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Abstract

Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of
Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD), is of particular interest because of its
sharing properties with families of other divergence measures and its interpretability in different domains including
statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise
because of a number of attributes including generalization to any number of probability distributions and association of
weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical
frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations
and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this
generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD
generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S.
enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced
improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult
to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the
Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In
contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and
Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal
organisms.

Citation: Ré MA, Azad RK (2014) Generalization of Entropy Based Divergence Measures for Symbolic Sequence Analysis. PLoS ONE 9(4): e93532. doi:10.1371/
journal.pone.0093532

Editor: Kay Hamacher, Technical University Darmstadt, Germany

Received September 17, 2013; Accepted March 4, 2014; Published April 11, 2014
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Introduction

The statistical analysis of symbolic sequences is of great interest

in diverse fields, such as, linguistics, image processing or biological

sequence analysis. Information-theoretic measures based on

Boltzmann-Gibbs-Shannon Entropy (BGSE) have been frequently

used for interpreting discrete, symbolic data [1]. Using informa-

tion-theoretic functionals makes it unnecessary to map the

symbolic sequence to a numeric sequence. Given a random

variable X with k possible values ei, i = 1, 2, …, k, BGSE of the

probability distribution pX is defined as,

H1½p�~{
Xk

i~1

p(ei) ln p(ei): ð1Þ

BGSE has an additivity property: Let X and Y be two

statistically independent variables and pX and pY be their

corresponding probability distributions so that their joint proba-

bility distribution is the product of their marginal distributions:

pXY ~pX pY . Then,

H1½pXY �~H1½pX�zH1½pY�: ð2Þ

The central role played by BGSE in information theory has

encouraged the proposals of generalization of this function.

Outstanding in the realm of statistical physics has been the Tsallis

generalization of BGSE [2,3], which was obtained by substituting

natural logarithm by its deformed expression [4],

Hq½p�~�
Xk

i~1

p(ei)
qlq p(ei), ð3Þ

with the deformed definition,

lq(p)~
p1{q{1

1{q
,

.where q is a real number and in the limit qR1, lqRln and BGSE

is recovered. Index q gives a measure of the non-extensivity of the
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generalization as expressed by the pseudo-additivity rule [2,3]:

Hq½pX pY �~Hq½pX �zHq½pY �z(1{q)Hq½pX �Hq½pY �: ð4Þ

In the limit qR1, the BGSE additivity as in eqn. 2 is recovered.

Measures based on BGSE have been proposed for measuring

the difference between probability distributions. This includes the

Kullback-Leibler divergence and its symmetrized forms [5]. Lin

introduced the Jensen-Shannon divergence (JSD) as a generaliza-

tion of a symmetrized version of Kulback-Leibler divergence,

assigning weights to the probability distributions involved accord-

ing to their relative importance [5]. Subsequently, different

generalizations of JSD were proposed, either within the framework

of Tsallis statistics [6] or within Markovian statistical framework

[7]. While the former exploits the non-extensivity implicit in the

Tsallis generalization of BGSE, the latter is based on conditional

entropy that facilitates exploiting higher order correlations within

symbolic sequences. Since the latter was obtained within the

framework of Markov chain models, this generalization was

named Markovian Jensen-Shannon divergence (MJSD) and was

shown to significantly outperform standard JSD in its application

to deciphering genomic heterogeneities [7,8].

Because of the importance and usefulness of JSD in

different disciplines, significant advances have been made in

the generalization and interpretation of this measure. Yet a

comprehensive treatise on generalization as well as compara-

tive assessment of the generalized measures has remained

elusive. Here, we have attempted to bridge the gaps by

providing the missing details. Furthermore, we present here a

non-extensive generalization of MJSD within the Tsallis

statistical framework. The flexibility afforded by the integrated

Tsallis-Markovian generalization has spawned new opportu-

nities for (re-)visiting and exploring the symbolic sequence data

prevalent in different domains. In the following section, we

summarize the standard JSD, its properties and its interpre-

tation in different contexts. This was leveraged to demonstrate

in the next sections that certain interpretations are readily

amenable to different generalizations of JSD including the

proposed Tsallis-Markovian generalization. In section 3, we

describe non-extensive JSD generalization, followed by condi-

tional dependence based or Markovian generalization in

section 4. In section 5, we propose a non-extensive general-

ization of the Markovian generalization of JSD. Finally, in

section 6, we present a comparative assessment of the

generalized measures in deconstructing chimeric DNA se-

quence constructs. Note also that in the following sections, for

the sake of simplicity, we obtain the generalizations of

JSD for two probability distributions or symbolic sequences.

The generalization to any number of distributions or

sequences is straightforward (as with the standard JSD, Eqn.

9 in section 2).

Theory and Methods

1. The Jensen-Shannon Divergence Measure
Consider a discrete random variable X (with k possible values)

and two probability distributions for X, p1 and p2. The Kullback-

Leibler information gain or Kullback-Leibler divergence (KLD) is

defined as [1],

K1½p1,p2�~
Xk

i~1

p1(ei) ln
p1(ei)

p2(ei)
: ð5Þ

KLD is not symmetric and requires absolute continuity (p1(xj) = 0

when p2(xj) = 0). To overcome these shortcomings, Lin [5]

introduced a symmetrized generalization of KLD, namely, the

L-divergence, defined as,

L1(p1,p2)~
X

i

p1(ei)log
p1(ei)

1
2

p1(ei)z
1
2

p2(ei)

z
X

i

p2(ei)log
p2(ei)

1
2

p1(ei)z
1
2

p2(ei)
,

ð6Þ

which can be expressed in an entropic form, i.e.

