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A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
WITH DIRAC MEASURE TERMS IN WEIGHTED SPACES

JUAN PABLO AGNELLIY?, EDUARDO M. GARAU'® AND PEDRO MORIN'3

Abstract. In this article we develop a posteriori error estimates for second order linear elliptic prob-
lems with point sources in two- and three-dimensional domains. We prove a global upper bound and
a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a
(positive) power of the distance to the support of the Dirac delta source term, and belongs to the
Muckenhoupt’s class As. The theory hinges on local approximation properties of either Clément or
Scott—Zhang interpolation operators, without need of modifications, and makes use of weighted esti-
mates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm
yield optimal meshes and very good effectivity indices.
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1. INTRODUCTION

The main goal of this article is to develop a posteriori error estimates for elliptic second order partial
differential equations on two- and three-dimensional domains with point sources. Elliptic problems with Dirac
measure source terms arise in modeling different applications as, for instance, the electric field generated by a
point charge, the acoustic monopoles or pollutant transport and degradation in an aquatic media where, due to
the different scales involved, the pollution source is modeled as supported on a single point [3]. Other applications
involve the coupling between reaction-diffusion problems taking place in domains of different dimension, which
arise in tissue perfusion models [11].

In spite of the fact that the solution of one such problem typically does not belong to H', it can be numerically
approximated by standard finite elements, but there is no obvious choice for the norm to measure the error.
Babuska [5], Scott [28] and Casas [8] obtained a priori estimates for the error measured in L? and in fractional
Sobolev norms H?, for s in some subinterval of (0, 1), depending on the dimension of the underlying domain.
Eriksson [13] showed optimal order error estimates in the L' and W1 norms, for adequately refined meshes; he
also obtained pointwise estimates far from the singularity and the boundary. In a recent article, by using graded
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meshes, Apel et al. [1] obtained L? error estimates of almost optimal order on convex polygonal domains. More
recently, D’Angelo [10] proved the well-posedness of Poisson problem with singular sources on weighted Sobolev
spaces, over three-dimensional domains, obtaining also stability and optimal estimates for a priori designed
meshes, in the spirit of [1,13]. D’Angelo measures the error in H) = H},., where d(z) = dist(x, 4), a € (0,1),
and A is the support of the singular source term, which is a smooth curve; his results carry over immediately
to two dimensional domains with point sources. Regularity estimates in weighted norms have also been used in
the design of graded meshes for elliptic problems with corner singularities; see [2,6,20] and references therein.

A posteriori error estimates on two dimensional domains have been obtained by Araya et al. [3,4] for the
error measured in L? (1 < p < o0) and WP (py < p < 2) for certain value of pg, and by Gaspoz et al. [16] for
the error measured in H® (1/2 < s < 1). Recall that the usual test and ansatz space for elliptic problems is the
Sobolev space H} = WO1 2. Point sources do not belong to the dual space of H}, because H} is not immersed
into the space of continuous functions, but in two dimensions very little is missing, since functions in VVO1 ? and
H{ are continuous if p’ > 2 and s > 1. This fact was exploited in [3,4] and [16].

In this article we develop residual type a posteriori error estimators for the weighted Sobolev norm || - || 1
the same notion of error estimated a priori by D’Angelo in [10]. The space H) that we consider here is also
“larger” than H' and seems to be more appropriate than the W' and the H*® spaces, because the weight
weakens the norm only around the singularity, letting it behave like the usual W12 = H! norm far from the
location of the support of the Dirac’s delta.

We consider the following linear elliptic problem on a Lipschitz domain 2 C R"™, n = 2,3, with a polygo-
nal/polyhedral boundary 0£2:

(1.1)

—V - (AVu) + b Vu + cu = by, in 2
u=20 on 012,

where A € L% (£2; R"*") is piecewise W1* and uniformly symmetric positive definite (SPD) over §2, i.e., there
exist constants 0 < 1 < 79 such that

71[€)? < T A(2)E < plé?, VzeR, R, (1.2)

b e Whe(;R"), c € L*(£2), and dy, is the Dirac delta distribution supported at an inner point xq of 2. We
assume that ¢ — £ div(b) > 0.

The main results of this article, stated precisely in Theorems 5.1 and 5.3, are a global upper bound for the
error, measured in H}(£2) for a € 1C (% —1,%) (see (2.15)), in terms of the a posteriori estimators and a local
lower bound up to some oscillation term, which we roughly state as follows:

Given a shape-regular triangulation 7, we let U be the Galerkin approximation of the exact solution u
with continuous finite elements of arbitrary (fixed) degree, and prove that the a posteriori local error
estimators np satisfy

N 1/2 N
U = ull a0y < cu< > n%) and Cznr < ||U = ull g1 gy + oser, VT €7,
TeT

with constants Cy;, C that depend only on mesh regularity, the domain £2, the problem coefficients and
a, and can be chosen independent of o on compact subintervals of I. The set wr is the patch of all
neighbours of 7" in 7', and oscyp is an oscillation term, which is generically of higher order than 7.

As we have mentioned earlier, a posteriori error estimates for elliptic problems with point sources have already
been obtained. The main advantages and novelties of the present work are the following:

e The equivalence of the error and estimator is valid for a large class of linear elliptic problems. Previous
works [4, 16] considered Poisson problem, and a diffusion-advection-reaction equation was studied in [3],
assuming that an inf-sup condition holds in the context of W1? spaces. We prove the necessary continuous
inf-sup condition for linear elliptic problems in the weighted spaces considered here (see Thm. 2.3).
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e In contrast to the norms used in [3,4,16], when considering the weighted spaces a discrete inf-sup condition
can be proved (see Sect. 3), allowing us to conclude convergence of adaptive methods by resorting to the
general theory developed in [22,29].

e The proposed weight only weakens the norm around o, but behaves as the usual H! norm in subsets at a
positive distance to xzg. Whence the convergence alluded to in the previous item implies the convergence to
zero of the H' error over such sets.

e Our estimates are valid in two and three dimensions, whereas the results from [3,4,16] cannot be immediately
extended to the three dimensional case.

In [4] the solution is seen as an element of WP (£2), for some p < 2, and the test functions belong to W' (£2),
with 1/p+1/p’ = 1 and thus p’ > 2. By Sobolev embeddings the test functions are continuous, whence the usual
proof for the upper bound can be done resorting to the Lagrange interpolant. The same happens in [16], where
the solution is seen as an element of H1~*({2) and the test functions belong to HT$(2) for 0 < s < 1/2. In this
article we see the solution as an element of the weighted Sobolev space H}(£2) = {v : [,(v*+|Vv|?) diﬁ‘ < oo},
with dg,(2) = |zo — 2| and § — 1 < a < %, n being the dimension of the underlying domain (2. Even though
820 (v) is well defined for all test functions v € HL  (£2), they are not necessarily continuous, and thus, we are not
able to use Lagrange interpolation. Instead, we resort to Clément, or Scott—Zhang operator, whose well known
properties are sufficient for our purposes. In contrast to [7], where weighted spaces appear due to dimension
reduction in an axisymmetrical problem, we do not need to modify the interpolation operators, but just use
their local approximation and stability properties stated in (4.8) and (4.9).

The rest of this article is organized as follows. In Section 2 we define the weighted spaces and discuss the
well-posedness of the problem. In Section 3 we specify the finite element spaces, and the discrete solution,
proving stability of the discrete formulation. In Section 4 we prove Poincaré type and interpolation results on
simplices, these will be instrumental for proving the main results in Section 5. We end the article with some
numerical simulations in Section 6 illustrating the behavior of an adaptive algorithm based on the obtained
a posteriort estimators.

2. WEIGHTED SPACES AND WEAK FORMULATION

Let 2 C R™ be a bounded polygonal (n = 2) or polyhedral (n = 3) domain with Lipschitz boundary and x

an inner point of £2. For 8 € (=%, %), we denote by L*(2, di’g ) the space of measurable functions u such that

2
lell ) = HuHLz(g,dgg) = </Q lu(z)|? dzo(x)mdx> < o0,

where dg,(z) = | — 20| is the euclidean distance from x to xg. We will write L%((Z) to denote L*({2, dif) and
observe that it is a Hilbert space equipped with the scalar product

(u,v) 0.8 ::/Qu(x)v(x)dwo(ac)zﬁdx.

