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Abstract

Let M and N be two connected smooth manifolds, where M is
compact and oriented and N is Riemannian. Let E be the Fréchet
manifold of all embeddings of M in N , endowed with the canonical
weak Riemannian metric.

Let ∼ be the equivalence relation on E defined by f ∼ g if and
only if f = g ◦ φ for some orientation preserving diffeomorphism φ of
M . The Fréchet manifold S = E/∼ of equivalence classes, which may
be thought of as the set of submanifolds of N diffeomorphic to M
and is called the nonlinear Grassmannian (or Chow manifold) of N of
type M , inherits from E a weak Riemannian structure. Its geodesics,
although they are not good from the metric point of view, are distin-
guished curves and have proved to be useful in various situations.

We consider the following particular case: N is a compact irre-
ducible symmetric space and M is a reflective submanifold of N (that
is, a connected component of the set of fixed points of an involutive
isometry of N). Let C be the set of submanifolds of N which are con-
gruent to M . We prove that the natural inclusion of C in S is totally
geodesic.
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1 Introduction and statement of the result

1.1 Manifolds of embeddings

LetM ,N be connected differentiable manifolds. IfM is compact and oriented
and N is Riemannian, then the set E of all embeddings of M into N is a
Fréchet manifold [3] which has a canonical weak Riemannian metric defined
as follows: If f ∈ E and u, v ∈ TfE (that is, u, v are smooth vector fields
along f), then

〈u, v〉 =

∫
M

〈u (x) , v (x)〉 ωf (x) , (1)

where ωf is the volume element of the Riemannian metric on M induced by
f.

Let ∼ be the equivalence relation on E defined by f ∼ g if and only
if f = g ◦ φ for some orientation preserving diffeomorphism φ of M. The
set S = E/∼ of equivalence classes is called the nonlinear Grassmannian
(or Chow manifold) of N of type M . It is a Fréchet manifold with a weak
Riemannian metric in such a way that the associated projection Π : E → S
is a principal bundle with structure group Diff+ (M), and a Riemannian
submersion. Cf. [5], where much more general metrics on S are considered.

For any f ∈ E we have the decomposition TfE = Hf ⊕ Vf in horizontal
and vertical subspaces at f , where Vf = Ker (dΠf ) and Hf is the orthogonal
complement of Vf . They consist of all the smooth vector fields along f which
are tangent to f (M), respectively, normal, at each point of M.

1.2 Reflective submanifolds

A reflective submanifold M of a Riemannian manifold N is a connected com-
ponent of the set of fixed points of an involutive isometry of N . In particular,
M is closed and totally geodesic in N . Reflective submanifolds of symmetric
spaces have been extensively studied by Leung in a series of papers begin-
ning with [4]. For instance, every complete totally geodesic connected sub-
manifold of a simply connected space form is reflective. Also, the reflective
submanifolds of CP n are exactly, up to isometry, CP k (1 ≤ k < n) and
RP n (canonical embedding). In particular, RP 1, that is, a geodesic, is not a
reflective submanifold of CP n if n ≥ 2.
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1.3 The nonlinear Grassmannian of a compact sym-
metric space

Let N be a compact connected symmetric space and let G be the identity
component of the isometry group of N . Let o ∈ N and let K be the isotropy
subgroup at o. We have the canonical projection π : G → N , π (g) = g (o).
For the sake of simplicity, we assume further that G is semisimple and π is
a Riemannian submersion, where G is endowed with the Riemannian metric
defined at the identity by the opposite of the Killing form.

Let M be a reflective submanifold of N and let E ,S be the spaces asso-
ciated to M,N as in 1.1. We may suppose that o ∈M .

Let H = {g ∈ G | g (M) = M}. Since M is closed in G, then H is a closed
subgroup, and hence a Lie subgroup, of G.

Let C be the set of submanifolds of N which are G-congruent to M, that
is, C = {g (M) | g ∈ G}. We may identify C ∼= G/H.

Now we can state the main result of the paper: C is totally geodesic in S.
More precisely,

Theorem 1. Let ι : M → N be the inclusion and let

F : C ∼= G/H → S, F (gH) = Π ◦ g ◦ ι

(a well-defined map). Then (C, F ) is a totally geodesic submanifold of S.

