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I. INTRODUCTION

The subject of physical quantities, such as momentum and
intrinsic angularmomentum, is always related to the notion of
symmetries of the physical system to which they refer. Thus,
in the framework of special relativity, we have at our disposal
the definitions of total momentum and total angular momen-
tum,basedon theexistenceof the10Killingsymmetriesof the
spacetime. When considering the analogous situation for an
isolated system, in the framework of general relativity things
are more complicated. One is faced with the difficulty that, in
the neighborhood of future null infinity (Iþ), the asymptotic
symmetries generate an infinite dimensional group, namely,
the Bondi-Metzner-Sachs (BMS) [1–3] one. This is because
the existence of gravitational radiation affects the curvature of
the spacetime, even in the asymptotic regime.
In the study of asymptotically flat spacetimes, it is

tempting to express the asymptotic structure in terms of
a decomposition of the metric over a flat one, namely,

gab ¼ ηab þ hab; (1)

where ηab is a flat metric and hab the tensor in which all the
physical information is encoded. But the problem is that
there are as many flat metrics as there are proper BMS [2,4]
supertranslation generators. We should probably note that
this difficulty is rooted in the existence of gravitational
radiation, which reaches future null infinity, where total
physical quantities are calculated. On the contrary, in the
case of a stationary system, which therefore has no
gravitational radiation content, one can single out a unique
flat background metric ηab, which one can use in (1).
The situation today is that there are numerous references

for definitions of angular momentum at future null infinity,
for general radiating spacetime; most of them suffer from the
so-called problem of supertranslation ambiguities [5–9], but
the physics community has not yet embraced a standard for
it (for a review and references on the subject of energy-
momentum and angular momentum in general relativity,
see [10]). This is in spite of the fact that in [11] a definition

of intrinsic angular momentum was presented, free from
supertranslation ambiguities, satisfying a set of appropriate
physical conditions. However, in this reference, it was not
resolved the relation between that definition and the Komar
integral in the case of the existence of an axial symmetry.
Although the presence of a rotational Killing vector is not the
usual situation, its study gives important clues on invariant
definitions of angular momentum. Since, under these cir-
cumstances, the Komar integral becomes an important tool
due to its conservation properties, in this article we tackle
this problem by presenting a new definition of intrinsic
angular momentum, free from supertranslation ambiguities,
which agrees with the Komar integral in the particular
situation of the existence of axial symmetry. Therefore,
the main improvement of this work over [11], which has
already provided a definition of intrinsic angular momentum
free of supertranslation ambiguities, is to answer our ques-
tion [11] and other criticisms [12] about the relation of this
approach to the Komar integral.
It is probably worthwhile to remark that most of the

numerous definitions of angular momentum at future null
infinity do not tackle the problem of intrinsic quantities.
In our work we will use extensively a definition of

rest frames [13–15], which is described below, along with
its relation to the definitions of center of mass and intrinsic
angular momentum. Using these definitions we can further
select a unique timelike orderly family of sections that have
information for the center of mass and intrinsic angular
momentum [11].
Therefore, for each point at future null infinity, we have

[11] a way to single out a unique decomposition of the
metric in the form (1), with an appropriately selected flat
background η.
In order to gain perspective of our work let us consider

a radiating asymptotically flat spacetime in which one
can distinguish three stages. The first stage is when
the asymptotic region possesses an axial symmetry, the
second stage is when no symmetry is found, and the third
stage is when one finds another axial symmetry, which
does not coincide with that of the first stage. The situation
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is depicted in Fig. 1. Here, we present new definitions of
center of mass and intrinsic angular momentum which are
suitable for the general case of radiating spacetimes, that
do not suffer from supertranslation ambiguities, and
which in the first and third stages, where two different
rotational Killing vectors exist, coincide with the Komar
integral. To our knowledge, these are the only definitions
of center of mass and intrinsic angular momentum which
possess these properties. It is important to emphasize that
the corresponding center of mass in the first and third
stages would, in general, involve a supertranslation
(see Fig. 2).
Our work is based on the charge-integral approach. In the

past, Penrose [16] used the notion of charge integrals of the

Riemann tensor in his study of quasilocal mass and angular
momentum. We have used the same approach in our work
on total angular momentum [4], with a global choice of
reference frame. Later, in [11], we used this concept in our
construction of a definition of intrinsic angular momentum
free of supertranslation ambiguities. One advantage of the
approach of charge integrals is that for each generator of
asymptotic symmetry, one has an associated physical
quantity; in particular, the same expression provides a
definition not only of angular momentum but also of total
linear momentum. Furthermore, by construction, the factor
of 2 anomaly problem, found in the Komar integrals [7], is
absent in this formalism.
We are presenting, for the first time, a definition of

intrinsic angular momentum in general relativity which
is free from supertranslation ambiguities, valid for the
most general class of isolated systems, and it agrees
with the Komar integral in the presence of rotational
Killing vectors. We think that this work will be of
interest to a variety of readers; some of them might not
be experts in the subject, but the definition might be
relevant for their work. For this reason we try to present
it in a form as self-contained as possible, so some expert
readers are advised to overlook sections with standard
definitions.
The paper is organized as follows. In Sec. II, we present

a brief review of the concepts of rest frames, super-
momentum and nice sections, information that readers
already acquainted with these notions may omit. In
Sec. III, the Komar integral is expressed in terms of spinorial
quantities using the Geroch-Held-Penrose (GHP) [17] for-
malism. In Secs. IV and V, we discuss the charge-integral
approach, and finally, in the last section, we present the new
construction and definition of intrinsic angular momentum
valid for general asymptotically flat spacetimes.

