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A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
WITH DIRAC MEASURE TERMS IN WEIGHTED SPACES

Juan Pablo Agnelli1,2, Eduardo M. Garau1,3 and Pedro Morin1,3

Abstract. In this article we develop a posteriori error estimates for second order linear elliptic prob-
lems with point sources in two- and three-dimensional domains. We prove a global upper bound and
a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a
(positive) power of the distance to the support of the Dirac delta source term, and belongs to the
Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément or
Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted esti-
mates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm
yield optimal meshes and very good effectivity indices.

Mathematics Subject Classification. 35J15, 65N12, 65N15, 65N30, 65N50, 65Y20.

Received January 31, 2013. Revised August 5, 2013.
Published online September 9, 2014.

1. Introduction

The main goal of this article is to develop a posteriori error estimates for elliptic second order partial
differential equations on two- and three-dimensional domains with point sources. Elliptic problems with Dirac
measure source terms arise in modeling different applications as, for instance, the electric field generated by a
point charge, the acoustic monopoles or pollutant transport and degradation in an aquatic media where, due to
the different scales involved, the pollution source is modeled as supported on a single point [3]. Other applications
involve the coupling between reaction-diffusion problems taking place in domains of different dimension, which
arise in tissue perfusion models [11].

In spite of the fact that the solution of one such problem typically does not belong to H1, it can be numerically
approximated by standard finite elements, but there is no obvious choice for the norm to measure the error.
Babuška [5], Scott [28] and Casas [8] obtained a priori estimates for the error measured in L2 and in fractional
Sobolev norms Hs, for s in some subinterval of (0, 1), depending on the dimension of the underlying domain.
Eriksson [13] showed optimal order error estimates in the L1 and W 1,1 norms, for adequately refined meshes; he
also obtained pointwise estimates far from the singularity and the boundary. In a recent article, by using graded
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meshes, Apel et al. [1] obtained L2 error estimates of almost optimal order on convex polygonal domains. More
recently, D’Angelo [10] proved the well-posedness of Poisson problem with singular sources on weighted Sobolev
spaces, over three-dimensional domains, obtaining also stability and optimal estimates for a priori designed
meshes, in the spirit of [1, 13]. D’Angelo measures the error in H1

α = H1
d2α , where d(x) = dist(x, Λ), α ∈ (0, 1),

and Λ is the support of the singular source term, which is a smooth curve; his results carry over immediately
to two dimensional domains with point sources. Regularity estimates in weighted norms have also been used in
the design of graded meshes for elliptic problems with corner singularities; see [2, 6, 20] and references therein.

A posteriori error estimates on two dimensional domains have been obtained by Araya et al. [3, 4] for the
error measured in Lp (1 < p <∞) and W 1,p (p0 < p < 2) for certain value of p0, and by Gaspoz et al. [16] for
the error measured in Hs (1/2 < s < 1). Recall that the usual test and ansatz space for elliptic problems is the
Sobolev space H1

0 = W 1,2
0 . Point sources do not belong to the dual space of H1

0 , because H1
0 is not immersed

into the space of continuous functions, but in two dimensions very little is missing, since functions in W 1,p′

0 and
Hs

0 are continuous if p′ > 2 and s > 1. This fact was exploited in [3, 4] and [16].
In this article we develop residual type a posteriori error estimators for the weighted Sobolev norm ‖ · ‖H1

α
;

the same notion of error estimated a priori by D’Angelo in [10]. The space H1
α that we consider here is also

“larger” than H1 and seems to be more appropriate than the W 1,p and the Hs spaces, because the weight
weakens the norm only around the singularity, letting it behave like the usual W 1,2 = H1 norm far from the
location of the support of the Dirac’s delta.

We consider the following linear elliptic problem on a Lipschitz domain Ω ⊂ R
n, n = 2, 3, with a polygo-

nal/polyhedral boundary ∂Ω: {
−∇ ·

(
A∇u

)
+ b · ∇u+ cu = δx0 in Ω

u = 0 on ∂Ω,
(1.1)

where A ∈ L∞(Ω; Rn×n) is piecewise W 1,∞ and uniformly symmetric positive definite (SPD) over Ω, i.e., there
exist constants 0 < γ1 ≤ γ2 such that

γ1|ξ|2 ≤ ξTA(x)ξ ≤ γ2|ξ|2, ∀x ∈ Ω, ξ ∈ R
n, (1.2)

b ∈W 1,∞(Ω; Rn), c ∈ L∞(Ω), and δx0 is the Dirac delta distribution supported at an inner point x0 of Ω. We
assume that c− 1

2 div(b) ≥ 0.
The main results of this article, stated precisely in Theorems 5.1 and 5.3, are a global upper bound for the

error, measured in H1
α(Ω) for α ∈ I ⊂ (n

2 − 1, n
2 ) (see (2.15)), in terms of the a posteriori estimators and a local

lower bound up to some oscillation term, which we roughly state as follows:

Given a shape-regular triangulation T , we let U be the Galerkin approximation of the exact solution u
with continuous finite elements of arbitrary (fixed) degree, and prove that the a posteriori local error
estimators ηT satisfy

‖U − u‖H1
α(Ω) ≤ C̃U

(∑
T∈T

η2
T

)1/2

and C̃L ηT ≤ ‖U − u‖H1
α(ωT ) + oscT , ∀T ∈ T ,

with constants C̃U , C̃L that depend only on mesh regularity, the domain Ω, the problem coefficients and
α, and can be chosen independent of α on compact subintervals of I. The set ωT is the patch of all
neighbours of T in T , and oscT is an oscillation term, which is generically of higher order than ηT .

As we have mentioned earlier, a posteriori error estimates for elliptic problems with point sources have already
been obtained. The main advantages and novelties of the present work are the following:

• The equivalence of the error and estimator is valid for a large class of linear elliptic problems. Previous
works [4, 16] considered Poisson problem, and a diffusion-advection-reaction equation was studied in [3],
assuming that an inf-sup condition holds in the context of W 1,p spaces. We prove the necessary continuous
inf-sup condition for linear elliptic problems in the weighted spaces considered here (see Thm. 2.3).
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• In contrast to the norms used in [3,4,16], when considering the weighted spaces a discrete inf-sup condition
can be proved (see Sect. 3), allowing us to conclude convergence of adaptive methods by resorting to the
general theory developed in [22, 29].

• The proposed weight only weakens the norm around x0, but behaves as the usual H1 norm in subsets at a
positive distance to x0. Whence the convergence alluded to in the previous item implies the convergence to
zero of the H1 error over such sets.

• Our estimates are valid in two and three dimensions, whereas the results from [3,4,16] cannot be immediately
extended to the three dimensional case.

In [4] the solution is seen as an element ofW 1,p(Ω), for some p < 2, and the test functions belong to W 1,p′
(Ω),

with 1/p+1/p′ = 1 and thus p′ > 2. By Sobolev embeddings the test functions are continuous, whence the usual
proof for the upper bound can be done resorting to the Lagrange interpolant. The same happens in [16], where
the solution is seen as an element of H1−s(Ω) and the test functions belong to H1+s(Ω) for 0 < s < 1/2. In this
article we see the solution as an element of the weighted Sobolev space H1

α(Ω) = {v :
∫

Ω
(v2 + |∇v|2) d2α

x0
<∞},

with dx0(x) = |x0 − x| and n
2 − 1 < α < n

2 , n being the dimension of the underlying domain Ω. Even though
δx0(v) is well defined for all test functions v ∈ H1

−α(Ω), they are not necessarily continuous, and thus, we are not
able to use Lagrange interpolation. Instead, we resort to Clément, or Scott–Zhang operator, whose well known
properties are sufficient for our purposes. In contrast to [7], where weighted spaces appear due to dimension
reduction in an axisymmetrical problem, we do not need to modify the interpolation operators, but just use
their local approximation and stability properties stated in (4.8) and (4.9).

The rest of this article is organized as follows. In Section 2 we define the weighted spaces and discuss the
well-posedness of the problem. In Section 3 we specify the finite element spaces, and the discrete solution,
proving stability of the discrete formulation. In Section 4 we prove Poincaré type and interpolation results on
simplices, these will be instrumental for proving the main results in Section 5. We end the article with some
numerical simulations in Section 6 illustrating the behavior of an adaptive algorithm based on the obtained
a posteriori estimators.

2. Weighted spaces and weak formulation

Let Ω ⊂ R
n be a bounded polygonal (n = 2) or polyhedral (n = 3) domain with Lipschitz boundary and x0

an inner point of Ω. For β ∈ (−n
2 ,

n
2 ), we denote by L2(Ω, d2β

x0
) the space of measurable functions u such that

‖u‖L2
β
(Ω) := ‖u‖L2(Ω,d2β

x0) :=
(∫

Ω

|u(x)|2 dx0(x)
2βdx

) 1
2

<∞,

where dx0(x) = |x− x0| is the euclidean distance from x to x0. We will write L2
β(Ω) to denote L2(Ω, d2β

x0
) and

observe that it is a Hilbert space equipped with the scalar product

〈u, v〉Ω,β :=
∫

Ω

u(x)v(x) dx0(x)
2βdx.

We also define the weighted Sobolev space H1
β(Ω) of weakly differentiable functions u such that

‖u‖H1
β(Ω) <∞, with

‖u‖H1
β(Ω) := ‖u‖L2

β(Ω) + ‖∇u‖L2
β(Ω) .

We immediately observe that, if 0 < α < n
2 , then H1

−α(Ω) ⊂ H1(Ω) ⊂ H1
α(Ω) with continuity. Since the

source term of (1.1) does not belong to the dual of H1
0 (Ω), we intend to use appropriate subspaces of H1

−α(Ω)
and H1

α(Ω) for the test and ansatz space, respectively. We need to prove that this leads to a stable formulation,
and we thus recall some known facts about weighted spaces.

