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ABSTRACT  

We describe the science motivation and development of a pair production telescope for medium-

energy (~5-200 MeV) gamma-ray polarimetry.  Our instrument concept, the Advanced Energetic 

Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density 

gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair 

production kinematics limit (~0.6° at 70 MeV), continuum sensitivity comparable with the 

Fermi-LAT front detector (<3×10
-6

 MeV cm
-2

 s
-1

 at 70 MeV), and minimum detectable 

polarization less than 10% for a 10 mCrab source in 10
6
 seconds.   
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1. Introduction  

Since the launch of AGILE [1] and Fermi/LAT [2], the scientific progress in high-energy 

(�� ≳ 200	MeV) gamma-ray science has been extensive. Both of these telescopes cover a broad 

energy range from ~20 MeV to >10 GeV. However, neither instrument is optimized for 

observations below ~200 MeV or for polarization sensitivity.  Ground-based air Cherenkov 

telescopes have been used to observe both galactic sources such as supernova remnants and 

extragalactic sources of very high energy (TeV) gamma-rays such as active galactic nuclei 

(AGN) [3]. They have provided important astrophysical information, but they also lack the 

capability to detect polarization.  The Fermi and AGILE space-based telescopes, operating in the 

GeV energy range, are expected to continue to make significant progress for the next several 

years. However, there remains a significant gap in our knowledge of astronomy in the medium-

energy (~0.1–200 MeV) regime between the X-ray and high-energy gamma-ray energy ranges.   

The next major step in gamma-ray astrophysics, recognized as early as the SAS-2 era [4], should 

be a medium-energy gamma-ray pair production telescope to fill this gap and provide answers to 

many important astrophysical questions.  In the following, we describe the science motivation 

for this mission and the design of the Advanced Energetic Pair Telescope (AdEPT) a pair 

production telescope for medium-energy, ~5 to ~200 MeV, gamma-ray polarimetry.  

2. Science Motivation  

The AdEPT pair production telescope for the detection of medium energy (~5-200 MeV) 

gamma-rays with high angular resolution and polarimetry capabilities will open a new window 

in observational astronomy and astrophysics. Such an instrument can help provide answers to 

important questions in both astronomy and physics. For example, it can shed light on the origin 

and acceleration of cosmic rays, the nature of the cosmic-ray acceleration of electrons in the 

Crab nebula to energies in excess of 10
15

 electron volts [5] and how pulsars, with high magnetic 

fields and expected high gamma-ray polarization, achieve such high efficiency for particle 

acceleration. Gamma-ray polarization can distinguish between emission processes such as 

synchrotron radiation and other gamma-ray production mechanisms, however, the angular 

resolution with which the geometry of the gamma-ray emission regions are probed by 

polarization measurements is limited by the instrument angular resolution.  It has long been 
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expected that other astronomical sources such as “blazars” (a class of active galactic nuclei) 

should produce polarized gamma-radiation owing to the highly structured magnetic fields in their 

emission regions [6][7][8][9].  It is also known that gamma-ray bursts (GRBs) emit hard X-

radiation whose polarization has been detected by space borne instruments, e.g. RHESSI [10], 

INTEGRAL [11], and GAP[12]. Such polarization should extend into the gamma-ray range, 

given the same basic emission processes.  Observations at higher energies will investigate an 

underexplored energy range and provide new understanding of emission mechanisms with high 

polarization sensitivity.  

Medium energy polarization measurements with AdEPT can also explore fundamental questions 

in theoretical physics.  There is an apparent incompatibility between relativity and quantum 

mechanics at the Planck scale of 1.6×10
-35

 meters. Effective field theory models developed to 

determine possible quantum gravity effects at observable energies, have led to the prediction of 

possible “vacuum birefringence”, a process in which photons of different polarizations travel at 

slightly different velocities from an astronomical source. Such a process, if it exists at a 

significant enough scale, can destroy the inherent polarization of a source from which such 

polarization would be seen in its absence.  Thus, the detection of polarization from a distant 

source such as a gamma-ray burst can constrain the possible existence of violations of relativity 

[13][14]. The birefringence effect is sensitive to the square of the photon energy.  To date, the 

INTEGRAL/IBIS observations of the Crab pulsar and nebula at 200-800 keV [15] are the highest 

energy photon polarization measurements that have been made.  An instrument capable of 

detecting polarization of medium energy gamma-rays can provide a much more sensitive probe 

of such relativity violations.  

The AdEPT pair production telescope also has significant advantages over previous attempts to 

measure the medium-energy diffuse extragalactic gamma-ray background. Possible contributing 

components [16] include non-thermal tails from Seyfert galaxies, red-shifted lines from Type Ia 

and Type II supernovae, and unknown extragalactic sources. Measurements by both the 

Apollo21 [17] and COMPTEL [18] instruments were plagued by intrinsic detector and spacecraft 

background problems owing to the buildup of long-lived radioisotopes created by cosmic-ray 

interactions. The subtraction of such poorly determined backgrounds led to uncertainties in the 

extragalactic background determination and significantly different results reported by the two 

different instruments. A free-flying argon gas AdEPT instrument is expected to have low 
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intrinsic background similar to EGRET and Fermi/LAT and therefore yield a more reliable 

determination of the extragalactic gamma-ray background in the medium-energy range.  

The 5-plus fold improvement in angular resolution of AdEPT below ~200 MeV compared with 

Fermi/LAT, see Figure 1 will enable the numerous soft gamma-ray sources in the galactic plane 

to be better resolved improving the determination of the medium-energy Galactic diffuse 

emission and to spatially resolve variation between electron dominated and hadron dominated 

processes in the 70-200 MeV range. 