We also define the weighted Sobolev space H é(()) of weakly differentiable functions u such that
[ullry o) < o0, with

lull iy = o + 1Vl 20 -

We immediately observe that, if 0 < a < %, then H! () ¢ H'(£2) C HL(£2) with continuity. Since the
source term of (1.1) does not belong to the dual of H}(2), we intend to use appropriate subspaces of H1  ({2)
and HL(£2) for the test and ansatz space, respectively. We need to prove that this leads to a stable formulation,
and we thus recall some known facts about weighted spaces.

The theory of weighted L? spaces over n-dimensional domains is well developed and much attention has been
payed to the class of Muckenhoupt weights A4, [23]. In our context of Hilbert spaces over two-dimensional and
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three-dimensional domains only the Muckenhoupt class As matters, which is defined as the set of weights w
such that their Ay constant supp (ﬁ Jpw(x) d:c) (ﬁ [pw(z)™? dx) is finite, where the supremum is taken
over all balls B in R™. It is easy to prove that the weight function dif belongs to Az if and only if -5 < 8 < 3.
For /3 in this range, the results from [18,19,21] imply that smooth functions are dense in HE;(Q), and also a
Rellich-Kondrachov theorem and a Poincaré inequality hold in Hj(£2).

In the following we recall some results which are instrumental to state the weak formulation of (1.1).

By Lemma 7.1.3 in [20], if # — 1 < o < % there exists a unique linear continuous map &, : H,(2) — R
such that &,,(¢) = ¢(xg) for any ¢ € C1(£2). More precisely, there exists a constant C' depending on a and (2,
such that

1620 ()] < Cliellmn (o), Vo € HL (9); (2.1)

see also Theorem 4.7 below.
Since we are considering Dirichlet boundary conditions, we define

Ws:={ue H[];(Q) tup,, = 0},

and since di’g belongs to A, from Theorem 1.3 in [15], it follows that Poincaré inequality holds in Wp and
therefore ||u\|mj = ||Vu||L%(Q) is a norm in Wy equivalent to the inherited norm HuHH;(Q). More precisely, for

—5 < [ < g, there exists a constant Cp g, depending on the diameter of {2, such that
lullw, <llullaye) < Crpllully,, — weWs, (22)

where Cp g blows up as || approaches %.
Given % — 1 < o < %, the considerations above yield W_, C Hg(£2) C W, and 6,, € (W_,)". We thus say
that u is a weak solution of (1.1) if

ueW,: a(u,v) = 0,y (v), YveW_,, (2.3)

where a : W, x W_, — R is the bilinear form given by
a(u,v):/AVu-Vv—l—b~Vuv—|—cuv, (2.4)
Q

which is clearly well-defined and bounded in W, x W_, due to Holder inequality. At this point it is not clear
that the bilinear form a(-,-) satisfies an inf-sup condition on W, x W_,,. Therefore, existence and uniqueness
of solution to (2.3) must be proved.

Problem (2.3) is a particular case of the following problem: Given F € (W_,)’,

Find v € W, such that a(u,v) = F(v), VveW_,. (2.5)

The rest of this section will be devoted to proving existence and uniqueness of solutions to (2.5). We will
proceed by splitting it into two subproblems, taking advantage of the following facts:

e An inf-sup condition holds on W, x W_, for the purely second order part fQ AVu - Vo of a(--).
e The full bilinear form a(-,-) is coercive on Hg (£2) x H}(£2).

Observe that one solution to (2.5) is given by u = 4 + w, if
u€Wy: / AVa -V =F(v), YveW_,, (2.6)
Q

and
GeHND):  alw,v) =) = — /Q(b Vit ey, Vv H(Q). 2.7)
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In fact, since W_,, C H(£2), from (2.6) and (2.7) we have, for v € W_,,
a(u,v) = a(u,v) + a(w,v) = F(v) + / (b-Vu+ ca)v + a(w,v) = F(v).
o
The next two propositions state the well-posedness of (2.6) and (2.7), yielding existence of a solution to (2.5).
Proposition 2.1. If a € (0,%) and F € (W_,)" then problem (2.6) has a unique solution u € Wy which
satisfies
_ 2
ally, < IHFH(Wﬂ)H (2.8)
where 1 is given by (1.2).
To prove this proposition we will use the following decomposition of [L%(())]”, for 8 € (—%,%):
For each T € [L%(())]”, there exists a unique pair (o, v) € [L%(Q)}” x W3 such that
T=Vv+o, (Ao,Vz)o=0 VzeW_g,

1900300y < 20700y Nolliage < Il
Here, (-,-) denotes the usual [L?(£2)]" inner product.

This is an immediate generalization of Lemma 2.1 in [10], which states the same result for A = I. Its proof
follows exactly the same lines, using that A is uniformly SPD over (2, and is thus omitted.

Proof of Proposition 2.1. Let 0 < a < %. By Holder inequality the bilinear form Afw,v] := fn AVw - Vo is
bounded in W, x W_,. We use the decomposition of [L2 ,(£2)]" stated above to prove that A[-,] satisfies an
inf-sup condition. Given w € Wy, let 7 := Vw diﬁ‘ € [L? (£2)]™. Thus, there exist o € [L% (£2)]" and v € W_,
such that 7= Vv + 0, (AVz,0)0 =0, Vz € W, and 2|jwlly,, = 2[|7[[2_(e) = [|[v[ly_ . Then,

(AVw, Vv)o = (AVw, T o — (AVw, o) = (AVw, Vw dig>g >m Hwa/VQ > % \

[wliw, lvllw_, ;
where 7 is given by (1.2). The same estimate still holds if we swap w and v and change the sign of «. So, the
following inf-sup conditions are valid:

Vw -V
inf  sup an vy

L >
weW, vEW_, Hw”Wa ”UHW,Q B

AVw - Vv
N and inf  sup fn— > n

2 VEW_o wEW, HwHWQ ”U”W,a 2

Finally, the generalized Lax—Milgram theorem due to Necas ([25], Thm. 3.3) leads to existence and uniqueness
of a solution 7 to problem (2.6) which satisfies (2.8). O

Proposition 2.2. Let o € (0,1). Given F € (W_,), let 4 € W, be the unique solution to (2.6). Then,
problem (2.7) admits a unique solution w € H}(§2) which satisfies

@m0y < CallFllw_.y (2.9)
where ¢, > 0 is a constant depending on (2, the problem coefficients { A, b, ¢} and blows up when « approaches 1.

In the proof of this proposition we will use the embedding H'(£2) — L2 _(£2), which holds for a € (0,1).
3

In fact, taking 1 <p < % if n =2 and p = 5 if n = 3, using Hélder inequality and the Sobolev embedding

HY(2) — L?I(§2) where % + 2 = 1 we have that

1 1
3 e %
||UHL3a(Q) = (/Q v? d;02a> < (/Q 112'1) (/Q d;02ap> < callvl| a1 (), Yo e HY(92), (2.10)

where ¢, depends on {2 and «, and blows up when « approaches 1.
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Proof of Proposition 2.2. Let a € (0,1) and F' € (W_,)". Let u € W, be the solution to (2.6). Since we have
assumed ¢ — 1 div(b) > 0, the bilinear form a : H}(£2) x H}(£2) — R given by (2.4) is continuous and coercive,
and thus, by Lax-Milgram theorem, problem (2.7) admits a unique solution w € H}(£2) which satisfies

_ 1
0]l 2 (2) < %HZHH*(Q)a (2.11)
provided I € H=(£2) := (H}(£2))', where [(v) := — fn(b -V + cu)v dz, for v € HE(£2).
1

In order to prove that I € H~'(£2) and bound |[I|| g-1(0), let v € Hj(£2), and observe that using (2.10)
and (2.2) we have that

< (B2 1Vl 3 o) + el 1l s () o2 o

l(v)| = ‘ /Q(b Vi + cli)v

< max {[|b]| (@), el L=(2) } (HﬂHLg(n) + ||V@||Lg(9)) callvllm o)
< Cpacamax {[[bllLe=(q), llcllL=(e) } lallw. [lv]  (0)- (2.12)
Taking into account (2.8), it follows that

QCP,QCQ
1

Ul z-1(2) < max {[|b]| (2 Il L) } IFlw_.y»

which by (2.11) leads to the desired bound (2.9). O
As a consequence of Propositions 2.1 and 2.2 we conclude the well-posedness of problem (2.5).

