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A geometric approach to formulate the uncertainty principle between quantum observables acting on an
N -dimensional Hilbert space is proposed. We consider the fidelity between a density operator associated with a
quantum system and a projector associated with an observable, and interpret it as the probability of obtaining the
outcome corresponding to that projector. We make use of fidelity-based metrics such as angle, Bures, and root
infidelity to propose a measure of uncertainty. The triangle inequality allows us to derive a family of uncertainty
relations. In the case of the angle metric, we recover the Landau-Pollak inequality for pure states and show, in
a natural way, how to extend it to the case of mixed states in arbitrary dimension. In addition, we derive and
compare alternative uncertainty relations when using other known fidelity-based metrics.
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Introduction. The uncertainty principle is one of the major
features of quantum mechanics, establishing a limitation on
the predictability of incompatible observables. Uncertainty
relations (URs) constitute the mathematical formulation of this
principle. Variance-based URs, such as those of Heisenberg,
Robertson, and Schrödinger [1], are the most popular ones;
they exhibit a state-dependent lower bound for the product
of the variances of a pair of noncommuting observables.
Even though these kinds of URs allow us to form mental
pictures useful for insights about quantum theory and also
provide means for important quantitative predictions, they do
not always capture the essence of the principle, as has been
pointed out in Refs. [2,3]. Accordingly, a variety of alter-
native formulations have been proposed such as those using
higher-order moments [4] or information-theoretic measures
of ignorance which give entropic uncertainty inequalities [5].
The relevance of the study of URs relies to some extent on
the fact that they are useful in several applications of quantum
information as well as entanglement detection and quantum
cryptography, among many others [6].

The geometric approach to quantum mechanics plays a
fundamental role not only in foundational issues but also in
applications of quantum information processing [7]. In order
to contribute within this approach, we provide here a geometric
formulation of the uncertainty principle. Our proposal is
inspired by the Landau-Pollak inequality, introduced in time-
frequency analysis [8] and later adapted to quantum mechanics
by Maassen and Uffink [9].

This work is organized as follows: first, we review some
known fidelity-based metrics as well as the Landau-Pollak
inequality for pure states. Next, we introduce our major
contributions: a proof of Landau-Pollak inequality for mixed
quantum states and a geometric derivation of URs. Finally,
some conclusions are drawn.
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Theoretical background. Fidelity, defined by F (ρ,σ ) =
(Tr

√√
ρσ

√
ρ)2, serves as a generalized measure of similarity

between two quantum states represented by density matrices
ρ and σ [10]. This quantity is not a metric but can be used to
define metrics on the space of quantum states. We recall that
a (true) metric is a function d(ρ,σ ) that verifies the following
properties:

(i) non-negativity: d(ρ,σ ) � 0, and d(ρ,σ ) = 0 iff ρ = σ ,
(ii) symmetry: d(ρ,σ ) = d(σ,ρ),
(iii) triangle inequality: d(σ,ρ) + d(τ,ρ) � d(σ,τ ).
Now, we consider the following fidelity-based metrics that

are used later to derive particular URs which, in turn, inspire
alternative and more general relations.

(1) Angle metric:
It can be written in terms of fidelity as [7,11]

dA(ρ,σ ) = arccos
√

F (ρ,σ ). (1)

In the case of two pure states |ψ〉 and |ϕ〉, the angle metric
reduces to the Wootters metric [12]:

dW(|ϕ〉,|ψ〉) = arccos |〈ϕ|ψ〉|. (2)

(2) Bures metric:
Written in terms of fidelity, it takes the form [7,13]

dB(ρ,σ ) =
√

2 − 2
√

F (ρ,σ ). (3)

(3) Root-infidelity metric:
It can be written in terms of fidelity as [14]

dRI(ρ,σ ) =
√

1 − F (ρ,σ ). (4)

