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Abstract: Different techniques originated in information theory and tools from nonlinear
systems theory have been applied to the analysis of electro-physiological time series. Several
clinically relevant results have emerged from the use of concepts, such as entropy, chaos and
complexity, in analyzing electrocardiograms and electroencephalographic (EEG) records.
In this work, we develop a method based on permutation entropy (PE) to characterize EEG
records from different stages in the treatment of a chronic epileptic patient. Our results show
that the PE is useful for clearly quantifying the evolution of the patient along a certain lapse
of time and allows visualizing in a very convenient way the effects of the pharmacotherapy.
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1. Introduction

An electroencephalogram (EEG) is a graphic representation of neural activity. It is registered from
electrodes placed on either inside the brain, over the cortex under the skull or certain locations over
the scalp. In this last case, there exists a standardized system, known as 10 — 20 , which systematizes
the location and identification of the electrodes [1]. In both cases, each electrode samples mostly the
synaptic activity that occurs in the superficial layers of the cortex. The signals obtained from them are
normally presented in the time domain, but new EEG devices apply simple signal processing tools to
visualize the brain activities in the spatial domain.

EEGs have became a fundamental tool for the diagnosis of many neurological diseases, for example
epilepsy and sleep disorders [2]. It is well known that the EEG is very sensitive to the action of
pharmacological substances, especially psychotropic drugs, anesthetics and anticonvulsants [3,4].

Usually, clinical interpretations of an EEG record are achieved by associating pathological features
with the visual inspection and pattern recognition of the EEG. Even when this traditional analysis is quite
useful, the visual inspection of the EEG is subjective and it does not easily allow any systematization.
Therefore, it is of utmost importance to provide quantitative methods of analysis that allow the evaluation
of the therapeutic efficiency of a particular drug and the clinical evolution of patients.

The quantitative analysis of an EEG record has been based, mainly, on the use of classical techniques
of signal processing. Among them, spectral analyses can be highlighted—fast Fourier transform and
wavelets—as well other complex analytical techniques [5,6]. Recently, some new approaches to the
problem of the quantification of the statistical and dynamical characteristics of the EEG series were
achieved by using techniques and methods from information theory and nonlinear dynamics [7,8]. The
starting assumption when these approaches are used is that the EEG records are complex signals whose
statistical properties depend on both space and time. Regarding temporal characteristics, EEG signals
are chaotic and highly non-stationary. Nevertheless, they can be analytically subdivided into short
representative epochs, where the stationary hypothesis is accomplished [9].

Several works have been devoted to quantifying the therapeutic effects of drugs from the analysis
of EEG records by means of quantities arising in the theory of nonlinear systems [10]. One of these
quantities is permutation entropy (PE). Introduced as a statistical measure in the realm of chaotic
systems, PE describes complexity through a phase space reconstruction, which takes into account the
non-linear behavior of a time series [11]. In the context of neurophysiology, the PE has been used
to measure brain connectivity in epileptic disorders [12], to characterize epileptic seizures [13—15], to
measure the effect of anesthetic drugs [16,17] and to study complexity in Alzheimer’s disease EEGs [18],
just to mention a few examples. In the same direction, we develop a method based on PE to characterize
the changes that occur in EEG records obtained from a patient suffering generalized tonic-clonic seizures.
The analyzed EEGs were recorded at different stages of the pharmacological treatment of the patient
(with an anti-convulsive drug). Our results show that PE could be a useful tool for neurophysiologists to
evaluate, in a quantitative way, the clinical evolution of the patient along the treatment course.

The paper is organized as follows: in Section 2 we provide some basics on PE (or Bandt and Pompe
entropy). In Section 3, we describe the main clinical characteristics of the patient, and we report our

results. Finally, in Section 4, we address some conclusions.
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2. Permutation Entropy

Every dynamical system can be represented by using a symbolic sequence. There are many means
of mapping a continuous time series onto a symbolic sequence. A method particularly useful has been
developed by Bandt and Pompe in 2002 in the realm of chaotic systems [11]. In this section, in order
to make this work self-contained, we will give the basic ideas underlying the definition of PE. However,
the reader could find it useful to consult some works where the main properties and applications of PE
in different contexts have been investigated [19].

To fix the ideas, let us consider a real-valued discrete-time series { X; }+>0, and letd > 2 and 7 > 1 be
two integers. They will be called the embedding dimension and the time delay, respectively. From the
original time series, we introduce a d-dimensional vector Yf’T:

Ytd’t = (Xt—(d—1)7-7 vy Xir,s Xt)T; t>(d—-1)r (D)

The superscript 7' stands for transposition.