II. “NICE SECTIONS” AS A TOOL FOR THE
SUPERTRANSLATION PROBLEM

A. Too many rest frames

As was mentioned in the Introduction, in spacetimes
which are asymptotically flat at future null infinity, instead
of the Poincare group with a finite number of symmetries,
we have the BMS group with an infinite number of
asymptotic symmetries. Although this group contains the
subgroup of translations as a normal subgroup (which
allows us to define geometrically the linear total Bondi
momentum), it does not contain a subgroup of Lorentz
rotations defined in a canonical way. Therefore, there is
no a priori intrinsic way to define a Pauli-Lubanski–like
vector. To see some specific examples where these con-
structions would fail, we refer to the work [18], where it is
shown, in particular, that a supertranslated boosted section
in Schwarzschild spacetime would give a nonzero angular
momentum, which, if used in a Pauli-Lubanski–like vector

non−axisymmetric

axisymmetric 

axisymmetric 

outgoing radiation

I

II

III

FIG. 1 (color online). A spacetime whose asymptotic regions
have three different stages.
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FIG. 2 (color online). Any intrinsic definition of center of mass
will necessarily involve supertranslation in different instances
of the dynamical system.
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[19], would produce a quantity that is supertranslation
dependent. However, we can base the analysis in terms of
the supermomentum, which is defined in terms of the
infinite supertranslation generators and which we use to
define the concept of nice sections. The supermomentum is
an object with infinite components such that the first four of
them define the total Bondi momentum. Using this concept,
we can ask whether there are sections at Iþ such that on
these sections the only nonvanishing component of the
supermomentum is the first one, that is, the timelike
component of the Bondi momentum. This would allow
us to give a definition of rest frames that we materialize
in the concept of nice sections. But for this program to
really work, one should prove, among other things,
that this family of sections is actually a four-parameter
family. Fortunately, it was proven in the past [13–15] that
this program can be successfully carried out. With the
concept of nice sections at hand, we have at our disposal a
tool to single out a Lorentz subgroup of the BMS group for
each rest frame. We will now review some of these
concepts.

B. Bondi systems as inertial frames

The analogues to inertial frames of special relativity at
future null infinity are the Bondi systems, by which we
mean [4] a coordinate and tetrad system, which we
describe below. Let ðM; gabÞ be an asymptotically flat
spacetime at null infinity [20]. As it was mentioned in the
introduction, in a vicinity of Iþ one can express the metric
in terms of a flat metric η plus a tensor h; where h goes to
zero appropriately [21] as one approaches future null
infinity. Each Bondi system can be used to build such a
flat metric η, and any other Bondi system connected to the
first by a translation or a Lorentz rotation will determine
the same flat metric η. However, any other Bondi system
connected to the first by a proper supertranslation will
determine a different flat metric tensor η. This situation is
what complicates the discussion of global quantities such
as angular momentum at Iþ.
Let us explain what we mean by Bondi systems. In the

vicinity of Iþ, we can construct a coordinate system
ðu; r; ζ; ζ̄Þ, where u are null hypersurfaces, r is an affine
parameter of the null generators la ¼ gabðduÞb of the null
hypersurfaces u ¼ const (such that when r goes to infinity,
the integral curves of these null generators intersect Iþ),
and ðζ; ζ̄Þ are stereographic coordinates labeling the null
generators of Iþ. If this coordinate system is chosen such
that when r goes to infinity the induced (conformal)
intrinsic metric on Iþ ĝab ¼ Ω2gab with Ω ¼ r−1 is the
standard metric of a unit sphere, or more precisely, if
the metric ĝjI on Iþ reads

ĝjI ¼ 0 · du2 − 4
dζdζ̄

ð1þ ζζ̄Þ2 ; (2)

then the coordinate system ðu; ζ; ζ̄Þ defines a Bondi system.
One can further require the affine coordinate r to agree with
the so-called “luminosity distance” [21] so that the coor-
dinate system has an invariant extension into the interior of
the spacetime. Associated to this coordinate system, we
have a null tetrad fla; na; ma; m̄ag, in the vicinity of Iþ,
where na is a null vector such that lana ¼ 1, with mam̄a ¼−1 and all other possible products vanishing; ma, m̄a are
complex null vectors tangent to the two-spheres defined by
u ¼ const and r ¼ const.
While inertial frames of special relativity are related

by Poincaré transformations, Bondi systems are related
by the so-called BMS transformations,

u0 ¼ Kðζ; ζ̄Þðu − γðζ; ζ̄ÞÞ; (3)

ζ0 ¼ Aζ þ B
Cζ þD

; (4)

where

Kðζ; ζ̄Þ ¼ 1þ ζζ̄

ðAζ þ BÞðĀ ζ̄þB̄Þ þ ðCζ þDÞðC̄ ζ̄þD̄Þ ; (5)

γðζ; ζ̄Þ is an arbitrary real regular function of the angular
variables, and ðA;B;C;DÞ are complex parameters satisfy-
ing AD − BC ¼ 1. The γ freedom is known as the
supertranslation.
In special relativity, rest frames are determined by those

Cartesian inertial frames for which the momentum vector
has only a timelike component different from zero or, in
other words, those for which the generator of time trans-
lations of the frame is aligned with the total momentum.
At future null infinity this situation is complicated by the

fact that, although there is a unique definition of momen-
tum, there are several definitions of supermomenta. This
means that there are several alternative nonequivalent
definitions of rest frames at Iþ. Next, we review some
possible definitions of supermomenta.