Remark 2. a) Although geodesics in S are not good from the metric point
of view [6, 1], they are distinguished curves. For instance, the case M = S1,
N = S3 [8] has been useful in a characterization of the Hopf fibrations of S3.

b) We do not know whether the Riemannian metric induced on C from S
is normal with respect to G (i.e., whether the canonical projection π̃ : G→ C
is a Riemannian submersion for some bi-invariant Riemannian metric on
G), but at least in the simplest case it is:

Proposition 3. Let M be a refletive submanifold of Sn, that is, M is a great
sphere. Then the metric on C induced from S is normal.

Proof. Let {ei | i = 0, . . . , n} be the canonical basis of Rn+1 and suppose
M = Sn∩ span {ei | i = 0, . . . ,m} ∼= Sm. Given 0 ≤ i < j ≤ n and t ∈ R,
let Ri,j

t ∈ SO (n+ 1) = G fixing ek for k 6= i, j and satisfying Ri,j
t ei =
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(cos t) ei + (sin t) ej. Let Ei,j = d
dt

∣∣
0
Ri,j
t . If we take o = e0 and call h the Lie

algebra of H, then h⊥ = span {Ei,j | 0 ≤ i ≤ m < j ≤ n}.
The corresponding vector fields along the inclusion ι : Sm → Sn are

V i,j (q) =
d

dt

∣∣∣∣
0

(cos t)xi (q) ei + (sin t)xi (q) ej = xi (q) ej,

where q ∈ Sm. Now we apply the definition (1). We compute∣∣V i,j (q)
∣∣2 = x2i (q) ,

〈
V i,j (q) , V k,` (q)

〉
= δj`xi (q)xk (q) .

Since yi =def xi|Sm (i = 0, . . . ,m) are elements of the canonical orthogonal
basis of spherical harmonics on Sm, we have

〈
V i,j, V k,j

〉
= 0 if i 6= k. Besides,

(m+ 1)

∫
Sm

y2i (q) ωι (q) =
m∑
s=0

∫
Sm

y2s (q) ωι (q) =

∫
Sm

ωι (q) = vol (Sm) .

Therefore, ‖V i,j‖2 = 1
m+1

vol (Sm). Now, the Proposition follows from the

fact that {Eij | 0 ≤ i < j ≤ n} is an orthogonal basis of the Lie algebra of
SO (n+ 1) with respect to a multiple of the Killing form.

2 Proof of the main result

2.1 The structure of C

H. Naitoh proved that if M,N are as in Subsection 1.3, then (G,H) is a
symmetric pair. We recall here the more recent and general version by H.
Tasaki. Let g = k + p be the Cartan decomposition of the Lie algebra of G
associated to the point o ∈ N .

Theorem 4 ([7, 11]). Let h be the Lie algebra on H and let m− ⊂ p be such
that dπem− = ToM . Then k = k+ + k− and p = m+ + m− in such a way that

h = k− + m− and TMC ∼= h⊥ = k+ + m+. (2)

Moreover, [
h, h⊥

]
⊂ h⊥ and

[
h⊥, h⊥

]
⊂ h. (3)
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2.2 The evolution equation for geodesics

Let M,N be as in Subsection 1.1. G. Kainz obtained in [2] a necessary and
sufficient condition for a curve f : I → E to be a geodesic, where I is an
interval of the real line.

In the very particular case when f (t) is a totally geodesic embedding and
f ′ (t) is a normal vector field along f (t) for all t ∈ I, the condition simplifies
as follows [6, Subsection 4.2]: f is a geodesic if and only if

D

dt

∣∣∣∣
to

f ′ (t) (x) ∈ d (f (to))x (TxM) (4)

for all to and all x ∈M , where D
dt

denotes covariant derivative along the curve
I 3 t 7→ f (t) (x).

2.3 The acceleration of an orbit in a normal space

When applying the criterion above in our case, we will need an expression for
the covariant acceleration of the orbit of a one-parameter group of isometries.

Let G be a connected Lie group endowed with a bi-invariant Riemannian
metric and let K be a closed connected Lie subgroup of G with Lie algebra
k. Consider on P = G/K the Riemannian metric such that the canonical
projection π : G → P is a Riemannian submersion (the normal metric on
P ). In these conditions, the geodesics of G are one-parameter subgroups; in
particular, the fibers are totally geodesic.

Lemma 5. Let G and P be as above, and let β be the curve in P defined by
β = π ◦ α, where α (t) = exp t (U + V ), with U ∈ k and V ∈ k⊥. Then

Dβ̇

dt
(0) = dπe[U, V ]e.