Theorem 2.3. Let 0 < a < &, ifb=0 and ¢ = 0, and 0 < o < 1, otherwise. For each F € (W_,)’, there

exists a unique solution u € Wy, of problem (2.5) which satisfies
lully,, < CllFllow_.y (2.13)

where the constant C.. > 0 depends on the domain (2, the problem coefficients {A,b,c} and a. If b = 0 and
¢ =0 then Cy = 2/, otherwise, C blows up when « approaches 1.
Moreover, the following inf-sup condition holds:

a(w,v) 1

inf  sup (2.14)

weWa vew, [wllw, [olw_, = O’

Remark 2.4. The constant C, depends on % max{||b||c, ||¢|lcc } and the stability just obtained is not uniform
for advection dominated problems. The study of this class of problems falls beyond the scope of this article,
and will be subject of future research. It is clear that the main issue in this direction will be to prove an inf-sup
condition with a constant C, independent of the smallness of ;.

Proof of Theorem 2.3. If b =0 and ¢ = 0, problem (2.5) coincides with (2.6). Therefore, existence, uniqueness
and the bound (2.13) follow for 0 < o < §, from Proposition 2.1.

If b # 0 or ¢ # 0, assume that 0 < a < 1 and let @, w denote the solutions of problems (2.6) and (2.7),
respectively. Then u := @ + w is a solution of problem (2.5), and (2.13) holds due to (2.8) and (2.9). It remains
to prove that this solution is unique. This is not so obvious because we have not proved an inf-sup condition
for the full bilinear form a(-,-) but only for the purely second order part.

Let w, @ be solutions of (2.5) and define e := u — @. Then,

ecW,: ale,v) =0, VveW_,,
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and also

eeWy: /AV6~V11:L(U) ::—/(b~Ve—|—ce)v, VveW_,.
7 7

Since e € W, we have that L € H1(£2) (¢f. (2.12)), and there exists a unique é € Hg({2) satisfying [, AVeé -
Vv = L(v), for all v € H}(£2). Since W_,, C H}(£2) C W,, it follows from Proposition 2.1 that ¢ is the unique
solution to

eeWy: / AVe - Vv = L(v), YveW_,.
7

Therefore e = é € H(£2) and
ec HY(2): ale,v)=0, Yve HD),

which implies that e = 0 by the coercivity of a(-,-) in HE(£2).
Finally, existence and uniqueness of solution to problem (2.5) for each F' € (W_,)" and the bound (2.13)
imply that the inf-sup condition (2.14) holds (cf. [25], Thm. 3.3). O

We end this section recalling that F' := d,, belongs to (W_,)" if & € (§ —1, %) and thus, Theorem 2.3 implies
that:
~1,2) if b=0,c=0,

Problem (2.3) is well-posed provided a €1:= { (2.15)

713
(% -1, 1) otherwise.

3. FINITE ELEMENT DISCRETIZATION

In this section we define the finite element spaces that we consider, and let the discrete solution U be the
usual Galerkin approximation of the weak solution u. We then show that the discretization is stable by proving
an inf-sup condition which is independent of the mesh, which can be graded, but must be shape-regular.

Let 7 be a conforming triangulation of the domain {2 C R™. That is, a partition of {2 into n-simplices
such that if two elements intersect, they do so at a full vertex/edge/face of both elements. We define the mesh
regularity constant

diam(T")
K= sup ———,
TeT  PT
where diam(7’) is the diameter of T, and pp is the radius of the largest ball contained in it. Also, the diameter
of any element T € T is equivalent to the local mesh-size hp := |T|'/", with equivalence constants depending
on K.

On the other hand, we denote the subset of 7 consisting of an element T and its neighbors by N7 and the
union of the elements in N by wr. More precisely, for T € 7T,

Np:={T'eT | TNT #0}, wr= J T
T eNT

We denote by £ to the set of sides (edges for n = 2 and faces for n = 3) of the elements in 7 which are
inside §2 and by &y to the set of sides which lie on the boundary of 2. We define wg as the union of the two
elements sharing S, if S € £p, and as the unique element T satisfying S C 9Ts if S € Egp.

For the discretization we consider Lagrange finite elements of degree ¢ € N, more precisely, we let

Ve ={VeH|RQ)| Vi, eEPuT), VT €T},
and observe that V& C W, for 3 € (—%, 2). The discrete counterpart of (2.3) reads:

Find U € V4 such that a(U,V) = 6,,(V), YV e V& (3.1)
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Clearly, this discrete problem has a unique solution for each mesh; the system matrix is not affected by the
right-hand side and is invertible because the assumptions on the problem coefficients guarantee the coercivity
of the bilinear form a(-,-) in V& x V4.

Unlike [3,4,16] we also prove here a stability result for a general right-hand side F' € (W_,,)’; see Theorem 3.1.
By the theory of [22,29] this allows us to conclude that adaptive algorithms with the a posteriori estimates
developed here yield convergence. Recall also that the discrete inf-sup is usually not used for the derivation of
a posteriori estimates, only the continuous one needs to be used.

Theorem 3.1 (Stability of discrete solutions). Let 0 < a < %, if b=0 and ¢ =0, and 0 < a < 1, otherwise.
Let us consider the following problem for F € (W_,)':

Find U €V : a(U,V)=F(V), YV eV, (3.2)

There exists a constant C* > 0, which depends on the domain §2, the problem coefficients { A, b,c}, the mesh
reqularity constant K, the polynomial degree ¢, and «, such that the solution U € Vg— of (3.2) satisfies

1Ullw, < CIFlw_a)-

The constant C* blows up as o approaches 5 or 1, respectively.

In the proof of this theorem we will use the space
MET = {A e [L2)]" | A, € PP(T), VT e T} S5 VY,
and apply the following decomposition:
Let g € (%, %). For each X € M5 there exists a unique couple (o, V) € M5! x V& such that
A=VV+o, (Ao, VZ)o=0 VYZecViy,
IVViTs <2 Az, lollrs <[Al7s,

2
where |[A]|7 g = (Z D;ﬁH)\Hsz(T)) , for all A € M5, and Dr := max,cr dg, (2).
TeT

This is an immediate generalization of Lemma 3.3 in [10], with a similar proof, again, taking into account
that A is uniformly SPD. D’Angelo proposed the discrete norm || - |7, used in the decomposition, and proved
in Lemma 3.2 from [10], that it is equivalent to ||« || 2 (), for § € (=%, 2), with equivalence constants depending

2(02) 272

only on &, the polynomial degree ¢ and |3|. The proof is based on the fact that for ¢ € (0, %) fixed, there exists
a constant ¢, depending on &, ¢ and ¢, such that, if |3| < ¢, then

1
~Vllzgry < DEIVIisr) < Vliggery. YT €T, ¥V € Pu(T) (3.3)

This last local equivalence will also be used in Proposition 4.6.

Proof of Theorem 3.1. Notice that the solution U of problem (3.2) can be split as U = U + W with
UeVs: / AVU -VV = F(V), VYV eV4, (3.4)
0

and

WevVs: a(W,V):—/(b-VU+cU)1/, VYV e Vi (3.5)
22
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Therefore, we just need to bound the solutions U and W to problems (3.4) and (3.5) in Wu by [|[Fllw__y-
Using the aforementioned decomposition and proceeding as in the proof of Proposition 2.1 we arrive at

AVW -VV AVW - VV
inf  sup ‘[Q— > 41 and inf sup fn— > Y1,
weve veve [[Willw, [Vilw_., vevy weve [IWllw. [[VIiw_,

which holds for 0 < a < %, with 41 depending on ; from (1.2), &, £ and a, and vanishing as a approaches .
Therefore,
_ 1
Ullw., < —I1Flw_.y- (3.6)
i
On the one hand, if b=0 and ¢ =0, W = 0.