3. Obtainable Goals for Exploring the Medium Energy Gamma-ray Universe 

Significant improvement in sensitivity for pair telescopes can only be achieved through a 

dramatic improvement in the angular resolution, especially at lower energies.  The ultimate 

angular resolution of any nuclear pair-production telescope is limited by the unobserved recoil 

momentum of the nucleus.  The nuclear recoil momentum calculated by Jost, Luttinger & 

Slotnick [19] for photon energy �� has a broad distribution extending from 2m�� ��
  to	��, where 

m� is the electron rest mass, and the nuclear momentum is nearly orthogonal to the gamma-ray 

momentum.  On the assumption that the recoil momentum is transverse to the photon direction 

[20], an upper limit to the kinematic limit can be defined as	��� ��⁄ , where ��� is the momentum 

above which 68% of the distribution lies. This assumption is not valid at energies below 

~25 MeV where the momentum distribution is wider and the recoil angle is more acute.  The 

kinematic limit and twice the limit are shown in Figure 1 as the solid and dotted magenta lines, 

respectively.  In the case of triplet production, i.e. pair production on the atomic electrons, the 

recoil momentum is, in most cases, observable [21] and the angular resolution is limited by the 

energy and spatial resolution of the electron track imager.  Further discussion of triplet detection 

with AdEPT including effective area (enhanced for low-Z materials), angular resolution, and 

polarization asymmetry factor is beyond the scope of this paper and will be addressed in a future 

paper.  

The performance goals of a telescope to address the questions outlined above plus a wide variety 

of other interesting topics including solar flares, diffuse emission, etc. are summarized in 

Table 1.   

Table 1 – AdEPT Instrument Performance Goals 
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Energy range  ~5 to ~200 MeV 

Energy resolution  ~30% ∆E/E (FWHM) at ~70 MeV 

Angular resolution  < 1° at 70 MeV 

Continuum sensitivity×E
2
  ~3×10

-5
 MeV cm

-2
 s

-1
  

Minimum detectable polarization  ~10% for 10 mCrab in 10
6
 s  

(asymmetry factor, λ = 0.15)  

In the following, we show that a medium energy gamma-ray telescope meeting these angular 

resolution and polarization sensitivity requirements can be developed and describe the design of 

the Advanced Energetic Pair Telescope (AdEPT)
2
 the telescope presently being developed using 

the Three-Dimensional Track Imager (3-DTI) technology developed at Goddard Space Flight 

Center (GSFC).  In the following sections we describe the advantages of the 3-DTI gas detector 

technology and the predicted performance of AdEPT.  

4. Advantages of a Gas Detector for a Pair Production Telescope 

The design of all pair production space telescopes to date, SAS-2 [22], COS-B [23], EGRET 

[24], AGILE [1], and Fermi-LAT [2] have utilized an electron tracking hodoscope consisting of 

a stack of electron tracking detectors interleaved with metal foils, each typically 

~20 milliradiation lengths (mRL) thick, positioned above a calorimeter. SAS-2, COS-B and 

EGRET utilized two-dimensional gas spark chambers whereas AGILE and Fermi/LAT have 

taken advantage of silicon-strip detectors (SSD).  The multiple layers of high-Z metal foils 

(totaling about 500 mRL) provide substantial material for high interaction probability and large 

effective area, however, they also contribute to multiple Coulomb scattering (MCS) which 

degrades the accuracy with which the electron and positron directions emanating from the pair 

vertex can be determined.  Kryshkin, Sterligov, & Usov [25] determined that these directions for 

high energy (900 MeV) gamma rays, which form the basis of gamma-ray direction and 

polarization determination, are dominated by MCS after traversing about 10 mRL of material.  

The maximum material thickness would be even less for lower energy gamma rays. 

In low-Z material, � ≲ 30, gamma rays with energy below ~10 MeV, are more likely to interact 

via Compton scattering than pair production, however, the intrinsic modulation factor of 

polarized gamma rays interacting via pair production is higher above ~2 MeV, compared to 

Compton scattering and photo-electric absorption [26].  Thus, we are motivated to reduce the 
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effective minimum energy of a pair telescope towards the threshold energy, to take advantage of 

the higher modulation factor.  This requires that the direction of the electron and positron 

emanating from the pair vertex, which forms the basis of the gamma-ray direction and 

polarization determination, be measured in less than ~10 mRL of material after which their 

directions are dominated by multiple Coulomb scattering (MCS) [25].   

In the remainder of this section we give a detailed calculation that corroborates the conclusion 

that a low density, less than ~5 mg/cm
3
, track imager is required to achieve the AdEPT 

performance.  

4.1 Electron track measurement constraint  

Achieving high angular resolution and the lowest possible minimum detectable polarization 

(MDP) requires a new approach to reduce the density of the conversion and scattering material 

per track measurement interval in the hodoscope.  The density per measurement interval 

(measurement density) of a hodoscope with interleaved foils can be reduced by decreasing the 

thickness of the conversion material or increasing the separation between the measurement 

layers.   

The concept of reducing the thickness of the converter material in a gamma-ray telescope to 

improve the medium-energy sensitivity was recognized by Kniffen, et al. [27].  They achieved 

nearly an order of magnitude increase in sensitivity at 20 MeV by replacing the lead conversion 

foils in a gas spark-chamber telescope, used previously for high-energy gamma-ray observation 

[28], with aluminum foils.  More recently, several pair telescopes have been proposed without 

conversion foils, i.e. the conversion material is the SSDs of the track imager. Proposed 

applications of this concept are MEGA [29], TIGRE [30], and a GLAST/LAT modification [31].   

The AdEPT gamma-ray telescope concept (Table 3) takes advantage of a gaseous medium to 

provide a homogenous tracking detector to achieve nearly continuous measurements of the 

electron and positron tracks from pair production.  The optimal fit formulas derived by Innes 

[32] for estimating the tracing parameter error matrix in the case of a homogenous detector with 

many layers, can be used to estimate the AdEPT angular resolution and place an upper limit on 

the gamma-ray convertor density.   