The theory of weighted Lp spaces over n-dimensional domains is well developed and much attention has been
payed to the class of Muckenhoupt weights Ap [23]. In our context of Hilbert spaces over two-dimensional and



1560 J.P. AGNELLI ET AL.

three-dimensional domains only the Muckenhoupt class A2 matters, which is defined as the set of weights w
such that their A2 constant supB

(
1

|B|
∫

B w(x) dx
) (

1
|B|
∫

B w(x)−1 dx
)

is finite, where the supremum is taken

over all balls B in R
n. It is easy to prove that the weight function d2β

x0
belongs to A2 if and only if −n

2 < β < n
2 .

For β in this range, the results from [18, 19, 21] imply that smooth functions are dense in H1
β(Ω), and also a

Rellich–Kondrachov theorem and a Poincaré inequality hold in H1
β(Ω).

In the following we recall some results which are instrumental to state the weak formulation of (1.1).
By Lemma 7.1.3 in [20], if n

2 − 1 < α < n
2 there exists a unique linear continuous map δx0 : H1

−α(Ω) → R

such that δx0(ϕ) = ϕ(x0) for any ϕ ∈ C1(Ω̄). More precisely, there exists a constant C depending on α and Ω,
such that

|δx0(ϕ)| ≤ C‖ϕ‖H1
−α(Ω), ∀ϕ ∈ H1

−α(Ω); (2.1)

see also Theorem 4.7 below.
Since we are considering Dirichlet boundary conditions, we define

Wβ := {u ∈ H1
β(Ω) : u|∂Ω

= 0},

and since d2β
x0

belongs to A2, from Theorem 1.3 in [15], it follows that Poincaré inequality holds in Wβ and
therefore ‖u‖Wβ

:= ‖∇u‖L2
β(Ω) is a norm in Wβ equivalent to the inherited norm ‖u‖H1

β(Ω). More precisely, for
−n

2 < β < n
2 , there exists a constant CP,β , depending on the diameter of Ω, such that

‖u‖Wβ
≤ ‖u‖H1

β
(Ω) ≤ CP,β ‖u‖Wβ

, u ∈ Wβ , (2.2)

where CP,β blows up as |β| approaches n
2 .

Given n
2 − 1 < α < n

2 , the considerations above yield W−α ⊂ H1
0 (Ω) ⊂ Wα and δx0 ∈ (W−α)′. We thus say

that u is a weak solution of (1.1) if

u ∈ Wα : a(u, v) = δx0(v), ∀ v ∈W−α, (2.3)

where a : Wα ×W−α → R is the bilinear form given by

a(u, v) =
∫

Ω

A∇u · ∇v + b · ∇u v + c u v, (2.4)

which is clearly well-defined and bounded in Wα ×W−α due to Hölder inequality. At this point it is not clear
that the bilinear form a(·, ·) satisfies an inf-sup condition on Wα ×W−α. Therefore, existence and uniqueness
of solution to (2.3) must be proved.

Problem (2.3) is a particular case of the following problem: Given F ∈ (W−α)′,

Find u ∈Wα such that a(u, v) = F (v), ∀ v ∈ W−α. (2.5)

The rest of this section will be devoted to proving existence and uniqueness of solutions to (2.5). We will
proceed by splitting it into two subproblems, taking advantage of the following facts:

• An inf-sup condition holds on Wα ×W−α for the purely second order part
∫

Ω
A∇u · ∇v of a(·, ·).

• The full bilinear form a(·, ·) is coercive on H1
0 (Ω) ×H1

0 (Ω).

Observe that one solution to (2.5) is given by u = ū+ w̄, if

ū ∈Wα :
∫

Ω

A∇ū · ∇v = F (v), ∀ v ∈ W−α, (2.6)

and
w̄ ∈ H1

0 (Ω) : a(w̄, v) = l(v) := −
∫

Ω

(b · ∇ū+ cū)v, ∀ v ∈ H1
0 (Ω). (2.7)
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In fact, since W−α ⊂ H1
0 (Ω), from (2.6) and (2.7) we have, for v ∈ W−α,

a(u, v) = a(ū, v) + a(w̄, v) = F (v) +
∫

Ω

(b · ∇ū+ cū)v + a(w̄, v) = F (v).

The next two propositions state the well-posedness of (2.6) and (2.7), yielding existence of a solution to (2.5).

Proposition 2.1. If α ∈ (0, n
2 ) and F ∈ (W−α)′ then problem (2.6) has a unique solution ū ∈ Wα which

satisfies

‖ū‖Wα
≤ 2
γ1

‖F‖(W−α)′ , (2.8)

where γ1 is given by (1.2).

To prove this proposition we will use the following decomposition of [L2
β(Ω)]n, for β ∈ (−n

2 ,
n
2 ):

For each τ ∈ [L2
β(Ω)]n, there exists a unique pair (σ, v) ∈ [L2

β(Ω)]n ×Wβ such that

τ = ∇v + σ, 〈Aσ,∇z〉Ω = 0 ∀ z ∈W−β ,

‖∇v‖L2
β(Ω) ≤ 2 ‖τ‖L2

β(Ω) , ‖σ‖L2
β(Ω) ≤ ‖τ‖L2

β(Ω) .

Here, 〈·, ·〉Ω denotes the usual [L2(Ω)]n inner product.

This is an immediate generalization of Lemma 2.1 in [10], which states the same result for A = I. Its proof
follows exactly the same lines, using that A is uniformly SPD over Ω, and is thus omitted.

Proof of Proposition 2.1. Let 0 < α < n
2 . By Hölder inequality the bilinear form A[w, v] :=

∫
Ω A∇w · ∇v is

bounded in Wα ×W−α. We use the decomposition of [L2
−α(Ω)]n stated above to prove that A[·, ·] satisfies an

inf-sup condition. Given w ∈Wα, let τ := ∇w d2α
x0

∈ [L2
−α(Ω)]n. Thus, there exist σ ∈ [L2

−α(Ω)]n and v ∈ W−α

such that τ = ∇v + σ, 〈A∇z,σ〉Ω = 0, ∀ z ∈ Wα and 2 ‖w‖Wα
= 2‖τ‖L2

−α(Ω) ≥ ‖v‖W−α
. Then,

〈A∇w,∇v〉Ω = 〈A∇w, τ 〉Ω − 〈A∇w,σ〉Ω = 〈A∇w,∇w d2α
x0
〉Ω ≥ γ1 ‖w‖2

Wα
≥ γ1

2
‖w‖Wα

‖v‖W−α
,

where γ1 is given by (1.2). The same estimate still holds if we swap w and v and change the sign of α. So, the
following inf-sup conditions are valid:

inf
w∈Wα

sup
v∈W−α

∫
Ω
A∇w · ∇v

‖w‖Wα
‖v‖W−α

≥ γ1

2
and inf

v∈W−α

sup
w∈Wα

∫
Ω
A∇w · ∇v

‖w‖Wα
‖v‖W−α

≥ γ1

2
.

Finally, the generalized Lax–Milgram theorem due to Nečas ([25], Thm. 3.3) leads to existence and uniqueness
of a solution ū to problem (2.6) which satisfies (2.8). �
Proposition 2.2. Let α ∈ (0, 1). Given F ∈ (W−α)′, let ū ∈ Wα be the unique solution to (2.6). Then,
problem (2.7) admits a unique solution w̄ ∈ H1

0 (Ω) which satisfies

‖w̄‖H1
0 (Ω) ≤ c̃α‖F‖(W−α)′ , (2.9)

where c̃α > 0 is a constant depending on Ω, the problem coefficients {A, b, c} and blows up when α approaches 1.

In the proof of this proposition we will use the embedding H1(Ω) ↪→ L2
−α(Ω), which holds for α ∈ (0, 1).

In fact, taking 1 < p < 1
α if n = 2 and p = 3

2 if n = 3, using Hölder inequality and the Sobolev embedding
H1(Ω) ↪→ L2q(Ω) where 1

p + 1
q = 1 we have that

‖v‖L2
−α(Ω) =

(∫
Ω

v2 d−2α
x0

) 1
2

≤
(∫

Ω

v2q

) 1
2q
(∫

Ω

d−2αp
x0

) 1
2p

≤ cα‖v‖H1(Ω), ∀ v ∈ H1(Ω), (2.10)

where cα depends on Ω and α, and blows up when α approaches 1.
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Proof of Proposition 2.2. Let α ∈ (0, 1) and F ∈ (W−α)′. Let ū ∈ Wα be the solution to (2.6). Since we have
assumed c− 1

2 div(b) ≥ 0, the bilinear form a : H1
0 (Ω) ×H1

0 (Ω) → R given by (2.4) is continuous and coercive,
and thus, by Lax–Milgram theorem, problem (2.7) admits a unique solution w̄ ∈ H1

0 (Ω) which satisfies

‖w̄‖H1
0(Ω) ≤

1
γ1

‖l‖H−1(Ω), (2.11)

provided l ∈ H−1(Ω) := (H1
0 (Ω))′, where l(v) := −

∫
Ω(b · ∇ū+ cū)v dx, for v ∈ H1

0 (Ω).
In order to prove that l ∈ H−1(Ω) and bound ‖l‖H−1(Ω), let v ∈ H1

0 (Ω), and observe that using (2.10)
and (2.2) we have that

|l(v)| =
∣∣∣∣
∫

Ω

(b · ∇ū+ cū)v
∣∣∣∣ ≤ (‖b‖L∞(Ω) ‖∇ū‖L2

α(Ω) + ‖c‖L∞(Ω) ‖ū‖L2
α(Ω)

)
‖v‖L2

−α(Ω)

≤ max
{
‖b‖L∞(Ω), ‖c‖L∞(Ω)

}(
‖ū‖L2

α(Ω) + ‖∇ū‖L2
α(Ω)

)
cα‖v‖H1(Ω)

≤ CP,αcα max
{
‖b‖L∞(Ω), ‖c‖L∞(Ω)

}
‖ū‖Wα‖v‖H1(Ω). (2.12)

Taking into account (2.8), it follows that

‖l‖H−1(Ω) ≤
2CP,αcα
γ1

max
{
‖b‖L∞(Ω), ‖c‖L∞(Ω)

}
‖F‖(W−α)′ ,

which by (2.11) leads to the desired bound (2.9). �

As a consequence of Propositions 2.1 and 2.2 we conclude the well-posedness of problem (2.5).