On the other hand, if b # 0 or ¢ # 0, we use that the continuity and coercivity of the bilinear form a are
inherited from the continuous space to the discrete one, and thus the solution W of problem (3.5) satisfies

_ 1, -
Wiy o) < M-,

where L(V) := — [,(b- VU + cU)V. In view of (2.12), ||L||g-1(g) is controlled by ||U||w,,, and from (3.6) the
claim follows. O

4. SOME RESULTS IN WEIGHTED SPACES ON SIMPLICES

In this section we state and prove some properly scaled bounds which are valid on the elements of the trian-
gulation, with constants depending only on mesh regularity. These bounds include a local Poincaré inequality,
a bound for [[éz,||(w_,), and bounds for the error in Clément and Scott-Zhang interpolation operators. Most
of these bounds are known for the usual Sobolev norms, without weights.

This section is independent of the elliptic operator or the precise problem at hand. The results stated here
might be useful in other applications involving point sources.

From now on, we will write a < b to indicate that a < Cb with C' > 0 a constant depending on the shape
regularity « of the mesh and possibly on the domain 2 C R™, which is assumed polygonal (n = 2) or polyhedral
(n = 3) with a Lipschitz boundary. Also a ~ b will indicate that a < b and b < a.

4.1. Classification of simplices

In order to prove our results we classify the elements according to their relationship to xg. We categorize the
elements of 7 into two disjoint classes, defined as follows:

T = {TeT | zo €wrt  and T = 7\ 70ear,

Recall that for T'€ 7, Dy = mea%( ds (), and let dr be defined by dr := m€1¥ dz, (). Now, we establish a
x x

relationship between the classical local norms || - || ,2(7) and the weighted ones || - ”LZ(T)'

Lemma 4.1. The following statements hold:
(i) If -5 <B<gandT e T then hy < dr ~ Dr and
loll5r) = Dpllollizey, Vo LX(T), (4.1)

1]l o) = DE |2y, Vv € L*AT). (4.2)
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(i) If0<a<F andT € T, then hr ~ Dr and
llize ) 2 helollczery, Yo e L2 (T), (4.3)
vl g2 (ry S ATllvllL2(r), Vv e L*(T). (4.4)

To prove this lemma we will use the following result, which states that a neigborhood of size ~ hp of an
element T is always contained in wp. This result will also be used in the proof of the lower bound (see Thm. 5.3).

Lemma 4.2. There exists a constant ¢ o > 0 depending on mesh regularity x and the Lipschitz property of
082 such that, if T € T, x € T and y € 2\ wr, then |v —y| > cu.ohr. In other words, B(x, .. ohr) N 2 C wr
forallx €T and all T € T.

Proof. Let T € T, let ¢;,i=1,...,n+ 1, be the canonical basis functions of V1 corresponding to each vertex
of T', and let ¢ = Z?:ll i Then ||V Loy S 1/hr, and therefore

1
W(w)_d)(y” < h ‘x_y‘v for all %yeg,
Cg,2NT
where ¢, » depends only on mesh regularity and the Lipschitz property of 92. Since ¥(zx) = 1 if z € T and
Y(y) =0 for y ¢ wp the claim follows. O
Proof of Lemma 4.1. Let T € T then zo ¢ wr, and dr = mingd,, = |r¢ — x| for some x € T, whence

hr < dp by Lemma 4.2. Therefore, Dy < dp + hy < dp and thus dpr ~ Dy, which implies (4.1). Since
dr < mingr dz, < maxgr dz, < Dr, (4.2) holds.
Let T' € 7", Then z¢ € wp, and thus Dp < diam(wy) < hp. Besides, if 1, x2 are two vertices of T,

hr =~ |v1 — 22| < |71 — 20| + |20 — 22| < 2D7.
Therefore hr ~ Dp, and thus (4.3) and (4.4) hold. O

4.2. Local Poincaré inequality and interpolation estimates

The usual scaling arguments used to prove Poincaré inequalities on simplices do not lead to a uniform
constant for all the elements in the mesh. We thus need to resort to real analysis tools from the theory of
weighted inequalities [15,24]. We start by recalling some definitions and important properties.

Let 0 <y < n, the fractional integral I, (f) and the fractional maximal function f of a measurable function
f:R™ — R are defined, for x € R" by

L = [ A @ s e [ 1) a, (45)

where the supremum is taken over all balls B with center at x.
These two concepts are related through the following result, proved by Muckenhoupt and Wheeden (cf.
Thm. 1 in [24]), for any n € N.

Lemma 4.3. Let 0 < v < n, w € Ay = Ug>144, and 1 < p < co. Then, there exists a constant ¢ > 0 such
that

(/. umpw)’i <e([ 1) g

From Lemma 1.1 in [15], and using the same arguments of the proof of Theorem 1.2 in [15], the next result
follows, for the particular case v = 1.

for all measurable functions f.
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Lemma 4.4. Let w € A, for some p, 1 < p < co. Then, there exists a constant ¢ > 0, depending only on the
Ay, constant of w, such that

([ 1) <er([ 1)
R™ Br
for all ball Br of radius R > 0, and for all f measurable and supported in Bp.

As a consequence of these results we obtain the following scaled Poincaré inequality.

Theorem 4.5 (Poincaré inequality). Let 8 € (=%, %). There exists a constant Cp > 0 depending on (3 and the
mesh reqularity k such that, for all v € Hé(()),

[ =vrllps(ry < Cphr [Vllpary, VT €T,

where vy 1= % fTv, The constant Cp blows up when |3| approaches .

As we mentioned earlier, the usual scaling arguments do not yield a uniform constant Cp, and we thus resort
to arguments from [15], where weighted Poincaré inequalities are proved on balls, with a uniform constant
depending only on the A, constant of the weight.

Proof. Let v € C1(2) and T € 7. Since T is convex, by Lemma 7.16 in [17], we have that

diam(T)" [ [Vo(z)|
nhy Jple— =l

lv(z) —vr| < dz,

for every @ € T. Let Br be a ball containing T" such that R < hp, and define f := |Vo|xr, where xr is the
characteristic function of 7. Then recalling the definition (4.5), [, dﬁ%l‘l dz = I(f)(x) and thus by mesh
regularity

[v(x) —vr| < L(f)(x), ae xzeT. (4.6)
Since dif € Ay C A, due to Lemmas 4.3 and 4.4 it follows that
Hll(f)”L%(Rn) < CR||f||L;,(BR) = CRHV'UHL';’,(T)v (4.7)

for some constant ¢ > 0, depending only on 3, through the A, constant of dﬁf , which blows up as || approaches
n/2. The bounds (4.6) and (4.7) yield the result for smooth functions v. The assertion of the theorem follows
by density arguments. O

We will now show some interpolation estimates in weighted spaces, which hinge on the Poincaré inequality
from Theorem 4.5, and are instrumental for proving the reliability of the error estimators. Let P : Hg(£2) — V1
be either the Clément or the Scott—Zhang interpolation operator. It is well-known [9,30] that, for all v € H*(£2),

[[v— PU”LQ(T) S hr ||VU||L2(WT) , VT eT, (4.8)
V(v =Po)llp2ry S IVUll12(0py, YT ET. (4.9)

Since H! (02) ¢ HY(2) for a > 0, P is also well defined for functions in H! (2). Moreover, the above
estimates hold in weighted norms, as we show in the following proposition.