Innes describes the projection of a nearly straight track onto the plane perpendicular to the 
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magnetic field as	� = � + �� + ���/2 where a is the position at the beginning of the track, b is 

the slope, c is the curvature, and x is the distance along the track.  Innes defines the information 

density of a detector with total length L, N equally spaced measurement layers, and RMS 

measurement error at each layer	�� as	� =  ! + 5# ��� $⁄ .  The information density of the 

EGRET [33], MEGA [29], Fermi-LAT front section (hereafter Fermi/LAT) [34], and AGILE 

[35] telescopes along with the AdEPT concept (Table 3) are listed in Table 2.  We have restricted 

the AdEPT detector length, corresponding to selection of the initial portion of the electron track, 

and taken an upper limit to the measurement spacing, see §5.2.  

 

Innes further defines the characteristic scattering length ℓ = 1 √�	'(⁄  in terms of the information 

density and s the mean square projected scattering angle per unit length.  Omitting the small 

logarithmic term in the Gaussian approximation for the central 98% of the projected scattering 

angular distribution [36][37], we have	' ≈ *13.6	MeV -�.
 /� ∙ 1 12′ 	
 , where 12′ = 12 3⁄  is the 

RL/density in units of mm.  Innes derives formulas (Eq. 11 of [32]) for the optimal fit variance 

matrix elements in the continuous detector limit (4 → 0, with � and s constant, for large N) in the 

limiting case,	6 = $ ℓ⁄ > 7 where the tracking error is dominated by MCS, and	6 < 7, where the 

error is determined by the tracer spatial resolution.  For the AdEPT concept described in Tables 2 

& 3, 6 is well approximated by 6 ≈ 60.9 ∙ ;10	MeV �<
  for electron energies above ~0.5 MeV.  

Over the medium-energy range, 6 ≫ 7 and the AdEPT angular resolution is dominated by MCS 

and we do not consider the correction to the Innes equations for	6 < 7 in the absence of a 

magnetic field noted by Bernard [38].  For nearly straight tracks in the absence of magnetic field 

curvature, the variance of the optimum fit track slope is given by the >?? matrix element  

Table 2 – Gamma-ray Telescope Information Density 

Telescope N L (mm) l=L/N (mm) �� = @ √12⁄  

Pitch (mm) � (mm
-3

) 

EGRET 28 450 16.1 0.810 1.33 

MEGA 32 320 10.0 0.470 6.28 

Fermi/LAT 12 416 34.7 0.228 9.42 

AGILE 12 228 19.0 0.242 17.38 

AdEPT 300 300 1.0 0.400 76.25 
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 �AB� = >?? ≈ 1 �ℓC
 D2 6
 + √2E	F≫GHIJ	√2
ιℓ

CK 	. (1) 

We note that this formula is not applicable to MEGA, EGRET, Fermi/LAT, and AGILE because 

of their small number of measurement layers and discrete convertor foils.   

The gamma-ray direction, in the small-angle approximation, is reconstructed by combining the 

measured directions of the electron and positron weighted by their energies (see §3.11 of [20]).  

In the multiple scattering dominated regime, the conversion of track resolution to photon angular 

resolution is	�AL = �AMN√O + √1 − O where r and 1 − O are the energy fractions carried away by 

the electron and positron.  In the case of equal energy partition (O = 0.5) we have	�AL ≈ 1.2	�AM, 

which becomes		�AL = �AM, for asymmetric energy partition,	O ≈ 0.  

The point spread function of a gamma-ray telescope is often expressed in terms of the 68% 

containment angle	Q��, which is related to the standard deviation of a Gaussian distribution by  

 θ�� = N−2 ∙ ln 1 − 0.68# σWX ≈ 1.51	σWX.  (2) 

The expected angular resolution of the AdEPT telescope is the quadrature sum of the kinematic 

limit and Q�� and is shown as the solid black line in Figure 1.  Up to some energy the angular 

resolution is dominated by the kinematic limit.  We denote the gamma-ray energy at which the 

angular resolution is twice the kinematic limit, indicated by the vertical black dotted line in 

Figure 1, as	��,Z[ ≈ 150	MeV.  The corresponding angular resolution,	Q��,Z[ ≈ 6 mrad, 

indicated by the horizontal black dotted line determines the electron-positron direction error 

�AB,Z[ ≈ 3.36	mrad and, in the limit 6 ≫ 1, Eq. (1) can be used to estimate the scattering angle, 

s, and hence the RL of the electron-positron tracking medium.   

 ' = ;�AB� 	� 4⁄` ≈ *GC.�
βab/

� G
cd′ 	 (3) 

Using the Q�� value from Figure 1 and assuming	�< = �� 2⁄ − m< the value of 12′  increases from 

~0.15 × 10g	cm at 5 MeV to ~1.75 × 10g	cm at ~800 MeV.  On the assumptions, A ≈ 2.1	Z for 

low-Z materials (Z < 20), A ≈ 2.5	Z − 8 for higher Z materials (20 < � < 54), and using 

Dahl’s approximation [37] for the RL of a material,	X2 = lG�.g	m
n noG# pqD��l √n⁄ E 	g cm�⁄ , the density of 
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the tacking material must lie between ~0.5 and ~5 mg/cm
3
.  With the exception of modern 

aerogel materials [39] this low density can only be realized with a gaseous media.  