C. Supermomenta

Given an arbitrary section S of Iþ, one can choose,
without loss of generality, a Bondi coordinate system
ðu; ζ; ζ̄Þ, such that u ¼ u0 ¼ constant determines the sec-
tion S. Then, the different supermomenta on S can be
expressed in terms of the corresponding integrands as

P½X�lmðSÞ ¼ − 1ffiffiffiffiffiffi
4π

p
Z
S
Ylmðζ; ζ̄ÞΨ½X�ðu ¼ u0; ζ; ζ̄ÞdS2;

(6)

where dS2 is the surface element of the unit sphere on S,
Ylm are the spherical harmonics, and ½X� indicates the type
of supermomentum.
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Among the different possibilities let us mention
the following: the Geroch [9,22] supermomentum, with
integrand

Ψ½G� ¼ Ψ0
2 þ σ0 _̄σ0 þ

1

2
ðð20σ̄0 − ð̄20σ0Þ; (7)

the Geroch-Winicour [8] supermomentum, with inte-
grand [15]

Ψ½GW� ¼ Ψ0
2 þ σ0 _̄σ0 − ð̄20σ0; (8)

and the supermomentum which we have used in the past
[13] for defining nice sections, with integrand

Ψ½M� ¼ Ψ0
2 þ σ0 _̄σ0 þ ð20σ̄0: (9)

In all these expressions, dots over quantities f denote Bondi
time derivatives, i.e. _f ¼ ∂f

∂u; Ψ0
2 is the leading order part in

the asymptotic expansion of the component,

Ψ2 ¼ Cabcdlambm̄cnd; (10)

of the Weyl tensor Cabcd, in an expansion in terms of
powers of 1=r around Iþ, i.e.

Ψ2 ¼
Ψ0

2

r3
þΨ1

2

r4
þ � � � ; (11)

the scalar σ0 is the leading order part in the asymptotic
expansion of the shear,

σ ¼ mamb∇bla; (12)

and we use the symbol ð0 to denote the edth operator of the
unit sphere.
All these supermomenta have the property that the first

four components of the supermomentum, namely, the case
l ¼ 0 and the three cases l ¼ 1, determine the Bondi
energy-momentum vector. In other words,

ðPaÞ¼
�
P00;− 1ffiffiffi

6
p ðP11−P1;−1Þ;

iffiffiffi
6

p ðP11þP1;−1Þ;
1ffiffiffi
3

p P10

�
;

(13)

where a ¼ 0, 1, 2, 3.
The quantity Ψ½M� has some interesting properties: it is

real, Ψ½M� ¼ Ψ̄½M�, and also _Ψ½M� ¼ _σ0 _̄σ0.

D. Nice sections

Nice sections provide a determination of cuts, S. Given
an initial section S0, we can always think, without loss of
generality, that there is a Bondi coordinate such that the
section coincide with u ¼ 0. One can determine any other
section, by the supertranslation γ that takes one from S0, to

S; which coincides with the section u0 ¼ u − γ ¼ 0 in a
new Bondi coordinate system.
At the section S we require the supermomentum

P½M�lmðSÞ to have zero spatial components, providing us
with a geometric notion of rest frame. In other words, only
P½M�00ðSÞ is nonvanishing. This, in general, involves the
need to make a Lorentz boost which keeps S fixed, but it
aligns the generator of time translations with the total
momentum.
It was shown in the past [13,14] that this condition can be

cast in the following equation:

ð20ð̄
2
0γ ¼ Ψ½M�ðγ; ζ; ζ̄Þ þ K3ðγ; ζ; ζ̄ÞMðγÞ; (14)

where γ is the supertranslation which determines the nice
section, K is the conformal boost factor [11], and M is the
mass at the section S given by

M ¼
ffiffiffiffiffiffiffiffiffiffiffi
PaPa

p
: (15)

Some expected physical properties of the nice section
equation were proven in Refs. [14,15] as follows:

(i) There exists a four-parameter family of solutions of
the nice section equation, for radiating spacetimes.

(ii) Having a nice section S0, all other nice sections Sf
obtained from future timelike translations happen to
be to the future of S0.

(iii) If the spacetime is stationary, then the nice section
equation reduces to the good cut equation [23].
We should emphasize that the good cut equation
only admits solutions in the case of stationary
spacetimes, whereas the nice section equation
always has solutions.

