 step 4) will take time in the order of O((2w−
1)N2) for an image of size w × w whereas step 5) requires
no remarkable computational effort. In section V we compare
the complexity of the PCVT and other characteristics with a
new algorithm that we present in the next section.

B. Complete Enumeration Propagation

In this section we present a new algorithm, called CEP, that
estimates the parameters of a 2D-HMM and finds a suboptimal
solution of the hidden state map. Like in the case of the PCVT
we suppose, that the image is a 2nd order Markov Mesh with
the past states shown in figure 1. Besides that, we consider
the emission probability of pixel (i, j) to depend only on
the current state. Furthermore we assume, that the transition
probabilities do no depend on the current pixel, or, in other
words, we will use the same transition matrix A like before.
With these assumptions we get for the state of pixel (i, j):

P (si,j |si,j−1, si−1,j , Oi,j) ∝ P (si,j , si,j−1, si−1,j , Oi,j)

= P (si,j−1, si−1,j) ∗ P (si,j |si,j−1, si−1,j)P (Oi,j |si,j)

If we now replace P (si,j |si,j−1, si−1,j) by the transition
matrix A and consider two diagonal pixels to be independent
we can write
P (si,j |si,j−1, si−1,j , Oi,j) ∝
P (si,j−1) ∗ P (si−1,j) ∗ asi,j−1,si−1,j ,si,j ∗ P (Oi,j |si,j)

(12)



b) 

1
2

22

11
12

21

1
2

11
1 11

2 12
2

...
... ... ...

T   0

T   1

T   w-1

T   w T   w+z-2

...
1

2

22

12

21

111

112

221

T   0 T   1

1

2

22

11

12

T   w+z-2

a) 

1
2

22

11
12

21

1
2

11
1 11

2 12
2

...
... ... ...

T   0

T   1

T   w-1

T   w T   w+z-2

...
1

2

22

11

12

21

T   w+z-2

1

2

22

11

12

21

111

112

122

...T   0 T   1

c) 

T   0

T   1

T   w-1

T   w T   w+z-2

1

2

2

1

1

2

1

1

1

T   0 T   1 T   w+z-2

1

2

22

12

21

111

112

221

.. .
2

22

11

12

1

Fig. 2. Example of Path-Constrained Viterbi Training for two possible states
and N = 3. a) complete 2D-HMM (infeasible); b) number of sequences on
each diagonal is constrained to 3; c) tracking back the optimal path of state
sequences.

si-1,j

si,j-1 si,j

asi,j-1,si-1,j,si,j

T   d
ad,k,l
~

Fig. 3. While PCVT uses ãd,k,l which represents the transition proba-
bility from one diagonal to another, CEP applies the transition probability
asi,j−1,si−1,j ,si,j for each pixel.

This is the main formula to calculate the state probabilities
of pixel (i, j) given the observation and the two past states.
In figure 3 the difference between CEP and PCVT is illus-
trated. Note, that the PCVT makes the same assumption when
searching for the N best sequences.

The main idea behind CEP is to use equation (12) to
calculate P (si,j = l) for l = 1, 2, . . . ,M for all possible
combinations of past states, i.e. si,j−1 = m, si−1,j = n for
m,n = 1, 2, . . . ,M according to equation (13).

P (si,j = l|Oi,j) ∝
M∑

m=1

M∑
n=1

asi,j−1=m,si−1,j=n,si,j=l

P (si,j−1 = m)P (si−1,j = n)P (Oi,j |si,j = l)

(13)

This procedure is nothing else than complete enumeration of
P (si,j = l). Keep in mind, that before we can go on with
the next pixel it is necessary to normalize P (si,j = l) such
that

∑M
l=1 P (si,j = l) = 1. Hence the CEP algorithm can be

described as

Algorithm 2: Complete Enumeration Propagation (CEP)
1) Initialize parameters µl and Σl for l ∈ S.
2) Initialize state map using Maximum Likelihood

Classification.
3) Calculate transition probabilities an,m,l for every

n,m, l ∈ S using equation (11).
4) Find new state map using equations (12) and (13).
5) Update parameters an,m,l, µl and Σl using equations

(9), (10) and (11).
6) Iterate steps 4) and 5) until convergence.