4.2 Polarization constraint  

The use of the azimuthal orientation of the electron positron plane to determine the gamma ray 

polarization has been discussed since the 1950s [40][41] and imposes another constraint on the 

track imager.  In the case of small nuclear recoil, i.e. the electron, positron, and incident photon 

are nearly coplanar, the azimuthal dependence of the cross section can be written in the form 

[42]  

 � s# = td
�u v1 + @w	cos�sz  (4) 

where �2 is the total cross section, s is the angle between the electron-positron pair and the 

photon’s electric field vector, @ is the fractional polarization, and w is the inherent azimuthal 

asymmetry factor.  Kel’ner, Kotov, and Logunov [26] calculated the azimuthal asymmetry of the 

secondary emission for the photoelectric, Compton, and pair production processes.  They found 

that the asymmetry factor λ is higher for photoelectric and pair production processes below and 

above ~2 MeV respectively compared to the Compton process and they showed that the 

polarization modulation factor and hence the polarization sensitivity, decreases exponentially 

with the thickness of material traversed by the pair electrons after only a few mRL [26].  These 

calculations assume that the electron and positron energies are greater than 1.5 MeV and that the 

angle between them and the photon is less than 40°.  These calculations support the conclusion 

of Mattox [43][44] that the thickness of the conversion foils in previous telescopes (typically 

20 mRL) precludes any polarization sensitivity for these instruments.  Buehler et al. [45] 

estimated that Fermi LAT might have marginal polarization sensitivity by selecting 50-200 MeV 

photons that convert in the silicon rather than the 30 mRL thick tungsten foils. Their analysis, 

omitting background and trial factor considerations, concluded that 20% polarization from Vela 

could be detected at 3σ using 20 months of data.  The 8 mRL thickness of the two silicon-strip 

detectors reduces the polarization sensitivity.   

4.3 Gaseous track imager  

Significant advances in medium-energy gamma-ray pair production telescopes can only be 

realized if the density of the material in the track imager is drastically reduced.  A low-density, 
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homogenous detector that provides high spatial resolution tracking and substantially minimizes 

the effects of Coulomb scattering is required.  These technical challenges were met historically 

with a whole genre of detectors based on gas physics including cloud chambers, bubble 

chambers, and gas-wire detectors (spark and drift chambers, etc., see e.g. [46]).  The use of a 

gaseous medium time projection chamber (TPC) as both the conversion and detection medium 

for a gamma ray pair telescope was first suggested by Hartman [47] and further explored by 

Bloser, et al. [48][49]; Hunter, et al. [50][51]; Ueno, et al. [52], and Bernard [20].  In the 

following section we describe our Three-Dimensional Track Imager (3-DTI), a gaseous time 

projection chamber technology, its application to the design of AdEPT, and the expected 

performance of the AdEPT pair polarimeter instrument.  

5. Three-Dimensional Track Imager (3-DTI)  

The 3-DTI detector, shown schematically in Figure 2, combines a gas Time Projection Chamber 

(TPC) [53][54] and a 2-D readout to provide a low density gamma-ray conversion medium with 

high-resolution, 3-D charged particle tracking obtained by digitizing the 2-D readout signals.  

The 3-DTI also takes advantage of Negative-Ion drift [55] to reduce diffusion to the thermal 

limit without an applied magnetic field allowing the TPC drift distance to be much larger than 

would be possible with free electron diffusion.   

The TPC volume, which defines the 3-DTI active volume, is bounded by a drift electrode on the 

top, a linear potential gradient field-shaping cage of wires, and 2-D readout plane on the bottom.  

A charged particle traversing the gas medium loses energy by ionization.  The ionization electron 

density is proportional to the d� d�⁄  energy loss of the particle along its track.  The drift field, 

the electric field in the TPC active volume (~1 kV/cm), causes the ionization to drift at a uniform 

velocity onto the 2-D readout plane.  The relative 3-D location of the ionization charge is 

determined from the 2-D readout and time of arrival.  

5.1 Two-Dimensional Readout 

The 2-D readout consists of a 2-D Micro-Well Detector (MWD) [56][57][58][59][60] with pre-

amplification provided by a Gas Electron Multiplier (GEM) [61].  Two-stage amplification of the 

ionization charge was required to detect single ionization electrons using the negative ion drift 

technique (see §§5.2, 5.3).  The MWD consists of two orthogonal layers of electrodes separated 

by an insulating substrate, see lower right inset in Figure 2.  The cathode and anode electrode 
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strips are etched onto the top and bottom layers respectively of a copper clad insulator using flex 

circuit board technology.  Holes etched in the top (cathode) electrodes are concentric with blind 

vias micro-machined in the insulator that expose the anode electrode and form the micro-wells.  

Our MWD design has 200 µm diameter × 200 µm deep wells on 400 µm × 400 µm center-to-

center pitch.  Charge entering a micro-well is accelerated by the strong electric field 

(~40 kV/cm) in the wells and can produce a Townsend electron avalanche (e.g. [62]) 

proportional to the primary ionization charge.  This amplification, or “gas gain”, is exponentially 

dependent on the electric field in the micro-well.  The avalanche electrons are collected on the 

anode and the motion of the avalanche charge induces an equal but opposite image charge on the 

cathode.  The anode and cathode signals provide the 2-D, (X-Y), spatial location of the primary 

ionization.  Sampling of the avalanche charge signal at a fixed frequency allows the third 

dimension Z (height) to be calculated from the uniform drift velocity of the ionization charge 

through the gas volume.  