Theorem 2.3. Let 0 < α < n
2 , if b = 0 and c = 0, and 0 < α < 1, otherwise. For each F ∈ (W−α)′, there

exists a unique solution u ∈Wα of problem (2.5) which satisfies

‖u‖Wα
≤ C∗‖F‖(W−α)′ , (2.13)

where the constant C∗ > 0 depends on the domain Ω, the problem coefficients {A, b, c} and α. If b = 0 and
c = 0 then C∗ = 2/γ1, otherwise, C∗ blows up when α approaches 1.

Moreover, the following inf-sup condition holds:

inf
w∈Wα

sup
v∈W−α

a(w, v)
‖w‖Wα‖v‖W−α

≥ 1
C∗
. (2.14)

Remark 2.4. The constant C∗ depends on 1
γ1

max{‖b‖∞, ‖c‖∞} and the stability just obtained is not uniform
for advection dominated problems. The study of this class of problems falls beyond the scope of this article,
and will be subject of future research. It is clear that the main issue in this direction will be to prove an inf-sup
condition with a constant C∗ independent of the smallness of γ1.

Proof of Theorem 2.3. If b = 0 and c = 0, problem (2.5) coincides with (2.6). Therefore, existence, uniqueness
and the bound (2.13) follow for 0 < α < n

2 , from Proposition 2.1.
If b 
= 0 or c 
= 0, assume that 0 < α < 1 and let ū, w̄ denote the solutions of problems (2.6) and (2.7),

respectively. Then u := ū+ w̄ is a solution of problem (2.5), and (2.13) holds due to (2.8) and (2.9). It remains
to prove that this solution is unique. This is not so obvious because we have not proved an inf-sup condition
for the full bilinear form a(·, ·) but only for the purely second order part.

Let u, ũ be solutions of (2.5) and define e := u− ũ. Then,

e ∈ Wα : a(e, v) = 0, ∀ v ∈ W−α,
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and also
e ∈ Wα :

∫
Ω

A∇e · ∇v = L(v) := −
∫

Ω

(b · ∇e+ ce)v, ∀ v ∈W−α.

Since e ∈ Wα, we have that L ∈ H−1(Ω) (cf. (2.12)), and there exists a unique ẽ ∈ H1
0 (Ω) satisfying

∫
Ω
A∇ẽ ·

∇v = L(v), for all v ∈ H1
0 (Ω). Since W−α ⊂ H1

0 (Ω) ⊂Wα, it follows from Proposition 2.1 that ẽ is the unique
solution to

ẽ ∈Wα :
∫

Ω

A∇ẽ · ∇v = L(v), ∀v ∈ W−α.

Therefore e = ẽ ∈ H1
0 (Ω) and

e ∈ H1
0 (Ω) : a(e, v) = 0, ∀ v ∈ H1

0 (Ω),

which implies that e = 0 by the coercivity of a(·, ·) in H1
0 (Ω).

Finally, existence and uniqueness of solution to problem (2.5) for each F ∈ (W−α)′ and the bound (2.13)
imply that the inf-sup condition (2.14) holds (cf. [25], Thm. 3.3). �

We end this section recalling that F := δx0 belongs to (W−α)′ if α ∈ (n
2 −1, n

2 ) and thus, Theorem 2.3 implies
that:

Problem (2.3) is well-posed provided α ∈ I :=

{(
n
2 − 1, n

2

)
if b = 0, c = 0,(

n
2 − 1, 1

)
otherwise.

(2.15)

3. Finite element discretization

In this section we define the finite element spaces that we consider, and let the discrete solution U be the
usual Galerkin approximation of the weak solution u. We then show that the discretization is stable by proving
an inf-sup condition which is independent of the mesh, which can be graded, but must be shape-regular.

Let T be a conforming triangulation of the domain Ω ⊂ R
n. That is, a partition of Ω into n-simplices

such that if two elements intersect, they do so at a full vertex/edge/face of both elements. We define the mesh
regularity constant

κ := sup
T∈T

diam(T )
ρT

,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball contained in it. Also, the diameter
of any element T ∈ T is equivalent to the local mesh-size hT := |T |1/n, with equivalence constants depending
on κ.

On the other hand, we denote the subset of T consisting of an element T and its neighbors by NT and the
union of the elements in NT by ωT . More precisely, for T ∈ T ,

NT := {T ′ ∈ T | T ∩ T ′ 
= ∅} , ωT :=
⋃

T ′∈NT

T ′.

We denote by EΩ to the set of sides (edges for n = 2 and faces for n = 3) of the elements in T which are
inside Ω and by E∂Ω to the set of sides which lie on the boundary of Ω. We define ωS as the union of the two
elements sharing S, if S ∈ EΩ, and as the unique element TS satisfying S ⊂ ∂TS if S ∈ E∂Ω.

For the discretization we consider Lagrange finite elements of degree � ∈ N, more precisely, we let

V
�
T :=

{
V ∈ H1

0 (Ω) | V|T ∈ P�(T ), ∀ T ∈ T
}
,

and observe that V
�
T ⊂Wβ , for β ∈ (−n

2 ,
n
2 ). The discrete counterpart of (2.3) reads:

Find U ∈ V
�
T such that a(U, V ) = δx0(V ), ∀V ∈ V

�
T . (3.1)
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Clearly, this discrete problem has a unique solution for each mesh; the system matrix is not affected by the
right-hand side and is invertible because the assumptions on the problem coefficients guarantee the coercivity
of the bilinear form a(·, ·) in V

�
T × V

�
T .

Unlike [3,4,16] we also prove here a stability result for a general right-hand side F ∈ (W−α)′; see Theorem 3.1.
By the theory of [22, 29] this allows us to conclude that adaptive algorithms with the a posteriori estimates
developed here yield convergence. Recall also that the discrete inf-sup is usually not used for the derivation of
a posteriori estimates, only the continuous one needs to be used.

Theorem 3.1 (Stability of discrete solutions). Let 0 < α < n
2 , if b = 0 and c = 0, and 0 < α < 1, otherwise.

Let us consider the following problem for F ∈ (W−α)′:

Find U ∈ V
�
T : a(U, V ) = F (V ), ∀V ∈ V

�
T . (3.2)

There exists a constant C∗ > 0, which depends on the domain Ω, the problem coefficients {A, b, c}, the mesh
regularity constant κ, the polynomial degree �, and α, such that the solution U ∈ V

�
T of (3.2) satisfies

‖U‖Wα
≤ C∗‖F‖(W−α)′ .

The constant C∗ blows up as α approaches n
2 or 1, respectively.

In the proof of this theorem we will use the space

M�−1
T :=

{
λ ∈

[
L2(Ω)

]n | λ|T ∈ Pn
�−1(T ), ∀ T ∈ T

}
⊃ ∇V

�
T ,

and apply the following decomposition:

Let β ∈ (−n
2 ,

n
2 ). For each λ ∈ M�−1

T , there exists a unique couple (σ, V ) ∈ M�−1
T × V

�
T such that

λ = ∇V + σ, 〈Aσ,∇Z〉Ω = 0 ∀ Z ∈ V
�
T ,

‖∇V ‖T ,β ≤ 2‖λ‖T ,β , ‖σ‖T ,β ≤ ‖λ‖T ,β ,

where ‖λ‖T ,β :=

(∑
T∈T

D2β
T ‖λ‖2

L2(T )

) 1
2

, for all λ ∈ M�−1
T , and DT := maxx∈T dx0(x).

This is an immediate generalization of Lemma 3.3 in [10], with a similar proof, again, taking into account
that A is uniformly SPD. D’Angelo proposed the discrete norm ‖ · ‖T ,β used in the decomposition, and proved
in Lemma 3.2 from [10], that it is equivalent to ‖·‖L2

β(Ω), for β ∈ (−n
2 ,

n
2 ), with equivalence constants depending

only on κ, the polynomial degree � and |β|. The proof is based on the fact that for t ∈ (0, n
2 ) fixed, there exists

a constant ct, depending on κ, � and t, such that, if |β| ≤ t, then

1
ct

‖V ‖L2
β(T ) ≤ Dβ

T ‖V ‖L2(T ) ≤ ct ‖V ‖L2
β(T ) , ∀T ∈ T , ∀V ∈ P�(T ). (3.3)

This last local equivalence will also be used in Proposition 4.6.