L(p1,p2)~2H1(
p1zp2

2
){H1(p1){H1(p2): ð7Þ

The generalization of the L divergence is straightforward, defined

as Jensen-Shannon divergence,

D1½p1,p2�~H1½p1p1zp2p2�{p1H1½p1�{p2H1½p2�, ð8Þ

where H1[.] is BGSE (Eqn. 1). The weights pi associated with the

probability distributions pi allow assigning differential importance

to each probability distribution. JSD does not require absolute

continuity of probability distributions with respect to each other.

Furthermore, JSD can be readily extended to include more than

two probability distributions,

D1½p1,:::,pn�~H1

Xn

i~1

pipi

" #
{
Xn

i~1

piH1½pi�; ð9Þ

given n probability distributions.

Being the natural logarithm of a concave function, JSD is non-

negative, D1½p1,:::,pn�§0,as can be verified from Jensen’s

inequality. In addition to non-negativity and symmetricity, JSD

also has a lower and upper bound, 0#JSD#1, and has been

shown to be the square of a metric [6,7,9,10]. Because of these

interesting properties, this measure has been successfully applied to

solving a variety of problems arising from different fields including

molecular biology (e.g. DNA sequence analysis) [9,11–17],

condensed matter physics [18], atomic and molecular physics

[19], and engineering (e.g. edge detection in digital imaging) [20].

Grosse et al. gave three intuitive interpretations of JSD in the

framework of statistical physics, information theory and mathe-

matical statistics [9]. Since we intend to show in the later sections

that some of these interpretations could be readily extended to the

generalized JSD measures, we briefly describe below the three

interpretations of JSD.

Interpretation A (IA): Framework of statistical

physics. In the framework of statistical physics, JSD can be

interpreted as the intensive entropy of mixing. Considering two

vessels with a mixture of ideal gases, the mixing entropy is

obtained as,

Hmix~NkBH1½f�{kB

X2

s~1

n(s)H1½f(s)�, ð10Þ

where kB is Boltzmann constant, s is the number of vessels, n(s)

denotes the number of gas particles in vessel s,

N:
X2

s~1
n(s)denotes the total number of ideal gas particles,
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f(s) denotes vector of molar fractions of the gases in vessel s, and

f:
X2

s~1
n(s)=N
� �

f(s) denotes the vector of molar fractions of all

gases in the mixture. Under this interpretation,

D1~Hmix=NkB, ð11Þ

identifying ps~n(s)=N: Given s subsequences, D1 could thus be

interpreted as the overall difference between the entropy of the

total sequence and the weighted average of the entropies of

subsequences (each subsequence represented by a probability

distribution, see Eqn. 9).

Interpretation B (IB): Framework of information

theory. In the framework of information theory, D1 can be

interpreted as the mutual information. Consider two subsequences

S1, S2 of length n1 and n2 symbols respectively, derived from an

alphabet A = {e1, …, ek}of k symbols. The mutual information of

symbols and the subsequences they belong to (denoted E and S

respectively, representing all symbols and all subsequences) is given

as,

I1(E; S)~
Xk

i~1

X2

j~1

p(ei,Sj) ln
p(ei,Sj)

p(Sj)p(ei)
ð12Þ

:H1½p�{H1½pjp�,

.which is the reduction in the uncertainty of E due to the

knowledge of S. Here, p (ei, Sj) is the joint probability of variables ei

and Sj. The marginal probabilities p(Sj)and p(ei)are defined as,

p(Sj)~
Xk

i~1

p(ei,Sj)~
n(Sj)

N
,

p(ei)~
X2

j~1

p(ei,Sj),

ð13Þ

and the conditional entropy H1½pjp�is defined as,

H1½pjp�~{
X2

j~1

p(Sj)
Xk

i~1

pSj
(ei) ln pSj

(ei), ð14Þ

where the conditional probabilitypSj
(ei)~p(ei,Sj)=p(Sj),which is

the probability of finding symbol ei in the given subsequence Sj.

Mutual information can be rewritten as,

I1(E; S)~
Xk

i~1

X2

j~1

p(Sj)pSj
(ei) ln

pSj
(ei)

p(ei)
: ð15Þ

Recognizing p(ei)~p(S1)pS1
(ei)zp(S2)pS2

(ei)in this last expres-

sion, we re-obtain (8)

Interpretation C (IC): Framework of mathematical

statistics. In the framework of mathematical statistics, D1 can

be interpreted as the log-likelihood ratio. Consider the sequence S

composed of N symbols as in IB but we now ask for the probability

distribution p that maximizes the likelihood of S. The maximum

likelihood principle suggests.

ln Lmax~{N H½f� ð16Þ

with f (ei)~N(ei)=
X

i
N(ei), i.e. the relative frequency of symbol

ei in the sequence S. The probability distribution that maximizes

the likelihood is p = f. A similar calculation can be carried out for

the likelihood of subsequences Sj composing the sequence S. Under

this interpretation, we have,

D1~
DL

N
~

P2
j~1

ln L
Sj
max{ ln Lmax

N
: ð17Þ

Here, DL is the log-likelihood ratio which gives a measure of the

increase in the log-likelihood when sequence S is modeled as a

concatenation of two subsequences.