5.2 Negative Ion Diffusion 

Diffusion of the ionization electrons drifting through the gas places an upper limit on the useful 

height of the TPC.  If the maximum allowable diffusion is chosen to be twice the TPC readout 

pitch, then the maximum drift distance can be expressed in terms of the diffusion coefficient: 

��{| =  2	Pitch �2⁄ #�.  For example, Puiz [63] measured the electron drift velocity and 

diffusion in an Ar+CO2 (80%/20%) mixture at 1 atm.  The drift velocity of free electrons 	>� 

increases quasi-linearly with the drift field, E, with reduced mobility	µ = >� �⁄ 	≈ 4.2 ×
10C cm�atm Vs⁄  (Fig. 17 of [63]). The electron diffusion coefficient,	�2, shown as the red line in 

Figure 3, exhibits thermal behavior decreasing as 1 N2�� ��⁄⁄ , blue line, up to ~100 V/cm.  For 

higher drift fields, the electron drift velocity is significantly higher than the thermal velocity of 

the gas and �2	tends to increase with E reaching a plateau at high fields	≳ 800	V cm	atm⁄ .  The 

minimum diffusion value of	�2 ≈ 180	µm/√cm, is reached at ~300 V/cm, corresponding to a 

drift velocity 	>� = 	µ	� ≈ 1.2 × 10g mm ms⁄ .  The maximum drift distance in Ar+CO2 is then 

~20 cm for a detector pitch of 400 µm.   

Thermal diffusion can be maintained at higher fields by adding an electronegative component to 

the gas that captures the primary ionization electrons, forming negative ions, which then drift in 

thermal equilibrium with the gas.  Carbon disulphide (CS2), with a vapor pressure of ~300 torr at 
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300 K and moderate electron affinity [64], has successfully been used as a negative ion molecule 

in the Negative Ion-Time Projection Chamber (NI-TPC) [55].  We have measured the negative 

ion diffusion coefficient in CH4+CS2 [65] and in Xe at 100, 200, 300 torr plus 40 torr CS2.  The 

Xe results are shown in Figure 3.  For both gas mixtures, the negative ion diffusion coefficient is 

reduced to the thermal limit and is a function only of the drift field and gas temperature, and 

independent of the gas mixture.  For negative ions, the diffusion coefficient decreases with E 

becoming less than 	~80	µm/√cm above ~800 V/cm at 25°C.  In this case, the maximum drift 

distance for a detector pitch of 400 µm is greater than ~100 cm.  We note that the diffusion can 

be further reduced by operating the TPC at lower temperature, e.g. 0°C or lower.  

The negative-ion drift technique allows for large TPC active volumes that can be read out with 

one readout layer, however, the drift velocity is substantially lower than for free electrons and, 

for constant voltage, the gas gain with CS2 added is reduced about 100-fold.  The drift velocity 

of the CS�� ions in Xe is ~10 mm/ms at 800 V/cm; about 3 orders of magnitude slower than that 

of free electrons in Ar+CO2 [63].  Reduced drift velocity is an advantage in the digitization rate 

corresponding to a z-coordinate resolution is reduced and the sampling rate of the digitizers can 

also be reduced which results in lower instrument power, see §6.  CS2 also provides strong UV 

quenching, which reduces breakdown brought on by the electron avalanche and ensures stable 

operation.  The threshold for electron dissociation of CS2 is 9.337±0.06 eV [66], thus, 

dissociation represents a negligible effect and gas degradation should be minimal ensuring a long 

instrument life-time.   

Since thermal diffusion is independent of the gas mixture, we choose Ar+CS2 rather than 

Xe+CS2 for 3-DTI because of the higher drift velocity, reduced Coulomb scattering, and higher 

relative triplet production.  Our measured mobility in Ar+CS2 at 660 torr and 1200-1500 V/cm is 

16-20 mm/ms, consistent with the results of Ohnuki et al. [67].  

5.3 Single Ionization Electron Detection 

Detection of the ionization electrons along the tracks of the electron and positron pair is a 

requirement for gamma-ray imaging.  Generation of a Townsend avalanche in the MWD requires 

detachment of the ionization electrons from the negative ions.  This occurs in a strong electric 

field of the micro-well by collision of the negative ion with the gas molecules [68].  The free 

electrons are then accelerated in the micro-well producing the avalanche.  The start of the 
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avalanche from a detached electrons, however, occurs lower in the micro-well (closer to the 

anode) compared with a free electron avalanche resulting in lower gain for given MWD voltages, 

shown in Figure 4.  The maximum electric field, and hence maximum avalanche gain, is 

determined by the maximum stable operating voltage of the micro-well detector corresponding 

with Raether’s criterion in micro-pattern gas detectors. This was demonstrated by 

Ivaniouchenkov et al. [69] and Bressan et al. [70].  The micro-well voltage cannot be increased 

sufficiently to overcome the reduction in gain caused by the negative ion collision effect.  We 

have overcome the reduction in gain by adding a Gas Electron Multiplier (GEM) [61] pre-

amplification stage to our micro-well detector.  The gain of our MWD with and without the 

GEM pre-amplifier measured in P-10 (90% Ar + 10% CH4) and Ar+CS2 (560 torr+40 torr) at a 

total pressure of 600 torr is shown in Figure 4.  Gains in excess of 10
4
 are readily achievable with 

the MWD+GEM combination in Ar+CS2 providing single ionization electron detection.  The X-

Z projection of the electron-positron tracks resulting from the pair interaction of a 6.129 MeV 

gamma ray is shown in Figure 5 obtained with a small 5×5×9 cm
3
 3-DTI prototype with 

MWD+GEM readout.  These highly structured tracks show pulse amplitude variation 

proportional to the d� d�⁄  energy loss of the electrons along their paths, multiple Coulomb 

scattering, and the formation of the Bragg peak of the stopping lower energy particle.  X-Z and 

Y-Z projections of typical electron track from 
90

Sr are shown in Figure 6.  The θ68 value derived 

from a very preliminary angular resolution measurement, based on only a few 6.129 MeV 

interactions, was ~18 deg.  This measurement is ~2.5 times greater that the kinematic limit.  

Agreement is quite good given that the electron track lengths were short and no correction was 

made for near-field parallax.   