Calculation of step 4) of algorithm 2 is of order O(w2M3)
for an image of size w×w with M states. A problem arises for
the pixels on the left and upper edge of the image because there
are no past states si,j−1 or si−1,j . To solve this issue one can
think of two possible solutions. First, copy the first row and
the first column and use maximum likelihood to determine the
probabilities of these auxiliary pixels. Second, suppose a uni-
form distribution for the nonexistent terms P (si,j−1 = m) and
P (si−1,j = n). This is equal to leaving out the corresponding
terms in equation (12). We prefer the second option because
otherwise noisy observations on the edges are encouraged
to stay in a maximum likelihood state instead of adapting
themselves to their neighborhood.

Once we have calculated the probabilities of all the pixels
we assign each pixel the most probable state. The result is
a hidden state map which, for now, is our best guess of
s∗ = arg maxs P (s|O, θ). From this point on we use the
formulas 9, 10 and 11 from the PCVT-framework to update the
parameters of the 2D-HMM. Then we iterate this procedure
until convergence. In the next section the experimental results
for PCVT and CEP are shown.

IV. EXPERIMENTAL RESULTS: IMAGE SEGMENTATION

In this section we present the experimental results. To
evaluate the algorithms we use Cohen’s κ̂ coefficient [15]
which is defined as

κ̂ =
PO − PE

1− PE
.

where PO =
∑k

i=1 pii is the relative observed agree-
ment among segmented image and ground truth and PE =∑k

i=1 pi+p+i is the hypothetical probability of chance agree-
ment.

Besides PCVT and CEP, we will present the results of
Maximum Likelihood Classification (ML) and Potts- Iterated
Conditional Modes (ICM). While ML, as described in algo-
rithm 3, is a classical non-contextual classification method,
ICM, as described in algorithm 4, is a well known contextual



Algorithm 3: Maximum Likelihood Classification
1) Initialize parameters µl and Σl for l ∈ S.
2) Calculate P (si,j = l|Ii,j , θ) = P (Ii,j |si,j = l, θ) for

each pixel (i, j) and for each state l.
3) Assign pixel (i, j) the label given by

si,j = arg maxl∈S P (Ii,j |si,j = l, θ).

algorithm. Geman and Geman [18] consolidated the use of
Gibbs laws as prior evidence in the processing and analysis
of images. Such distributions are able to capture the spatial
redundancy of the visual information in a tractable manner.
Among them, the Potts model has become a commonplace for
describing classes. ICM is an iterative algorithm that rapidly
converges to the local maximum of the function P (s|I, θ)
closest to the initial segmentation provided by the user. In
this work the initial segmentation for ICM is provided by ML
and the parameter β is estimated as described in [19]. The

Algorithm 4: Iterated Conditional Modes (ICM)
1) Initialize parameters µl and Σl for l ∈ S.
2) Maximum Likelihood segmentation of I .
3) Estimate parameter β.
4) Choose a pixel’s visit scheme for the image.
5) For each pixel (i, j), change the label given in the

previous iteration for the label l ∈ S that maximizes

g(l) = ln p(Ii,j |l, µl,Σl) + βUi,j(l) (14)

where Ui,j(l) is the number of pixels in the
neighborhood of (i, j) with hidden state l.

6) Iterate step 5) until convergence.

first term of equation (14) is equivalent to the ones used by the
ML classifier. The second term is the contextual component
scaled by the parameter β. If β > 0, ICM smooths out the
initial segmentation, if β < 0, ICM reduces clusters coherence
and for β = 0 the rule is reduced to ML.

We propose five different scenarios to evaluate and compare
ML, ICM, PCVT and CEP. The experiments consist of three
real images – an inverse digitalized X-ray image, a multispec-
tral optical Landsat image and a standard test image – as well
as an artificial image and a database of 300 synthetic images,
where each image contains between two and six classes.