2. Non-extensive Generalization of JSD
Several forms of generalization in terms of non-extensive

entropy (Eqn. 3), introduced by Tsallis in modeling physical

systems with long range interactions [3], have been suggested. The

different JSD generalizations found in the literature can be

interpreted under the schema presented in the previous section as

IA or IB. A key concept in these generalizations is that of mutual

information measure.

Burbea and Rao [21] defined a generalized mutual information

measure via entropy substitution, which may be interpreted as in

IA. The generalized JSD can be obtained by merely substituting

H1 by Hq in Eqn. 8:

DIA
q ½p1,p2�~Hq½p1p1zp2p2�{p1Hq½p1�{p2Hq½p2�: ð18Þ

An alternative generalization was obtained by Lamberti and

Majtey [6] via the non-extensive generalization of KL divergence

proposed by Tsallis [22]:

Kq½p1,p2�~{
Xk

j~1

p1(ej)lq
p2(ej)

p1(ej)
: ð19Þ

The symmetrized L-divergence, in the framework of Tsallis

statistics, was obtained as,

Lq½p1,p2�~Kq p1,
p1zp2

2

h i
zKq p2,

p1zp2

2

h i
: ð20Þ

The Lq-divergence was shown to generalize to JSq-divergence,

replacing equal weights for the two distributions with any arbitrary

weights p1 and p2 associated with p1 and p2. However, this

generalization does not assume full entropic form as DIA
q [6]:

DIB
q ½p1,p2�~{

Xk

i~1

½p1p
q
1(ei)zp2p

q
2(ei)�lq½p1p1(ei)zp2p2(ei)�

{p1Hq½p1�{p2Hq½p2�:

ð21Þ

Jensen’s inequality allows to show that DIB
q ½p1,p2�wDIA

q ½p1,p2�:
We have put the supraindex IB in the former as this generalization

has an interpretation in mutual information. DIB
q ½p1,p2�can be

rewritten as,

DIB
q ½p1,p2�~{

X2

j~1

pj

Xk

i~1

p
q
j (ei)½lqp(ei){lqpj(ei)

{
X2

j~1

pj

Xk

i~1

pj(ei)lq
p(ei)

pj(ei)
:

ð22Þ
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Expression (22) can be interpreted as mutual information in Tsallis

non-extensive statistics, being a generalization of Eqn. (15):

Iq(E; S):DIB
q : ð23Þ

As noted in [22], Iq (E; S) gives a measure of the independence

of two random variables: Iq (E; S) = 0 for independent

variables. In this case of statistically independent variables,

the probability distribution of symbols ei is the same for both

sequence segments. Here, S is interpreted as a random variable

with probability distribution given by the weights pj.

3. Markov Model Generalization of JSD
The standard JSD measure assumes each symbol in a

sequence to occur independent of the others. In order to

account for short range interdependence between symbols,

JSD can be generalized by means of conditional entropy. This

generalization can be obtained in the framework of Markov

chain model of order m, where the occurrence of a symbol is

dependent on the m preceding symbols in the sequence. The

JSD corresponding to Markov sources can be obtained

following the steps in the derivation of JSD (Eqn. 6–8) for

the independent and identically-distributed (i.i.d.) sources. For

example, for a Markov source of order m, where the

occurrence of symbol ei depends on its just preceding context

w of length m,

Dm
1 ½p1,p2�~

p1

X
w

p1(w)
X

i

p1(ei jw)log
p1(ei jw)

p1p1(w)

p1p1(w)zp2p2(w)
p1(eijw)z

p2p2(w)

p1p1(w)zp2p2(w)
p2(ei jw)

z

p2

X
w

p2(w)
X

i

p2(ei jw)log
p2(ei jw)

p1p1(w)

p1p1(w)zp2p2(w) p1(eijw)z
p2p2(w)

p1p1(w)zp2p2(w) p2(ei jw)
,

ð24Þ

which leads to, after rearranging,

Dm
1 ½p1,p2�~

{
X

w

X
i

p1p1(w)p1(eijw)zp2p2(w)p2(eijw)½ �

log
p1p1(w)p1(eijw)zp2p2(w)p2(eijw)

p1p1(w)zp2p2(w)

� �
{p1Hm

1 ½p1�{p2Hm
1 ½p2�,

~{
X

w

p1p1(w)zp2p2(w)½ �

X
i

p1p1(w)p1(eijw)zp2p2(w)p2(eijw)

p1p1(w)zp2p2(w)

log
p1p1(w)p1(eijw)zp2p2(w)p2(eijw)

p1p1(w)zp2p2(w)
{p1Hm

1 ½p1�{p2Hm
1 ½p2�:

ð25Þ

Therefore,

Dm
1 ½p1,p2�~Hm

1 ½p1p1zp2p2�{p1Hm
1 ½p1�{p2Hm

1 ½p2�: ð26Þ

Here Hm
1 ½:�corresponds to entropy function for Markov sources

of order m,

Hm
1 ½p�~{

X
w

p(w)
X

i

p(eijw) ln p(eijw): ð27Þ

In contrast to Lamberti and Majtey’s generalization within the

Figure 1. Error (in base pairs) in detecting the join point in the chimeric sequence constructs for E. coli +S. enterica, E. coli + Y. pestis,
and E. coli +H. influenzae(+denotes concatenation). The proposed Tsallis-Markovian generalization of the Jensen-Shannon divergence measure
was used to obtain the mean and standard deviation of the error from 10,000 replicates for each type of chimeric sequence constructs. The error in
localizing the join point was obtained as the absolute difference between the position where the divergence was maximized and the position of the
join point (at 10 Kbp) in a chimeric sequence construct of size 20 Kbp. Error statistics for the two special cases of the proposed generalized measure is
shown within rectangular boxes{ the Markovian generalization (q = 1) in dashed green border box and Tsallis non-extensive generalization (model
order = 0) in dashed red border boxes. The minimum values of mean and standard deviation of the error for each chimeric construct type are shown
encircled and bold faced.
doi:10.1371/journal.pone.0093532.g001