Proof of Theorem 3.1. Notice that the solution U of problem (3.2) can be split as U = Ū + W̄ with

Ū ∈ V
�
T :

∫
Ω

A∇Ū · ∇V = F (V ), ∀V ∈ V
�
T , (3.4)

and
W̄ ∈ V

�
T : a(W̄ , V ) = −

∫
Ω

(b · ∇Ū + cŪ)V, ∀V ∈ V
�
T . (3.5)
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Therefore, we just need to bound the solutions Ū and W̄ to problems (3.4) and (3.5) in Wα by ‖F‖(W−α)′ .
Using the aforementioned decomposition and proceeding as in the proof of Proposition 2.1 we arrive at

inf
W∈V�

T

sup
V ∈V�

T

∫
Ω A∇W · ∇V

‖W‖Wα‖V ‖W−α

≥ γ̃1 and inf
V ∈V

�
T

sup
W∈V�

T

∫
Ω A∇W · ∇V

‖W‖Wα‖V ‖W−α

≥ γ̃1,

which holds for 0 < α < n
2 , with γ̃1 depending on γ1 from (1.2), κ, � and α, and vanishing as α approaches n

2 .
Therefore,

‖Ū‖Wα ≤ 1
γ̃1

‖F‖(W−α)′ . (3.6)

On the one hand, if b = 0 and c = 0, W̄ = 0.
On the other hand, if b 
= 0 or c 
= 0, we use that the continuity and coercivity of the bilinear form a are

inherited from the continuous space to the discrete one, and thus the solution W̄ of problem (3.5) satisfies

‖W̄‖H1
0 (Ω) ≤

1
γ1

‖L̄‖H−1(Ω),

where L̄(V ) := −
∫

Ω(b · ∇Ū + c Ū)V . In view of (2.12), ‖L̄‖H−1(Ω) is controlled by ‖Ū‖Wα , and from (3.6) the
claim follows. �

4. Some results in weighted spaces on simplices

In this section we state and prove some properly scaled bounds which are valid on the elements of the trian-
gulation, with constants depending only on mesh regularity. These bounds include a local Poincaré inequality,
a bound for ‖δx0‖(W−α)′ , and bounds for the error in Clément and Scott–Zhang interpolation operators. Most
of these bounds are known for the usual Sobolev norms, without weights.

This section is independent of the elliptic operator or the precise problem at hand. The results stated here
might be useful in other applications involving point sources.

From now on, we will write a � b to indicate that a ≤ Cb with C > 0 a constant depending on the shape
regularity κ of the mesh and possibly on the domain Ω ⊂ R

n, which is assumed polygonal (n = 2) or polyhedral
(n = 3) with a Lipschitz boundary. Also a � b will indicate that a � b and b � a.

4.1. Classification of simplices

In order to prove our results we classify the elements according to their relationship to x0. We categorize the
elements of T into two disjoint classes, defined as follows:

T near := {T ∈ T | x0 ∈ ωT } and T far := T \ T near.

Recall that for T ∈ T , DT = max
x∈T

dx0(x), and let dT be defined by dT := min
x∈T

dx0(x). Now, we establish a

relationship between the classical local norms ‖ · ‖L2(T ) and the weighted ones ‖ · ‖L2
β
(T ).

Lemma 4.1. The following statements hold:

(i) If −n
2 < β < n

2 and T ∈ T far, then hT � dT � DT and

‖v‖L2
β(T ) � Dβ

T ‖v‖L2(T ), ∀ v ∈ L2(T ), (4.1)

‖v‖L2
β(∂T ) � Dβ

T ‖v‖L2(∂T ), ∀ v ∈ L2(∂T ). (4.2)
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(ii) If 0 ≤ α < n
2 and T ∈ T near, then hT � DT and

‖v‖L2
−α(T ) � h−α

T ‖v‖L2(T ), ∀ v ∈ L2
−α(T ), (4.3)

‖v‖L2
α(T ) � hα

T ‖v‖L2(T ), ∀ v ∈ L2(T ). (4.4)

To prove this lemma we will use the following result, which states that a neigborhood of size � hT of an
element T is always contained in ωT . This result will also be used in the proof of the lower bound (see Thm. 5.3).

Lemma 4.2. There exists a constant cκ,Ω > 0 depending on mesh regularity κ and the Lipschitz property of
∂Ω such that, if T ∈ T , x ∈ T and y ∈ Ω \ ωT , then |x− y| ≥ cκ,ΩhT . In other words, B(x, cκ,ΩhT ) ∩Ω ⊂ ωT

for all x ∈ T and all T ∈ T .

Proof. Let T ∈ T , let φi, i = 1, . . . , n+ 1, be the canonical basis functions of V
1
T corresponding to each vertex

of T , and let ψ =
∑n+1

i=1 φi. Then ‖∇ψ‖L∞(Ω) � 1/hT , and therefore

|ψ(x) − ψ(y)| ≤ 1
cκ,ΩhT

|x− y|, for all x, y ∈ Ω,

where cκ,Ω depends only on mesh regularity and the Lipschitz property of ∂Ω. Since ψ(x) = 1 if x ∈ T and
ψ(y) = 0 for y /∈ ωT the claim follows. �

Proof of Lemma 4.1. Let T ∈ T far, then x0 /∈ ωT , and dT = minT dx0 = |x0 − x| for some x ∈ T , whence
hT � dT by Lemma 4.2. Therefore, DT � dT + hT � dT and thus dT � DT , which implies (4.1). Since
dT ≤ min∂T dx0 ≤ max∂T dx0 ≤ DT , (4.2) holds.

Let T ∈ T near. Then x0 ∈ ωT , and thus DT ≤ diam(ωT ) � hT . Besides, if x1, x2 are two vertices of T ,

hT � |x1 − x2| ≤ |x1 − x0| + |x0 − x2| ≤ 2DT .

Therefore hT � DT , and thus (4.3) and (4.4) hold. �

4.2. Local Poincaré inequality and interpolation estimates

The usual scaling arguments used to prove Poincaré inequalities on simplices do not lead to a uniform
constant for all the elements in the mesh. We thus need to resort to real analysis tools from the theory of
weighted inequalities [15, 24]. We start by recalling some definitions and important properties.

Let 0 < γ < n, the fractional integral Iγ(f) and the fractional maximal function f∗
γ of a measurable function

f : R
n → R are defined, for x ∈ R

n by

Iγ(f)(x) :=
∫

Rn

f(y)
|x− y|n−γ

dy, f∗
γ (x) := sup

B

1
|B|1−γ/n

∫
B

|f(y)| dy, (4.5)

where the supremum is taken over all balls B with center at x.
These two concepts are related through the following result, proved by Muckenhoupt and Wheeden (cf.

Thm. 1 in [24]), for any n ∈ N.

Lemma 4.3. Let 0 < γ < n, w ∈ A∞ = ∪q≥1Aq, and 1 < p < ∞. Then, there exists a constant c > 0 such
that (∫

Rn

|Iγ(f)|pw
) 1

p

≤ c

(∫
Rn

|f∗
γ |pw

) 1
p

,

for all measurable functions f .

From Lemma 1.1 in [15], and using the same arguments of the proof of Theorem 1.2 in [15], the next result
follows, for the particular case γ = 1.
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Lemma 4.4. Let w ∈ Ap, for some p, 1 < p < ∞. Then, there exists a constant c > 0, depending only on the
Ap constant of w, such that (∫

Rn

|f∗
1 |pw

) 1
p

≤ cR

(∫
BR

|f |pw
) 1

p

,

for all ball BR of radius R > 0, and for all f measurable and supported in BR.

As a consequence of these results we obtain the following scaled Poincaré inequality.

Theorem 4.5 (Poincaré inequality). Let β ∈ (−n
2 ,

n
2 ). There exists a constant CP > 0 depending on β and the

mesh regularity κ such that, for all v ∈ H1
β(Ω),

‖v − vT ‖L2
β
(T ) ≤ CPhT ‖∇v‖L2

β
(T ) , ∀T ∈ T ,

where vT := 1
|T |
∫

T v. The constant CP blows up when |β| approaches n
2 .

As we mentioned earlier, the usual scaling arguments do not yield a uniform constant CP , and we thus resort
to arguments from [15], where weighted Poincaré inequalities are proved on balls, with a uniform constant
depending only on the Ap constant of the weight.

Proof. Let v ∈ C1(Ω̄) and T ∈ T . Since T is convex, by Lemma 7.16 in [17], we have that

|v(x) − vT | ≤
diam(T )n

nhn
T

∫
T

|∇v(z)|
|x− z|n−1

dz,

for every x ∈ T . Let BR be a ball containing T such that R � hT , and define f := |∇v|χT , where χT is the
characteristic function of T . Then recalling the definition (4.5),

∫
T

|∇v(z)|
|x−z|n−1 dz = I1(f)(x) and thus by mesh

regularity
|v(x) − vT | � I1(f)(x), a.e. x ∈ T. (4.6)

Since d2β
x0

∈ A2 ⊂ A∞, due to Lemmas 4.3 and 4.4 it follows that

‖I1(f)‖L2
β(Rn) ≤ cR‖f‖L2

β(BR) = cR‖∇v‖L2
β(T ), (4.7)

for some constant c > 0, depending only on β, through the A2 constant of d2β
x0

, which blows up as |β| approaches
n/2. The bounds (4.6) and (4.7) yield the result for smooth functions v. The assertion of the theorem follows
by density arguments. �

We will now show some interpolation estimates in weighted spaces, which hinge on the Poincaré inequality
from Theorem 4.5, and are instrumental for proving the reliability of the error estimators. Let P : H1

0 (Ω) → V
1
T

be either the Clément or the Scott–Zhang interpolation operator. It is well-known [9,30] that, for all v ∈ H1(Ω),

‖v − Pv‖L2(T ) � hT ‖∇v‖L2(ωT ) , ∀T ∈ T , (4.8)

‖∇(v − Pv)‖L2(T ) � ‖∇v‖L2(ωT ) , ∀T ∈ T . (4.9)

Since H1
−α(Ω) ⊂ H1(Ω) for α > 0, P is also well defined for functions in H1

−α(Ω). Moreover, the above
estimates hold in weighted norms, as we show in the following proposition.