Let us consider a quantum system with states belonging to
an N -dimensional Hilbert space and two observables A and
B with discrete nondegenerate spectra. Let {|ai〉} and {|bj 〉}
be the eigenbases of A and B, respectively, and |�〉 be a
pure state of the quantum system. Then, the Landau-Pollak
inequality (LPI) reads [3]

arccos
√

PA;� + arccos
√

PB;� � arccos c, (5)

where PA;� = maxi pi(A; �) = maxi |〈ai |�〉|2 ∈ [ 1
N

,1]
(and analogously for B) and c ≡ maxi,j |〈ai |bj 〉| ∈ [ 1√

N
,1]
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is the so-called overlap between the eigenbases of the two
observables. The LPI (5) is indeed an alternative formulation
of the uncertainty principle for pure states [3]. Furthermore,
it has been used to obtain entanglement criteria [15] and to
improve the Maassen-Uffink entropic UR [16].

Now, we assert that LPI (5) is nothing but a consequence
of the triangle inequality verified by the Wootters metric (2).
Indeed, this inequality for the case of two arbitrary eigenstates
|ai〉, |bj 〉 of A and B respectively, and a given pure state |�〉,
reads

arccos |〈ai |�〉| + arccos |〈bj |�〉| � arccos |〈ai |bj 〉|. (6)

Choosing in particular those indices imax and jmax that
correspond to maxi pi(A; �) and maxj pj (B; �), we have

arccos
√

PA;� + arccos
√

PB;� � arccos |〈aimax |bjmax〉|. (7)

Thereby, taking into account that |〈aimax |bjmax〉| �
maxi,j |〈ai |bj 〉| = c and that arccosine is a decreasing
function, it is straightforward to obtain the LPI (5).

With the purpose of obtainig URs valid for pure as
well as for mixed quantum states, we extend the lines of
reasoning employed to derive the inequality (5) to other metrics
commonly used in quantum mechanics.

Geometric derivation of uncertainty relations. Now, we
derive an extension of LPI to mixed quantum states acting on
a Hilbert space of arbitrary dimension. Again the key of the
proof relies upon the triangle inequality which for the angle
metric and the triplet σ,ρ,τ gives

arccos
√

F (σ,ρ) + arccos
√

F (τ,ρ) � arccos
√

F (σ,τ ). (8)

Now, we use relation (8) for the operators σ = �A
i = |ai〉〈ai |

and τ = �B
j = |bj 〉〈bj |, which represent the rank-one projec-

tors associated with the ith outcome of A and the j th outcome
of B, respectively, in such a way that for a system with density
matrix ρ one has

F
(
�A

i ,ρ
) = Tr

(
�A

i ρ
) = pi(A; ρ). (9)

(and analogously forB). Following the same lines of reasoning
given previously to demonstrate LPI in the case of pure states,
we find for mixed states

arccos
√

PA;ρ + arccos
√

PB;ρ � arccos c, (10)

where PA;ρ = maxi pi(A; ρ) ∈ [ 1
N

,1] (and analogously for
B) and the overlap in terms of the projectors reads c =
maxi,j

√
Tr (�A

i �B
j ).

Inequality (10) is an UR and it is the natural extension of
LPI (5) to the case of mixed states in a Hilbert space of arbitrary
dimension. To the best of our knowledge, this result was only
formally proved for quantum states belonging to a Hilbert
space of dimension 2 [17]. The extension of LPI to mixed
states in arbitrary dimensions is one of the most important
results of the present work.

We now show that a family of URs can be established in
terms of fidelity-based metrics. The procedure to obtain these
URs is inspired by the one followed to obtain inequality (10).

Let us start from fidelity-based metrics of the form

d(ρ,σ ) = f (F (ρ,σ )), (11)

where f (x) is a decreasing function for x ∈ [0,1], with
f (x) = 0 iff x = 1. Now, recalling the link between fidelity
and probability given in Eq. (9), we propose as uncertainty
measure for an observable A the following quantity:

U(A; ρ) = f (PA;ρ). (12)

Notice that this is a reasonable measure of uncertainty as it
satisfies, by definition, the following basic properties:

(i) U(A; ρ) � 0,
(ii) U(A; ρ) is decreasing in terms of PA;ρ , that is,

uncertainty decreases when one has more certainty about the
predictability of A,

(iii) The maximum of U(A; ρ) is attained at PA;ρ = 1
N

,
which leads to the uniform distribution; that is, uncertainty is
maximum only when one has complete ignorance about the
predictability of A, and

(iv) U(A; ρ) = 0 iff PA;ρ = 1, that is, uncertainty vanishes
only when one has certainty about the predictability of A.