Let us note that if we tried to do a similar construction of
nice sections using, instead of the supermomentum Ψ½M�,
the Geroch supermomentum Ψ½G�, then one would not be
able to obtain equations that determine sections. This is due
to the fact that under BMS transformations, the expression
~ð2 ~̄σ0 transforms as

~ð2 ~̄σ0 ¼
1

K3
ðð2σ̄0 − ð2ð̄2γÞ þ 1

K3

× ½2ðγð _̄σ0 þ ð2γ _̄σ0 þ ððγÞ2 ̈σ̄0�; (16)

and therefore the transformation rule for Ψ½G� is

~Ψ½G� ¼
1

K3

�
Ψ½G�−1

2
½2ðγð _̄σ0þð2γ _̄σ0þððγÞ2 ̈̄σ0þ c:c�

�
:

(17)

In this way, in the case of a stationary spacetime, we would
not have any equation for sections, since in such situations,
Ψ½G� is supertranslation invariant; in particular, we would
not recover the good cuts. Also, if we had used the Ψ½GW�
supermomentum, it would not have the pleasant property of
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a positive-definite time derivative, which would complicate
the discussion of its properties.
The nice section construction singles out precisely,

in an intrinsic way, a Poincaré structure from the infin-
ite-dimensional BMS group. In particular, given a fixed
observational point p at Iþ, there is precisely a 3-degrees-
of-freedom set of spacelike translations which generate all
the nice sections that contain p. In contrast, without this
construction there is an infinite-dimensional family of
general sections that contain p, one for each supertrans-
lation. In particular, for stationary spacetimes, the nice
sections requirement selects those whose shear is zero [11].

III. THE KOMAR ANGULAR MOMENTUM IN
AXIALLY SYMMETRIC SPACETIMES

AT NULL INFINITY

Before discussing the charge-integral approach to the
notion of intrinsic angular momentum, let us review the
definition of angular momentum through the Komar
integral. Let ðM; gabÞ be an axially symmetric asymptoti-
cally flat spacetime. Therefore, it admits a Killing vector va

with closed orbits, and so it satisfies

∇ðbvaÞ ¼ 0. (18)

Let S be a sphere; then the Komar integral [24] KSðvÞ is
defined by

KSðvÞ ¼ − 1

16π

Z
S
∇avbdSab; (19)

where dSab is the surface element of S.
Let S0 be any other two-surface, and let Σ be a hyper-

surface which has as boundaries both S and S0. Then the
difference of the Komar integrals at S and S0 is given by

KSðvÞ − KS0 ðvÞ ¼
1

16π

Z
Σ
Ra

bv
bdSa; (20)

where dSa is the volume element of Σ and Ra
b is the Ricci

tensor.
This means that in vacuum, the Komar integral is

conserved. It is because of this property that these integrals
are appreciated so much.
At future null infinity, a rotational Killing vector va can

be thought to be tangent to a sphere S, and it can be
expressed as

va ¼ −vm̄m̂a − vm ¯̂ma ¼ −ð̄0 ~̄am̂a − ð0 ~a ¯̂ma; (21)

where m̂a is the leading order part in the asymptotic
expansion of the vector ma and we have used the fact that
vm̄ and vm must be quantities of spin weight s ¼ −1 and
s ¼ 1, respectively; therefore, they can be expressed in
terms of a spin-zero quantity ~a through the edth operator.

After some computations, which are shown in the
Appendix, taking ~a ¼ a, the Komar angular momentum
can be written as

KSðvÞ ¼
1

8π

Z
S
ð̄0 ~̄aðΨ0

1 þ σ0ð0σ̄0ÞdS2 þ c:c: (22)

IV. CHARGE INTEGRALS AT FUTURE
NULL INFINITY

It is convenient to approach the concept of physical
quantities by the method of charge integrals. For example,
in electromagnetism, the charge enclosed by a two-surface
S is given by

Q ¼ −k
Z
S

�F;

where k is a constant which depends on the units.
Let us remark that the electromagnetic tensor F can be

understood as the curvature of the connection A, identified
with the potential vector.
In a similar way, a charge integral can be obtained from

the Riemann curvature tensor.
Given a two-sphere S, we will work with the charge

integral of the Riemann tensor:

QS ¼
Z
S
C (23)

where the two-form Cab is given by

Cab ≡ R�cd
ab wcd; (24)

with R� cd
ab ¼ 1

2
Rabefϵ

efcd the right dual of the Riemann
tensor and wab a two-form which will be determined next.
For motivations of these types of charge integrals,
see [4,16,25].
At this point, one might wonder why we use the right

dual of the Riemann tensor instead of the left dual; the
answer is that by using the right dual, we can directly relate
the exterior derivative of the form Cab with the Einstein
tensor as we show below.
Let Σ be a spacelike hypersurface in the interior of the

spacetime which asymptotically reaches future null infinity
in such a way that in the conformally completed spacetime,
Σ can be extended to Iþ with boundary S. Then, by using
Stokes’ theorem the charge integral on S can be expressed
as an integral on Σ, namely,

QS ¼
Z
S
C ¼

Z
Σ
dC: (25)

The exterior derivative of C can be expressed [4] by

dCabc ¼
1

3
ϵabcd

�R�defg∇ewfg: (26)
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As it was said before, an important property of the double
dual of the Riemann tensor is that its trace gives the
Einstein tensor, namely,

�R�
abcdg

bd ¼ Gac ¼ Rac − 1

2
gacR: (27)