There are conditions on d and 7 in order that the vector Ytd’T preserves the dynamical properties of
the full dynamical system [20]. Next, the components of the phase space trajectory Yf’T are sorted
in ascending order. Then, we can define a permutation vector, Hf’T, with components given by the
position of the sorted values of the component of Yff’T. As an example, let us consider the time series
X, = (1.7,2.1,1.5,1.4,2.2). Let us take d = 3 and 7 = 1. The vectors Y are (1.7,2.1,1.5)T,
(2.1,1.5,1.4)T and (1.5,1.4,2.2)7, and the corresponding permutation vectors are (2,0,1)7, (2,1,0)7
and (1,0, 2)7. Each one of these vectors represents a pattern (or motif). There are d! possible patterns.
For a sequence large enough compared with d!, it is possible to calculate the frequencies of occurrence of
any of the d! possible permutation vectors. From these frequencies, we can estimate the Shannon entropy
associated with the probability distributions of permutation vectors. Some of the possible patterns may
never occur. If we denote the probability of occurrence of the pattern i-th by P;, ¢ < d!, then the
(normalized) permutation entropy associated with the time series X; is (measured in bits):

- 2?121 P;log, P

hpp(Xi) = log,, d!
o d!

(2)

The fundamental supposition behind the definition of PE is that the d! possible permutation vectors
might not have the same probability of occurrence, and thus, this probability might unveil knowledge
about the underlying system.

As was indicated above, an EEG time series has changing statistical properties. Our basic assumption
is that PE must show these changes. Therefore, for quantifying these changes, we define a probability
distribution of patterns II’s along the record. The scheme consists of introducing a sliding window
that moves along the original signal. For each position of the window, we can evaluate the probability
distribution of the patterns for the signal limited by the borders of the window, and so, we can evaluate a
time-dependent PE.

Schematically, our method can be described in the following steps:

e Step 1: Let us define a sliding window of width A > 0 and position k (which indicates the position

of the right side of the window). This window moves along the original signal.
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e Step 2: For each position of the window, we evaluate the permutations vectors as explained before.
We denote this set of patterns by Hf’T(A, k)

e Step 3: For each value of £ and from the estimation of the probability distributions of patterns
Hf’T(A, k), we evaluate the associated PE as a function of the cursor position.

3. Case Study and Results

We apply the scheme described above to the analysis of EEG records obtained from a 20-year-old
patient, with an electro-clinical diagnosis of idiopathic generalized epilepsy, at different stages of
pharmacological treatment. The patient underwent an initial treatment with a 1200-mg/day dose of
carbamazepine. Along this period, the patient suffered an average of ten convulsive crises per week.
At a certain moment of the treatment, let us say at time 7}, the dose of carbamazepine was reduced to
400 mg/day, and the patient was co-medicated with a dose of 1000 mg/day of valproic acid (VPA). The
inclusion of the VPA decreased the number of crises to two per month. This treatment lasted for almost
one year.

Figure 1. Some representatives EEG traces from a healthy patient (top) and from the studied
patient (bottom).
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Figure 1 shows some representative electrode traces recorded from a healthy patient (upper panel) and
from the patient under study (lower panel) at a time previous to 77. The EEG was recorded during one
hour, with the patient in the basal position, and along the record, no convulsive crisis was observed. The
data were hardware filtered between 0.5 and 70 Hz. The sampling rate was 65 Hz (the same conditions
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are valid for all of the records used in this work). The signal inside the dashed line and continuous
line boxes (A and B, respectively) plus clinically relevant information allow the neurophysiologist to
characterize the disease. Inside the regions limited by Boxes A and B, different higher voltage discharge
patterns in both frontal areas can be observed. Usually, they are associated with epileptiform discharges.

At times previous to 7}, between two and three paroxysms per minute were observed. If these,
38% of the paroxysms had a duration not less than 10 seconds, and only 16% had a duration greater
than 20 seconds. Most of these paroxysms had a frequency of three spikes per second. The greatest
voltages recorded corresponded to the F' electrodes. Therefore, it can be concluded that the dysfunction
is prominent in the frontal region. A similar analysis of an EEG record obtained one year after the VPA

administration shows that the number of paroxysms per minute reduces notably, as well as their duration.