Proposition 4.6 (Interpolation estimates). Let P denote either the Clément or the Scott—Zhang interpolation

operator. Let t € (0,%) and 0 < a < t. Then, there exists a constant C; > 0 depending on the mesh regularity

k and t such that, for all v € H (§2),
lo—Pollye () < Crhr [Vollz (,)» YT ET, (4.10)
IV~ Po)lya < Cr V0l uyr VT ET. (a.11)

The constant C blows up as t approaches n/2.
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Proof. Let v € HL (£2). Let T € T and vy = ﬁ J7v. Then, by (3.3)

v =Pollpe y <llo=vrllpe gy +cDr® lor = Poll 2y

<o —vrllzz_ iz + D7 (lor = vllaery + o = Pollacr )

5 H’U — UTHLz_n(T) + CthTDT ||VU||L2(wT) ’

where the last inequality follows from the classic Poincaré inequality and (4.8). From Theorem 4.5 and the fact
that dg,(2) S Dr for all z € wr (4.10) holds.

Observe now that due to (3.3) and (4.9),

IVPollpz () < DR VPO L2y S D2 Vol 2 (ory S e VOllL2 | 0y »

(wr)

where we have used again that d,, < Dy in wp. The assertion (4.11) follows. ]

Lo ~o

4.3. A local bound for 4,

In this section we present a local bound for d,,, which is useful to establish the reliability of the a posteriori
error estimators (¢f. Thm. 5.1 below). It is a local version of (2.1), and the proof could be done by scaling.
We present an alternative proof, following the lines of Theorem 4.2 in [11], in order to show how the constants
depend on a.

Theorem 4.7 (A precise bound of 0,,). Let § —1<a <5 and T € T such that xo € T. Then

a—2 a2z
000 (W) S by ® Wiz () + Cahy 2 [IVUll2 (1, Yo e H (T), (4.12)
a—1
where Cp = —22—— ifn =2 and Cy : &zfn—?)
(at) T (20+2)

Note that the constant C,, blows up as « approaches 5 — 1. This was expected because d,, does not belong to
the dual space of H! (£2), for a = Z — 1, but only for s—1l<a<gyg

Proof. Assume n = 3 and let T" € 7 such that g € T. By mesh regularity, there exist constants 0, 61, ¢g, ¢1
and ¢p, depending only on k, such that a sector St with center at xy described in local spherical coordinates by

{(r,0,0) |0 <r <cohp, 0p <0 <61, 00 << 1},

is contained in T'. Let ¢ € C*(T). Then, by using local spherical coordinates centered at zo we have for every
r € (0,cohr), 0 € (0o,01) and ¢ € (¢, ¢1),

o)
@(07030) = (,0(7‘,0,@1)) - A 8_f(t307¢) dt

so that, using the inequality (a + b)? < 2a® + 2b%, and integrating on St we get

Ch3¢(0,0,0)? /:1/61 [/CO}LT o(r,0,¢)*r bln(Q)dr—l—/COhT (/ ar (t,0 ¢)dt) r? sm(@dr] dfde,

where O = (@1=¢o)(coslo)—cosbu))c}

. To bound the second term we will use the weighted Hardy inequal-
ity (see Thm. 4.8 below) the weight functions being wy(t) = 2, wa(t) = t272% and the positive function
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f(t) = |0¢/0r(t,0)|. Since o > 1, we have

1
CohT 2 T %
sup / wi (t) dt (/ wo (1)1 dt>
re(0,cohr) r 0

1 a—
(cohp)® — 13 r2o—! } c pl+a gt (20 — )%
3 200— 1 T (2004 2)°5"

D, :

< 0

= sup |:
re(0,cohT)

Hence, by Theorem 4.8, the following inequality is valid

coht r 2 cohr
/ (/ a—<p(t,9,¢)dt> r2dr g4D§/
0 o Or 0

Therefore, using the identity r = d,, (x) in Sy and 1 < dg, () ~2%(cohr)??, for all z € S, we obtain

¢
E (ta 07 ¢)

2
r272aqy,

2 2
Chi¢(0,0,0)* < g h7" ||90||LQ_Q(T) +4D}, HVQDHLQ_Q(T) )

and thus . .
a—3 a—z
£(0,0,0)| < by ® HQOHLQ_Q(T) + Cahyp * ||V<PHL2‘_H(T) )
a=2
where C, = 7?“71) —r. The assertion follows by the density of C*(T') in HL (T).
2420) 5
For the case n = 2, the proof follows the same lines, considering a circular sector described by polar coordinates
inside the triangle and the weight functions being w1 (t) = ¢, wo(t) = t172<. O

We end this section by stating a Hardy inequality [27] that was used in the proof of the previous result.

Theorem 4.8 (Weighted Hardy inequality). Let 0 < R < oo and let wy, we be weight functions defined on

1

1 1
(0,00) such that D := sup,¢ g, r) (er wy (t)dt) ’ (for wg(t)*ldt) * < o0. Then,

/OR (/Or f(t)dt>2 w (r) dr < 4D? /OR F(r)? wa(r)dr,

for all positive functions f on (0,00).

5. A POSTERIORI ERROR ESTIMATES

In this section we first present the a posteriori error estimators for the adaptive approximation of prob-
lem (2.3) and then prove their reliability and efficiency.
The residual R(V) of V € V4 is given by

RV):W_, =R, (R(V),v) :=a(V,v) — 0z, (v), Yv€EW_4g.
Let U € Vg— be the solution of the discrete problem (3.1). Integrating by parts on each T' € 7 we have that
(R(U),v) = Z </ Rv—i—/ Jv> — 0z, (V), VoeW_,, (5.1)
Ter \JT ar

where R denotes the element residual given by

Ry, == =V -[AVU] +b-VU +¢U, VT €T,
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and J the jump residual given by
1
Jo = 5 [(AVD )y, - m1+ (AVU),,, - mo| | i S € Ea, ), =0, i S € Epo.

Here, T and T, denote the elements of 7 sharing S, and n, and ns are the outward unit normals of 7 and 15
on S, respectively.
We define the a posteriori local error estimator np by

a 2 o 2 2 .
) W D3 | R 20y + hr D3 | I 2oy + h 27", i 2o €T 5.2
T - . .
h3.D3 || R\ 72y + hr D3 T 112 0m) » if 2o ¢ T

2
and the global error estimator n by n := (Z n%) .
TeT
Notice that by Lemma 4.1, D3 ||R||iz(T) and D3 HJ||2LQ(8T) are equivalent to HRHQLg(T) and ||J||ii(3T),
respectively, if 7' € 7. This is consistent with the norm || - |1y, used to measure the error.
An alternative definition of nr in (5.2) would be obtained replacing D3 ||RH2LQ(T) and D2 HJHQLQ(aT) by
HRHia () and [|J ||2Li (o) Tespectively. In this case, the equivalence between error and estimator could only hold

for a < %17 due to the fact that d;o%‘ is not integrable over 9T for o > "Tfl if kg € 9T. Our definition allows
us to prove the equivalence between the estimator and the error in W, for « in the whole interval I from (2.15);
the range of a for which it is known that problem (2.3) is well posed.

5.1. Reliability
We first prove the reliability of the global error estimator.

Theorem 5.1 (Global upper bound). Let a € T and let u € W, be the solution of problem (2.3) and let U € V&
be the solution of the discrete problem (3.1). Then, there exists a constant Cy > 0 depending on the diameter
of §2, the mesh regularity x and the parameter o such that

U = ull g1 () < CCym,

where Cy is the continuous inf-sup constant from (2.14). The effective constant C.Cy of this upper bound blows
up when « approaches an endpoint of 1.

The proof follows the usual steps for proving the reliability of residual-type a posteriori error estimators,
making use, as in [4], of the continuous inf-sup condition, instead of the usual coercivity. It is strongly based on
the weighted estimates and the properties of the quasi-interpolation operator P stated in the previous section.
Recall that P can be either the Clément or the Scott—Zhang interpolation operator.