Therefore, the previous equation can be written as

dCabc ¼
1

3
ϵabcd

�
− 2

3
Gdgvg þ �R�defgTefg

�
; (28)

where Tabc is the traceless part of ∇awbc and vc its trace;
that is,

∇awbc ¼ Tabc þ
1

3
gabvc − 1

3
gacvb; (29)

with

∇awab ¼ vb: (30)

Let us study, for a moment, this expression from the
point of view of linearized gravity. Suppose that the metric
is expressed as g ¼ ηþ h, in terms of a flat background
metric η. Then, from Eqs. (28) and (30) one observes that if
the vector va is a Killing vector of the metric ηab and if Tabc
is OðhÞ, then the charge integral will give the conserved
quantities in the context of linearized gravity. It is clear that
one can always find such a w. Then, this analysis ensures
that the charge integrals admit the appropriate physical
interpretations in the linearized gravity regime and, in
particular, that they do not suffer from the factor of 2
anomaly [7].
Another property of the double dual of the Riemann

tensor is the one associated with the Bianchi identities,
namely, �R�d½efg� ¼ 0, from which one can prove [11] the
relation

�R�defgTefg ¼
2

3
�R�defgðTðefÞg − TðegÞfÞ: (31)

This expression can be written in a simpler form using
spinorial notation. Tabc can be expressed [11] as

2

3
ðTðefÞg − TðegÞfÞ ¼ ∇E0ðEwFGÞϵF0G0 þ c:c:; (32)

where c.c. means complex conjugate, and we have made
the standard abuse of notation, identifying the vectorial
abstract indices with spinorial abstract indices using the
rule e ¼ EE0.
From these considerations, the most natural conditions

on w are to stay as close as possible to the following
conditions:

−∇A
B0
wAB þ c:c: ¼ vBB

0
(33)

and

∇E0ðEwFGÞ ¼ 0; (34)

where the vector vBB
0
is a generator of asymptotic

symmetries.
In general, an asymptotic symmetry va can be expressed

by its components in terms of a null tetrad frame,

va ¼ vnla − vm̄ma − vmm̄a þ vlna: (35)

Since the asymptotic symmetries are tangent to Iþ, the
tetrad components have the following behavior:

vn ¼ rv0n þ v1n þO

�
1

r

�
; (36)

vm ¼ rv0m þ v1m þO

�
1

r

�
; (37)

vl ¼ v0l þ
v1l
r
þO

�
1

r2

�
: (38)

The leading order part in the asymptotic expansion in a
Bondi system of an asymptotic symmetry is given by

v0m ¼ ð0a; (39)

v0n ¼
1

2
ðð0v0m̄ þ ð̄0v0mÞ ¼

1

2
ð0ð̄0ðaþ āÞ; (40)

v0l ¼ χðζ; ζ̄Þ − u
1

2
ð0ð̄0ðaþ āÞ; (41)

where χ and a are functions on the sphere with spin weight
0, satisfying χ ¼ χ̄, _a ¼ 0 and ð20a ¼ 0.
Relation (33) at Iþ can be expressed in terms of the

spinorial components of a regular dyad,

wAB ¼ w0 ι̂
A ι̂B − w1ðôA ι̂B þ ι̂AôBÞ þ w2 ι̂

A ι̂B; (42)

by

w2 ¼ − 1

3
v0m̄; (43)

w1 þ w̄1 ¼ −
1

3
v0l; (44)

_w1 þ _̄w1 ¼ −
1

2
ðð0w2 þ ð̄0w̄2Þ; (45)

while condition (34) at Iþ becomes

ð̄0w2 ¼ 0; (46)

_w2 ¼ 0; (47)
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ð0w0 ¼ −2σ0w1; (48)

_w1 ¼ −
1

2
ð0w2; (49)

1

2
_w0 þ ð0w1 þ σ0w2 ¼ 0: (50)

It was shown in Ref. [11] that the charge integral at
future null infinity can be expressed as

QSðwÞ ¼ 4

Z
½−w2Ψ0

1 þ 2w1ðΨ0
2 þ σ0 _̄σ0Þ�dS2 þ c:c:;

(51)

where Ψ0
1 is the leading order part in the asymptotic

expansion of the tetrad component of the Weyl tensor,

Ψ1 ¼ Cabcdlanbmcld: (52)

V. CHARGE INTEGRALS IN STATIONARY
SPACETIMES AND PHYSICAL

QUANTITIES

For the case of stationary spacetimes one can solve the
set of Eqs. (43)–(50) with the solution

w2 ¼ − 1

3
ð̄0ā; (53)

w1 ¼ w00
1 ðζ; ζ̄; σ0Þ þ

1

6
uð0ð̄0ā; (54)

w0 ¼ w00
0 ðζ; ζ̄; σ0Þ þ u

�
−2ð0w00

1 þ 2

3
σ0ð̄0ā

�

−
1

6
u2ð20ð̄0ā; (55)

where ð̄20ā ¼ 0, and w00
1 and w00

0 are spin weight 0 and 1
functions, respectively, that solve the equations

ð20w
00
1 ¼ 1

3
ð0σ0ð̄0 āþ

1

2
σ0ð0ð̄0 ā ¼ −ð0σ0w2 − 3

2
σ0ð0w2

(56)

and
ð0w00

0 ¼ −2σ0w00
1 : (57)

Let us note that if one uses the potential δ of the shear
satisfying

σ0 ¼ ð20δ; (58)

then the component w1 can be expressed by

w1 ¼ bþ 1

3
ð0δð̄0āþ 1

6
ðu − δÞð0ð̄0ā; (59)

where the spin 0 quantity b satisfies _b ¼ 0 and ð20b ¼ 0.