Proposition 4.6 (Interpolation estimates). Let P denote either the Clément or the Scott–Zhang interpolation
operator. Let t ∈ (0, n

2 ) and 0 ≤ α ≤ t. Then, there exists a constant CI > 0 depending on the mesh regularity
κ and t such that, for all v ∈ H1

−α(Ω),

‖v − Pv‖L2
−α(T ) ≤ CIhT ‖∇v‖L2

−α(ωT ) , ∀T ∈ T , (4.10)

‖∇(v − Pv)‖L2
−α(T ) ≤ CI ‖∇v‖L2

−α(ωT ) , ∀T ∈ T . (4.11)

The constant CI blows up as t approaches n/2.
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Proof. Let v ∈ H1
−α(Ω). Let T ∈ T and vT := 1

|T |
∫

T v. Then, by (3.3)

‖v − Pv‖L2
−α(T ) ≤ ‖v − vT ‖L2

−α(T ) + ctD
−α
T ‖vT − Pv‖L2(T )

≤ ‖v − vT ‖L2
−α(T ) + ctD

−α
T

(
‖vT − v‖L2(T ) + ‖v − Pv‖L2(T )

)
� ‖v − vT ‖L2

−α(T ) + cthTD
−α
T ‖∇v‖L2(ωT ) ,

where the last inequality follows from the classic Poincaré inequality and (4.8). From Theorem 4.5 and the fact
that dx0(x) � DT for all x ∈ ωT (4.10) holds.

Observe now that due to (3.3) and (4.9),

‖∇Pv‖L2
−α(T ) ≤ ctD

−α
T ‖∇Pv‖L2(T ) � ctD

−α
T ‖∇v‖L2(ωT ) � ct ‖∇v‖L2

−α(ωT ) ,

where we have used again that dx0 � DT in ωT . The assertion (4.11) follows. �

4.3. A local bound for δx0

In this section we present a local bound for δx0 , which is useful to establish the reliability of the a posteriori
error estimators (cf. Thm. 5.1 below). It is a local version of (2.1), and the proof could be done by scaling.
We present an alternative proof, following the lines of Theorem 4.2 in [11], in order to show how the constants
depend on α.

Theorem 4.7 (A precise bound of δx0). Let n
2 − 1 < α < n

2 and T ∈ T such that x0 ∈ T . Then

|δx0(v)| � h
α−n

2
T ‖v‖L2

−α(T ) + Cαh
α+ 2−n

2
T ‖∇v‖L2

−α(T ) , ∀ v ∈ H1
−α(T ), (4.12)

where Cα := α
α−1

2

(α+1)
α+1

2
if n = 2 and Cα := (2α−1)

α−2
3

(2α+2)
α+1

3
if n = 3.

Note that the constant Cα blows up as α approaches n
2 − 1. This was expected because δx0 does not belong to

the dual space of H1
−α(Ω), for α = n

2 − 1, but only for n
2 − 1 < α < n

2 .

Proof. Assume n = 3 and let T ∈ T such that x0 ∈ T . By mesh regularity, there exist constants θ0, θ1, φ0, φ1

and c0, depending only on κ, such that a sector ST with center at x0 described in local spherical coordinates by

{(r, θ, φ) | 0 ≤ r ≤ c0hT , θ0 ≤ θ ≤ θ1, φ0 ≤ φ ≤ φ1},

is contained in T . Let ϕ ∈ C1(T ). Then, by using local spherical coordinates centered at x0 we have for every
r ∈ (0, c0hT ), θ ∈ (θ0, θ1) and φ ∈ (φ0, φ1),

ϕ(0, 0, 0) = ϕ(r, θ, φ) −
∫ r

0

∂ϕ

∂r
(t, θ, φ) dt,

so that, using the inequality (a+ b)2 ≤ 2a2 + 2b2, and integrating on ST we get

Ch3
Tϕ(0, 0, 0)2 ≤

∫ φ1

φ0

∫ θ1

θ0

[∫ c0hT

0

ϕ(r, θ, φ)2r2 sin(θ)dr +
∫ c0hT

0

(∫ r

0

∂ϕ

∂r
(t, θ, φ)dt

)2

r2 sin(θ)dr

]
dθdφ,

where C = (φ1−φ0)(cos(θ0)−cos(θ1))c
3
0

6 . To bound the second term we will use the weighted Hardy inequal-
ity (see Thm. 4.8 below), the weight functions being w1(t) = t2, w2(t) = t2−2α and the positive function
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f(t) = |∂ϕ/∂r(t, θ)|. Since α > 1
2 , we have

Dα := sup
r∈(0,c0hT )

(∫ c0hT

r

w1(t) dt

) 1
2 (∫ r

0

w2(t)−1 dt
) 1

2

= sup
r∈(0,c0hT )

[
(c0hT )3 − r3

3
r2α−1

2α− 1

] 1
2

= h1+α
T

c1+α
0 (2α− 1)

α−2
3

(2α+ 2)
α+1

3

<∞.

Hence, by Theorem 4.8, the following inequality is valid

∫ c0hT

0

(∫ r

0

∂ϕ

∂r
(t, θ, φ)dt

)2

r2dr ≤ 4D2
α

∫ c0hT

0

∣∣∣∣∂ϕ∂r (t, θ, φ)
∣∣∣∣
2

r2−2αdr.

Therefore, using the identity r = dx0(x) in ST and 1 ≤ dx0(x)−2α(c0hT )2α, for all x ∈ ST , we obtain

Ch3
Tϕ(0, 0, 0)2 ≤ c2α

0 h2α
T ‖ϕ‖2

L2
−α(T ) + 4D2

α ‖∇ϕ‖2
L2

−α(T ) ,

and thus
|ϕ(0, 0, 0)| � h

α− 3
2

T ‖ϕ‖L2
−α(T ) + Cαh

α− 1
2

T ‖∇ϕ‖L2
−α(T ) ,

where Cα = (2α−1)
α−2

3

(2+2α)
α+1

3
. The assertion follows by the density of C1(T ) in H1

−α(T ).

For the case n = 2, the proof follows the same lines, considering a circular sector described by polar coordinates
inside the triangle and the weight functions being w1(t) = t, w2(t) = t1−2α. �

We end this section by stating a Hardy inequality [27] that was used in the proof of the previous result.

Theorem 4.8 (Weighted Hardy inequality). Let 0 < R ≤ ∞ and let w1, w2 be weight functions defined on

(0,∞) such that D := supr∈(0,R)

( ∫ R

r w1(t)dt
) 1

2
( ∫ r

0 w2(t)−1dt
) 1

2
<∞. Then,

∫ R

0

(∫ r

0

f(t)dt
)2

w1(r) dr ≤ 4D2

∫ R

0

f(r)2 w2(r) dr,

for all positive functions f on (0,∞).

5. A posteriori error estimates

In this section we first present the a posteriori error estimators for the adaptive approximation of prob-
lem (2.3) and then prove their reliability and efficiency.

The residual R(V ) of V ∈ V
�
T is given by

R(V ) : W−α → R, 〈R(V ), v〉 := a(V, v) − δx0(v), ∀ v ∈ W−α.

Let U ∈ V
�
T be the solution of the discrete problem (3.1). Integrating by parts on each T ∈ T we have that

〈R(U), v〉 =
∑
T∈T

(∫
T

Rv +
∫

∂T

Jv

)
− δx0(v), ∀ v ∈ W−α, (5.1)

where R denotes the element residual given by

R|T := −∇ · [A∇U ] + b · ∇U + cU, ∀T ∈ T ,
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and J the jump residual given by

J|S :=
1
2

[
(A∇U)|T1

· n1 + (A∇U)|T2
· n2

]
, if S ∈ EΩ, J|S = 0, if S ∈ E∂Ω.

Here, T1 and T2 denote the elements of T sharing S, and n1 and n2 are the outward unit normals of T1 and T2

on S, respectively.
We define the a posteriori local error estimator ηT by

η2
T :=

⎧⎨
⎩
h2

TD
2α
T ‖R‖2

L2(T ) + hTD
2α
T ‖J‖2

L2(∂T ) + h2α+2−n
T , if x0 ∈ T

h2
TD

2α
T ‖R‖2

L2(T ) + hTD
2α
T ‖J‖2

L2(∂T ) , if x0 /∈ T
(5.2)

and the global error estimator η by η :=

(∑
T∈T

η2
T

) 1
2

.

Notice that by Lemma 4.1, D2α
T ‖R‖2

L2(T ) and D2α
T ‖J‖2

L2(∂T ) are equivalent to ‖R‖2
L2

α(T ) and ‖J‖2
L2

α(∂T ),
respectively, if T ∈ T far. This is consistent with the norm ‖ · ‖Wα used to measure the error.

An alternative definition of ηT in (5.2) would be obtained replacing D2α
T ‖R‖2

L2(T ) and D2α
T ‖J‖2

L2(∂T ) by

‖R‖2
L2

α(T ) and ‖J‖2
L2

α(∂T ), respectively. In this case, the equivalence between error and estimator could only hold
for α < n−1

2 , due to the fact that d−2α
x0

is not integrable over ∂T for α ≥ n−1
2 if x0 ∈ ∂T . Our definition allows

us to prove the equivalence between the estimator and the error in Wα for α in the whole interval I from (2.15);
the range of α for which it is known that problem (2.3) is well posed.

5.1. Reliability

We first prove the reliability of the global error estimator.

Theorem 5.1 (Global upper bound). Let α ∈ I and let u ∈ Wα be the solution of problem (2.3) and let U ∈ V
�
T

be the solution of the discrete problem (3.1). Then, there exists a constant CU > 0 depending on the diameter
of Ω, the mesh regularity κ and the parameter α such that

‖U − u‖H1
α(Ω) ≤ C∗CU η,

where C∗ is the continuous inf-sup constant from (2.14). The effective constant C∗CU of this upper bound blows
up when α approaches an endpoint of I.