5.4 3-DTI Prototype Development 

The development of the 3-DTI has been done in stages, our 10×10×15 cm
3
 and 30×30×15 cm

3
 

versions are shown in Figure 7.  A 30×30×7 cm
3
 3-DTI detector was used for an Office of Naval 

Research funded demonstration of neutron imaging [71] in an over-water environment.  The 2-D 

readout for the 3-DTI detector used for neutron imaging did not require the two-stage GEM pre-

amplifier because of the much higher specific ionization of protons compared to minimum 

ionizing electrons.  We are in the process of expanding our mechanical support technique for the 

MWD+GEM to 10×10 cm
2
 and 30×30 cm

2
 MWDs.  These larger prototypes will be used to 
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make much more detailed and accurate angular resolution measurements than described above.  

These measurements and comparison with the calculations in this paper will be reported on in a 

subsequent publication.   

6. Design of the AdEPT Medium-Energy Pair Polarimeter  

The design of the AdEPT pair polarimeter has matured along with the development of the 3-DTI 

detector technology.  Our baseline concept for the AdEPT instrument and spacecraft is described 

in Table 3.   

Table 3 - AdEPT Instrument and Spacecraft Concept 

Configuration:  2 layers, 2×2×1 m
3
 3-DTI modules  

Ageom: 2×2 m
2
 = 4×10

4
 cm

2
  

Depth: 200 cm 

3-DTI Gas: Ar (1100 torr) + CS2 (40 torr) at 25 C 

3-DTI resolution: 400 µm in x, y, and z 

Pressure vessel: Al, ~5 mm thick, ~300 cm diameter  

Readout channels: ~40,000 

Instrument power: ~500 W 

Instrument mass: ~730 kg 

Spacecraft:  zenith pointed, 3-axis stabilized  

Orbit:  28 deg, ~550 km altitude 

The total mass of the Ar+CS2 gas is ~20 kg at 25°C with a corresponding RL of ~6.1×10
3
 cm.  

The 3-DTI drift field will be ~1 kV/cm resulting in a negative drift velocity	�� of ~18 mm/ms.  

The 3-D spatial resolution is determined by the MWD pitch and the sampling frequency of the 

analogue signals from the MWD.  The 400 µm pitch of the MWD corresponds to a RMS 

resolution, ��,� of	400	�m √12⁄ 	≈ 115	�m.  Similar z resolution of 400 µm is determined by 

the digitization rate which, with a five-fold over sampling to avoid aliasing, is determined by the 

negative ion drift velocity and the digitization rate is	5 �� ��,�⁄ ≈ 225	kHz.  

The slow negative ion drift velocity reduces the value of a charged particle anti-coincidence 

detector or calorimeter in the AdEPT design.  The time required for the ionization (track 

information) associated with a cosmic-ray or electron/positron pair to drift to the readout layer, 

the read-out delay, is tens of milli-seconds.  Thus, a temporal coincidence between the track 

information and fast scintillator pulses is impractical.  An exception to the long read-out delay is 
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for those tracks which traverse the readout plane.  In this case the ionization charge closest to the 

readout layer is read out in the next digitization period, ~4 µs delay, and coincidence, in 

particular, with a calorimeter, may be practical.   

In either case, an anti-coincidence signal cannot be used to discriminate cosmic rays from 

gamma-ray interactions since their ionization charge is in the gas and will be readout along with 

the gamma-ray track information.  Thus, the readout delay results in a track “memory” in the 

TPC volume.  In low-earth orbit, the integral SPENVIS
3
 isotropic cosmic ray proton flux is 

~56.6 (m
2
 sr s)

-1
 above ~6 GeV.  The number of proton tracks crossing 1 m

2
 face of the TPC, 

with acceptance of 1π m
2
 sr, in a time corresponding to the maximum drift time, 1000 mm/Vd, is 

~10 tracks/face or ~60 tracks/m
3
.  The Gamma-ray interactions must be identified and 

discriminated from these tracks, using image recognition techniques.  In separate work [72], a 

multi-core processor has been demonstrated and software is being developed to process the 

Giga-bit per second raw data from a 1 m
3
 TPC and separate the gamma-ray tracks from the CR 

tracks.  Initial processing of simulated AdEPT data indicates that this separation, due to the high 

spatial information provided by the 3-DTI, is nearly lossless and result in little loss of effective 

area.   

At this point in the development of the AdEPT concept we omit the anti-coincidence because it 

is not effective and do not include a calorimeter.  A calorimeter could be added later, at the 

expense of increased mass, instrument complexity, and reduced instrument solid angle, if further 

instrument optimization and mission studies warrant.   

6.1 Effective area  

The performance of the AdEPT pair polarimeter has been calculated based on the concept 

parameters in Table 3, consideration of event reconstruction effects have not been included.  The 

effective area of AdEPT is given by  

 ����D��E = ����� ∙ �1 − expD−�b{�� ∙ 3�{� ∙ DE� . (5) 

Where 	����� is the TPC geometric area, �b{��D��E is the pair interaction coefficient as a 

                                                 

3
 Space Environment Information System https://www.spenvis.oma.be/  
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function of gamma-ray energy in cm
2
/g, 3�{� is the gas density in g/cm

3
, and D is the depth of 

the TPC in cm.  The effective area of AdEPT is plotted in Figure 8 as a function of gamma-ray 

energy.  The EGRET [73] and Fermi/LAT front [74] effective areas are shown for comparison.   

6.2 Continuum sensitivity  

The continuum sensitivity corresponding to a significance level,	�t, is calculated from the 

expression for effective source counts [75]  

 �t = � √� + �
  . (6) 

Where S and B are, respectively, the number of source and background photons detected by an 

instrument with effective area	����, in observation time	����, and energy interval	∆��.   