Proof. Let u € W, be the solution of problem (2.3) and U € V4 be the solution of the discrete problem (3.1).
Using the inf-sup condition (2.14) we have that
CL(U —u, U) <R(U)v 1}>

1
—|U —u|lw, < sup ———= = sup

Tl IR 2 5.3
G S Tl ol Tl RO lov—o) (5.3)

Now, let v € W_,, and let V = Pv, with P either the Clément or the Scott—Zhang interpolation operator.
Then, by (3.1), (5.1) and Hoélder inequality it follows that

(R@), o)l = [RWYw =V < 3 (1Rl ey o = Vligacry + 1 pagom I = Vliaom ) + o0 = V).
TeT
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FIGURE 1. Simplex T and equivalent (shaded) sub-simplices, obtained after
dividing the edges into four equal segments. T is the one which is farthest
from z( in order to guarantee that Dr < dr,.

Applying a scaled trace theorem and the interpolation estimates (4.8) and (4.9), for the addition in the right
hand side of the last inequality, we have that

> ( 1Rl 2y [0 = Vg2 () + 1Tl L2 ory 10 = ViiL2(ar) )
TeT

1
Y <||RHL2(T) hr Vol p2opy + 1] 20y AT HVUHLz(wT))
TeT

1
S > (hrDF IRl gy + hEDE 1 | 2om) ) 192l 22 o)
TeT
and using the local bound for the Dirac delta (4.12), and the weighted interpolation estimates (4.10) and (4.11),

a2z
|0z (v = V) S CrCahy, * HVUHLZ‘_H(WTO) )
where Ty is any element containing xg. Thus, recalling the definition of the error estimators (5.2),
(R(U),v)| S CrCanllv[w_,.-
Therefore, the last estimation, (5.3) and (2.2) yield the desired assertion. O

5.2. Efficiency

The proof of the lower bound follows the usual steps using a bubble function to test the residual. We first
construct bubble functions and then prove the necessary estimates in Lemma 5.2.

Bubble function for the interior residual estimate

Given T' € 7T, the goal is to construct a bubble function with its support in 7" of size ~ h7. and at distance
2 D of xy. To do this, we divide each edge of T" into four equal segments and consider the simplices which are
determined by one vertex of T' and the segments that touch it (see Fig. 1). We then let T be the one of these
simplices that is farthest from x, so that

hr < dp, := min d,, (x).

x€T,

Since Dy ~dp < dp, for T € T and Dy ~ hy < dp, for T € T"°* (cf Lem. 4.1), we conclude that
Dy 5 dT*, VT eT.

Besides, by translating and scaling a fixed bubble function ¢ to the sub-element T we obtain ¢ € C§°(R™)
with
duo (1) = @r(20) =0,  supp(pr) C Ty,  |[lorlper) =1. (5.4)
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7\

FIGURE 2. Triangles T, T’ sharing a common side S. The patch T, UT"
is one of the shaded regions, the one farther from zy, and S, =T, N T7.
Therefore Dy S dr, and Dy < dr.

Bubble function for the jump residual estimate

Given S € &g, we denote T', T’ the two elements sharing S. The goal is now to construct a bubble function
with its support in wg of size >~ A7 and at distance 2 Dr of z9. We proceed as before, dividing the edges of
T and T’ into four equal segments. We then consider the simplices determined by the vertices of S and the
segments that touch them. This determines n patches of adjacent simplices. We then choose T, C T and T, C T”
such that T, NT. =: S, # () and

hr < dr, and  hp S dgr,

the situation for n = 2 is depicted in Figure 2.
By construction, we have
DT Sj dT* and DT’ 5 dTl .

In fact, if T'€ 7" Dp ~ hp Sdp,, and if T € T Dpo~dp < dr, . Analogously, the estimate for 7" holds.
By translating and scaling a fixed bubble function ¢ to S, we obtain pg € C§°(R™) such that

bz (ps) = s(x0) =0, supp(ps) CTLUT, Cws, |l@s|lpews) =1 (5.5)

The following result summarizes the properties of the just defined bubble functions ¢ and ¢g that we need
to prove the efficiency of the local error estimators.

Lemma 5.2. Let 0 < a < & and T € T. If pr is the bubble function satisfying (5.4), then,
”p‘PT”LZ’_”(T) < Dr” Hp||[,2(T) ) (5.6)
ho IV (per)liz )y S D2 1Pl L2y - (5.7)

for all p € Pe_1(T). On the other hand, if S € Eq is a side of T and g is the bubble function satisfying (5.5),
then,

=

hr ||p<PS||L2‘_n(wS) S Dr® ||p||L2(S) ) (5.8)

l —
W IV o)z o) S DF Pl ags) (5.9)

for all p € Py_1(S), where we extend p to wg as constant along the direction of one side of each element of T
contained in wg.

Proof.
(1) Using that [@r|p~ry = 1 and supp(pr) C T, it follows that [per(7: g = [ P*ehd;2" <

o
diza Hp||2Lg(T). Taking into account that Dy < dr., (5.6) holds.
(2) The usual scaling arguments yield

IV (per) || z2cry = bzt lIpll L2y,  Vp € Pea(T),
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and thus
IVwer)lizz ) = /T IV (per)|? d;2% < dp>* IV (per) 7y S b (ol 2 ) -

In consequence, (5.7) follows from Dr < dr,.
(3) Let T'€ T be such that S C T C ws. Since ||¢s|| 1= (ws) = 1 and supp(ps) C Ti U T}, we have

2 — —2a — —2a 2
lpeslize () =/T PR e ngfa/ P’ §de“hT/ P* < dp’hr [|pll72s) »

* *

and therefore, (5.8) holds, using that Dy < dr, .
(4) Let T € T be such that S C T C wg. The usual scaling arguments yield

IV (pes)li2cry = hr' 1Pl 22 (rrsupp(os))s VP € Pe1(T).

Let us denote by T the element which is contained in T (¢f. Fig. 2). Hence

2 —2a —2«
IV(pes)lzz (1) = /T V(pes)? dal® S 721V (0s) 122z
~ dp**hp?|Ipllacr,) S A7 b plIEe(s,) < dp2hat Ipll2as)-
Finally, (5.9) follows due to Dy < dr,. O

As usually happens for residual based error estimators, the lower bound is local, and holds up to some
oscillation terms. In this context, we define the local oscillation oscy by

1

(W3D3 R =Rz + P03 |7 = Tiaepniorysy) - i @0 €T,
0SCT = ) ) 1
_ — 2 .
(hQTD%a [ RHL?(W) +hr D[] — JHL?(BT)) ’ if o ¢ T,

where R|_, denotes the L? projection of R on Py_y(1”), for all T € T, and for each side S, .J|, denotes the
L? projection of J on Py_1(S). Notice that if zo € T the jump oscillations are considered over all S € £g, that
touch T, including those contained in 9T and those not contained in 97T

The next result is usually called local efficiency of the error estimator, based on the fact that whenever a
local estimator is large, so is the corresponding local error, provided the local oscillation is relatively small. Its
proof follows the usual techniques taking into account the bounds from the last lemma and the boundedness of
the bilinear form, yielding

(R(U), v)| = |a(U, 0) = bz, (v)| = [a(U,0) = a(u,v)| < CullU =l ay w0l ()
for all v € W_,, with supp(v) C w, for any w C 2, where C,, := max{~ys, ||b|| L=, ||c|| L}

Theorem 5.3 (Local lower bound). Let a € I, let u € W, be the solution of problem (2.3) and let U € V& be
the solution of the discrete problem (3.1). There exists a constant Cz > 0 depending on the mesh regularity s
and the parameter o such that

Crenr < Cu||U — U||H;(wT) + oscr,

for all T € T. The constant Cr goes to zero if o approaches 3.
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Proof.
(1) Let T € T. We analize first the residual R. Since

||RHL2(T) = HRHH(T) + HR - RHL? (5.10)

(T)°
it is sufficient to estimate HFHL2

)
Let o1 be the bubble functlon satisfying (5.4). The usual scaling arguments yield

/R(pT—/Rv—/RU—I—/ — R)v, (5.11)

where v := Rpr. Since supp(v) C T and 5;,00 (v) = 0, the first integral in the right-hand side of (5.11), using (5.6)
and (5.7) satisfies