(24)
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Tsallis non-extensive statistical framework [6] (Eqn. 21), this

generalization takes the full entropic form. Thakur et al.

introduced ‘‘Markov models for genomic segmentation’’ (MMS)

[7], where they replaced the BGSE with Markovian entropy (Eqn.

27) in the expression of JSD (Eqn. 8), which is amenable to

interpretation IA. They also derived this generalization, which we

call Markovian JSD (MJSD) introduced earlier in [8], using the

likelihood function (interpretation IC).

This generalization could also be interpreted in terms of

conditional mutual information, consistent with interpretation IB

(Eqn. 15),

Im
1 (E; SjW )~

X
i,j,w

p(ei,sj ,w) ln
p(ei,sj jw)

p(eijw)p(sj jw)
: ð28Þ

Making use of the conditional entropy definition and after some

algebraic manipulation, one can identify Dm
1 :Im

1 according to

interpretation IB.

4. Non-extensive Markovian JSD Generalization
We obtain the generalization of MJSD within the framework

of Tsallis non-extensive statistics. This integrates two different

generalizations of JSD, the Markovian and the Tsallis

Figure 2. Mean values of non-extensive MJSD at each position of the chimeric sequence constructs E. coli + Y. pestis, for the
parameter setting at which the non-extensive MJSD achieved most pronounced error reduction (q = 2, order 3). The chimeric
constructs of size 20 Kbp are comprised of two equal sized sequences, with each component sequence of length 10 Kbp obtained from the genome
of each organism.
doi:10.1371/journal.pone.0093532.g002
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generalization, thus yielding a generalization of which many of

the previously described JSD generalizations are special cases.

The non-extensive conditional or Markovian Kullback-Leibler

divergence between two distributions p1 and p2 is defined as:

Km
q ½p1,p2�~{

X
w

X
i

p1(w,ei)lq
p2(eijw)

p1(eijw)
: ð29Þ

Using the above, the symmetrized L-divergence in Tsallis-

Markovian framework can thus be obtained as,

Lm
q ~{

X
w

X
i

p1(w,ei)lq

p1(ei jw)zp2(ei jw)

2

p1(eijw)

{
X

w

X
i

p2(w,ei)lq

p1(ei jw)zp2(ei jw)

2

p2(eijw)
:

ð30Þ

Thus, we get,

Figure 3. Frequency distribution of position with maximum value of non-extensive MJSD for the chimeric sequence constructs E.
coli + Y. pestis, for the parameter setting at which the non-extensive MJSD achieved most pronounced error reduction (q = 2, order
3). The chimeric constructs of size 20 Kbp are comprised of two equal sized sequences, with each component sequence of length 10 Kbp obtained
from the genome of each organism.
doi:10.1371/journal.pone.0093532.g003

Generalization of Entropic Divergence Measures
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Lm
q ~{

1

1{q

X
w

X
i

p1(w,ei)

1

2
p1(eijw)z

1

2
p2(eijw)

� �1{q

p1(eijw)ð Þ1{q
{1

0
BBB@

1
CCCA

2
6664

zp2(w,ei)

1

2
p1(eijw)z

1

2
p2(eijw)

� �1{q

p2(eijw)ð Þ1{q
{1

0
BBB@

1
CCCA
3
7775:

ð31Þ

Rearranging,

Lm
q ~{

1

1{q

X
w

X
i

½ p1(w)½p1(eijw)�qzp2(w)½p2(eijw)�qð Þ

1

2
p1(eijw)z

1

2
p2(eijw)

� �1{q

{p1(w,ei){p2(w,ei)

#
:

ð32Þ

Therefore,

Lm
q ~

{
X

w

X
i

p1(w)½p1(ei jw)�qzp2(w)½p2(ei jw)�qð Þlq 1

2
p1(ei jw)z

1

2
p2(ei jw)

� ��

z
1

1{q

p1(w)½p1(ei jw)�qzp2(w)½p2(ei jw)�q

{p1(w)p1(ei jw){p2(w)p2(ei jw)

 !#

~{
X

w

X
i

p1(w)½p1(ei jw)�qzp2(w)½p2(ei jw)�qð Þlq 1

2
p1(ei jw)z

1

2
p2(ei jw)

� ��

z
1

1{q

p1(w)p1(ei jw) ½p1(ei jw)�q{1
{1

� �
zp2(w)p2(ei jw) ½p2(ei jw)�q{1

{1
� �

0
B@

1
CA
3
75

~{
X

w

X
i

p1(w)½p1(ei jw)�qzp2(w)½p2(ei jw)�qð Þlq 1

2
p1(ei jw)z

1

2
p2(ei jw)

� ��

{p1(w)½p1(ei jw)�qlqp1(ei jw){p2(w)½p2(ei jw)�qlqp2(ei jw)�:

ð33Þ

The Tsallis-Markovian generalization for equal weights for the

two distributions p1 and p2 (p1 = 0.5, p2 = 0.5) could thus be

expressed as,

D1
2
,1
2

� �m

q

~{
X

w

X
i

1

2
p1(w)½p1(ei Dw)�qz 1

2
p2(w)½p2(ei Dw)�q

� ��

lq
1

2
p1(ei Dw)z

1

2
p2(ei Dw)

� �
{

1

2
p1(w)½p1(ei Dw)�qlqp1(ei Dw)

{
1

2
p2(w)½p2(ei Dw)�qlqp2(ei Dw)

	
:

ð34Þ

The generalization to any weights p1 and p2 (from

p1 ~
1

2
, p2 ~

1

2
) associated to the joint distributions p1(w,e)

and p2(w,e) respectively is straightforward:

Dp1,p2

� �m

q
~

{
X

w

X
i

½ p1p1(w)½p1(eijw)�qzp2p2(w)½p2(eijw)�qð Þ

lq
p1p1(w)

p1p1(w)zp2p2(w)
p1(eijw)z

p2p2(w)

p1p1(w)zp2p2(w)
p2(eijw)

� �

{p1p1(w)½p1(eijw)�qlqp1(eijw){p2p2(w)½p2(eijw)�qlqp2(eijw)�:

ð35Þ

Note that the above generalization does not take an entropic form

or admit replacement of BGSE with non-extensive conditional

entropy in Eqn. 8 or 11 (interpretation IA), however, it can be

interpreted as mutual information (interpretation IB) as demon-

strated below.

Beginning with the conditional mutual information,

Im
q (E; SjW )~{

X
w

X
i

X
j

p(w,ei,Sj)lq
p(eijw)p(Sj jw)

p(ei,Sj jw)
, ð36Þ

we identify, as in q = 1 cases (Eqns. 15 and 28), thatDm
q ~Im

q .

If conditional probabilities p(eijw)and p(Sj jw)are independent,

then

p(ei,Sj jw)~p(eijw)p(Sj jw), ð37Þ

and in this situation, Im
q (E; SjW )~0, so that the conditional

mutual information is a measure of the independence of the

conditional probabilities.

Eqn. (36) can be rewritten as, by means of lq definition,

Im
q (E; SjW )~

{
X

w

X
i

X
j

p(w,ei,Sj)

1{q

p(eijw)p(Sj jw)

p(ei,Sj jw)

� 	1{q

{1

 !
:
ð38Þ

By means of Bayes’ theorem,

p(Sj jw)~
p(wjSj)p(Sj)

p(w)
~

p(w,Sj)

p(w)
: ð39Þ

We may rewrite,
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ð40Þ

(33)

(40)
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And, therefore, the generalization can be obtained as,

Dm
q S1,S2½ �

~
X

w

X
i

X
j

p(wjSj)p(Sj)½p(eijw,Sj)�q lqp(eijw,Sj){lqp(eijw)

 �

:
ð41Þ

Notice that for model order 0, Eqn. 41 reduces to Lamberti and

Majtey’s non-extensive generalization [6] (Eqn. 21), while in the

limit qR1, we recover Thakur et al.’s Markovian generalization

[7]. Note that Dm
q ½S1,S2�: Dp1,p2

� �m

q
(Eqn. 35) and therefore, the

Tsallis-Markovian generalization of JSD has its interpretation in

mutual information.

Experiments and Assessment

To assess the discriminative abilities of JSD and its generalized

forms, we compiled a test set of chimeric sequence constructs by

concatenating DNA sequences from phylogenetically distinct

organisms. Let S be a sequence composed of symbols ei from an

alphabet of k symbols (i = 1,…,k). Let us further assume that

sequence S is the concatenation of two subsequences S1 and S2. Let

pSj
(ei) denote the probability of symbol ei in subsequence Sj, and

p(Sj), or simply pj, the weight associated with the distribution pj

(j = 1,2). Since the actual probabilitypSj
(ei)is often not known, the

relative frequency of symbol ei in subsequence Sj, fSj
(ei), is used as

the estimate of pSj
(ei). Thus, D1 [p1, p2] or its generalizations for

given subsequences S1 and S2 is, in effect, a measure of the

difference between the estimates of p1 and p2. We use weights pj

proportional to the length of Sj, which was earlier found to be most

appropriate for symbolic sequence analysis [9].

Chimeric sequence constructs were obtained by concatenating

two equal size sequence segments selected randomly from the

genomes of two different organisms. We chose four phylogenet-

ically distinct organisms{Escherichia coli, Salmonella enterica, Yersinia

pestis and Haemophilus influenzae, the first three belongs to the family

Enterobacteriaceae and the fourth is an outgroup belonging to the

family Pasteurellaceae. We obtained the sequence constructs of

20 Kbp by concatenating 10 Kbp genomic segment from E. coli

with 10 Kbp segment from one of the other three organisms. The

phylogenetic proximity of these organisms from E. coli is in the

following order: S. enterica . Y. pestis . H. influenzae. We subjected

the non-extensive MJSD to detecting the join point of the two

disparate sequence segments. A cursor was moved along the

chimeric sequence construct and the non-extensive MJSD was

computed for sequence segments left and right to the cursor. The

position where non-extensive MJSD was maximized was noted.