A. Multimodal X-ray image

First we use an image from the field of Diagnostic Radiog-
raphy. Due to the sensing method and the posterior digitization
process, this type of imagery has a very low signal-to-noise
ratio [20]. It shows a Wistar rat’s jaw and forms part of a
growth study of rats [21]. The interesting aspect about this
image is that it contains four mixed classes (bone and tooth,
tissue and flesh, cartilage and background) which can also be
grouped into two or three super-classes, corresponding to the
smooth modes of the intensity histogram. We run ML, ICM,
PCVT and CEP for all three cases (four classes, two or three

Original Ground Truth - 3 classes

ML - 3 classes ICM - 3 classes

PCVT - 3 classes CEP - 3 classes

Histogram Ground Truth - 4 classes

ML - 4 classes ICM - 4 classes

PCVT - 4 classes CEP - 4 classes

Fig. 4. Segmentations of an X-ray image.

super-classes) and evaluate the performance with kappa. Some
of the segmentation results of this scenario are shown in figure
4. The evaluation of this experiment is shown in figure 5.

B. Multispectral, multimodal satellite image

The second experiment is a multispectral Landsat TM image
of an agricultural area in the humid pampa of Argentina. It



Fig. 5. Segmentation of an X-ray image. The image can be considered to
have two, three or four classes. The dots are the mean κ̂ while the vertical
lines indicate the standard deviations that were obtained by running the
algorithms with different initial conditions and by pre-filtering the image. For
the experiment with three classes CEP clearly outperforms the other methods
whereas PCVT shows the best performance for four classes. Note, that the
computational complexity of CEP rises with the number of states.

shows agricultural fields of different sizes and orientations and
two center-pivot irrigations. In this case, the performance is
evaluated in the parts of the image that are shown in figure
6, since we only have ground truth labels for these regions.
The ground truth data corresponds only to three classes, but
we have no information of how many classes are present in
whole the image, so we evaluate all algorithms for three to
eight classes and show the results in figure 7.

C. Synthetic imagery

We also test ML, ICM, PCVT and CEP on a database
of synthetic images that were generated by a causal Hidden
Markov Model. The database contains 300 synthetic images,
arranged in groups of 15 images. To generate the 300 images
we proposed between two and six classes and observed the
state maps for four different normal distributions (15 ∗ 5 ∗ 4 =
300). The exact procedure to obtain the synthetic images is
described in algorithm 5.

Some of the images segmented by ML, ICM, PCVT and
CEP are presented in figure 8 (three classes, means of classes
close to each other) and figure 9 (four classes, means of
classes well separated). In figure 10 an overall evaluation is
given. Note, that the closer the class-means the worse the
performance of CEP.

D. Binary image

In this experiment we try to segment the logo of the National
University of Córdoba. The ground truth and some segmenta-
tions of this two-class problem are shown in figure 11. Like
in the case of the synthetic images we vary the observation-
means of the two classes “logo” and “background”. As a result
we get images that are hard to segment for close means and
easy to segment for separate classes.

Original Ground Truth

ML ICM

PCVT CEP

Fig. 6. Segmentations of band five of a Landsat image using three classes.

Algorithm 5: Synthetic images

1) For M classes draw M3 random numbers according to
ri ∼ N(0, 1) for i = 1, . . . ,M3.

2) Rearrange the drawn random numbers ri in a matrix A
with dimension (M ×M ×M).

3) Set all negative values in A to zero and normalize A
such that

∑M
n=1

∑M
m=1 an,m,l = 1.

4) Simulate the (10× 10) state map of a causal 2D-HMM
using the transition probability matrix A.

5) Extend the state of each pixel to a region of 10× 10
pixels. Hence the complete state map will have
dimension (100× 100).

6) Observe the state map through a normal distribution.



Fig. 7. Evaluation of Landsat satellite images for bands 4, 5 and 7 using
between 3 and 8 classes. The dots are the mean κ̂ while the vertical lines
indicate the standard deviations.

We observe that CEP has problems separating the two
classes when their means are close to each other but shows
excellent results for class-means that vary more than eight. The
complete evaluation of this experiment is presented in figure
12.