The easily recognized “∧” signature of pair production results in detectors that are nearly free of 

instrumental background [47], thus the background counts are modeled using the all-sky average 

extragalactic gamma-ray emission spectrum derived from the EGRET data [76]  

 ¢£D��E = 7.32 × 10�¤D�� 451	MeV⁄ E��.G2
 photons cm

-2
 s

-1
 sr

-1
 MeV

-1
.  

We choose to use the flatter EGRET diffuse spectrum since it is consistent with the COMPTEL 

[77] and SAS-2 [78] results rather than the steeper Fermi spectrum [79], which if extrapolated 

down to the medium-energy region is inconsistent with the COMPTEL results.  

The number of background counts is given by  

 �D��E = ¢£D��E ∙ ����D��E ∙ ���� ∙ ΩD��E ∙ ∆�� photons, (7) 

where 

 ΩD��E = 2¦D1 − cos Q��D��EE sr (8) 

is the solid angle containing 68% of the photons from a point source.  The number of source 

counts corresponding to detection significance is determined by solving Eq. (6) for �D��E and 

taking the positive root.  

 SDEXE = G
�¨n©� + ;n©g + 4BDEXEn©�« ≈ n©� + BDEXE.  (9) 

The corresponding differential continuum source flux or sensitivity is given by  
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 ¢¬D��E = �D��E D���� ∙ ���� ∙ ∆�� ∙ 0.68E
  photons cm
-2

 s
-1

 MeV
-1

 (10) 

where the factor of 0.68 in the denominator corresponds to the use of Q�� in Eq. 8.  The AdEPT 

3� continuum source sensitivity multiplied by ��� calculated on the assumptions of an 

observation time of 10
6
 s and ∆�� = �� is shown in Figure 9.  The sensitivity for EGRET and 

Fermi-LAT front, calculated on the same assumptions are shown for comparison.  The AdEPT 

sensitivity is better than Fermi up to ~200 MeV, as desired.   

The AdEPT sensitivity calculated here must be considered as a lower limit since the effective 

area calculation does not include any corrections for interactions near the edge of the TPC or 

inefficiencies in the track recognition.  Further, the sensitivity for sources near the Galactic 

center will be up to an order of magnitude higher, since the 30 to 100 MeV Galactic diffuse 

emission is about an order of magnitude higher than the extragalactic emission [80].  The 

assumption of low instrumental background may also be optimistic, since, without an anti-

coincidence, neutral pions generated by cosmic-ray protons interacting with the pressure vessel 

are a potential source of background.  This will be taken into account as part of the detailed 

instrument simulations.  

6.3 Minimum detectable polarization 

The minimum detectable polarization (MDP) for a given instrument can be written as [81] :  

 ­®@D��E = �t w
 √� + � �
  (10) 

where S and B are the observed source and background counts and the asymmetry factor, is 

defined in Eq. 4.  The asymmetry factor for co-planner events has been calculated over the entire 

energy range allowing for screening of the nucleus by Kel’ner et al. [26] and above 10 MeV 

using Monte Carlo integration by Depaola and Kozemeh [82].  The Kel’ner value rises rapidly 

from zero at 1 MeV to a maximum of ~0.46 at ~2 MeV and then decreases to a high energy 

asymptotic value of ~0.4.  The Depaola and Kozemeh value is ~0.12 at 10 MeV and rises to an 

asymptotic value of ~0.2.  The difference in asymptotic values may be due to different 

assumptions made in the calculations. Depaola and Kozemeh also find that the asymmetry factor 

also changes sign for events with small deviations from co-planarity, thus to obtain a more 

accurate value of the asymmetry factor it will be necessary to include the instrument angular 
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resolution in the integration. For this work we adopt a conservative fixed value for the 

asymmetry factor	w = 0.15 for Eγ > 5 MeV to evaluate the MDP for a source with spectrum and 

intensity equal to the Crab nebula [83] (defined as a “1 Crab” source).  Assuming equal energy 

split between the electron and positron, the MDP for 1 Crab, 100 mCrab and 10 mCrab sources 

is shown in Figure 10.  

6.4 Energy resolution 

The high spatial resolution of the 3-DTI tracker allows multiple Coulomb scattering to be used to 

estimate the energy (pv) of electrons above ~1 MeV which will generally exit the 3-DTI gas 

volume.  Specific ionization, ¯� ¯�⁄ , and residual range can be used for lower energy and 

stopping electrons.  The techniques developed to determine the energy of particles leaving tracks 

in photographic emulsions [84][85][86] have also been used with bubble chambers [87].  These 

techniques have been extended to include Kalman filtering [88] and been used to measure the 

through-going particle momentum in the ICARUS T600 TPC [89].  An estimate of the AdEPT 

energy resolution can be obtained by scaling the ICARUS muon momentum by the square root 

of the ratio of the detector RLs, i.e. N12,[�m� 12,°�m�⁄ ≈ 29.4.  This approach is valid because 

the spatial resolution per RL of AdEPT, (1.2×10
4
 cm/RL)/(0.04 cm/sample) = 

3.0×10
5
 samples/RL, is much higher than for ICARUS, (14 cm/RL)/(0.3 cm/sample) = 

46.7 samples/RL.  The scaled ICARUS simulations using the classical and Kalman filter 

methods, shown in Figure 11 with the scaled electron momentum, indicates that the expected 

AdEPT momentum resolution will be better than ~15% for electron momenta above ~10 MeV.  

The much higher resolution of AdEPT may result in improved low momentum resolution 

compared to ICARUS.  Monte-Carlo simulations similar to those done for ICARUS are being 

done for the AdEPT instrument and the results will be presented in a future paper.  

7. Summary 

The AdEPT instrument concept based on the 3-DTI gas TPC technology (Table 3) will provide 

unique observations in the 5 to 200 MeV energy range.  These observations with angular 

resolution within a factor of two of the pair production kinematic limit and minimum detectable 

polarization <2% for a 100 mCrab source up to ~150 MeV will address a wide range of the 

critical science goals. The calculated AdEPT performance is encouraging and the few instrument 

challenges are readily tractable.  Detailed Geant4 simulations will be completed to confirm these 
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calculations.  