We now give our main result in the following proposi-
tion that establishes a geometric formulation of uncertainty
principle:

Proposition. Let A and B be two observables with discrete
nondegenerate spectra acting on an N -dimensional Hilbert
space. Consider a quantum system described by a density
operator ρ and an uncertainty measure associated with the
observables given in the form of Eq. (12). Then, the following
UR holds:

U(A; ρ) + U(B; ρ) � f (c2), (13)

where c2 = maxi,j Tr (�A
i �B

j ), with �A
i and �B

j being the
rank-one projectors associated with the ith outcome of A and
the j th outcome of B, respectively.

Proof. The triangle inequality fulfilled by Eq. (11) applied
to the triplet �A

i , �B
j , ρ, leads to

f (pi(A; ρ)) + f (pj (B; ρ)) � f
(
Tr

(
�A

i �B
j

))
,

where we made use of Eq. (9). Note that this inequality is
valid for any pair of indices i,j . In particular, one can choose
(separately) the indices imax and jmax that correspond to the
maximum probabilities PA;ρ and PB;ρ , respectively. Using
Eq. (12) we arrive at

U(A; ρ) + U(B; ρ) � f
(
Tr

(
�A

imax
�B

jmax

))
.

The proof concludes by taking into account that
Tr (�A

imax
�B

jmax
) � maxi,j Tr (�A

i �B
j ) and that f is

decreasing. �
We remark that, regardless of the explicit form of the
uncertainty measureU , our formulation captures the essence of
the uncertainty principle, in the sense discussed in Refs. [2,3],
due to the following reasons:

(i) the lower bound to the uncertainty sum is universal, that
is, it is state-independent,

(ii) when c < 1 the UR given by inequality (13) is
nontrivial, that is, the uncertainty sum is strictly greater than
zero, and

(iii) when c = 1√
N

(complementary observables), certainty
associated with one observable implies maximum ignorance
about the other.
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Furthermore, it is worth noting that inequality (13) represents
a family of URs.

Before presenting our conclusions, we particularize the UR
given in the proposition for the case of the previously intro-
duced fidelity-based metrics, and we compare the concomitant
URs. In addition, we rephrase the results previously obtained
for the angle metric and derive new results for Bures and
root-infidelity metrics.

(1) Angle metric:
From Eqs. (1), (11), and (12), the corresponding uncertainty
measure is UA(O; ρ) = arccos

√
PO;ρ for O = A,B. There-

fore, we reobtain inequality (10):

arccos
√

PA;ρ + arccos
√

PB;ρ � arccos c. (14)

Again we observe that this inequality is the natural extension
of LPI (5) to the case of mixed states belonging to a Hilbert
space of arbitrary dimension.
As we pointed out, this result has been proved for N = 2 in
Ref. [17], where the fact that arccos

√
PO;ρ is concave in terms

of ρ was crucial for the demonstration; however, the same
argument is not applicable when N > 2 since that measure
looses the concavity property.

(2) Bures metric:
From Eqs. (3), (11), and (12), the corresponding uncertainty

measure is UB(O; ρ) =
√

2 − 2
√

PO;ρ . Therefore, the follow-
ing UR holds:√

1 − √
PA;ρ +

√
1 − √

PB;ρ �
√

1 − c. (15)

(3) Root-infidelity metric:
From Eqs. (4), (11), and (12), the corresponding uncertainty
measure is URI(O; ρ) = √

1 − PO;ρ . Therefore, the following
UR holds: √

1 − PA;ρ + √
1 − PB;ρ �

√
1 − c2. (16)