E. Standard test image

Finally we evaluate the segmentation algorithms for a more
complex image, denominated “Cameraman”. There is no tex-
ture in the image, besides a slight decoloration in the sky
behind the cameraman. We consider five classes in this image
and we initialized the algorithms with the same reference
sample. Maximum Likelihood Classification (ML) is the initial
point of all contextual methods. In figure 13 we show all
segmentations. Note, that CEP is the only method that finds
the building in the background, but its sensitivity also makes
it highlight shadows in the sky behind the cameraman, most
likely produced by jpeg compression. Another point is, that
CEP - just like ICM - shows very good results when it comes
to segmenting the solid ground of the picture, whereas ML
and PCVT do not assign one unique class to the ground.

To evaluate this experiment we show the intensity histogram
of the original picture and the normal distributions found by
the four segmentation algorithms in figure 14. One can see
that ICM does not end up far away from the initial classes
given by ML. In contrast to that PCVT and CEP have made
reasonable adjustments to the initial normal distributions. In
the next section we discuss the experimental results and draw
conclusions when to prefer PCVT and when to use CEP.

Ground Truth - 3 classes Observation - 3 classes

ML - 3 classes ICM - 3 classes

PCVT - 3 classes CEP - 3 classes

Fig. 8. Synthetic images with three classes observed at C1 ∼ N(50, 25),
C2 ∼ N(55, 25) and C3 ∼ N(60, 25).

V. CONCLUSIONS

The two main algorithms compared in this work - PCVT
and CEP - use the same suppositions to make the 2D-HMM
framework feasible. Still the most severe assumption of two
diagonal pixels being independent is only necessary to find the
N most probable sequences in the case of the PCVT, whereas
the CEP is using this assumption permanently. On the other
hand PCVT is intentionally throwing away state sequences
hoping to keep the optimal sequence, or, at least some of the
sequences that are close to the optimal one.

When it comes to the experimental results it can be seen
that CEP outperforms ML, ICM and PCVT in all cases where
the number of segmentation classes is small or when the
normal distributions are well separated. Above all the staellite
image and the artificial image demonstrate the strong sides
of CEP, which are condensing a noisy image with only a
few classes. Besides that, CEP was the only algorithm that
recognized the building in the background of the benchmark



Ground Truth - 4 classes Observation - 4 classes

ML - 4 classes ICM - 4 classes

PCVT - 4 classes CEP - 4 classes

Fig. 9. Synthetic images with four classes observed at C1 ∼ N(50, 25),
C2 ∼ N(70, 25), C3 ∼ N(90, 25) and C4 ∼ N(110, 25).

image “Cameraman”. When analyzing the normal distributions
found by CEP it can be seen that our algorithm adjusts very
well to the underlying intesity histogram.

Still, for experiments with many classes CEP revealed some
weaknesses, not only considering the κ̂ coefficient but also
the run time. Especially in the case of the radiography with
four classes the runtime and the performance of CEP is worse
than the compared methods. In this particular experiment CEP
needed more than 200 iterations to converge, which is a
strong indicator that the algorithm has problems of finding
a locally optimal hidden state map. Here, the PCVT has a
clear advantage over ICM and CEP, because it pre-selects the
possible sequences and thus finds a state map closer to the one
obtained by ML. For noisy images with many hidden states
this characteristic is favorable, while a too intense condensing
of image segments can absorb other classes and lead to bad
results.

In conclusion the CEP is not only a challenge to the PCVT
and the other segmentation methods but also a complementary.

Fig. 10. Results of the segmentation of synthetic images. Above: Average κ̂ in
function of the numbers of classes. Below: Average κ̂ for different observation
distributions. The closer the means of two neighboring classes the harder the
segmentation task.

Especially for simple images with a low signal-to-noise ratio
the CEP should be preferred to the other presented algorithms.
Besides that, the computational complexity of CEP - depend-
ing mainly on the number of states - is a great incentive to
extend the 2D-CEP-framework to higher dimensions in future
works.
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Fig. 13. Segmentations of a standard test image “Cameraman” using five
classes.

Fig. 14. Histogram of the test image shown in figure 13 and the means and
standard deviations of the five classes of each segmentation method.