This procedure provides us with a two-form w0
AB given

by Eqs. (53)–(55), with the functional dependence on u ¼ γ
given by

w0
ABðγÞ ¼ w0

ABðu ¼ γ; ζ; ζ̄; σ0ðζ; ζ̄Þ; a; bÞ; (60)

where we stress the dependence on σ0.
Let us observe that a involves six real constants

associated with the Lorentz rotations and that, since in
this case Ψ0

2 is a real quantity, b contributes to the charge
integral QSðwÞ with four other real constants associated
with translations.
The first term in the integrand of Eq. (51) includes the

Weyl component Ψ1 which is known to describe the
angular momentum in the Kerr geometry. In the second
term we recognize the componentΨ0

2 which determines the
supermomentum Ψ½M� for this particular stationary case.
Let us recall that in special relativity, angular momentum

and intrinsic angular momentum are related by expressions
of the form Jab ¼ Sab þ RaPb − PaRb. Then, given a rest
reference frame in Minkowski spacetime, one needs to use
the spacelike translation freedom (Rb) in order to single out
the center-of-mass reference frame. In the center-of-mass
frame one has Jab ¼ Sab. Also, since the intrinsic angular
momentum satisfies SabPb ¼ 0 (frequently referred to as
the Dixon condition [26]), one can characterize the center-
of-mass frame as that rest frame for which J0i ¼ 0. It can be
seen that the condition we need to impose on the section S
in the charge-integral case is that it must be the nice section
satisfying

QSðaÞ ¼ 0 for all a ¼ ā; (61)

where it is understood that one takes b ¼ 0 in this equation.
The quantity a is, in principle, complex, so this condition
makes use of precisely 3 degrees of freedom, which are
associated with spacelike translations.
This is the appropriate condition which leaves a one-

dimensional family of nice sections S that can legitimately
be called center-of-mass frames. In particular, we can see
that the other center-of-mass frames are generated by time
translations from an original one in the nice section
construction. Using these frames Scm, the intrinsic angular
momentum s is defined by

s ¼ 3

32π
QScmðwÞ; (62)

where to determine w one chooses a ¼ −ā and b ¼ 0. Note
also that the same charge integral can be used to calculate
the Bondi momentum p given by

p ¼ 3

32π
QScmðwÞ; (63)

where in this case one takes a ¼ 0 and b ≠ 0.
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The previous prescription singles out the center-of-mass
frame for stationary spacetimes and a Poincaré subgroup of
BMS generators.
At this point, it is probably worthwhile to mention that

some authors have considered an alternative to the Dixon
condition, known as the Mathisson condition [27], which
requires JabUb ¼ 0, with Ub the four-velocity vector of
the worldline associated with the center of mass. But this
condition has the difficulty that it does not prescribe a
unique worldline; in fact, the solution depends on the
choice of an initial Ub, which gives rise to helical motion
for free spinning particles, instead of the geodesic motion.
Some authors have given physical meaning to these
curves [28], and recent articles discuss the range of
validity (see, for example, [29]). We do not make use
of this alternative condition because we require a defi-
nition of center of mass and intrinsic angular momentum
to be constructed from intrinsic physical quantities,
avoiding arbitrary choices.

VI. INTRINSIC ANGULAR MOMENTUM FOR
RADIATING SPACETIMES WHICH AGREES

WITH THE KOMAR INTEGRAL

We show in detail how to obtain the intrinsic angular
momentum for the general radiating case.
As before, we define the rest frame sections as those for

which P½M�lmðSÞ ¼ 0, ∀l ≥ 1.
Let us consider a point along a particular generator of Iþ,

denoted by pðτÞ, with τ a monotonically increasing time
parameter. The set of nice sections form a four-parameter
ðT; ~RÞ family that we now label SðT;~RÞ, where ðT; ~RÞ can be
identified with a translation among nice sections. Then, for a
given fixed τ, one has a three-parameter family of nice
sections SðT;~RÞ which contains the point pðτÞ.
Given one of these nice sections SðT;~RÞ, we can

always identify it with the condition u ¼ γS, where
γSðζ; ζ̄Þ is the supertranslation that defines the correspond-
ing section.
At thispoint it is important toemphasize thatEqs. (46)–(50),

in general, do not have solutions in a radiating spacetime.
In spite of that, we can propose a prescription which defines a
two-form suitable for our construction.
On SðT;~RÞ we define the two-form wSðT;~RÞ

as the solution

of the stationary problem [(53)–(55)] where the radiation
data are taken as σSðT;~RÞ

ðu; ζ; ζ̄Þ ¼ σ0ðγS; ζ; ζ̄Þ.
Then, using the identity

Z
S
ðw1ð20σ̄0Þ dS2 ¼

Z
S

�
σ0ð0σ̄0 þ

1

2
ð0ðσ0σ̄0Þ

�
w2 dS2;