Figure 2. F1 electrode signal trace (top) and the corresponding permutation entropy
(PE) (bottom) for a healthy patient (left) and the studied patient (right).
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Figure 2 shows the traces corresponding to the F1 electrode and the PE evaluated from this waveform,
according to the scheme described in Section 2. The left plots correspond to a healthy patient, and the
right plots correspond to the studied patient. The PE was evaluated for an embedding dimension d = 4
and a time delay 7 = 1. The moving window has a width equal to A = 1000. We chose the value
d = 4 in order to satisfy the condition that the number of values inside the sliding window was markedly
greater than d!. We have checked that our results are not modified by choosing d = 3. The resulting
values of the PE are notably higher for the healthy person than for the analyzed patient. For this, the
EEG was recorded before time 77, that is previous to the administration of VPA.

Previous to the treatment with VPA, the patient had generalized diurnal and nocturnal convulsive
crises. After the VPA therapy, the frequency of the crises start reducing notably, until reaching the
value of two crises per month. When co-medicated, the crises were of the tonic type, occurring only at

night time.
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Figure 3. PE evaluated from some representative channels (F2, F4, C4 and T5). The
continuous line is used for plotting the records obtained before time 77, and the dashed
line is used in the plots of the records obtained one year after the beginning of the treatment
with valproic acid (VPA).
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Figure 3 shows PE calculated from some representative electrodes’ signals. The continuous lines
are used in the plots calculated from the EEG recorded previously to time 77 and the dashed lines for
one recorded one year after 77. All of the values corresponding to healthy patients lie inside the band
demarcated by the horizontal lines, I and II. The results show a displacement of the values of the entropy
hpp to values corresponding to healthy people. The effect is most notable for the signals recorded
from the frontal electrodes. For another case already studied (not reported here), the same behavior
is observed.

To evaluate the evolution of the patient along the period of co-medication with VPA, we compare
the values of PE, calculated from the wave form recorded from each electrode, with the average of the
values obtained from a group of 20 healthy patients (control group). We use as the variable to be plotted
a range of values of PE defined as the difference among the higher values and the lower values of PE;
that is, a peak-to-peak difference. In Figure 4, we plotted the resulting values. We used the 57 symbol
to indicate the values measured in the patient suffering the epileptic seizures at times previous to 77 and
the (O symbol for the values measured one year after time 7;. The * symbols represent the average
of peak-to-peak values of PE over the 20 healthy patients. Each symbol of different types corresponds
to one electrode. Along the VPA treatment, we observe a displacement of the PE values toward the
average range of values for healthy patients. In is important to note that every pretreatment value of PE
lies outside of the range corresponding to healthy patients. We did a similar evaluation changing the
embedding dimension d, and the same behavior for the values of PE has been observed. In that sense,

our results are robust.
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Figure 4. Comparison between the values of PE evaluated from a group control (20 healthy
patients) and the PE evolution of the patient analyzed. Each symbol (of the same type)
corresponds to an electrode. The values plotted correspond to the difference among the
higher and the lower values of PE. For the control group, the average of these differences

with the corresponding statistical error is plotted.
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4. Concluding Remarks

In this paper, we have proposed and applied a simple method for evaluating the therapeutic effects
of an anticonvulsant drug in the treatment of a chronic epileptic patient. The method is based on
permutation entropy. Our study shows that this quantity could be a proper amount to be used by a
neurophysiologist to evaluate the clinical evolution of a patient under pharmacotherapy. Unlike the
usual visual inspection, which covers a short period of time, the proposed scheme allows, in a glimpse,
a long-term prospective evaluation of the patient.

The EEG records were used without any previous software preprocessing. This makes our scheme
computationally efficient. It should be emphasized that we have just used PE as a measure for evaluating
the evolution of the EEG records along a certain lapse of time. We have not made any detailed study on
the dynamical properties of the EEG time series. However, it is known that nonlinear EEG time series
analysis bears potential capability to extract dynamical features from the brain electrical activity. This
aspect is being investigated, and the results will be presented elsewhere.

In a recent publication, Ferlazzo and collaborators [15] developed a topographical map of PE for
patients with typical absences. They have showed that for this type of patient, a higher randomness in
the fronto-temporal areas and a lower randomness in the posterior areas occur. This fact contrasts with
the case of a healthy control group, in which a random distribution of PE topography is observed. In
our research, we have been interested in the evolution of PE along a certain lapse of time instead of its

spatial distribution.
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Finally, we want to remark that, even though we have analyzed only one case, we understand that our
results suggest an interesting and useful application of PE.
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