1B ) = Hmé

| Bo= (R©).0) < Callt = wllmyoy ol ay 5 Coliz 1U =l D7 [l gy

while the second one satisfies [.(R — R)v < ||R — R||L2(T) [vll g2y < |’ - R||L2(T) ||§||L2(T)
Using the two last inequalities in (5.11) we have that
hr DY B[ >y S CallU = ullmary + he D |R = R|| o) - (5.12)
Finally, from (5.10) and (5.12) it follows that
he D 1Bl gy < CallU — ulszyry + hr D | B = Rl| g, - (5.1)
(2) Secondly, we estimate the jump residual J. Let S be a side of T. As before, it is sufficient to bound the
projection J of .J, since B _
1Tl 25y < HJHL2(S) +|J - JHL?(S) : (5.14)
Let ¢g be the bubble function from (5.5). Then, usual scaling arguments lead to

1112 —2 _ _
= [ J :/Jv:/Jv+/J—JU, 5.15
‘LQ(S) /s 7s S S s( ) ( )

—2 —
HJHL2(S) S HJ‘PE

with v := Jpg. Extending J to wg as constant along the direction of one side of each element of 7 contained in
wg, using that d,,(v) = 0 and supp(v) C wg, the first integral in the right-hand side of (5.15) can be bounded
as follows:

Q/SJU = (R(U),v) — Rv < CollU — U\|Hg(ws)||v\|H1a(ws) + HRHL2(WS) HU”L?(WS)
ws
_1 = 1 -
S hp?CallU - “HHi(ws)DTa HJHL2(5') + hy ”RHL2(ws) HJHL2(S) ’
where in the last inequality we have used (5.8) and (5.9). The second integral in the right-hand side of (5.15),
satisfies [o(J — J)v < |[J - ‘]HL?(S) [0l 25y S |7~ J||L2(S’) ||J||L2(S’)
The last two estimates and (5.15) yield
1 -
htDg || 7]] 2

) S CallU = llma sy + P DG 1Rl ooy + hEDE T = 7)) o, - (5.16)

Thus, from (5.14) and (5.16) we have that
1 1 —
BEDH T gy < CallU — ull iy sy + hr DG Rl 2y + hEDF ([T~ || o,
Adding the last inequality over all the sides S C T and using (5.13) we obtain

1
hi D7 [T 2o7) S CallU — ull gy wr) + 0scr .
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2—n
2

(3) Recall that if 29 € T the indicator n contains also a term h;Jr , we now prove that

a+2;n
h‘T

A

1
[(g - a) “ U - Ul 1 (wp) + 0SCT

Let ¢ € C®(R") with ||¢|lr~ = ¢(0) = 1 and supp(¢) C B(0,1). Let C' = ¢, from Lemma 4.2 so that
Blzo, Chr) C wr, and if pla) = 6 (%52) then 8,y(¢) = (o) = L lglli~ = 1, [Vl < /& and

n n-2
supp(¢) C B(wo,Chr) C wr. Thus, we also have that ||¢||2w) S A7y IVOlz2wr) S hp® , and using a

n—1 n_
scaled trace theorem, |||z 2a7) S hp® . On the other hand, since ||dx0 ||L2(WT) < ﬁh% “. we have that
-

n__ n_-2__
el e (o) S (3 =) 2h2 " and [Vl 2 () S (3 — @) Fhy® . Therefore,

1 =02, () = a(u, ) = a(u — U, ¢) +a(U, ¢)

< CallU = ull gy wr 1@l a1 wr) + Z (//R@‘F/@T/ J@)

T' Cwr
< Co|U - UHH;(W)”‘P”Hia(wﬂ + Z ||R||L2(T/) H‘PHm(T/) +2 Z ”JHL2(S’) ||<P||L2(s)
T'Cwr SC(wr)?

n—2

a i « —a+
CallU = ull g1 wr) + Z ho D7 | Rl 2y + Z h Do |l 2y | B 7
T' Cwr SC(wr)°

[N

n -
< — _
~ (2 a)
The last inequality with the estimates obtained in steps (1) and (2) complete the proof. O

As an immediate consequence of Theorem 5.3, adding over all elements in the mesh we obtain the efficiency of
the global error estimator.

Theorem 5.4 (Global lower bound). Let o € I, let u € W, be the solution of problem (2.3) and let U € V5
be the solution of the discrete problem (3.1). There exists a constant Cp, > 0 depending on the mesh regularity
Kk and the parameter o such that

Crn < CollU — ull g1 () + osc,

N

where osc is the global oscillation defined by osc := (ZTGT osc%) , and the constant C goes to zero if «

approaches 3.

Remark 5.5 (Convergence of adaptive algorithms). The general convergence theory from [22,29] states that if
the discretization of a linear problem is stable, the a posteriori error estimators constitute an upper bound for
the error and if there holds a discrete local lower bound, up to oscillation terms, then any adaptive algorithm
marking at least the element with the largest indicator will converge. Our indicators fulfill all those assumptions,
yielding convergence to zero of the error measured in W,; and also in H'(§2) for any 2y C 2 such that
dist(xg, $20) > 0, because W, — H?'(§2). For the discrete lower bound it is enough to observe that discrete
bubble functions ¢ and ¢g can be constructed on sufficiently refined meshes, so that they satisty (5.4), (5.5)
and thus also Lemma 5.2.

It is worth mentioning that there are presently no results of optimal complexity for adaptive methods applied
to problems involving different ansatz and test spaces (see [26] and references therein). The quasi-orthogonality
property used in the current proofs is not readily available in this situation. Optimality is thus an open issue
for the problem studied in this article, even though it is observed in the experiments that we report in the next
section.
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llu=-Ull, llu-Ul|z Ifu=Ully, /n
o 0 o
10° 10
0.6---a=0.10
--0=0.30
S 0.5] == 0.50
10”" 10 ——q=0.70
04f *=%
---0.=0.10 ---0.=0.10
--0.=0.30 --0.=0.30
10720 =050 1070 = 0.50
——0.=0.70 ——0.=0.70
—a=0.90 —a=0.90
J— =12 . -1
g — T 0
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Degrees of freedom Degrees of freedom Degrees of freedom

FIGURE 3. Exact errors and effectivity indices for Example 6.1. We plot the W, (left) and the
L?(£2) (middle) norm of the error u — U wersus the number of Degrees of Freedom (DOFSs)
in logarithmic scales, for different values of a. We observe the optimal decay (#7)~'/? and
(#7)~ L, respectively. We also plot the effectivity index ||u — Ullw. /n and observe that it
remains between 0.12 and 0.35 for all the considered values of «, showing the robustness of the
estimator with respect to a.

6. NUMERICAL EXPERIMENTS

In this section we report some numerical experiments that document the behavior of the adaptive algorithm
based on our a posteriori estimators for the error in W, norm. We implemented a loop of the usual form

SOLVE — ESTIMATE — MARK —— REFINE.

The step SOLVE consisted in solving the discrete system for the current mesh, the step ESTIMATE consisted in
computing the a posteriori error estimators np for a given value of «. In the step MARK we selected in M for
refinement those elements 7" € 7 with largest estimators npy until ) ..\, n% > 0.5 > oreT n%, i.e., we used the
Dorfler strategy with parameter 0.5. The step REFINE consisted in performing two bisections to each marked
element, and refining some extra elements in order to keep conformity of the meshes, using the newest-vertex
bisection. We used a custom implementation in MATLAB.

We present two examples on two-dimensional domains, using piecewise linear finite elements. The first one
considering a known solution on an L-shaped domain, and the second one based on the computation of an
unknown solution on a rectangle, with variable coefficients, simulating a wiggling flow on a canal.

Example 6.1. We consider the boundary value problem —Au = (¢ 5,0.5) in the L-shaped domain 2 = (-1, 1)2\
[0,1) x (—1,0] C R? with exact solution u(z) = —5=log |z — (0.5,0.5)| 4 |2|?/3 sin(26/3), (0 the angle measured
from 0 to 37/2 in {2), and Dirichlet boundary conditions.

The first goal of this example is to test the behavior of the adaptive method guided by the a posteriori
estimators np for different values of o, in a problem with two singularities. One produced by the Dirac delta
on the right-hand side and another one produced by the reentrant corner. Our theory predicts that n :=
(ZTGT 77%) 1/2 is equivalent to the error in W, norm provided 0 < o < 1.