The proof follows the usual steps for proving the reliability of residual-type a posteriori error estimators,
making use, as in [4], of the continuous inf-sup condition, instead of the usual coercivity. It is strongly based on
the weighted estimates and the properties of the quasi-interpolation operator P stated in the previous section.
Recall that P can be either the Clément or the Scott–Zhang interpolation operator.

Proof. Let u ∈ Wα be the solution of problem (2.3) and U ∈ V
�
T be the solution of the discrete problem (3.1).

Using the inf-sup condition (2.14) we have that

1
C∗

‖U − u‖Wα ≤ sup
v∈W−α

a(U − u, v)
‖v‖W−α

= sup
v∈W−α

〈R(U), v〉
‖v‖W−α

= ‖R(U)‖(W−α)′ . (5.3)

Now, let v ∈ W−α and let V = Pv, with P either the Clément or the Scott–Zhang interpolation operator.
Then, by (3.1), (5.1) and Hölder inequality it follows that

|〈R(U), v〉| = |〈R(U), v − V 〉| ≤
∑
T∈T

(
‖R‖L2(T ) ‖v − V ‖L2(T ) + ‖J‖L2(∂T ) ‖v − V ‖L2(∂T )

)
+ |δx0(v − V )|.
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Figure 1. Simplex T and equivalent (shaded) sub-simplices, obtained after
dividing the edges into four equal segments. T∗ is the one which is farthest
from x0 in order to guarantee that DT � dT∗ .

Applying a scaled trace theorem and the interpolation estimates (4.8) and (4.9), for the addition in the right
hand side of the last inequality, we have that∑

T∈T

(
‖R‖L2(T ) ‖v − V ‖L2(T ) + ‖J‖L2(∂T ) ‖v − V ‖L2(∂T )

)

�
∑
T∈T

(
‖R‖L2(T ) hT ‖∇v‖L2(ωT ) + ‖J‖L2(∂T ) h

1
2
T ‖∇v‖L2(ωT )

)

�
∑
T∈T

(
hTD

α
T ‖R‖L2(T ) + h

1
2
TD

α
T ‖J‖L2(∂T )

)
‖∇v‖L2

−α(ωT ) ,

and using the local bound for the Dirac delta (4.12), and the weighted interpolation estimates (4.10) and (4.11),

|δx0(v − V )| � CICαh
α+ 2−n

2
T0

‖∇v‖L2
−α(ωT0) ,

where T0 is any element containing x0. Thus, recalling the definition of the error estimators (5.2),

|〈R(U), v〉| � CICαη‖v‖W−α .

Therefore, the last estimation, (5.3) and (2.2) yield the desired assertion. �

5.2. Efficiency

The proof of the lower bound follows the usual steps using a bubble function to test the residual. We first
construct bubble functions and then prove the necessary estimates in Lemma 5.2.

Bubble function for the interior residual estimate

Given T ∈ T , the goal is to construct a bubble function with its support in T of size � hn
T and at distance

� DT of x0. To do this, we divide each edge of T into four equal segments and consider the simplices which are
determined by one vertex of T and the segments that touch it (see Fig. 1). We then let T∗ be the one of these
simplices that is farthest from x0, so that

hT � dT∗ := min
x∈T∗

dx0(x).

Since DT � dT ≤ dT∗ for T ∈ T far, and DT � hT � dT∗ for T ∈ T near (cf. Lem. 4.1), we conclude that

DT � dT∗ , ∀T ∈ T .

Besides, by translating and scaling a fixed bubble function ϕ̂ to the sub-element T∗ we obtain ϕT ∈ C∞
0 (Rn)

with
δx0(ϕT ) = ϕT (x0) = 0, supp(ϕT ) ⊂ T∗, ‖ϕT ‖L∞(T ) = 1. (5.4)
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Figure 2. Triangles T , T ′ sharing a common side S. The patch T∗∪T ′
∗

is one of the shaded regions, the one farther from x0, and S∗ = T∗ ∩ T ′
∗.

Therefore DT � dT∗ and DT ′ � dT ′
∗ .

Bubble function for the jump residual estimate

Given S ∈ EΩ, we denote T , T ′ the two elements sharing S. The goal is now to construct a bubble function
with its support in ωS of size � hn

T and at distance � DT of x0. We proceed as before, dividing the edges of
T and T ′ into four equal segments. We then consider the simplices determined by the vertices of S and the
segments that touch them. This determines n patches of adjacent simplices. We then choose T∗ ⊂ T and T ′

∗ ⊂ T ′

such that T∗ ∩ T ′
∗ =: S∗ 
= ∅ and

hT � dT∗ and hT ′ � dT ′
∗ ,

the situation for n = 2 is depicted in Figure 2.
By construction, we have

DT � dT∗ and DT ′ � dT ′
∗ .

In fact, if T ∈ T near, DT � hT � dT∗ , and if T ∈ T far, DT � dT ≤ dT∗ . Analogously, the estimate for T ′ holds.
By translating and scaling a fixed bubble function ϕ̂ to S∗ we obtain ϕS ∈ C∞

0 (Rn) such that

δx0(ϕS) = ϕS(x0) = 0, supp(ϕS) ⊂ T∗ ∪ T ′
∗ ⊂ ωS , ‖ϕS‖L∞(ωS) = 1. (5.5)

The following result summarizes the properties of the just defined bubble functions ϕT and ϕS that we need
to prove the efficiency of the local error estimators.

Lemma 5.2. Let 0 < α < n
2 and T ∈ T . If ϕT is the bubble function satisfying (5.4), then,

‖pϕT ‖L2
−α(T ) � D−α

T ‖p‖L2(T ) , (5.6)

hT ‖∇(pϕT )‖L2
−α(T ) � D−α

T ‖p‖L2(T ) , (5.7)

for all p ∈ P�−1(T ). On the other hand, if S ∈ EΩ is a side of T and ϕS is the bubble function satisfying (5.5),
then,

h
− 1

2
T ‖pϕS‖L2

−α(ωS) � D−α
T ‖p‖L2(S) , (5.8)

h
1
2
T ‖∇(pϕS)‖L2

−α(ωS) � D−α
T ‖p‖L2(S) , (5.9)

for all p ∈ P�−1(S), where we extend p to ωS as constant along the direction of one side of each element of T
contained in ωS.

Proof.
(1) Using that ‖ϕT ‖L∞(T ) = 1 and supp(ϕT ) ⊂ T∗, it follows that ‖pϕT ‖2

L2
−α(T ) =

∫
T∗
p2ϕ2

T d−2α
x0

≤
d−2α

T∗
‖p‖2

L2(T ). Taking into account that DT � dT∗ , (5.6) holds.
(2) The usual scaling arguments yield

‖∇(pϕT )‖L2(T ) � h−1
T ‖p‖L2(T ), ∀ p ∈ P�−1(T ),
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and thus

‖∇(pϕT )‖2
L2

−α(T ) =
∫

T∗

|∇(pϕT )|2 d−2α
x0

� d−2α
T∗

‖∇(pϕT )‖2
L2(T ) � d−2α

T∗
h−2

T ‖p‖2
L2(T ) .

In consequence, (5.7) follows from DT � dT∗ .
(3) Let T ∈ T be such that S ⊂ T ⊂ ωS . Since ‖ϕS‖L∞(ωS) = 1 and supp(ϕS) ⊂ T∗ ∪ T ′

∗, we have

‖pϕS‖2
L2

−α(T ) =
∫

T∗

p2ϕ2
S d−2α

x0
≤ d−2α

T∗

∫
T∗

p2 � d−2α
T∗

hT

∫
S∗

p2 ≤ d−2α
T∗

hT ‖p‖2
L2(S) ,

and therefore, (5.8) holds, using that DT � dT∗ .
(4) Let T ∈ T be such that S ⊂ T ⊂ ωS . The usual scaling arguments yield

‖∇(pϕS)‖L2(T ) � h−1
T ‖p‖L2(T∩supp(ϕS)), ∀ p ∈ P�−1(T ).

Let us denote by T∗ the element which is contained in T (cf. Fig. 2). Hence

‖∇(pϕS)‖2
L2

−α(T ) =
∫

T∗

|∇(pϕS)|2 d−2α
x0

� d−2α
T∗

‖∇(pϕS)‖2
L2(T )

� d−2α
T∗

h−2
T ‖p‖2

L2(T∗) � d−2α
T∗

h−1
T ‖p‖2

L2(S∗) ≤ d−2α
TS∗

h−1
T ‖p‖2

L2(S).

Finally, (5.9) follows due to DT � dT∗ . �

As usually happens for residual based error estimators, the lower bound is local, and holds up to some
oscillation terms. In this context, we define the local oscillation oscT by

oscT :=

⎧⎪⎪⎨
⎪⎪⎩
(
h2

TD
2α
T

∥∥R−R
∥∥2

L2(ωT )
+ hTD

2α
T

∥∥J − J
∥∥2

L2(EΩ∩(ωT )0)

) 1
2
, if x0 ∈ T,(

h2
TD

2α
T

∥∥R−R
∥∥2

L2(ωT )
+ hTD

2α
T

∥∥J − J
∥∥2

L2(∂T )

) 1
2
, if x0 /∈ T,

where R|T ′ denotes the L2 projection of R on P�−1(T ′), for all T ′ ∈ T , and for each side S, J |S denotes the
L2 projection of J on P�−1(S). Notice that if x0 ∈ T the jump oscillations are considered over all S ∈ EΩ that
touch T , including those contained in ∂T and those not contained in ∂T .