Now, let us compare the three URs (14), (15), and (16) by
focusing on the set of values of PA;ρ and PB;ρ allowed in each
case. With this purpose, for each given c ∈ [ 1√

N
,1], we define

the sets

Dλ,c =
{

(PA;ρ,PB;ρ) ∈
[

1

N
,1

]2

: PB;ρ � gλ,c(PA;ρ)

}
, (17)

where λ = A,B,RI refers to angle, Bures, and root-infidelity
metrics, respectively, and

gλ,c(P ) =
{

1 if 1
N

� P � c2,

hλ,c(P ) if c2 � P � 1,
(18)

with hλ,c given in Table I (see Appendix). In Fig. 1 we show
the sets Dλ,c for typical values of the overlap c.

TABLE I. Functions hλ,c.

Metric hλ,c(P )

dA (
√

1 − P
√

1 − c2 + c
√

P )2

dB (
√

P + 2
√

1 − √
P

√
1 − c + c − 1)2

dRI P + 2
√

1 − P
√

1 − c2 + c2 − 1

FIG. 1. Plots of the sets Dλ,c defined in Eq. (17) where λ refers
to angle metric (light gray), Bures metric (gray), and root-infidelity
metric (dark gray), when N = 20 and the overlap c = 1√

N
(a),

√
0.2

(b), and
√

0.4 (c).

It can be seen that the following ordering among the sets
holds for every c:

DA,c ⊆ DB,c ⊆ DRI,c. (19)

This implies that inequality (14), derived from the angle metric,
is the tightest one. However, two limiting cases arise where the
three sets are equal. One case is that in which one has certainty
about one observable: if PA;ρ = 1, then PB;ρ � gλ,c(1) = c2

for any metric; and analogously interchanging A and B. The
other case is trivial: when c = 1, the three sets are the whole
square [ 1

N
,1]2; that is, there is no restriction coming from URs.

Concluding remarks. We present a geometric approach to
formulate the uncertainty principle. We obtain a family of
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TABLE II. Variable ξ and coefficients of the quadratic polynomial
in (A1), for angle, Bures, and root-infidelity metrics.

Metric ξ α1 α0

dA

√
1 − PB;ρ 2c

√
1 − PA;ρ c2 − PA;ρ

dB

√
2 − 2

√
PB;ρ 2

√
2 − 2

√
PA;ρ 2(c − √

PA;ρ)

dRI

√
1 − PB;ρ 2

√
1 − PA;ρ c2 − PA;ρ

uncertainty relations, inequality (13), that depend on fidelity-
based metrics. In particular, when we make use of the angle
metric between quantum states, a natural generalization of
the Landau-Pollak inequality to mixed states in arbitrary
dimensions is obtained in relation (14). Furthermore, we
find two additional uncertainty relations, inequalities (15)
and (16), derived from Bures and root-infidelity metrics,
respectively. These relations are seen to be weaker than the
Landau-Pollak inequality. As a consequence of these findings,
the question is raised of whether the angle metric leads
to the tightest uncertainty relation when compared to an
uncertainty relation derived from any arbitrary fidelity-based
metric, within our approach. This observation deserves further
study. Moreover, it remains open the problem of how to extend

our main result (13), demonstrated for discrete nondegenerate
observables, to the most general case of positive-operator
valued measures.
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APPENDIX: SETS OF ALLOWED VALUES
OF PA;ρ AND PB;ρ

Here we show how to obtain the sets (17) of allowed values
of PA;ρ and PB;ρ for angle, Bures, and root-infidelity metrics.
The URs (14), (15), and (16) can be written as

ξ 2 + α1ξ + α0 � 0, (A1)

where the variable ξ , and the coefficients α1 and α0 are given
in Table II for each metric.

In all three cases the quadratic polynomial has two roots,
ξ±, being ξ− always negative while ξ+ can take either sign. If
PA;ρ � c2 then ξ+ � 0 and PB;ρ � 1; otherwise, ξ+ � 0 and
PB;ρ � hλ,c(PA;ρ) with hλ,c given in Table I.
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