In Figure 3 we show the decay of the W, and the L?(£2) norm of the error u — U, versus the number of
Degrees of Freedom (DOFs) in logarithmic scales, for o = 0.1,0.3,0.5,0.7,0.9. We observe the optimal decay
(#7)7Y2 and (#7)~!, respectively. These are consistent with the decay rates proved by D’Angelo [10] and
Apel et al. [1], respectively, for properly a priori graded meshes. As is usual with adaptive methods, the optimal
cardinality is obtained automatically, without any fine tuning or additional requirement on the meshes.

We also plot the effectivity index |ju — U||lw, /n and observe that it remains between 0.12 and 0.35 for all
the considered values of «, showing the robustness of the estimator with respect to «, with no degeneracy as «
approaches the endpoints of I. This is better than expected according to our theory.
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0.6l---0.=0.05
--o=0.10
0.5[ <= 0.15
107" ol =020

-~ =0.05 ~
1074 --«=0.10
——o=0.15
——a=0.20
L—c N2
10 1 2 3 4 5 5 0 1 2 3 5
10 10 0 10 0 0 10 10 10 1 10
Degrees of freedom Degrees of freedom Degrees of freedom

FI1GURE 4. Exact errors and effectivity indices for Example 6.1 and « very small. We plot the
We (left) and the L?(£2) (middle) norm of the error u — U wversus the number of Degrees of
Freedom (DOFSs) in logarithmic scales, for different values of a. We observe the optimal decay
for all the considered values, except for the smallest value a = 0.05. In this extreme situation the
algorithm refines purely around (0.5,0.5) and the elements become excessively small, leading
to a nearly singular system matrix (to the working precision) not allowing computation beyond
a mesh with 2544 elements and 1286 DOFs, obtained after 53 iterations. The effectivity index
|lu — U|lw., /n, plotted on the right, remains bounded between 0.11 and 0.32.

In Figure 4 we show the decay of the W, and the L?({2) norm of the error v — U, for values of a very close to
zero. We show the behavior for a = 0.05,0.1,0.15, 0.2 and observe the optimal decays for the cases > 0.1. The
algorithm stopped after 53 iterations in the case a = 0.05, with a mesh of 2544 elements and 1286 degrees of
freedom (DOFs). The refinement is concentrated solely around the support of the Dirac delta, leading to very
small elements, with diameter of order 2753, The resulting system matrix was singular to working precision. We
also show the effectivity indices for these values of o and observe that they do not degenerate as o approaches
zZero.

The meshes after 4, 8 and 12 iterations for o = 0.25,0.5,0.75 are plotted in Figure 5. The number of elements
of the corresponding meshes is indicated in each picture, and the stronger grading obtained for smaller values of
« is not so apparent for these values of «, although the case o = 0.25 is much different than the other two cases.
It is worth observing that the corner singularity is not noticed for @ = 0.25 after 8 iterations of the adaptive
algorithm, and it is immediately noticed for « bigger (see also Fig. 6).

We also plot meshes with a similar number of elements for values of @ = 0.1,0.3,0.5 in Figure 7. The fact
that the singularity introduced by the Dirac delta is less severe when the error is measured in W, for bigger «
is noticeable in this picture. The refinement is thus more spread in this case.

The second goal of this example is to compare our estimator with the existing ones for the LP, WP and
H* norms from [4,16]. For the L-shaped domain being considered, the estimators for the LP and the W1
error constitute an upper and lower bound if 3 < p < oo and if 3/2 < p < 2, respectively, and those from [16]
are equivalent to the error in H® if 1/2 < s < 1. We ran the adaptive algorithm once for each estimator and
computed the L?(§2) and the H'(£2) norm of the error, for 2y = {x € 2 : ||z —(0.5,0.5)||oc > 1/4}. The results
are reported in Figure 8.

When using the estimators for the LP norm, we chose the parameter p = 4. For the estimators corresponding
to the WP, H® and the W, norms, we chose p, s and « as the midpoints of the respective intervals of validity
of the error-estimator equivalence, i.e., p = 7/4, s = 3/4 and a = 1/2. We plot the L?({2), the H'({2) and the
L*°(£20) norm of the error versus the number of degrees of freedom in logarithmic scales. We observe that the
algorithm guided by our estimators performs better than the others in the three comparisons.

As a final remark, it is worth observing that not only our estimator behaves better computationally, but the
adaptive algorithm guided by the W, estimators is guaranteed to converge (see Rem. 5.5), whereas convergence
is not proved for the other estimators.
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a=0.25 a=0.5 a=0.75
#T = 122 #7T =125 #7T =93
#T = 324 #7T = 386 /’\ #7T = 304
EOOSE
#T = 542 #7T = 1215 #7T = 1460

FIGURE 5. Meshes for Example 6.1. We show the meshes after 4 (top), 8 (middle) and 12
(bottom) iterations for a = 0.25 (left), @ = 0.5 (middle) and o = 0.75 (right). The number
of elements of the corresponding meshes is indicated in each picture, and the stronger grading
obtained for smaller values of « is not so clearly visible. It is worth observing that the corner
singularity is not noticed at all for & = 0.25 after 8 iterations of the adapive algorithm, and
barely after 12 iterations, but it is immediately noticed for a big. In the latter case the re-
finement is more spread throughout the domain, due to the smaller relative importance of the

singularity introduced by 04,.

Example 6.2. In this example we let 2 = (0,3) x (0,1) and consider the problem

2 .
_002 AU —+ |:Sln(5[1}'1):| . vu + Ol'LL = 5(0_270_4) 1n Q,

u=20
ou
%—0

on 92N {x1 < 3},
on 02N {xy =3},
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a=025 a=05 a=0.75

iter = 13 iter = 10 iter = 10
#7T = 590 #7T = 616 #7T = 612

FIGURE 6. Meshes for Example 6.1 with similar number of elements. We show meshes for
different values of o and similar number of elements. There is no significant difference for the
values of a = 0.5,0.75.

a=0.1

iter = 20 iter = 15 iter = 13
#7 = 900 #7T = 897 #7T = 879

F1GURE 7. Meshes for Example 6.1 with similar number of elements. We show meshes for
different values of a close to zero and similar number of elements. We can observe that for
smaller values of « the meshes are more strongly graded at (0.5,0.5) where the Dirac delta is
supported. For a big the algorithm notices early the presence of the corner singularity.

u=Ullzg,

fu=Ull
H'@)

flu=Ull-
@)

——H° I
w I
-5 e
10
10
Degrees of freedom

10 10*
Degrees of freedom Degrees of freedom

F1cure 8. Comparison of an adaptive algorithm guided by the error estimators for the LP,
WP H® and W, norms. We plot the error measured in L2(£2) (left), H'({2) (middle) and
L>(£2) (right) versus #DOFs. The algorithm guided by the W, estimators performs better
than the others. Although the advantage in using the W, estimators is not so impressive for
the first two errors, it is really striking when looking at the local L>° error in the right picture.
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FIGURE 9. Meshes for Example 6.2. We show the meshes obtained by the adaptive loop after
10, 13, 16 and 19 iterations, with 398, 918, 2409 and 10608 elements, respectively.

Y o

F1cURrE 10. Final solution for Example 6.2, obtained by the adaptive loop after 20 iterations,
on a mesh with 22256 elements and 11212 DOFs. The error estimator for this mesh is 0.024,
which is a 2.2% of the estimator for the initial coarsest mesh.

which is a diffusion-advection-reaction equation, typical from pollutant transport and degradation in aquatic
media.

We solved this problem with the same adaptive algorithm described in the previous example, with a = 0.5.
We started from a uniform coarse initial mesh consisting of 12 elements and 11 vertices. Some mild oscillations
were observed at the first iterations but were cured by adaptivity.

A sequence of meshes is presented in Figure 9. The solution in the final mesh, with 22256 elements and 11212
DOFs can be observed in Figure 10.
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