Milestones in the AdEPT development program include testing of 10×10×15 cm
3
 and 

30×30×30 cm
3
 3-DTI detectors.  Currently proposed work will build a 50×50×100 cm

3
 3-DTI 

prototype of the AdEPT instrument module.  Future work will include calibration of this AdEPT 

module prototype at the Duke University HIGS accelerator that offers 100% polarized gamma-

rays from ~15 to 50 MeV [90], and a balloon flight in the 2018-20 time-frame.  The goals of the 

accelerator calibration will be to determine the optimum electron energy determination 

algorithms, gamma-ray direction and energy, and the energy dependent polarization modulation 

factor, and to verify the angular and energy distributions for pair production near threshold 

simulated with Geant4.  The balloon flight will confirm that gamma-rays can be identified in the 

presence of a high charge particle background.  

We envision AdEPT, a future space mission, to be the next step in observational gamma-ray 

astrophysics that will open up a new window in medium-energy gamma-ray astrophysics with its 

unique capability to measure polarization.  .  
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ACRONYMES 

3-DTI Three Dimensional Track Imager 

AdEPT Advanced Energetic Pair Telescope 

GEM Gas Electron Multiplier 

MCS Multiple Coulomb Scattering 

MDP Minimum Detectable Polarization 

mRL milliradiation Length 

MWD Micro-Well Detector 

NI-TPC Negative Ion TPC 

SSD Silicon Strip Detector 

TPC Time Projection Chamber 
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Figure 1 - The calculated angular resolution of the AdEPT telescope concept (solid black 

line, see §6 and Table 3) as a function of the gamma ray energy is the quadrature sum of 

the kinematic limit determined for nuclear pair production from [19] (solid magenta line) 

and the angular resolution limited only by MCS of the electron-positron pair (black 

dashed line).  Twice, and five times the kinematic limit is also shown (dotted magenta 

lines).  Below ~200 MeV, the AdEPT telescope will achieve angular resolution within a 

factor two of the kinematic limit.  The MEGA [29] measured pair production angular 

resolution (blue crosses), EGRET [73] calibrated angular resolution (green line), and 

Fermi/LAT front [74] on-orbit angular resolution (red line) are shown for comparison. 
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Figure 2 - Schematic of the 3-DTI TPC technology showing how electron-positron pairs are 

tracked in 3-D.  Components of the time projection chamber, micro-well detector plus 

GEM, and an avalanche in a single well are identitifed.  
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Figure 4 - The gain of our MWD (black 

data and line) and MWD+GEM (red data 

and line) as a function of MWD voltage 

measured in P-10 at 600 torr.  The GEM 

pre-amplifier was operated at a gain of 

~100 corresponding to a MWD voltage 

reduction of ~200 V.  The gain of the 

MWD+GEM as a function of MWD 

voltage measured in Ar+CS2 (blue data 

and line) shows that gains in excess of 10
4
 

can be achieved.  The nominal operating 

voltage for the MWD and the total gain 

are indicated by the green lines. 

Figure 3 – (top) The longitudinal negative ion 

diffusion and (bottom) the drift velocity 

(�� = µE) for mixture of Xe + CS2.  Thermal 

diffusion limit for T=300 K is shown as the blue 

line.  Non-thermal diffusion for Ar+CO2 [63] is 

shown as the red line. 
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Figure 6 –3-DTI electron track from 
90

Sr in 

Ar+CS2 (560+40 torr) using a MWD+GEM 

operating at a total gain of 10
4
. The left and 

right images are the X-Z and Y-Z projections 

of the electron track.  

 

Figure 5 – Electron-positron tracks (X-Z projection) from a 

6.129 MeV gamma ray pair interaction in 3-DTI. 
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Figure 7 – (top) 10×10×15 cm
3
 3-DTI detector consisting of a 

10×10 cm
2
 WMD and 15 cm tall TPC volume.  Eleven of the 32 

total 16-channel discrete front-end electronics cards are visible.  

(bottom) 30×30×15 cm
3
 detector. Three of the 8 flex circuits that 

connect the MWD to the front-end electronics are visible as well as 

the drift field high-voltage power (black box) and ripple filter 

(aluminum box).  The upper portions of the vacuum chambers for 

both detectors were removed for these photos.  
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Figure 8 – Effective area of the AdEPT instrument concept (Table 3) (A, solid red 

lines) compared with EGRET (E, dotted black lines) and FERMI-LAT front detector 

(Ff, dashed black lines).  
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Figure 9 - Continuum sensitivity of the AdEPT instrument concept (Table 3) (A, solid 

red lines) calculated on the assumption of 3σ significance, Tobs=10
6
 s, ∆E=E, and 

Fegb=2.7±10
-3

 (E/1 MeV)
-2.1

.  The sensitivity of EGRET (E, dotted black lines), 

FERMI-LAT front detector (Ff, dashed black lines) calculated on the same 

assumptions.  Spectra corresponding to 100 mCrab and 10 mCrab sources are shown 

for comparison.  
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Figure 10 – Minimum detectable polarization of the AdEPT instrument concept 

(Table 3) calculated on the same assumptions as in Figure 9 for a point source with 

spectrum and intensity equal to the Crab nebula and for 100 mCrab and 10 mCrab 

sources.  
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Figure 11 – Monte-Carlo simulation of the ICARUS momentum resolution using 

classical method (red squares) and the Kalman Filter method (blue triangles).  The 

lower momentum axis has been scaled by the square root of the detector radiation 

length to give an estimated electron momentum resolution for AdEPT.  Adapted from 

[89].  