The next result is usually called local efficiency of the error estimator, based on the fact that whenever a
local estimator is large, so is the corresponding local error, provided the local oscillation is relatively small. Its
proof follows the usual techniques taking into account the bounds from the last lemma and the boundedness of
the bilinear form, yielding

|〈R(U), v〉| = |a(U, v) − δx0(v)| = |a(U, v) − a(u, v)| ≤ Ca‖U − u‖H1
α(ω)‖v‖H1

−α(ω),

for all v ∈ W−α with supp(v) ⊂ ω, for any ω ⊂ Ω, where Ca := max{γ2, ‖b‖L∞, ‖c‖L∞}.

Theorem 5.3 (Local lower bound). Let α ∈ I, let u ∈ Wα be the solution of problem (2.3) and let U ∈ V
�
T be

the solution of the discrete problem (3.1). There exists a constant CL > 0 depending on the mesh regularity κ
and the parameter α such that

CLηT ≤ Ca‖U − u‖H1
α(ωT ) + oscT ,

for all T ∈ T . The constant CL goes to zero if α approaches n
2 .
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Proof.
(1) Let T ∈ T . We analize first the residual R. Since

‖R‖L2(T ) ≤
∥∥R∥∥

L2(T )
+
∥∥R−R

∥∥
L2(T )

, (5.10)

it is sufficient to estimate
∥∥R∥∥

L2(T )
.

Let ϕT be the bubble function satisfying (5.4). The usual scaling arguments yield∥∥R∥∥2

L2(T )
�
∥∥∥Rϕ 1

2
T

∥∥∥2
L2(T )

=
∫

T

R
2
ϕT =

∫
T

Rv =
∫

T

Rv +
∫

T

(R −R)v, (5.11)

where v := RϕT . Since supp(v) ⊂ T and δx0(v) = 0, the first integral in the right-hand side of (5.11), using (5.6)
and (5.7) satisfies∫

T

Rv = 〈R(U), v〉 ≤ Ca‖U − u‖H1
α(T )‖v‖H1

−α(T ) � Cah
−1
T ‖U − u‖H1

α(T )D
−α
T

∥∥R∥∥
L2(T )

,

while the second one satisfies
∫

T (R−R)v ≤
∥∥R−R

∥∥
L2(T )

‖v‖L2(T ) ≤
∥∥R−R

∥∥
L2(T )

∥∥R∥∥
L2(T )

.

Using the two last inequalities in (5.11) we have that

hTD
α
T

∥∥R∥∥
L2(T )

� Ca‖U − u‖H1
α(T ) + hTD

α
T

∥∥R −R
∥∥

L2(T )
. (5.12)

Finally, from (5.10) and (5.12) it follows that

hTD
α
T ‖R‖L2(T ) � Ca‖U − u‖H1

α(T ) + hTD
α
T

∥∥R−R
∥∥

L2(T )
. (5.13)

(2) Secondly, we estimate the jump residual J . Let S be a side of T . As before, it is sufficient to bound the
projection J of J , since

‖J‖L2(S) ≤
∥∥J∥∥

L2(S)
+
∥∥J − J

∥∥
L2(S)

. (5.14)

Let ϕS be the bubble function from (5.5). Then, usual scaling arguments lead to∥∥J∥∥2
L2(S)

�
∥∥∥Jϕ 1

2
S

∥∥∥2
L2(S)

=
∫

S

J
2
ϕS =

∫
S

Jv =
∫

S

Jv +
∫

S

(J − J)v, (5.15)

with v := JϕS . Extending J to ωS as constant along the direction of one side of each element of T contained in
ωS , using that δx0(v) = 0 and supp(v) ⊂ ωS , the first integral in the right-hand side of (5.15) can be bounded
as follows:

2
∫

S

Jv = 〈R(U), v〉 −
∫

ωS

Rv ≤ Ca‖U − u‖H1
α(ωS)‖v‖H1

−α(ωS) + ‖R‖L2(ωS) ‖v‖L2(ωS)

� h
− 1

2
T Ca‖U − u‖H1

α(ωS)D
−α
T

∥∥J∥∥
L2(S)

+ h
1
2
T ‖R‖L2(ωS)

∥∥J∥∥
L2(S)

,

where in the last inequality we have used (5.8) and (5.9). The second integral in the right-hand side of (5.15),
satisfies

∫
S
(J − J)v ≤

∥∥J − J
∥∥

L2(S)
‖v‖L2(S) �

∥∥J − J
∥∥

L2(S)

∥∥J∥∥
L2(S)

.

The last two estimates and (5.15) yield

h
1
2
TD

α
T

∥∥J∥∥
L2(S)

� Ca‖U − u‖H1
α(ωS) + hTD

α
T ‖R‖L2(ωS) + h

1
2
TD

α
T

∥∥J − J
∥∥

L2(S)
. (5.16)

Thus, from (5.14) and (5.16) we have that

h
1
2
TD

α
T ‖J‖L2(S) � Ca‖U − u‖H1

α(ωS) + hTD
α
T ‖R‖L2(ωS) + h

1
2
TD

α
T

∥∥J − J
∥∥

L2(S)
.

Adding the last inequality over all the sides S ⊂ ∂T and using (5.13) we obtain

h
1
2
TD

α
T ‖J‖L2(∂T ) � Ca‖U − u‖H1

α(ωT ) + oscT .
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(3) Recall that if x0 ∈ T the indicator ηT contains also a term h
α+ 2−n

2
T , we now prove that

h
α+ 2−n

2
T �

[(n
2
− α
)− 1

2
Ca‖U − u‖H1

α(ωT ) + oscT

]
.

Let φ ∈ C∞(Rn) with ‖φ‖L∞ = φ(0) = 1 and supp(φ) ⊂ B(0, 1). Let C = cκ,Ω from Lemma 4.2 so that

B(x0, ChT ) ⊂ ωT , and if ϕ(x) := φ
(

x−x0
ChT

)
then δx0(ϕ) = ϕ(x0) = 1, ‖ϕ‖L∞ = 1, ‖∇ϕ‖L∞ � 1

hT
and

supp(ϕ) ⊂ B(x0, ChT ) ⊂ ωT . Thus, we also have that ‖ϕ‖L2(ωT ) � h
n
2
T , ‖∇ϕ‖L2(ωT ) � h

n−2
2

T , and using a

scaled trace theorem, ‖ϕ‖L2(∂T ) � h
n−1

2
T . On the other hand, since

∥∥d−α
x0

∥∥
L2(ωT )

� 1√
n
2 −α

h
n
2 −α

T , we have that

‖ϕ‖L2
−α(ωT ) � (n

2 − α)−
1
2h

n
2 −α

T and ‖∇ϕ‖L2
−α(ωT ) � (n

2 − α)−
1
2h

n−2
2 −α

T . Therefore,

1 = δx0(ϕ) = a(u, ϕ) = a(u− U,ϕ) + a(U,ϕ)

≤ Ca‖U − u‖H1
α(ωT )‖ϕ‖H1

−α(ωT ) +
∑

T ′⊂ωT

(∫
T ′
Rϕ+

∫
∂T ′

Jϕ

)

≤ Ca‖U − u‖H1
α(ωT )‖ϕ‖H1

−α(ωT ) +
∑

T ′⊂ωT

‖R‖L2(T ′) ‖ϕ‖L2(T ′) + 2
∑

S⊂(ωT )0

‖J‖L2(S) ‖ϕ‖L2(S)

�

⎛
⎝(n

2
− α
)− 1

2
Ca‖U − u‖H1

α(ωT ) +
∑

T ′⊂ωT

hT ′Dα
T ′ ‖R‖L2(T ′) +

∑
S⊂(ωT )0

h
1
2
T ′D

α
T ′ ‖J‖L2(S)

⎞
⎠ h

−α+ n−2
2

T .

The last inequality with the estimates obtained in steps (1) and (2) complete the proof. �

As an immediate consequence of Theorem 5.3, adding over all elements in the mesh we obtain the efficiency of
the global error estimator.

Theorem 5.4 (Global lower bound). Let α ∈ I, let u ∈ Wα be the solution of problem (2.3) and let U ∈ V
�
T

be the solution of the discrete problem (3.1). There exists a constant CL > 0 depending on the mesh regularity
κ and the parameter α such that

CLη ≤ Ca‖U − u‖H1
α(Ω) + osc,

where osc is the global oscillation defined by osc :=
(∑

T∈T osc2
T

) 1
2 , and the constant CL goes to zero if α

approaches n
2 .

Remark 5.5 (Convergence of adaptive algorithms). The general convergence theory from [22,29] states that if
the discretization of a linear problem is stable, the a posteriori error estimators constitute an upper bound for
the error and if there holds a discrete local lower bound, up to oscillation terms, then any adaptive algorithm
marking at least the element with the largest indicator will converge. Our indicators fulfill all those assumptions,
yielding convergence to zero of the error measured in Wα; and also in H1(Ω0) for any Ω0 ⊂ Ω such that
dist(x0, Ω0) > 0, because Wα ↪→ H1(Ω0). For the discrete lower bound it is enough to observe that discrete
bubble functions ϕT and ϕS can be constructed on sufficiently refined meshes, so that they satisfy (5.4), (5.5)
and thus also Lemma 5.2.

It is worth mentioning that there are presently no results of optimal complexity for adaptive methods applied
to problems involving different ansatz and test spaces (see [26] and references therein). The quasi-orthogonality
property used in the current proofs is not readily available in this situation. Optimality is thus an open issue
for the problem studied in this article, even though it is observed in the experiments that we report in the next
section.
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Figure 3. Exact errors and effectivity indices for Example 6.1. We plot the Wα (left) and the
L2(Ω) (middle) norm of the error u − U versus the number of Degrees of Freedom (DOFs)
in logarithmic scales, for different values of α. We observe the optimal decay (#T )−1/2 and
(#T )−1, respectively. We also plot the effectivity index ‖u − U‖Wα/η and observe that it
remains between 0.12 and 0.35 for all the considered values of α, showing the robustness of the
estimator with respect to α.