The error in localizing the join point was obtained as the absolute

difference between the position where the non-extensive MJSD

was maximized and the position of the join point in a sequence

construct (for sequence constructs of 20 Kbp, the maximum and

minimum possible error would thus be 10,000 bp and 0 bp

respectively).

For experiments with 10,000 replicates for each, E. coli+S.

enterica, E. coli + Y. pestis, and E. coli+H. influenzae (+denotes

concatenation), the mean errors in detecting the join point for

standard JSD (q = 1, order 0) were 4072, 3400 and 589 bp

respectively, consistent with the order of divergence of E. coli from

the other three organisms, with H. influenzae being the outgroup

(Figure 1). For the non-extensive generalization (q varies, order 0;

error statistics shown within three rectangular boxes with dashed

red borders in Figure 1), the minimum mean errors (in the same

order of divergence from E. coli) were observed to be 4053, 3381

and 588 bp for q in the range 1.522.0. Since H. influenzae is

phylogenetically distant from E. coli, the generalization induces

very minor improvement while for the others, all belonging to the

same family, the generalization induces more improvement

apparently due to more rooms for improvement in these cases.

In contrast, for the Markovian generalization (q = 1, order varies;

error statistics shown within rectangular box with dashed green

borders in Figure 1), the improvements were substantially more

pronounced with corresponding minimum mean errors being

2949, 1959 and 271 bp at order 2, 3 and 3 respectively. This large

improvement is apparently due to the Markovian generalization

accounting for short-range correlations in the nucleotide ordering

in genomic sequences, which is not considered in the non-

extensive generalization. As expected from the above results,

the non-extensive Markovian generalization induces further

improvement over the Markovian generalization, generating the

respective minimum mean errors of 2907, 1788 and 271 bp at

different combinations of q and model order (shown encircled and

bold faced in Figure 1). Clearly, the non-extensive generalization

reaches saturation in improvement at large phylogenetic distances

between the organisms under comparison while it induces

significant improvements for phylogenetically proximal organisms.

Indeed, the reduction of more than 40 bp in error for E. coli+S.

enterica and 170 bp for E. coli + Y. pestis is remarkable considering

that these organisms are phylogenetically very close and therefore

difficult to differentiate in their genomic composition [13]. The

higher values of standard deviation from the mean are likely

because of the non-homogeneity of the bacterial genomes. A

significant portion (,1–20%) of bacterial DNAs is mobile and

therefore distinct from the ancestral DNAs acquired though the

reproductive processes [23]. The mean values of non-extensive

MJSD at each position of the chimeric sequence constructs E. coli

+ Y. pestis and the frequency distribution of position with

maximum value of non-extensive MJSD for these sequence

constructs are shown in Figure 2 and Figure 3 respectively, for

the parameter setting at which the non-extensive MJSD achieved

most pronounced error reduction (q = 2, order 3). Notably, the

value of MJSD increases monotonically with increase in q or

model order or both (Figure 2). A sharp spike in the distribution

around position 10 Kbp demonstrates the efficiency of the

divergence measure in localizing the join point of E. coli and Y.

pestis sequences (Figure 3), with the best performance at q = 2 and

order 3 setting (Figure 1). We show in Figures S12S15 these data

for all three kinds of sequence construct and at all parameter

settings.

In Figure S16, we show the error statistics for cases when the

chimeric sequence constructs of 20 Kbp had 5 Kbp from a non-E.

coli organism (S. enterica, Y. pestis or H. influenzae) and the remaining

15 Kbp from E. coli. The variable length taxonomically distinct

sequences within chimeric constructs present significantly more

challenge for the statistical methods than the chimeric constructs

with similar size sequences. As expected, the mean errors in

detecting the join point increased in all cases. The Markovian

generalization still results in much better performance than the

non-extensive generalization, while the non-extensive Markovian

generalization led to a more pronounced improvement for E. coli

+ Y. pestis (a reduction of 295 bp in mean error compared with

the Markovian generalization). Non-extensive generalization of

MJSD didn’t induce further improvement for E. coli+S. enterica,

likely because of the weakened discriminatory signal as a

consequence of reduction in the size of S. enterica fragments.

Figures S172S31 provide plots for divergence values at each
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sequence position as well as frequency distributions of position

with maximum divergence for all three kinds of sequence construct

and at all parameter settings. The discrimination of DNA

sequences from phylogenetically close relatives such as E. coli

and S. enterica is difficult, yet this study shows that there are still

rooms for improvement with the development of more flexible,

sensitive methods. Overall, the non-extensive Markovian general-

ization results in improved efficiency in discriminating sequences

from phylogenetically proximal organisms.

Conclusions

The proposed generalization of JSD in the integrated frame-

work of Tsallis and Markovian statistics provides a powerful tool

for symbolic sequence analysis. In application to deconstructing

the chimeric bacterial sequences, the Tsallis-Markovian general-

ization achieved remarkable improvement over both{ the Tsallis

as well as the Markovian generalization. The superior perfor-

mance of Tsallis-Markovian JSD was most pronounced when the

sequences under comparison arose from phylogenetically proximal

organisms. E. coli, S. enterica and Y. pestis, all belong to the same

Enterobacteriaceae family; previous studies have shown the limitations

of JSD in distinguishing sequences from organisms belonging to

the same family [13]. Therefore, the improvement achieved by the

proposed generalized measure is an important step forward in

interpreting the biological data which often have heterogeneities at

varying levels. While for the first time, to the best of our

knowledge, the theoretically distinct generalizations of JSD

accomplished by different research groups have been brought to

one place for comparison and assessment, this study has also

bridged the gaps in the field by obtaining generalizations

consistent with the original proposal for JSD derivation and by

providing the interpretations in the framework of statistical

physics, information theory and mathematical statistics, where

possible. The proposed divergence measure, generalized in the

integrated framework of Tsallis and Markovian statistics, provides

a new exploratory tool, augmented in both power and flexibility,

to mine the symbolic sequence data.