(64)

we see that the charge integral (51) can be expressed more
generally as

QSðwÞ ¼ 4

Z
S

�
−w2

�
Ψ0

1 − α

�
σ0ð0σ̄0 þ

1

2
ð0ðσ0σ̄0Þ

��

þ 2w1

�
Ψ0

2 þ σ0 _̄σ0 − α

2
ð20σ̄0

��
þ c:c:; (65)

with α a constant. Let us note that using the potential w2,
the Komar angular momentum (22) can be written as

KSðvÞ ¼
3

8π

Z
S
−w2ðΨ0

1 þ σ0ð0σ̄0ÞdS2 þ c:c: (66)

Therefore, in order to recover the Komar expression
for the angular momentum, in the case of axisymmetric
spacetimes, we must set α ¼ −1.
In this way, the expression for the charge integral (that it

can be used to calculate angular momentum, momentum or
supermomentum) is

QSðwÞ ¼ 4

Z
S

�
−w2

�
Ψ0

1 þ σ0ð0σ̄0 þ
1

2
ð0ðσ0σ̄0Þ

�

þ 2w1

�
Ψ½M� − 1

2
ð20σ̄0

��
þ c:c: (67)

It is interesting to note that the first integrand factor
coincides with that obtained by Winicour [7] (except for
relative signs, due to differences in conventions).
Let us note, then, that the first term takes the form of the

Komar angular momentum since one can check that when
3w2 is the component of a rotational Killing vector, the term
ð0ðσ0σ̄0Þ does not contribute. Also, let us observe that in
the case of a stationary spacetime, it reduces to the result of
the previous section since the center-of-mass sections
coincide with the sections with σ0 ¼ 0.
In addition, in order to compute the intrinsic angular

momentum, for each choice of a we take bðaÞ. which
satisfies

b ¼ 1

48πM

Z
S

�
−ð0δð̄0āþ 1

2
δð0ð̄0ā

�
ð20ð̄

2
0δ̄dS

2 þ c:c:;

(68)

where δ is the complex potential for the shear defined by

σ ¼ ð20δ:

This choice of b is made so that the second term in (67)
does not contribute; thus, the complete charge integral
coincides with the Komar integral.
Similarly to how it was done before, in order to single

out the center-of-mass section Scm from the three-parameter
family of nice sections which contain the point pðτÞ,
we demand
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QScmðaÞ ¼ 0 for all a ¼ ā: (69)

Using these center-of-mass frames Scm, the intrinsic
angular momentum s is defined through

s ¼ 3

32π
QScmðwÞ; (70)

where, as before, in order to pick up the intrinsic angular
momentum, one takes a ¼ −ā.
In this approach, the observer (us) is located at future

null infinity, confined to a particular generator. Then, for
each retarded time, our construction singles out a unique
center-of-mass section, where the calculation of the intrin-
sic angular momentum is carried out. Thus, if one wants to
compare the spin at two different times, one has to repeat
the construction of the center-of-mass section at the second
reference time. Let us also note that since between two
center-of-mass sections we have at our disposal the one-
parameter family of center-of-mass sections among them,
we also have the two-form Cab, on this region, and
therefore, the difference of the spins can be expressed as
a flux law, using Stokes’ theorem.

VII. FINAL COMMENTS

We have shown in detail how the problem of super-
translations, in defining angular momentum, can be circum-
vented with the help of the so-called nice sections and the
charge integrals.
The comparison of the present approach based on charge

integrals of the Riemann tensor with traditional approaches
has been done in Ref. [11]. Among the recent contributions
on the subject, we comment on the ingenious work of
Ref. [30] based in Dirac eigenspinors. The application of
the so-called spectral angular momentum to our example
[18] of a supertranslated boosted section in Schwarzschild
spacetime captures the nonzero value of the orbital angular
momentum. In contrast, in our approach, the intrinsic
angular momentum for any center-of-mass section gives
the expected zero value.
As was mentioned in the Introduction, we emphasize

again that our work tackles the definition of intrinsic
angular momentum as opposed to just total angular
momentum as discussed by most other works. It is the
notion of intrinsic angular momentum that is relevant to
the study of astrophysical systems and, in particular, to the
problem of balance of gravitational radiation.
Another point that is worthwhile to note is that the

definition presented here satisfies the property that in a
spacetime with three stages—an axisymmetric one, a
nonaxisymmetric one, and a third with a different
Killing symmetry—it gives the expected values at the first
and third stages.
In summary, we have presented a definition of intrinsic

angular momentum which is free from supertranslation

dependence. It can be applicable to a general radiating
spacetime, and it agrees, for the case of axial symmetry,
with the Komar integral.
To our knowledge, this is the only definition of intrinsic

angular momentum with these properties.
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APPENDIX: THE KOMAR EXPRESSION FOR
ANGULAR MOMENTUM

In an axisymmetric spacetime there exists a Killing
vector field va associated with the axial symmetry. If the
spacetime is also asymptotically flat, then the Komar
definition of angular momentum is