6. Numerical experiments

In this section we report some numerical experiments that document the behavior of the adaptive algorithm
based on our a posteriori estimators for the error in Wα norm. We implemented a loop of the usual form

Solve −→ Estimate −→ Mark −→ Refine.

The step Solve consisted in solving the discrete system for the current mesh, the step Estimate consisted in
computing the a posteriori error estimators ηT for a given value of α. In the step Mark we selected in M for
refinement those elements T ∈ T with largest estimators ηT until

∑
T∈M η2

T ≥ 0.5
∑

T∈T η
2
T , i.e., we used the

Dörfler strategy with parameter 0.5. The step Refine consisted in performing two bisections to each marked
element, and refining some extra elements in order to keep conformity of the meshes, using the newest-vertex
bisection. We used a custom implementation in MATLAB.

We present two examples on two-dimensional domains, using piecewise linear finite elements. The first one
considering a known solution on an L-shaped domain, and the second one based on the computation of an
unknown solution on a rectangle, with variable coefficients, simulating a wiggling flow on a canal.

Example 6.1. We consider the boundary value problem −Δu = δ(0.5,0.5) in the L-shaped domainΩ = (−1, 1)2\
[0, 1)× (−1, 0] ⊂ R

2 with exact solution u(x) = − 1
2π log |x− (0.5, 0.5)|+ |x|2/3 sin(2θ/3), (θ the angle measured

from 0 to 3π/2 in Ω), and Dirichlet boundary conditions.
The first goal of this example is to test the behavior of the adaptive method guided by the a posteriori

estimators ηT for different values of α, in a problem with two singularities. One produced by the Dirac delta
on the right-hand side and another one produced by the reentrant corner. Our theory predicts that η :=(∑

T∈T η
2
T

)1/2 is equivalent to the error in Wα norm provided 0 < α < 1.
In Figure 3 we show the decay of the Wα and the L2(Ω) norm of the error u − U , versus the number of

Degrees of Freedom (DOFs) in logarithmic scales, for α = 0.1, 0.3, 0.5, 0.7, 0.9. We observe the optimal decay
(#T )−1/2 and (#T )−1, respectively. These are consistent with the decay rates proved by D’Angelo [10] and
Apel et al. [1], respectively, for properly a priori graded meshes. As is usual with adaptive methods, the optimal
cardinality is obtained automatically, without any fine tuning or additional requirement on the meshes.

We also plot the effectivity index ‖u − U‖Wα/η and observe that it remains between 0.12 and 0.35 for all
the considered values of α, showing the robustness of the estimator with respect to α, with no degeneracy as α
approaches the endpoints of I. This is better than expected according to our theory.
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Figure 4. Exact errors and effectivity indices for Example 6.1 and α very small. We plot the
Wα (left) and the L2(Ω) (middle) norm of the error u − U versus the number of Degrees of
Freedom (DOFs) in logarithmic scales, for different values of α. We observe the optimal decay
for all the considered values, except for the smallest value α = 0.05. In this extreme situation the
algorithm refines purely around (0.5, 0.5) and the elements become excessively small, leading
to a nearly singular system matrix (to the working precision) not allowing computation beyond
a mesh with 2544 elements and 1286 DOFs, obtained after 53 iterations. The effectivity index
‖u− U‖Wα/η, plotted on the right, remains bounded between 0.11 and 0.32.

In Figure 4 we show the decay of the Wα and the L2(Ω) norm of the error u−U , for values of α very close to
zero. We show the behavior for α = 0.05, 0.1, 0.15, 0.2 and observe the optimal decays for the cases α ≥ 0.1. The
algorithm stopped after 53 iterations in the case α = 0.05, with a mesh of 2544 elements and 1286 degrees of
freedom (DOFs). The refinement is concentrated solely around the support of the Dirac delta, leading to very
small elements, with diameter of order 2−53. The resulting system matrix was singular to working precision. We
also show the effectivity indices for these values of α and observe that they do not degenerate as α approaches
zero.

The meshes after 4, 8 and 12 iterations for α = 0.25, 0.5, 0.75 are plotted in Figure 5. The number of elements
of the corresponding meshes is indicated in each picture, and the stronger grading obtained for smaller values of
α is not so apparent for these values of α, although the case α = 0.25 is much different than the other two cases.
It is worth observing that the corner singularity is not noticed for α = 0.25 after 8 iterations of the adaptive
algorithm, and it is immediately noticed for α bigger (see also Fig. 6).

We also plot meshes with a similar number of elements for values of α = 0.1, 0.3, 0.5 in Figure 7. The fact
that the singularity introduced by the Dirac delta is less severe when the error is measured in Wα for bigger α
is noticeable in this picture. The refinement is thus more spread in this case.

The second goal of this example is to compare our estimator with the existing ones for the Lp, W 1,p and
Hs norms from [4, 16]. For the L-shaped domain being considered, the estimators for the Lp and the W 1,p

error constitute an upper and lower bound if 3 < p < ∞ and if 3/2 < p < 2, respectively, and those from [16]
are equivalent to the error in Hs if 1/2 < s < 1. We ran the adaptive algorithm once for each estimator and
computed the L2(Ω) and the H1(Ω0) norm of the error, for Ω0 = {x ∈ Ω : ‖x− (0.5, 0.5)‖∞ > 1/4}. The results
are reported in Figure 8.

When using the estimators for the Lp norm, we chose the parameter p = 4. For the estimators corresponding
to the W 1,p, Hs and the Wα norms, we chose p, s and α as the midpoints of the respective intervals of validity
of the error-estimator equivalence, i.e., p = 7/4, s = 3/4 and α = 1/2. We plot the L2(Ω), the H1(Ω0) and the
L∞(Ω0) norm of the error versus the number of degrees of freedom in logarithmic scales. We observe that the
algorithm guided by our estimators performs better than the others in the three comparisons.

As a final remark, it is worth observing that not only our estimator behaves better computationally, but the
adaptive algorithm guided by the Wα estimators is guaranteed to converge (see Rem. 5.5), whereas convergence
is not proved for the other estimators.
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α = 0.25 α = 0.5 α = 0.75

#T #221= T #521= T = 93

#T #423= T #683= T = 304

#T #245= T #5121= T = 1460

Figure 5. Meshes for Example 6.1. We show the meshes after 4 (top), 8 (middle) and 12
(bottom) iterations for α = 0.25 (left), α = 0.5 (middle) and α = 0.75 (right). The number
of elements of the corresponding meshes is indicated in each picture, and the stronger grading
obtained for smaller values of α is not so clearly visible. It is worth observing that the corner
singularity is not noticed at all for α = 0.25 after 8 iterations of the adapive algorithm, and
barely after 12 iterations, but it is immediately noticed for α big. In the latter case the re-
finement is more spread throughout the domain, due to the smaller relative importance of the
singularity introduced by δx0 .

Example 6.2. In this example we let Ω = (0, 3) × (0, 1) and consider the problem

−0.02Δu+
[

2
sin(5x1)

]
· ∇u+ 0.1u = δ(0.2,0.4) in Ω,

u = 0 on ∂Ω ∩ {x1 < 3},
∂u

∂n
= 0 on ∂Ω ∩ {x1 = 3},
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α = 0.25 α = 0.5 α = 0.75

01=reti01=reti31=reti
#T #095= T #616= T = 612

Figure 6. Meshes for Example 6.1 with similar number of elements. We show meshes for
different values of α and similar number of elements. There is no significant difference for the
values of α = 0.5, 0.75.

α = 0.1 α = 0.3 α = 0.5

31=reti51=reti02=reti
#T #009= T #798= T = 879

Figure 7. Meshes for Example 6.1 with similar number of elements. We show meshes for
different values of α close to zero and similar number of elements. We can observe that for
smaller values of α the meshes are more strongly graded at (0.5, 0.5) where the Dirac delta is
supported. For α big the algorithm notices early the presence of the corner singularity.
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Figure 8. Comparison of an adaptive algorithm guided by the error estimators for the Lp,
W 1,p, Hs and Wα norms. We plot the error measured in L2(Ω) (left), H1(Ω0) (middle) and
L∞(Ω0) (right) versus #DOFs. The algorithm guided by the Wα estimators performs better
than the others. Although the advantage in using the Wα estimators is not so impressive for
the first two errors, it is really striking when looking at the local L∞ error in the right picture.
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Figure 9. Meshes for Example 6.2. We show the meshes obtained by the adaptive loop after
10, 13, 16 and 19 iterations, with 398, 918, 2409 and 10608 elements, respectively.

Figure 10. Final solution for Example 6.2, obtained by the adaptive loop after 20 iterations,
on a mesh with 22256 elements and 11212 DOFs. The error estimator for this mesh is 0.024,
which is a 2.2% of the estimator for the initial coarsest mesh.

which is a diffusion-advection-reaction equation, typical from pollutant transport and degradation in aquatic
media.

We solved this problem with the same adaptive algorithm described in the previous example, with α = 0.5.
We started from a uniform coarse initial mesh consisting of 12 elements and 11 vertices. Some mild oscillations
were observed at the first iterations but were cured by adaptivity.

A sequence of meshes is presented in Figure 9. The solution in the final mesh, with 22256 elements and 11212
DOFs can be observed in Figure 10.
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[4] R. Araya, E. Behrens, R. Rodŕıguez, A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer.
Math. 105 (2006) 193–216.
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