Supporting Information

Figure S1 Mean values of non-extensive MJSD at each position

of the chimeric sequence constructs E. coli + S. enterica, for model

order m = 0–3. For each model order, plots are shown for different

values of Tsallis statistics’ parameter q, in the range 0.5–3. The

chimeric constructs of size 20 Kbp are comprised of two equal

sized sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S2 Mean values of non-extensive MJSD at each position

of the chimeric sequence constructs E. coli + S. enterica, for Tsallis

statistics’ parameter q = 0.5, 0.7, 1.0, 1.5. For each q, plots are

shown for different model orders, in the range 0–3. The chimeric

constructs of size 20 Kbp are comprised of two equal sized

sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S3 As in Figure S2, but for Tsallis statistics’ parameter

q = 2.0, 2.5, 3.0.

(TIF)

Figure S4 Mean values of non-extensive MJSD at each position

of the chimeric sequence constructs E. coli + Y. pestis, for model

order m = 0–3. For each model order, plots are shown for different

values of Tsallis statistics’ parameter q, in the range 0.5–3. The

chimeric constructs of size 20 Kbp are comprised of two equal

sized sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S5 Mean values of non-extensive MJSD at each position

of the chimeric sequence constructs E. coli + Y. pestis, for Tsallis

statistics’ parameter q = 0.5, 0.7, 1.0, 1.5. For each q, plots are

shown for different model orders, in the range 0–3. The chimeric

constructs of size 20 Kbp are comprised of two equal sized

sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S6 As in Figure S5, but for Tsallis statistics’ parameter

q = 2.0, 2.5, 3.0.

(TIF)

Figure S7 Mean values of non-extensive MJSD at each position

of the chimeric sequence constructs E. coli + H. influenzae, for

model order m = 0–3. For each model order, plots are shown for

different values of Tsallis statistics’ parameter q, in the range 0.5–3.

The chimeric constructs of size 20 Kbp are comprised of two

equal sized sequences, with each component sequence of length

10 Kbp obtained from the genome of each organism.

(TIF)

Figure S8 Mean values of non-extensive MJSD at each position

of the chimeric sequence constructs E. coli + H. influenzae, for

Tsallis statistics’ parameter q = 0.5, 0.7, 1.0, 1.5. For each q, plots

are shown for different model orders, in the range 0–3. The

chimeric constructs of size 20 Kbp are comprised of two equal

sized sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S9 As in Figure S8, but for Tsallis statistics’ parameter

q = 2.0, 2.5, 3.0.

(TIF)

Figure S10 Frequency distribution of position with maximum

value of non-extensive MJSD for the chimeric sequence constructs

E. coli + S. enterica, for model order m = 0 (A, B) and 1 (C, D). For

each model order, distributions are shown for different values of

Tsallis statistics’ parameter q, in the range 0.5–3. The chimeric

constructs of size 20 Kbp are comprised of two equal sized

sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S11 As in Figure S10, but for model order m = 2 (E, F)

and 3 (G, H).

(TIF)

Figure S12 Frequency distribution of position with maximum

value of non-extensive MJSD for the chimeric sequence constructs

E. coli + Y. pestis, for model order m = 0 (A, B) and 1 (C, D). For

each model order, distributions are shown for different values of

Tsallis statistics’ parameter q, in the range 0.5–3. The chimeric

constructs of size 20 Kbp are comprised of two equal sized

sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S13 As in Figure S12, but for model order m = 2 (E, F)

and 3 (G, H).

(TIF)
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Figure S14 Frequency distribution of position with maximum

value of non-extensive MJSD for the chimeric sequence constructs

E. coli + H. influenzae, for model order m = 0 (A, B) and 1 (C, D).

For each model order, distributions are shown for different values

of Tsallis statistics’ parameter q, in the range 0.5–3. The chimeric

constructs of size 20 Kbp are comprised of two equal sized

sequences, with each component sequence of length 10 Kbp

obtained from the genome of each organism.

(TIF)

Figure S15 As in Figure S14, but for model order m = 2 (E, F)

and 3 (G, H).

(TIF)

Figure S16 Error (in base pairs) in detecting the join point in the

chimeric sequence constructs for E. coli+S. enterica, E. coli+Y.

pestis, and E. coli+H. influenzae (+denotes concatenation). The

proposed Tsallis-Markovian generalization of the Jensen-Shannon

divergence measure was used to obtain the mean and standard

deviation of the error from 5,000 replicates for each type of

chimeric sequence constructs. The error in localizing the join

point was obtained as the absolute difference between the position

where the divergence was maximized and the position of the join

point (at 5 Kbp) in a chimeric sequence construct of size 20 Kbp

(5 Kbp sequence from non-E. coli organism concatenated with

15 Kbp from E. coli). Error statistics for the two special cases of the

proposed generalized measure is shown within rectangular boxes–

the Markovian generalization (q = 1) in dashed green border box

and Tsallis non-extensive generalization (model order = 0) in

dashed red border boxes. The minimum values of mean and

standard deviation of the error for each chimeric construct type

are shown encircled and bold faced.