Before proving the Lemma we recall from [9] some definitions and state-
ments about submersions and parallel transport.

Let π : B → P be a Riemannian submersion with totally geodesic fibers.
For E ∈ TB, let HE and VE denote the horizontal and vertical parts of E,
respectively. The O’Neill tensor field A on B, of type (0, 2), is defined by

AEF = V∇HE (HF ) + H∇HE (VF ) .
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Let E be a vector field along a curve α in B. By the main result in [9],

H (E ′) = L
(

(dπ (E))
′
)

+ AHE (Vα̇) + AHα̇ (VE) , (5)

where the prime denotes covariant derivative (along α or π ◦ α, accordingly)
and, if W is a vector field along π ◦ α, then L (W ) is the horizontal vector
field along α projecting to F .

Proof of Lemma 5. We consider the Riemannian submersion π : G→ P
and apply equation (5) to E = α̇ = U ◦α+V ◦α, whose covariant derivative
vanishes since α is a geodesic of G (the metric is bi-invariant). We obtain

0 = L(β̇′) + 2AHα̇ (Vα̇) . (6)

Hence, by definition of the tensor A and using that ∇VU = 1
2
[V, U ] since the

metric on G is bi-invariant, one has

L(β̇′) = −2H(∇Hα̇Vα̇) = −2H ((∇VU) ◦ α) = H (([U, V ]) ◦ α) .

Applying dπ and evaluating at t = 0, one gets the desired formula for β̇′ (0).

Proof of Theorem 1. We consider on C = G/H the metric induced from
S (which in principle may not be normal). Let F̃ : G/H → E be defined by
F̃ (gH) = g ◦ ι, that is, the following diagram is commutative.

G/H
F̃−→ E
↘
F
↓ Π

S

Given a geodesic γ in C, we will prove that F̃ ◦ γ is a horizontal geodesic
in E . Hence, F ◦ γ is a geodesic in S and so (C, F ) is totally geodesic, as
desired. Since F is G-equivariant and the action of G preserves the metrics
on C and E and also the vertical and horizontal distributions on E (see above
their description in terms of vector fields along the embeddings), it suffices
to prove the assertion only for γ with γ (0) = H.

Now, by Theorem 4, since the metric of C is G-invariant, the geodesics of
C are the same as the geodesics of C endowed with the normal metric (see
Exercise 10)b) on page 330 of [10]). Hence, γ (t) = π̃etX , for some X ∈ h⊥.
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We call f = F̃ ◦ γ : R → E . Now we check that we can apply the criterion
of Kainz. First, f (t) is totally geodesic for any t ∈ R, since f (t) = etXf (0),
with etX an isometry of N and f (0) = ι : M → N , which is totally geodesic
since it is reflective. Secondly, the vector field f ′ (t) along f (t) is normal to
f (t). Again by etX-invariance, one can take t = 0. Let q ∈ M . Since M
is a totally geodesic submanifold of the symmetric space G/H through o,
q = eY .o for some Y ∈ m−. We compute

f ′ (0) (q) =
d

dt

∣∣∣∣
0

etXq =
d

dt

∣∣∣∣
0

etXeY .o =
d

dt

∣∣∣∣
0

eY etZ .o =
(
deY
)
o
dπo (Z) ,

where

Z = Ad
(
e−Y

)
X =

∞∑
n=0

(−1)n

n!
(adY )nX.

Now, [Y,X] ∈ [m−, h
⊥] ⊂ h⊥ by (3). Hence, Z ∈ h⊥ and so dπe (Z)⊥ToM .

Therefore f ′ (0) (q)⊥
(
deY
)
o
dπ (m−) = TqM (this last equality is well-known

to hold for totally geodesic submanifolds of a symmetric space).
Now we can use Kainz evolution equation (4). Again by eY -invariance,

without loss of generality we may check it only at q = o. Let c (t) = esX .o
and suppose, by Theorem 4, that X = U +V , with U ∈ k+ and V ∈ m+. We
can apply Lemma 5 to G/K, with M in the role of P :

D

dt

∣∣∣∣
0

c′ (t) = dπe[U, V ] ∈ dπe[k+,m+],

which belongs to p (since [k, p] ⊂ p) and also to h, since [h⊥, h⊥] ⊂ h by (3).
Therefore, by (2), D

dt

∣∣
0
c′ (t) ∈ dπe (m−) ∈ ToM , as desired.
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