KSðvÞ ¼ − 1

16π

Z
S
∇bvadSab; (A1)

where dSab is the surface element of a two-sphere S defined
as a cut of Iþ. An operational way to explicitly write
this integral is to consider a Bondi system ðu; ζ; ζ̄Þ such
that we extend S to the interior of the spacetime along
null geodesics with tangent vector la such that they are
orthogonal to S at Iþ. This construction generates a null
surface given by u ¼ constant, with la ¼ ðduÞa. If we also
define an affine parameter r along the null geodesics la,
then the two-surfaces Su;r defined by r ¼ constant on u ¼
constant will be two-spheres. We can then complete la to a
null tetrad fla; na; ma; m̄ag, by making ma and m̄a tangent
to the two-spheres Su;r. Then, the Komar angular momen-
tum (A1) can be reexpressed as

KSðvÞ ¼ − 1

8π
lim
r→∞

Z
S
∇bval½anb�d ~S

2; (A2)

where we used dSab ¼ 2l½anb�d ~S
2, with d ~S2 the surface-

area element of the spheres Su;r. Now, the Killing vector va

is, by construction, tangent to the two-spheres Su;r; then,
it must be expressed as

va ¼ −vm̄ma − vmm̄a ¼ −ð̄ ~̄ama − ð ~am̄a; (A3)

where in the last equality we used the fact that vm̄ and vm
are quantities of spin weight s ¼ −1 and s ¼ 1, respec-
tively, and therefore can be written in terms of a spin-zero
quantity ~a through the edth operator. Then, by projecting
the Killing equation ∇ðavbÞ ¼ 0 in the direction of mam̄b,
we get
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ðð̄ð ~aþ ~̄aÞ ¼ 0: (A4)

This equation implies that ~aþ ~̄a ¼ constant; therefore,
without loss of generality we can take ~aþ ~̄a ¼ 0.
On the other hand, the integrand of (A2) reads

∇bval½anb� ¼ −∇bðð̄ ~̄ama þ ð ~am̄aÞl½anb�
¼ ð ~a τ̄þð̄ ~̄a τ; (A5)

with

τ ¼ manb∇bla: (A6)

This means that in order to compute the angular momentum
defined in (A2), we need to know theOðr−2Þ of ð ~̄a τ̄. It can
be shown, from the Killing equations, that the term ð̄ ~̄a has
an asymptotic expansion as

ð̄ ~̄a ¼ v0m̄rþ v1m̄ þOðr−1Þ; (A7)

with v1m̄ and v0m̄ functions of ðu; ζ; ζ̄Þ. From the integration
of the Killing equation

Þvm ¼ −σvm̄ − ρ̄vm; (A8)

where Þ, is the thorn operator in the GHP [17] notation, and
taking into account the expansion in powers of r of ρ and σ,

ρ ¼ − 1

r
þOðr−3Þ; (A9)

σ ¼ σ0
r2

þOðr−4Þ; (A10)

it also follows that

v1m̄ ¼ σ̄0v0m: (A11)

Let us also note that in terms of a regular tetrad, the Killing
vector on Iþ is given by

vajIþ ¼ −v0m̄m̂a − v0mm̄̂a: (A12)

On the other hand, because v0m̄ is a quantity of spin weight
s ¼ −1, it can be expressed in terms of a spin-weight 0
quantity ā as

v0m̄ ¼ ð̄0ā: (A13)

In the same way, it can be shown that τ has an asymptotic
expansion as

τ ¼ ð̄0σ0r−2 − ðΨ0
1 þ 2σ0ð0σ̄0Þr−3 þOðr−4Þ: (A14)

By expanding the product ð̄ ~̄a τ up to order Oðr−2Þ, we
obtain

ð̄ ~̄aτ¼ ð̄0σ0v0m̄r
−1þf−½Ψ0

1þ2σ0ð0σ̄0�v0m̄þ σ̄0ð̄0σ0v0mgr−2
þOðr−3Þ: (A15)

Let us note from the first line of the previous equation, that
not only does the leading order of the Killing vector make a
contribution to the integral (given by v0m̄) but it also
contributes the term given by v1m̄. Let us also note that
the first term of this expression can be written as

ð̄0σ0v0m̄r
−1 ¼ − ð̄0σ0ð̄0ār−1

¼ − ½ð̄0ðσ0ð̄0āÞ − σ0ð̄20ā�r−1
¼ − ð̄0ðσ0ð̄0āÞr−1; (A16)

where we used the fact that ð̄20ā ¼ 0, which follows from
projecting the Killing equation ∇ðavbÞ ¼ 0 in the direction
of mamb. Therefore, by adding its complex conjugate we
obtain

ð ~a τ̄þð̄ ~̄a τ ¼ −½ð̄0ðσ0ð̄0āÞ þ ð0ðσ̄0ð0aÞ�r−1
þ ½−ðΨ0

1 þ σ0ð0σ̄0Þð̄0āþ c:c�r−2
þOðr−3Þ: (A17)

Then, the angular momentum reads

KSðvÞ ¼
1

8π

Z
S
ðΨ0

1 þ σ0ð0σ̄0Þð̄0ādS2 þ c:c: (A18)

with dS2 the surface element of a unit two-sphere. This
expression can be written in terms of

w2 ¼ − 1

3
ð̄0ā (A19)

as

KSðvÞ ¼ − 3

8π

Z
S
w2ðΨ0

1 þ σ0ð0σ̄0ÞdS2 þ c:c: (A20)
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