(TIFF)

Figure S17 Mean values of non-extensive MJSD at each

position of the chimeric sequence constructs E. coli + S. enterica,

for model order m = 0–3. For each model order, plots are shown

for different values of Tsallis statistics’ parameter q, in the range

0.5–3. The chimeric constructs of size 20 Kbp are comprised of

two sequences, one component sequence of length 5 Kbp obtained

from the genome of S. enterica and the other of length 15 Kbp from

the genome of E. coli.

(TIF)

Figure S18 Mean values of non-extensive MJSD at each

position of the chimeric sequence constructs E. coli + S. enterica,

for Tsallis statistics’ parameter q = 0.5, 0.7, 1.0, 1.5. For each q,

plots are shown for different model orders, in the range 0–3. The

chimeric constructs of size 20 Kbp are comprised of two

sequences, one component sequence of length 5 Kbp obtained

from the genome of S. enterica and the other of length 15 Kbp from

the genome of E. coli.

(TIF)

Figure S19 As in Figure S18, but for Tsallis statistics’ parameter

q = 2.0, 2.5, 3.0.

(TIF)

Figure S20 Mean values of non-extensive MJSD at each

position of the chimeric sequence constructs E. coli + Y. pestis,

for model order m = 0–3. For each model order, plots are shown

for different values of Tsallis statistics’ parameter q, in the range

0.5–3. The chimeric constructs of size 20 Kbp are comprised of

two sequences, one component sequence of length 5 Kbp obtained

from the genome of Y. pestis and the other of length 15 Kbp from

the genome of E. coli.

(TIF)

Figure S21 Mean values of non-extensive MJSD at each

position of the chimeric sequence constructs E. coli + Y. pestis,

for Tsallis statistics’ parameter q = 0.5, 0.7, 1.0, 1.5. For each q,

plots are shown for different model orders, in the range 0–3. The

chimeric constructs of size 20 Kbp are comprised of two

sequences, one component sequence of length 5 Kbp obtained

from the genome of Y. pestis and the other of length 15 Kbp from

the genome of E. coli.

(TIF)

Figure S22 As in Figure S21, but for Tsallis statistics’ parameter

q = 2.0, 2.5, 3.0.

(TIF)

Figure S23 Mean values of non-extensive MJSD at each

position of the chimeric sequence constructs E. coli + H. influenzae,

for model order m = 0–3. For each model order, plots are shown

for different values of Tsallis statistics’ parameter q, in the range

0.5–3. The chimeric constructs of size 20 Kbp are comprised of

two sequences, one component sequence of length 5 Kbp obtained

from the genome of H. influenzae and the other of length 15 Kbp

from the genome of E. coli.

(TIF)

Figure S24 Mean values of non-extensive MJSD at each

position of the chimeric sequence constructs E. coli + H. influenzae,

for Tsallis statistics’ parameter q = 0.5, 0.7, 1.0, 1.5. For each q,

plots are shown for different model orders, in the range 0–3. The

chimeric constructs of size 20 Kbp are comprised of two

sequences, one component sequence of length 5 Kbp obtained

from the genome of H. influenzae and the other of length 15 Kbp

from the genome of E. coli.

(TIF)

Figure S25 As in Figure S24, but for Tsallis statistics’ parameter

q = 2.0, 2.5, 3.0.

(TIF)

Figure S26 Frequency distribution of position with maximum

value of non-extensive MJSD for the chimeric sequence constructs

E. coli + S. enterica, for model order m = 0 (A, B) and 1 (C, D). For

each model order, distributions are shown for different values of

Tsallis statistics’ parameter q, in the range 0.5–3. The chimeric

constructs of size 20 Kbp are comprised of two sequences, one

component sequence of length 5 Kbp obtained from the genome of

S. enterica and the other of length 15 Kbp from the genome of E. coli.

(TIF)

Figure S27 As in Figure S26, but for model order m = 2 (E, F)

and 3 (G, H).

(TIF)

Figure S28 Frequency distribution of position with maximum

value of non-extensive MJSD for the chimeric sequence constructs

E. coli + Y. pestis, for model order m = 0 (A, B) and 1 (C, D). For

each model order, distributions are shown for different values of

Tsallis statistics’ parameter q, in the range 0.5–3. The chimeric

constructs of size 20 Kbp are comprised of two sequences, one

component sequence of length 5 Kbp obtained from the genome

of Y. pestis and the other of length 15 Kbp from the genome of E.

coli.

(TIF)

Figure S29 As in Figure S28, but for model order m = 2 (E, F)

and 3 (G, H).

(TIF)

Figure S30 Frequency distribution of position with maximum

value of non-extensive MJSD for the chimeric sequence constructs

Generalization of Entropic Divergence Measures

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e93532



E. coli + H. influenzae, for model order m = 0 (A, B) and 1 (C, D).

For each model order, distributions are shown for different values

of Tsallis statistics’ parameter q, in the range 0.5–3. The chimeric

constructs of size 20 Kbp are comprised of two sequences, one

component sequence of length 5 Kbp obtained from the genome

of H. influenzae and the other of length 15 Kbp from the genome of

E. coli.

(TIF)

Figure S31 As in Figure S30, but for model order m = 2 (E, F)

and 3 (G, H).

(TIF)
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